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Abstract 
 

 

In this thesis, we develop methodology and a software framework to apply the 

sequential Monte Carlo (SMC) methods for hydrologic modeling and 

demonstrate applicability of proposed methods in various case studies. The SMC 

methods are a Bayesian learning process in which the propagation of all 

uncertainties is carried out by a suitable selection of randomly generated particles 

without any assumptions about the nature of the distributions. Unlike the 

conventional Kalman filter-based methods that are basically limited to the linear 

updating rule and the assumption of Gaussian distribution errors, SMC filters 

have the advantage of being applicable to non-linear, non-Gaussian, state-space 

models. 

Chapter 2 reviews the basic theory of Bayesian filtering and various data 

assimilation (DA) methods such as Kalman filtering, variational assimilation and 

the sequential Monte Carlo methods. 

Chapter 3 proposes a dual updating scheme of state and parameter (DUS) based 

on the SMC methods to estimate both state and parameter variables of a lumped 

hydrologic model. The applicability of the DUS is illustrated using the 

implementation of the storage function model. The forecast provided by the DUS 

is superior to that of state only updating and deterministic modeling in terms of 

the model accuracy criteria, a scatter diagram, and simulated hydrographs. A 

significant reduction of parameter uncertainty is observed for all parameters, and 

estimated parameter distributions show good conformity with off-line optimum.  

Chapter 4 proposes an improved particle filtering approach to consider different 

response times of internal state variables in a hydrologic model. The proposed 

method adopts a lagged filtering approach to aggregate model response until the 

uncertainty of each hydrologic process is propagated. A distributed hydrologic 

model, water and energy transfer processes (WEP), is implemented for 

hindcasting of streamflow at the Katsura catchment, Japan via two particle filters: 
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the lagged regularized particle filter (LRPF) and the sequential importance 

resampling (SIR) particle filter. The LRPF shows consistent forecasts regardless 

of the process noise assumption, while the SIR has different values of optimal 

process noise and shows sensitive variation of confidence intervals. 

Chapter 5 presents performance assessment of ensemble Kalman filtering (EnKF) 

and particle filtering (PF) for short-term streamflow forecasting with a distributed 

hydrologic model. For both EnKF and PF, sequential data assimilation is 

performed within a lag-time window to account for lag and response times for 

internal hydrologic processes in a hydrologic model. Proposed methods are 

applied to two catchments in Japan and Korea to assess the performance of the 

methods. The forecasting accuracy of both filters is improved when sufficient lag 

times are provided. EnKF is sensitive to lag times and exhibits limited 

forecasting ability with short lead times, while PF exhibits more stable 

forecasting ability for the range of lead times examined. 

Chapter 6 develops a hydrologic modeling framework for data assimilation, 

namely MPI-OHyMoS. While adapting object-oriented features of the original 

OHyMoS, MPI-OHyMoS allows users to easily build a probabilistic hydrologic 

model with data assimilation. In this software framework, PF is available for any 

hydrologic models considering various sources of uncertainty originated from 

input forcing, parameters and observations. Ensemble simulations are parallelized 

by the message passing interface (MPI), which can take advantage of a high 

performance computing (HPC) system. Structure and implementation processes 

of DA via MPI-OHyMoS are illustrated using a simple lumped model. MPI-

OHyMoS is applied for the uncertainty assessment of a distributed hydrologic 

model in both synthetic and real experiment cases. In the synthetic experiment, 

dual state-parameter updating results in a reasonable estimation of parameters to 

cover synthetic true values within their posterior distributions. In the real 

experiments, The DUS via MPI-OHyMoS results in a reasonable agreement to 

the observed hydrograph with reduced uncertainty of parameters. 

 

Keywords: Sequential Monte Carlo methods, particle filtering, data assimilation, 

dual state-parameter updating scheme, distributed hydrologic model, ensemble 

Kalman filtering, MPI-OHyMoS, uncertainty assessment 
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 Chapter 1 

 

Introduction 
 

1.1 Background 
 

Identification and minimization of uncertainty are key issues in the hydrologic 

prediction. Uncertainty in the modeling process can be categorized into three 

main sources: measurement, parameter, and structural uncertainties (Smith et al., 

2008).  The measurement uncertainty comes not only from the inaccuracy of the 

observation equipment but also from incommensurability arising from the 

differences in temporal and spatial scales between models and data (Beven, 2009).  

Parameter and structural uncertainties are originated from simplified 

conceptualization of complex hydrologic processes in hydrologic modeling or 

inadequate model structures that cannot be properly parameterized in the 

calibration processes with limited observations.  

Data assimilation (DA) is a way to integrate information from a variety of 

sources to improve model accuracy, considering the uncertainty in both the 

measurement and modeling system. There have been considerable advances in 

hydrologic data assimilation for streamflow prediction (e.g., Kitanidis and Bras, 

1980; Georgakakos, 1986; Vrugt et al., 2006; Clark et al., 2008; Seo et al., 2003, 

2009).  DA methods can be divided into two groups: off-line and on-line methods. 

In general, off-line methods such as GLUE (Beven and Binley, 1992), DREAM 

(Vrugt et al., 2008) and other Monte Carlo methods use all measurement 

information to find global optimum in the calibration period. On the other hand, 

on-line methods based on the state-space approach estimate sequentially the state 
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of a dynamic system using a sequence of measurement at each time step (Ristic et 

al., 2004). These on-line or sequential DA methods, the main concern of this 

thesis, have a significant advantage over traditional time-series techniques for 

real-time forecasts and explicit handling of predictive uncertainties.   

For linear and Gaussian dynamics, Kalman filtering (KF) is the optimal data 

assimilation method (Kalman, 1960). For a nonlinear system, the extended 

Kalman filter (EKF) has been applied, but the EKF could lead to unstable results 

when the nonlinearity in a system is severe. The ensemble Kalman filtering 

(EnKF), introduced by Evensen (1994), is a Monte Carlo approximation to 

traditional KF. EnKF uses an ensemble of forecasts to estimate background error 

covariances (Whitaker and Hamill, 2002). The advantage of EnKF over the EKF 

is that it does not require the development of the linearized state-space 

formulation of the hydrological model (Clark et al., 2008). However, the 

posterior probability density of hydrologic states in a model is often non-

Gaussian and cannot be adequately characterized by the first two moments 

(Leisenring and Moradkhani, 2011). In addition, as EnKF actively updates states, 

it does not explicitly comply with the principle of conservation of mass (Salamon 

and Feyen, 2010).   

Another approach to data assimilation is variational assimilation (VAR), which 

has achieved widespread application in weather and oceanographic prediction 

models. Although variational methods are more computationally efficient than 

KF-based methods, the derivation of the adjoint model needed for minimisation 

of a cost function is difficult, especially in the case of non-linear, high 

dimensional hydrological applications (e.g., Liu and Gupta, 2007). 

Among data assimilation techniques, the sequential Monte Carlo (SMC) methods 

are a Bayesian learning process in which the propagation of all uncertainties is 

carried out by a suitable selection of randomly generated particles without any 

assumptions about the nature of the distributions. Unlike the various Kalman 

filter-based methods that are basically limited to the linear updating rule and the 

assumption of Gaussian distribution errors, the SMC methods have the advantage 

of being applicable to non-linear, non-Gaussian, state-space models. Since their 

introduction in 1993 (Gordon et al., 1993), the application of these powerful and 
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versatile methods has been increasing in various areas, including pattern 

recognition, target tracking, financial analysis, and robotics (Ristic et al., 2004; 

del Moral, 2004; Cappé et al., 2005). In recent years, these methods have 

received considerable attention in hydrology and earth sciences (e.g., Moradkhani 

et al., 2005a; Weerts and El Serafy, 2006; Zhou et al., 2006; van Delft et al., 2009; 

van Leeuwen, 2009; Karssenberg et al., 2010; Noh et al., 2011a, 2011b, 2012). 

However, potentials of these versatile methods have not been fully explored in 

hydrologic community. In recent times the SMC methods have been 

implemented for low numbers of lumped or semi-lumped hydrologic models in 

the limited forecasting mode. Development and evaluation of elaborate schemes 

for dual state-parameter updating or spatially distributed hydrologic modelling 

have been limited. Open software frameworks for the SMC methods are required 

indeed.  

1.2 Objectives 
 

The main objectives of this thesis are as follows: 

 

1. Development of a dual updating scheme of state and parameter (DUS) based 

on the SMC methods to estimate both state and parameter variables of a 

lumped hydrologic model. For the estimation of uncertain model parameters, 

a kernel smoothing method is used in the DUS.  

 

2. Development of a robust particle filtering approach for considering different 

response times of internal state variables in a distributed hydrologic model. 

The regularized particle filter is used to preserve sample diversity under the 

lagged filtering approach.  

 

3. Comparison of performance of ensemble Kalman filtering (EnKF) and 

particle filtering (PF) for short-term streamflow forecasting using a 

distributed hydrologic model. For both filters, sequential data assimilation is 
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performed within a lag-time window to account for lag and response times for 

internal hydrologic processes in a hydrologic model.  

 

4. Development of a hydrologic modeling framework for data assimilation: 

MPI-OHyMoS. In this software framework, sequential data assimilation 

based on particle filtering is available for any hydrologic models considering 

various sources of uncertainty originated from input forcing, parameters and 

observations. MPI-OHyMoS allows user to easily build a probabilistic 

hydrologic model with data assimilation, while adapting object-oriented 

features of the original OHyMoS. 

 

It should be noted that the objective of this thesis is not limited to simple 

implementation of the SMC methods for hydrologic modeling. As hydrologic 

models have non-linear, non-Gaussian properties, the SMC methods could be one 

of potential alternatives. However, due to unique features of hydrologic modeling, 

such as delayed response of hydrologic processes and aggregation of uncertainty 

in routing processes, new methodology and framework are required to improve 

applicability of versatile SMC methods in hydrologic modeling. Therefore, the 

higher goal of this thesis is development of methodology to properly apply the 

SMC methods for probabilistic forecasts and uncertainty assessment in 

hydrologic modeling.  

1.3 Outline of the thesis  
 
This thesis consists of a series of seven closely related chapters to achieve 

objectives described in the previous section. 

 
Chapter 2 reviews the basic theory of Bayesian filtering and various data 

assimilation methods such as KF, VAR and the SMC methods. 

 
Chapter 3 proposes a dual updating scheme of state and parameter (DUS) based 

on the SMC methods to estimate both state and parameter variables of a lumped 
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hydrologic model. We introduce a kernel smoothing method for the robust 

estimation of uncertain model parameters in the DUS. The applicability of the 

dual updating scheme is illustrated using the implementation of the storage 

function model at the Katsura catchment located in Kyoto, Japan.  

 
Chapter 4 proposes an improved particle filtering approach to consider different 

response times of internal state variables in a hydrologic model. The proposed 

method adopts a lagged filtering approach to aggregate model response until the 

uncertainty of each hydrologic process is propagated. The regularization with an 

additional move step based on the Markov chain Monte Carlo (MCMC) methods 

is also implemented to preserve sample diversity under the lagged filtering 

approach. A distributed hydrologic model, namely water and energy transfer 

processes (WEP), is implemented for hindcasting of streamflow at the Katsura 

catchment, Japan via two particle filters: the lagged regularized particle filter 

(LRPF) and the sequential importance resampling (SIR) particle filter.  

 

Chapter 5 presents performance assessment of EnKF and PF for short-term 

streamflow forecasting with a distributed hydrologic model, WEP. To mitigate 

the drawbacks of conventional filters, the ensemble square root filter (EnSRF) 

and the regularized particle filter (RPF) are implemented. For both the EnSRF 

and the RPF, sequential data assimilation is performed within a lag-time window 

to account for lag and response times for internal hydrologic processes in a 

hydrologic model. Proposed methods are applied to two catchments in Japan and 

Korea to assess the performance of the methods. 

 
Chapter 6 develops a hydrologic modeling framework for data assimilation, 

namely MPI-OHyMoS. While adapting object-oriented features of the original 

OHyMoS, MPI-OHyMoS allows user to easily build a probabilistic hydrologic 

model with data assimilation. In this software framework, sequential data 

assimilation based on particle filtering is available for any hydrologic models 

considering various sources of uncertainty originated from input forcing, 

parameters and observations. Ensemble simulations are parallelized by the 

message passing interface (MPI), which can take advantage of a high 



6 Chapter 1. Introduction 

  

 

performance computing (HPC) system. We apply this software framework for 

uncertainty assessment of lumped and distributed hydrologic models in synthetic 

and real experiment cases.  

 

Finally, Chapter 7 presents conclusions of the thesis. 



 

 

 Chapter 2 

 

Data assimilation methods 
 

2.1 Introduction 
 

Data assimilation (DA) methods are used to improve the predictions of a dynamic 

model using observations (van Velzen, 2010). Broadly speaking, DA methods 

may be divided into sequential and variational ones. In sequential methods such 

as Kalman filtering (KF) and the sequential Monte Carlo (SMC) methods, states 

are updated by assimilating observations sequentially. This analysis is performed 

for each time step when new measurements become available. Its impact depends 

on the uncertainties in both the observations and model states (Rakovec et al., 

2012). Variational assimilation (VAR) rather minimizes a cost function over a 

simulation time window. At the beginning, a first-guess model is constructed, 

which is afterwards updated by creating an adjoint model which propagates 

backwards in time and incorporates the mismatch between the model and 

observations (Liu and Gupta, 2007).  In the least squares sense, sequential and 

variational assimilation methods attempt to essentially solve the same 

minimization problem and, if the model dynamics is linear, are essentially 

equivalent (Li and Navon, 2001; Seo et al., 2003) and provide optimal solutions. 

However, if the non-linearity of the system is severe, the non-Gaussianity of the 

true posterior density will be more pronounced (e.g., it can be bimodal or heavily 

skewed). In such cases the performance of conventional KF and VAR methods 

will be degraded significantly (Ristic et al., 2004). On the other hand, the SMC 

methods, known as particle filtering (PF), do not need any assumptions about the 



8 Chapter 2. Data assimilation methods 

  

 

nature of the distributions representing the posterior probability density function 

(PDF) via particles with weights. Therefore, the SMC methods have the 

advantage of being applicable to non-linear, non-Gaussian, state-space models 

(Gordon et al., 1993; Arulampalam et al., 2002; Del Moral, 2004; Andrieu et al., 

2010). Although the basic SMC methods had been introduced in the 1950, they 

were ignored due to the degeneracy problem of plain sequential importance 

sampling and the modest computing power. With the inclusion of the resampling 

step (Gordon et al., 1993) and parallel computing, research activity has 

dramatically increased, resulting in many improvements of the SMC methods and 

their numerous applications (Ristic et al., 2004). 

In this chapter, we briefly describe the theory of Bayesian filtering and several 

data assimilation methods such as KF, VAR for optimal solution in linear, 

Gaussian cases and the SMC methods for suboptimal solution in non-linear, non-

Gaussian cases. The performance evaluation criteria used within this thesis are 

summarized in the last section. 

2.2 Bayesian filtering theory 
 

The problem of filtering is to estimate sequentially the state of a dynamic system 

(e.g., hydrologic model) using a sequence of noisy measurements (e.g., 

streamflow, soil moisture) made on the system. To make inferences about a 

dynamic system, we use probabilistic state-space formulation and the Bayesian 

approach for updating of information on receipt of new measurements. In the 

Bayesian filtering, one attempts to construct the posterior PDF of the state, based 

on all available information, including the sequence of received measurements 

(Arulampalam et al., 2002).  

To define the problem of Bayesian filtering, consider a general dynamic state-

space model, which is described as follows: 

kkkk uxfx ω+= − ),( 1      (2-1) 

kkk xhy ν+= )(      (2-2) 
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where kx is the nx-dimensional vector denoting the system state at time k. The 

operator xx nnf ℜ→ℜ:  expresses the system transition of the state 1−kx  in 

response to the forcing data ku . ky  is the measurement. yx nnh ℜ→ℜ:  expresses 

the measurement function. ℜ is a set of real numbers. kω and kv  represent the 

model error and the measurement error, respectively, whose covariances are kW  

and kV . The objective of filtering is to recursively estimate kx  base on the set of 

all available measurements y1:k = {yi, i = 1, …, k}. Thus, it is required to construct 

the PDF ( )kk yxp :1|  (Arulampalam et al., 2002). If the initial PDF 

( ) ( )000 | xpyxp ≡ is available as prior information, the PDF ( )kk yxp :1|  may be 

obtained recursively in two stages: prediction and update. 

Suppose that the PDF ( )1:11 | −− kk yxp at time 1−k  is available. The prediction stage 

involves using the system transition Eq. (2-1) to obtain the prediction probability 

density of the state at time k  via the Chapman-Kolmogorov equation 

( ) ( ) ( ) 11:1111:1 ||| −−−−− ∫= kkkkkkk dxyxpxxpyxp    (2-3) 

In the above equation, a Markov process of order one has been used as 

( ) ( )11:11 |,| −−− = kkkkk xxpyxxp . The probabilistic model of the state evolution is 

constructed by the system transition and the model error kω  in Eq. (2-1). 

When a measurement becomes available at time step, updating stage is carried 

out via Bayes’ rule 

( ) ( )1:1:1 ,|| −= kkkkk yyxpyxp          () 

 
( ) ( )

( )1:1

1:11:1

|
|,|

−

−−=
kk

kkkkk

yyp
yxpyxyp

           

( ) ( )
( )1:1

1:1

|
||

−

−=
kk

kkkk

yyp
yxpxyp

       (2-4) 

Where the normalizing constant 

( ) ( ) ( )∫ −− = kkkkkkk dxyxpxypyyp 1:11:1 |||                 (2-5) 

depends on the likelihood function ( )kk xyp | , defined by the measurement model 

and the error kv  in Eq. (2-2).  
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The recurrence relations of Eqs. (2-3) and (2-4) are the basis for the optimal 

Bayesian solution. However, solutions do exist in a restrictive set of cases 

including KF and VAR. In most practical situation, if the system and 

measurement models are nonlinear and non-Gaussian, it is not possible to 

construct the posterior PDF of the current state xk given the measurement y1:k = 

{yi, i = 1, …, k} analytically. In this case, suboptimal solutions can be found by 

the sequential Monte Carlo methods. 

2.3 Kalman filtering 

 

KF assumes that the posterior probability density at every time step is Gaussian 

and hence exactly and completely characterized by two momentums, its mean 

and covariance (Ristic et al., 2004). In a linear and Gaussian case Eqs. (2-1) and 

(2-2) can be rewritten as: 

),0(~11 kkkkkk WNxFx ωω+= −−    (2-6) 

),0(~ kkkkkk VNvxHy ν+=   (2-7) 

where 1−kF and kH represent matrices defining the linear functions. Random 

noises kω and kv  are mutually independent zero-mean white Gaussian, with 

covariances kW  and kV , respectively.  

KF consists of prediction and updating stages. In the prediction stage, means and 

covariances of states kx̂ and kP are estimated as follows: 

11 ˆˆ −−= kkk xFx        (2-8) 

T
kkkkk FPFWP 1111 −−−− +=       (2-9) 

In the updating stage, means and covariance are adjusted as follows: 

)ˆ(ˆˆ kkkkk
up
k xHyKxx −+=      (2-10) 

kkk
up

k PHKIP )( −=       (2-11) 
where  

1)( −+= k
T
kkk

T
kkk VHPHHPK      (2-12) 



2.4  Variational assimilation 11  

 

is the Kalman gain. The Kalman filter recursively computes the mean and 

covariance of the Gaussian posterior ( )kk yxp :1| . This is the optimal solution to the 

Bayesian filtering problem if linear and Gaussian assumptions hold.  

In non-linear cases, the extended Kalman filter (EKF) may be used as suboptimal 

solution. In the EKF, non-linear operators, f and h , in Eqs. (2-1) and (2-3) are 

linearized by F̂ and Ĥ as follows: 

[ ]Tk
T

kxk xfF
k

)ˆ(ˆ
11ˆ1 1 −−− −

∇=       (2-13) 

[ ]Tk
T
kxk xhH

k
)ˆ(ˆ

ˆ∇=       (2-14) 

where 

T

n
k

i
k

x xk xx 







∂
∂

∂
∂

=∇        (2-15) 

In the EKF, prediction and updating stages are conducted by Eqs. (2-8) to (2-12) 

using Jacobians 1
ˆ
−kF and kĤ evaluated at 1ˆ −kx and kx̂ , respectively. Note that the 

EKF approximates ( )kk yxp :1| to be Gaussian. Ensemble Kalman filtering, an 

efficient alternative for non-linear cases, will be discussed in Chapter 5. 

2.4 Variational assimilation 
 

Another approach to data assimilation is variational assimilation (VAR). VAR is 

also defined in linear and Gaussian operators shown in Eqs. (2-6) and (2-7). The 

goal of VAR is to find the initial state up
kx 1−  that minimizes the object function: 

)()()()()()( 1
1

111
1

111
up
kkkk

Tup
kkkk

up
kk

T
k

up
k

up
k xHyVxHyxxPxxxJ −

−
−−−

−
−−− −−+−−=     (2-16) 

3D-VAR is a data assimilation method that computes the analysis by minimizing 

Eqs. (2-16). The gradient of the criterion of Eq. (2-16) is given by 

)(2)()(2)( 1
1

11
1

1
up
kkkk

T
kk

up
kk

up
k xHyVHxxPxJ −

−
−−

−
− −+−=∇       (2-17) 

The minimization problem is solved by performing a number of iterations of a 

minimization algorithm such that 

ε<∇ − )( 1
up
kxJ         (2-18) 
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for some predefined tolerance ε (van Velzen, 2010). 

4D-VAR is a non-sequential data assimilation method taking all measurements 

into account in a given time window. However, the adjoint operators required for 

the minimization function are difficult to construct especially in the case of non-

linear, high dimensional applications. Detailed description of VAR can be found 

in Evensen (2009) and van Velzen (2010). 

2.5 Sequential Monte Carlo methods 

2.5.1 Sequential importance sampling 

As mentioned before, if the system and measurement models are non-linear and 

non-Gaussian, it is not possible to construct the posterior PDF of the current state 

xk given the measurement y1:k = {yi, i = 1, …, k} analytically in the Bayesian 

filtering. When the analytic solution is intractable, an optimal solution can be 

approximated by the SMC methods (Ristic et al., 2004). 

The SMC filters are a set of simulation-based methods that provide a flexible 

approach to computing posterior distribution without any assumptions being 

made about the nature of the distributions. The key idea of the SMC methods is 

to represent the posterior PDF by a set of random samples with associated 

weights and to compute estimates based on these samples and weights.  

Sequential importance sampling (SIS) is the basic framework for most SMC 

algorithms. In SIS, the marginal posterior density at time k  can be approximated 

as follows: 

∑
=

−≈
n

i

i
kk

i
kkk xxwyxp

1
:0:0:1 )()|( δ         (2-19) 

where i
kx :0 and i

kw denotes whole trajectory of the ith particle and its weight, 

respectively, and )(⋅δ denotes the Dirac delta function. The weights are 

normalized such that ∑
=

=
n

i

i
kw

1
1  and chosen using the principle of importance 

sampling. Usually we cannot draw samples i
kx from )(⋅p

 
directly. Assume we 

sample directly form a importance function )(⋅q . Then the weights are 
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：

：∝        (2-20) 

If the importance function is chosen to factorize such that 

)|(),|()|( 1:11:0:11:0:1:0 −−−= kkkkkkk yxqyxxqyxq     (2-21) 

then one can augment old particle i
kx 1:0 −

 
by ),|(~ :11:0 kkkk yxxqx −  to get new 

particles i
kx :0 . The weight update equation can then be shown to be 

),|(
)|()|(

:11:0

1
1

k
i

k
i
k

i
k

i
k

i
kki

k
i
k yxxq

xxpxypww
−

−
−=          (2-22) 

Furthermore, if ),|(),|( :11:11:0 kkkkkk yxxqyxxq −− = , then the importance density 

becomes only dependent on the state and the measurement. The modified weight 

is then 

),|(
)|()|(

1

1
1

k
i
k

i
k

i
k

i
k

i
kki

k
i
k yxxq

xxpxypww
−

−
−∝          (2-23) 

and the posterior filtered density can be approximated as 

∑
=

−≈
n

i

i
kk

i
kkk xxwyxp

1
:1 )()|( δ          (2-24) 

The choice of importance density is one of the most critical issues in the design 

of the SMC methods. The most popular choice is the transitional prior: 

)|(),|( 11
i
k

i
kk

i
k

i
k xxpyxxq −− =       (2-25) 

By substituting Eq. (2-25) into Eq. (2-23), the weight updating becomes: 

)|(1
i
kk

i
k

i
k xypww −∝       (2-26) 

With these particles and associated weights, the estimated state vector up
kx̂  is the 

weighted mean of particles as: 

 
∑
=

=
n

i

i
k

i
k

up
k xwx

1

ˆ
 
       (2-27) 

As the number of samples becomes large, this Monte Carlo characterization 

becomes an equivalent representation to the usual functional description of the 

posterior PDF, and the SIS filter approaches the optimal Bayesian estimator 

(Ristic et al., 2004). A common problem with the SIS algorithm is the degeneracy 

phenomenon, in which after a few iterations, all but one particle will have 

negligible weight.  
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2.5.2 Sequential importance resampling 

The degeneracy phenomenon can be reduced by performing the resampling step 

whenever a significant degeneracy is observed. Thus, the sequential importance 

resampling (SIR) particle filter is derived from the SIS algorithm by performing 

the resampling step at every time index. The idea of resampling is simply that 

particles with very low weights are abandoned, while multiple copies of particles 

are kept with the uniformly weighted measure { }1, −nxi
k , which still approximates 

the posterior PDF, ( )kk yxp :1|  (van Leeuwen, 2009). Resampling is one of the key 

issues in the SMC filters, and various resampling approaches have been 

introduced in the literature, such as multinomial resampling, residual resampling, 

stratified resampling, and systematic resampling. Applications of resampling 

techniques in hydrologic modeling are reviewed in Chapter 4. Basic resampling 

methods such as multinomial, stratified, systematic, and residual resampling are 

described in Appendix A.  

A graphical representation of SMC is illustrated in Fig. 2-1. At the top we start 

with a uniformly weighted random measure. Then we use the received measure yt 

to compute its importance weight of each particle. If necessary, a resampling step 

is executed to select important particles with a uniform weight. If the number of 

particles is n, the weight is 1/n. The last step is a prediction introducing process 

noise.  

 
Fig. 2-1 A single cycle of SMC. 

Propagate state 
with uniform weight

Estimate likelihood
using measurement

Update weights

Resample

Predict the next step

,{ 1|1 −− ttx }/1 n

,{ 1| −ttx }tw

,{ |ttx }/1 n
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2.5.3 Various versions of SMC 

Several variants of the SMC methods have been proposed in the literature to 

overcome the degeneracy and sample impoverishment and to improve selection 

of importance density. The sequential importance resampling (SIR) filter, 

described in the previous section, has the advantages of easy evaluation and 

sampling of importance weights. Most of hydrologic applications are performed 

by the SIR filter. However, the importance sampling density of the SIR filter is 

independent of measurements. Thus, the SIR filter is sensitive to outliers of 

ensembles. Furthermore, performing the resampling step at every iteration may 

result in a rapid loss of particle diversity. The auxiliary SIR (ASIR) filter, 

proposed by Pitt and Shephard (1999), performs the resampling step at the 

previous time step, attempting to mimic the optimal importance density. The 

regularized particle filter (RPF) uses continuous approximation of the posterior 

density to improve the sample diversity in the resampling step. A more detailed 

description and application of the RPF is presented in Chapter 4. It is worth 

noting that these filters can be (and often are) combined  (Ristic et al., 2004). 

2.6 Performance evaluation criteria 
 

The statistics to be used for assessment of model performance in this thesis are 

summarized. These are Nash-Sutcliffe efficiency (NSE) and root mean square 

error (RMSE), which can be expressed as:  

( )
( )∑

∑
=

=

−

−
−= T

k k

T

k simk

yy

yy
NSE k

1
2

1
2

1

    
 (2-28)
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     (2-29) 

where y is observation, y is the mean of observation, 
ksimy  is the forecasted 

streamflow at the measurement site, and T is the total number of time steps.  



 

 

 

 

 

  



 

 

 Chapter 3 

 
Dual state-parameter updating scheme 

on a conceptual hydrologic model using 

sequential Monte Carlo filters 
 

 

Abstract This chapter proposes a dual updating scheme of state and parameter 

(DUS) based on SMC methods to estimate both state and parameter variables of 

a hydrologic model. We introduce a kernel smoothing method for the robust 

estimation of uncertain model parameters in the DUS. The applicability of the 

dual updating scheme is illustrated using the implementation of the storage 

function model on a middle-sized Japanese catchment. The forecast provided by 

the dual state-parameter updating scheme is superior to that of state only 

updating and deterministic modeling in terms of the model accuracy criteria, a 

scatter diagram, and simulated hydrographs. A significant reduction of 

parameter uncertainty is observed for all parameters, and estimated parameter 

distributions show good conformity with off-line optimum. We also compare 

performance results of the DUS combined with various SMC methods, such as 

sequential importance resampling (SIR), auxiliary sequential impoprtance 

resampling (ASIR) and the regularized particle filter (RPF).  
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3.1 Introduction 
 

Identification and minimization of uncertainty are key issues in the hydrologic 

prediction. Data assimilation is a way to integrate information from a variety of 

sources to improve model accuracy, considering the uncertainty in both the 

measurement and the modeling system. Among data assimilation techniques, the 

sequential Monte Carlo (SMC) methods are a Bayesian learning process in which the 

propagation of all uncertainties is carried out by a suitable selection of randomly 

generated particles without any assumptions about the nature of the distributions. 

Unlike the various Kalman filter-based methods that are basically limited to the 

linear system equation and the assumption of Gaussian distribution errors, the SMC 

filters have the advantage of being applicable to non-linear, non-Gaussian state-

space models. Since their introduction in 1993 (Gordon et al., 1993), the application 

of these powerful and versatile methods has been increasing in various areas, 

including pattern recognition, target tracking, financial analysis, and robotics. Only 

in recent years has the application of these methods been included in hydrology 

research (Moradkhani et al., 2005a; Smith et al., 2008; Salamon and Feyen, 2009). 

In the practical use of hydrologic models, estimated states are highly sensitive to the 

uncertainty of model parameters. Furthermore, there is no guarantee that parameters 

calibrated from previous data are the optimum in the current prediction. Therefore, 

updating state variables based on inappropriate parameters will likely increase 

uncertainty in the forecasting of hydrologic models. In this respect, sequential 

estimates of the parameters and state variables are needed to enable the model to 

generate accurate forecasts. 

In this chapter, we propose a dual updating scheme of state and parameter (DUS) 

based on the SMC filters for the estimation of both the state and parameter variables 

of a hydrologic model (Noh et al., 2011b). A kernel smoothing method is introduced 

for the robust estimation of uncertain model parameters in the DUS. We illustrate its 
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applicability for hydrologic forecasting at the Katsura River catchment in Japan 

using a conceptual hydrologic model.  

This chapter is organized in the following way. Section 3-2 outlines the Bayesian 

filtering theory; the sequential Monte Carlo filters, known as particle filters, which 

are based on the sequential importance sampling (SIS); and parameter inference 

approaches in SMC. In Section 3-3, the case study demonstrating the applicability of 

the SMC filters is presented. The SMC filters are applied for real-time forecasting of 

river discharge using the storage function (SF) model. Sequential data assimilation is 

performed by two different schemes via the SMC filters: state only updating and 

dual state-parameter updating. Comparisons of the performance results of various 

SMC filters are presented. Section 3-4 summarizes the methodology and the analysis 

results. 

3.2 Methodology 

3.2.1 Sequential importance sampling (SIS) 

Sequential Monte Carlo (SMC) filters are a set of simulation-based methods that 

provide a flexible approach to computing the posterior distribution without any 

assumptions about the nature of the distributions. As discussed in Chapter 2, the key 

idea of SMC is based on point mass (“particle”) representations of probability 

densities with associated weights as (Arulampalm et al., 2002): 

∑
=

−≈
n

i

i
tt

i
ttt xxwyxp

1
:1 )()|( δ                  (3-1) 

where i
tx and i

tw denote the ith posterior state (“particle”) and its weight, respectively, 

and )(⋅δ denotes the Dirac delta function. The weight is updated as: 

)|(1
i
tt

i
t

i
t xypww −∝      (3-2) 

where )|( i
tt xyp is the likelihood of each particle i

tx . The SIS algorithm is a Monte 

Carlo method that forms the basis for most SMC filters. A common problem with the 

SIS algorithm is the degeneracy phenomenon: after a few iterations, all but one 
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particle will have negligible weight. The degeneracy phenomenon can be reduced by 

performing the resampling step whenever a significant degeneracy is observed. A 

more detailed description of the SMC filters is presented in Chapter 2. 

3.2.2 Variants of SMC filters 

Several variants of SMC filters have been proposed in the literature to overcome the 

degeneracy and sample impoverishment and to improve selection of importance 

density. The sequential importance resampling (SIR) filter is derived from the SIS 

algorithm by performing the resampling step at every time index. The auxiliary SIR 

(ASIR) filter performs the resampling step at the previous time step, attempting to 

mimic the optimal importance density. The regularized particle filter (RPF) was 

suggested as a method to improve the sample diversity. A more detailed description 

of RPF is presented in Chapter 4. It is worth noting that these filters can be (and 

often are) combined  (Ristic et al., 2004). 

3.2.3 Parameter inference 

Identification of parameter uncertainty is essential to obtain unbiased data 

assimilation. To handle inference of the unknown parameters, the concept of 

“artificial evolution” can be applied. That means that the parameter vector θ  is 

fluctuated at each time step, adding an independent, zero-mean normal increment as 

follows: 

ttt ζθθ += −1      ),0(~ 1
2 θζ −tt VsN         (3-3) 

where tζ is random noise, θ
1−tV is the variance of parameter particles at time t-1 before 

resampling, and s  is a small tuning parameter. The drawback of this approach is that 

estimated posterior distribution of parameters becomes more diffuse compared to the 

actual ones (Moradkhani et al., 2005a). Kernel smoothing (Liu and West, 2001) is 

one remedy for this problem and is accomplished by determining the covariance of 

parameters based on particles from previous time points. The smooth kernel density 

can be a mixture of Gaussian densities as follows: 
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where h is the variance reduction parameter. The kernel locations i
tm 1−  are specified 

by a shrinkage rule forcing the particles to be closer to their mean: 

111 )1( −−− −+= t
i
t

i
t aam θθ  with 21 ha −=    (3-5) 

where 1−tθ  is mean of parameter at time t-1. It can be verified that the mixture 

probability in Eq. (3-4) has a covariance matrix θ
1−tV  and that it does not increase 

over time (Liu and West, 2001). Several issues related with parameter estimation are 

discussed in Appendix C. A dual state-parameter updating scheme with kernel 

smoothing via the SIR particle filter can be summarized in Fig. 3-1. 

 

 
Fig. 3-1 Flowchart of the dual state-parameter updating scheme with kernel smoothing via the 

SIR particle filter.  
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3.3 Implementation 

3.3.1 Study area 

The SMC filters were applied to the Katsura River catchment (Fig. 3-2) to improve 

the river flow forecasting. This catchment is located in Kyoto,  Japan, and covers an 

area of 1,100 km2 (887 km2 at the Katsura station). There are 13 rainfall observation 

stations and 6 river flow observation stations.  The Hiyoshi dam is located upstream, 

and the outflow record from that reservoir has been considered to be input data in a 

hydrologic model. 

 
Fig. 3-2 The Katsura River catchment. 

 

3.3.2  Hydrological model and simulation condition 

The storage function (SF) model (Kimura, 1961) is one of the most commonly used 

conceptual hydrologic models for flood prediction due to its simple numerical 

procedure and its proper regeneration of nonlinear characteristics of flood runoff. 

The state-space form of the SF model adapted in this catchment is as follows: 
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tsimt tqq ν+= )(          (3-8) 

where s is catchment storage (mm), t is time (hr), Adown is the downstream area from 

the dam (km2), qsim is simulated river discharge (m3/s), qt and qdam are observed 

discharge at the Katsura gauging station and at the Hiyoshi dam (m3/s), TL and Tdam 

are the lag time parameters of catchment and outflow from the dam reservoir (hr), 

and k and p are model parameters. ωt and νt are the state and the measurement error, 

respectively. Effective rainfall re is estimated as follows: 
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     (3-9) 

where r is rainfall (mm/hr), f is the runoff coefficient, raccum is the accumulated 

rainfall amount (mm), and Rsa is the saturation amount (mm). Areal mean values of 

hourly observed rainfall from the 13 gauging stations were used as model input. Six 

model parameters, including k, p, TL, Tdam, f and Rsa, have been estimated from the 

events of 2004. In the state only updating scheme, pre-calibrated parameter values 

were used. On the other hand, the dual state-parameter updating scheme has been 

performed on five model parameters, excluding Tdam, which showed stable values 

compared to others. Both simulations were performed by the SIR particle filter with 

3,000 particles. Covariance of the error of system (Wt) and measurement (Vt) were 

assumed to be 4 mm and 10% of the current observed discharge, respectively. 

3.3.3  State only updating scheme 

Fig. 3-3 shows the simulation results of state only updating via the SIR particle filter 

compared to observations and a deterministic prediction. In this scheme, particles are 

resampled in each observation time step, and catchment storage (s) is perturbed 

according to the system noise. While updated river discharge using a state only 

updating scheme shows good conformity between observation and simulation (Fig. 
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3-3(c)), a forecast based on the same particles does not reproduce the river flow 

properly compared to a deterministic prediction (Fig. 3-3(d)). To compare off-line 

optimal parameters with those calibrated from the past event (Table 3-1), several 

parameters show quite different values. In this respect, it can be inferred that state 

updating based on inappropriate parameters may be one of the causes misleading the 

forecast.  

3.3.4  Dual state-parameter updating scheme 

In the dual state-parameter updating scheme, initial values of each parameter have 

been set to uniform distribution with widths that cover deviations of pre-calibrated 

parameter distributions. In other words, true static values of parameters are assumed 

to be located within these initial distributions. Inference of five parameters (e.g., k, p, 

TL, f and Rsa) was performed by the kernel smoothing method in the DUS. The value 

of kernel smoothing parameter a in Eq. (3-5) was set as 0.95. 

Fig. 3-4 illustrates the simulation results of the dual state-parameter updating. 

Compared with the state only updating case, a forecast by the dual updating scheme 

shows better conformity with observations (Fig. 3-4(d)). Furthermore, the 

unexpected drawdown of hydrograph in the rising part (Fig. 3-3(d)) is not shown in 

the dual updating case. Traces of the catchment storage s present different patterns in 

Fig. 3-3(b) and Fig. 3-4(b), whereas updated discharge hydrographs show similar 

traces in both cases. 

 
Table 3-1   Parameter information. 

Model 

parameters 

Pre-calibrated 

from 2004 events 

Off-line optimum from 

2007 events 

Initial range 

for dual updating 

k (-) 17.0 30.0 10.0~40.0 

p (-) 0.6 0.66 0.4~0.9 

TL (hr) 3.8 6.0 3.0~7.0 

f (-) 0.33 0.65 0.1~0.8 

Rsa (mm) 82.0 105.0 50.0~150.0 

Tdam (hr) 4.0 4.0 4.0 
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Fig. 3-3 Results of the state only updating via the SIR particle filter from 11 to 16 July 2007. (a) 

Hourly precipitation. (b) Catchment storage. (c) Updated river discharge. (d) 3-hour-

lead forecasted river discharge. Black dots represent observed discharge. Blue line and 

area represent mean value and 95% confidence interval, respectively. Dashed line 

represents a deterministic modeling case.  
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Fig. 3-4 Results of the dual state-parameter updating via the SIR particle filter from 11 to 16 

July 2007. (a) Hourly precipitation. (b) Catchment storage. (c) Updated river discharge. 

(d) 3-hour-lead forecasted river discharge. Black dots represent observed discharge. 

Blue line and area represent mean value and 95% confidence interval, respectively. 

Dashed line represents a deterministic modeling case.  
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Fig. 3-5 Traces of parameter k, P, TL, f, Rsa of the SF model using dual state-parameter updating 

of the SIR particle filter from 11 to 16 July 2007. Black lines represent median value, 

and gray area represents 95% confidence interval.  
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Fig. 3-5 presents the traces of parameter distribution. One can observe a significant 

reduction of parameter uncertainty for all parameters after the first flood peak. In 

comparison with the off-line optimum (Table 3-1), estimated parameters show 

similar ranges, especially in parameter k, TL and f. 

It is worth noting that when the artificial evolution is applied for parameter inference 

instead of kernel smoothing in the dual updating scheme, estimated parameters 

present more diffusive distributions and unstable inference is produced resulting in 

different posterior distributions at each simulation. However, inference from kernel 

smoothing presents relatively consistent results because there is less uncertainty of 

parameters. 

In the scatter diagram shown in Fig. 3-6, the dual state-parameter updating scheme 

presents enhanced simulation results in the overall flow regime from high flow to 

low flow. Additionally, the model accuracy criteria shown in Table 3-2 confirm that 

the DUS is superior to other simulations.  

 

 
Fig. 3-6 Scatter diagram of simulation results. Cross dots represent results of state only 

updating. Circle dots represent results of dual state-parameter updating.  
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Table 3-2   Statistics on model accuracy. 

 Deterministic State only updating Dual updating 

RMSE (m3/s) 44.6 36.4 20.4 

NSE 0.73 0.82 0.94 

 

3.3.5 Comparison of various SMC filters 

Several different versions of the SMC filters, such as SIR, ASIR, and RPF with the 

MCMC move step, were implemented under the same simulation conditions. The 

Markov chain Monte Carlo (MCMC) move step of RPF, which is used for improving 

sample diversity in the resampling step, is based on the Metropolis-Hastings 

algorithm (Robert and Casella, 1999). The dual state-parameter updating scheme has 

been adapted in all the cases with 3,000 particles. A comparison of the simulated 

discharge hydrograph is illustrated in Fig. 3-7. There is no significant difference in 

the estimated 3-hour-ahead forecasting via three SMC filters.  

 

 
Fig. 3-7 Forecasted river discharge (3 hour ahead) by three SMC filters from 11 to 16 July 2007. 

Black dots represent observed discharge.  
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Fig. 3-8 Sensitivity analysis of the effects of particle numbers on the prediction accuracy. (a) 

Updated river discharge. (b) Forecasted river discharge.  

 

Although three SMC filters reproduce river discharge properly in the first flood peak 

(1~30 hours) and the recession part, all the SMC methods overestimate the discharge 

during 65-80 hours. Uncertainty of forcing data (e.g., rainfall) and no consideration 

of spatial heterogeneity in the SF model are plausible reasons. 

Sensitivity analysis was performed concerning the effects of particle numbers on the 

prediction accuracy (Fig. 3-8). RMSE statistics of simulated discharge show 

stabilized accuracy in both updating and forecasting via three SMC filters when the 

number of particles exceeds 1,000. In terms of forecasting accuracy, SIR and the 

RPF show similar RMSE statistics, while ASIR presents a slightly higher number of 

errors than others. Researchers also stated in a previous study (Ristic et al., 2004) 

that if the importance density of ASIR does not characterize the transitional prior 

)|( 1
i
tt xxp −  for some reason (e.g., process noise is large), the use of ASIR can even 

degrade the performance. The simulation time for 1,000 particles is less than 2 min 

in three SMC filters, which is short enough to be applied for real-time forecasting.  

3.4 Conclusions 
The sequential Monte Carlo (SMC) filters were applied to a conceptual hydrologic 

model, the storage function model, using state only updating and the dual state-

parameter updating scheme. The river discharge forecast via the SMC filters was 

(a) (b) 
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compared with observations. The forecast provided by the dual state-parameter 

updating scheme was superior to that of state only updating and deterministic 

modeling in terms of the model accuracy criteria, a scatter diagram, and simulated 

hydrographs. In the dual state-parameter updating scheme, parameter inference was 

performed by the kernel smoothing method. A significant reduction of parameter 

uncertainty was observed for all parameters after the first flood peak, and estimated 

parameter distributions showed good conformity with off-line optimum. 

Performance results of SIR and the RPF showed similar forecasting accuracy, while 

ASIR resulted in a slightly higher number of errors than others. However, RMSE 

statistics of three SMC filters presented stable results when the number of particles 

was over 1,000. 

The SMC filters are applicable to more complex hydrologic models, such as process-

based and spatially distributed hydrologic models, in which it is difficult to use the 

conventional data assimilation methods. We will examine the performance of the 

SMC filters on a distributed hydrologic model in the following chapter. 

 



 

 

 



 

 

 Chapter 4 

 
Applying sequential Monte Carlo methods 

into a distributed hydrologic model 
 

 

Abstract In this chapter, we propose an improved particle filtering approach to 

consider different response times of internal state variables in a hydrologic model. 

The proposed method adopts a lagged filtering approach to aggregate model 

response until the uncertainty of each hydrologic process is propagated. The 

regularization with an additional move step based on the Markov chain Monte Carlo 

(MCMC) methods is also implemented to preserve sample diversity under the lagged 

filtering approach. A distributed hydrologic model, water and energy transfer 

processes (WEP), is implemented for hindcasting of streamflow at the Katsura 

catchment, Japan via two particle filters: the lagged regularized particle filter 

(LRPF) and the sequential importance resampling (SIR) particle filter. The LRPF 

shows consistent forecasts regardless of the process noise assumption, while SIR has 

different values of optimal process noise and shows sensitive variation of confidence 

intervals, depending on the process noise. Improvement of the LRPF forecasts 

compared to SIR is particularly found for rapidly varied high flows due to 

preservation of sample diversity from the kernel, even if particle impoverishment 

takes place. 
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4.1 Introduction 
 

Data assimilation (DA) is a way to integrate information from a variety of sources to 

improve prediction accuracy, taking into consideration of the uncertainty in both the 

measurement system and the prediction model. There have been considerable 

advances in hydrologic DA for streamflow prediction (e.g., Kitanidis and Bras, 1980; 

Georgakakos, 1986; Vrugt et al., 2006; Clark et al., 2008; Seo et al., 2003, 2009; Liu 

et al., 2012). State-space filtering methods based on variations of Kalman filtering 

(KF) approach have been proposed and implemented because of their potential 

ability to explicitly handle uncertainties in hydrologic predictions. However, the KF 

approaches for a non-linear system such as the extended Kalman filter (EKF) have 

limitations in the practical application due to their instability for strong non-linearity 

and the high computational cost of model derivative equations, especially for high-

dimensional state-vector problems such as spatially distributed models. To cope with 

the drawbacks of the EKF, ensemble Kalman filtering (EnKF) was introduced by 

Evensen (1994). EnKF is computationally efficient because it has no need for model 

covariance estimation, but it is still based on the assumption that all probability 

distributions involved are Gaussian. Further reviews of Kalman filter-based 

applications for hydrologic models are shown in Vrugt et al. (2006), Moradkhani et 

al. (2005b, 2008), and Evensen (2009).  

Another approach to DA is variational assimilation (VAR), which has achieved 

widespread application in weather and oceanographic prediction models. In 

hydrologic investigations, VAR is implemented for estimating spatial soil-moisture 

distributions by Reichle et al. (2001) and for assimilating potential evaporation and 

real-time observations of streamflow and precipitation to improve streamflow 

forecasts by Seo et al. (2003, 2009). Although variational methods are more 

computationally efficient than KF-based methods, the derivation of the adjoint 

model needed for minimisation of a cost function is difficult, especially in the case 

of non-linear, high dimensional hydrological applications (e.g., Liu and Gupta, 2007). 
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Among DA techniques, the sequential Monte Carlo (SMC) methods, known as the 

particle filters, are a Bayesian learning process in which the propagation of all 

uncertainties is carried out by a suitable selection of randomly generated particles 

without any assumptions being made about the nature of the distributions (Gordon et 

al., 1993; Musso et al., 2001; Arulampalam et al., 2002; Johansen, 2009). Unlike the 

various Kalman filter-based methods that are basically limited to the linear 

correction step and the assumption of Gaussian distribution errors, SMC methods 

have the advantage of being applicable to non-Gaussian state-space models. The 

application of these powerful and versatile methods has been increasing in various 

areas, including pattern recognition, target tracking, financial analysis, and robotics.  

In recent years, these methods have received considerable attention in hydrology and 

earth sciences (e.g., Moradkhani et al., 2005a; Weerts and El Serafy, 2006; Zhou et 

al., 2006; van Delft et al., 2009; van Leeuwen, 2009; Karssenberg et al., 2010). Since 

their first introduction to the rainfall-runoff model of Moradkhani et al. (2005a), 

Weerts and El Serafy (2006) compared ensemble Kalman filtering and particle 

filtering for state updating of hydrological conceptual rainfall-runoff models. The 

SMC methods have also been applied to parameter estimation and uncertainty 

analysis of hydrological models. Smith et al. (2008) evaluate structural inadequacy 

in hydrologic models, Qin et al. (2009) estimate both soil moisture and model 

parameters, and Rings et al. (2010) implement hydrogeophysical parameter 

estimation. Uncertainty of a distributed hydrological model is analyzed by Salamon 

and Feyen (2009, 2010), and dual state-parameter updating of a conceptual 

hydrologic model is applied to flood forecasting by Noh et al. (2011b). The diversity 

of assimilated data and models has been increasing; a snow water equivalent 

prediction model (Leisenring and Moradkhani, 2010) and assimilation with remote 

sensing-derived water stages (Montanari et al., 2009) have been investigated. 

However, the framework to deal with the delayed response, which originates from 

different time scales of hydrologic processes, routing and spatial heterogeneity of 

catchment characteristics, and forcing data, especially in a distributed hydrologic 

model, has not been thoroughly addressed in hydrologic DA. Furthermore, 
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alternative methods proposed in the literature to mitigate loss of sample diversity 

(e.g., Musso et al., 2001; Arulampalam et al., 2002), which may cause collapse of the 

filtering system, have not been studied in hydrology.  

In this chapter, we apply the particle filters for a distributed hydrologic model in 

support of short-term hydrologic forecasting (Noh et al., 2011a). A lagged particle 

filtering approach is proposed to consider different response times of internal states 

in a distributed hydrologic model. The regularized particle filter with the Markov 

chain Monte Carlo (MCMC) move step is also adopted to improve sample diversity 

under the lagged filtering approach. A process-based distributed hydrologic model, 

WEP (Jia and Tamai, 1998; Jia et al., 2001, 2009), is implemented for sequential DA 

through state updating of internal hydrologic variables. Particle filtering is 

parallelized and implemented in the multi-core computing environment via the open 

message passing interface (MPI). 

This chapter is organized thus: Section 4-2 explains the SMC filtering theory and a 

lagged filtering approach with an additional regularization step to reflect different 

responses of internal processes in sequential DA. Section 4-3 presents the case study 

results, demonstrating the applicability of the proposed particle filtering approach. 

The lagged regularized particle filter (LRPF) and the sequential importance 

resampling (SIR) particle filter are evaluated for hindcasting of streamflow in the 

Katsura River catchment using the WEP model. Section 4-4 summarizes the results 

and conclusions. 

4.2 Method of SMC filters 
 

In this section, we briefly describe the theory of Bayesian filtering and sequential 

Monte Carlo (SMC) filtering for its suboptimal solution in non-linear and non-

Gaussian cases. We describe several variants of SMC filters, including sequential 

importance resampling (SIR) and regularized particle filter (RPF), which are based 

on sequential importance sampling (SIS). Detailed descriptions of sequential Monte 

Carlo methods can be found in Chapter 2. 
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4.2.1 Basic particle filtering and resampling methods 

In SMC filters, the posterior probability density function (PDF) of the current state xk 

given the measurement is represented by use the weight that can be updated as: 

)|(1
i
kk

i
k

i
k xypww −∝       (4-1) 

where )|( i
tt xyp is likelihood of each particle i

tx . As discussed in Chapter 2, sequential 

updating of the weight may lead to degeneracy problem, in which after a few 

iterations, all but one particle will have negligible weight. A suitable measure of the 

degeneracy is the effective sample size effn  estimated as (Kong et al., 1994): 
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If the weights is uniform (i.e., nwi
k /1= for i = 1, ..., n), then nneff = . If all but one 

particle have 0 weight, then 1=effn . The ratio of the effective particle number ration is 

estimated as follows: 

n
n

n eff
ratio =        (4-3) 

The maximum of ration is 1 when the weights are uniform. Small ration indicates a 

severe degeneracy and vice versa. ration is used as an indicator of degeneracy because 

it can be used easily regardless of the particle number.  

The degeneracy phenomenon can be reduced by performing the resampling step 

whenever a significant degeneracy is observed. Thus, the SIR particle filter is 

derived from the SIS algorithm by performing the resampling step at every time 

index. The idea of resampling is simply that particles with very low weights are 

abandoned, while multiple copies of particles are kept with the uniformly weighted 

measure { }1, −nxi
k , which still approximates the posterior PDF, ( )kk yxp :1|  (van 

Leeuwen, 2009). Resampling is one of the key issues in the SMC filters, and various 

resampling approaches have been introduced in the literature, such as multinomial 

resampling, residual resampling, stratified resampling, and systematic resampling. A 

comparative analysis and review of resampling approaches can be found in Douc et 
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al. (2005) and van Leeuwen (2009). Systematic resampling, also known as stochastic 

universal sampling, is often preferred due to its computational simplicity and good 

empirical performance. It has also been shown that systematic resampling has the 

lowest sampling noise (Kitagawa, 1996). Hence, we use systematic resampling for 

all particle filtering cases in this chapter. It is worth noting that there are several 

choices in resampling methods, and the proper method may be different, depending 

on the characteristics of hydrologic models. See Weerts and El Serafy (2006), Rings 

et al. (2010), and Salamon and Feyen (2009) for residual resampling; see also 

Salamon and Feyen (2010) and Moradkhani et al. (2005a) for systematic resampling. 

Although the SIR method has the advantage that the importance weights are easily 

evaluated, because resampling is applied at each iteration, this filter may lead to a 

sudden loss of diversity in particles and is sensitive to outliers (Ristic et al., 2004). 

Basic resampling methods such as multinomial, stratified, systematic, and residual 

resampling are described in Appendix A. The effective parallel programming 

method of resampling is discussed in Appendix B. 

4.2.2 Regularized particle filter 

The positive effects of the resampling step are to automatically concentrate particles 

in regions of interest of the state-space and to reduce particle degeneracy. However, 

the particles resampled from high weights are statistically selected many times. This 

leads to another problem, known as sample impoverishment, which means a loss of 

diversity among the particles because the resultant sample will contain many 

repeated points (Ristic et al., 2004). Some systematic techniques have been proposed 

to solve the problem of sample impoverishment. An alternative solution is to 

introduce the regularization step when the sample impoverishment becomes severe. 

The regularized particle filter (RPF) is based on regularization of the empirical 

distribution associated with the particle system using the kernel method (Musso et al., 

2001). The main idea of the RPF consists of changing the discrete approximation of 

posterior distribution to a continuous approximation, so the resampling step is 

changed into simulating an absolutely continuous distribution, hence producing a 
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new particle system with n different particle locations. The concept of discrete and 

continuous approximation of particle density is illustrated in Fig. 4-1. If the weights 

are concentrated on the limited number of particles, the resampling in the discrete 

approximation (e.g., the SIR particle filter) may lead to a poor representation of the 

posterior density, while a continuous approximation in regularized measure improves 

the diversity in the resampling step.  

 
Fig. 4-1 The concept of discrete and continuous approximation of particle density: (a) 

weighted empirical measure, and (b) regularized measure by kernel. Adapted from 

Musso et al. (2001). 

 

In the RPF, posterior particles are drawn from the approximation 
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is the rescaled kernel density )(⋅K , 0>h is the bandwidth, and xn is the dimension of 

the state vector x. The kernel density is a symmetric probability density function on 
xnℜ , such that 

∫ ∫ ∫ ∞<==> .)(,0)(,1)(,0 2 dxxKxdxxKxdxxKK   (4-6) 

The kernel )(⋅K and bandwidth h are chosen to minimise the mean integrated square 

error (MISE) between the true posterior density and the corresponding regularized 

weighted empirical measure in Eq. (4-4), which is defined as 
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where )|(ˆ ⋅⋅p denotes the approximation to )( :1 kk yxp given by the right-hand side of 

Eq. (4-4). In the special case of equally weighted samples, nwi /1= for i = 1, ..., n, 

the optimal choice of the kernel is the Epanechnikov kernel, 
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where 
xnc is the volume of the unit sphere of xnℜ . It is worth noting that the use of 

kernel approximation becomes increasingly less appropriate as nx (dimensionality of 

the state) increases. The optimal bandwidth with unit covariance matrix is 
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The RPF differs from SIR only in additional regularization steps when sample 

impoverishment happens. The key step is 

i
kopt

i
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i
k Dhxx ε+=

*
      (4-10) 

where 
*i

kx is a new particle generated from kernel density, kD  is estimated from Lk, 

which is the empirical covariance matrix such that k
T
kk LDD = , and iε  is the random 

noise from the kernel. Note that the calculation of the empirical covariance matrix 

kL  is carried out prior to the resampling and is therefore a function of both the i
kx  
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and i
kw . xn is the dimension of the state vector x and 

xnc is the volume of the unit 

sphere of xnℜ  given by 

( )12/

2/

+Γ
=

x

n

n n
c

x

x

π       (4-11) 

where Γ  is the gamma function. 

The theoretical disadvantage of the RPF is that its samples are no longer guaranteed 

to asymptotically approximate those from the posterior. This can be mitigated by 

including the Markov chain Monte Carlo (MCMC) move step (Gilks and Berzuini, 

2001) based on the Metropolis-Hastings algorithm (Robert and Casella, 1999). The 

key idea is that a resampled particle is moved to a new state, according to Eq. (4-10), 

only if α≤u , where ]1,0[~Uu and α  is the acceptance probability. Otherwise, the 

move is rejected. 
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In above, α  becomes 1.0 when the likelihood of new particle is greater than that of 

the previous particle. That means that the MCMC move step contributes to screening 

bad particles in the regularization step, thus ensuring that particles asymptotically 

approximate samples from the posterior. 

A single cycle of the RPF with the MCMC move step is illustrated in Fig. 4-2. The 

basic procedure of the RPF is the same with SIR before resampling. After the 

resampling step, entirely new samples are drawn from the continuous kernel. If a 

new particle is rejected in the MCMC move step, the particle resampled before 

regularization is used. Therefore, the efficiency of the RPF depends on how many 

particles are preserved in the MCMC move step. Although this approach is 

frequently found to improve performance with a less rigorous deviation, the RPF has 

not been introduced in hydrologic DA. 
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Fig. 4-2 A single cycle of a regularized particle filter. 

4.2.3 Particle filter with lag time approach 

Many hydrological processes operate—in response to precipitation—at similar 

length scales, but the time scales are delayed (Blöschl and Sivapalan, 1995). In a 

distributed hydrologic model, there are many types of state variables, and each 

variable interacts with others based on different time scales. For example, in 

catchment modelling, internal state variables may refer to two-dimensional 

distribution of soil moisture content, evapotranspiration, and overland flow; and an 

observable state may refer to streamflow flux at the monitoring sites. There is a time 

lag until the changes of soil moisture distribution affect infiltration and sub-

surface/surface runoff processes and generated runoff is routed as streamflow into 

the measurement site. Hydrologic components in a hydrologic model have usually 

different time scales, which need to be considered in the data assimilation process.  

As stated by Salamon and Feyen (2010), this response time is usually greater than 

the high-frequency discharge measurements. One simple approach is to use delayed 

updating, which utilizes longer time intervals before updating state variables. 

However, delayed updating leads to omitting large quantities of measurement 

information, and a fixed delay assumption may result in inappropriate estimation, 
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because a response time always changes, depending on the current spatial 

distributions of the state and forcing variables. Furthermore, when system behaviour 

is relatively fast (e.g., hourly based hydrologic or hydraulic modelling cases), 

delayed updating may lead to missing proper timing of assimilation. That can make 

it hard to implement sequential data assimilation techniques into hydrologic 

modelling. Thus, we propose the lagged regularized particle filter (LRPF), not only 

for considering different catchment responses, but also for using whole measurement 

information for data assimilation.  

Fig. 4-3 shows an example of the LRPF. Here, k is the current time step, and j is the 

lag time required for responses of internal state variables to be transmitted into the 

observable variables. Note that it is better to set the lag time j large enough to cover 

plausible ranges because the system response is time-variant.  

The assimilation window of the lagged filtering is defined from k-j to k time step. 

The procedure of the lagged filtering is as follows: 1) To have prediction at the time 

step k, simulation starts from the time step k-j. 2) When particles arrive at the current 

time k, the lagged weights are estimated according to the measurement. 3) 

Resampling is executed according to the lagged weights. Note that state variables at 

the time step k-j+1 are resampled simultaneously with those at the current time step. 

5) If the effective particle number neff is less than the threshold ( threff nn < ), the 

regularization step is executed from the time step k-j with new particle members 

generated from kernel. 6) When each particle arrives in the current time step k, 

acceptance probability α is calculated according to the lagged likelihood, as shown 

in Eq. (16). If a particle is rejected ( α>u ), state variables before regularization will 

be used without kernel perturbation. 7) For the next time step k+1, simulation starts 

from time step k-j+1 and follows the same procedure as from 1) to 6). In this way, 

sequential data assimilation procedure is implemented at every time step without loss 

of measurement information. Compared to conventional particle filtering, an 

additional procedure needed in the lagged regularized particle filtering is only that 

state variables at the time step k-j+1 should be stored and resampled according to 

lagged weights.  
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Fig. 4-3 Particle traces in the regularization step under the lagged filtering approach. 

 

Lagged weight, i
lag

w , and lagged likelihood, i
lag

L , can be calculated through various 

methods, including the aggregation of the past weight. However, in this chapter, the 

weight and likelihood at the last time step k ( i
kw , i

kL ) are simply used as lagged 

weight and likelihood, respectively. Note that the use of weights without aggregation 

can show better results in cases of short-term forecasting. 

Fig. 4-4 summarises one cycle of the algorithm of the RPF with the Markov chain 

Monte Carlo (MCMC) move step under the lagged filtering approach. The procedure 

connected with the dashed line means the regularization step. It is worth mentioning 

that the regularization step can be executed not just in the sample impoverishment, 

but also in the particle collapse case, which means all particles have negligible 

weights that fall outside the measurement PDF. In this case, the regularization step is 

used effectively for re-initialization of the particle system. 
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Fig. 4-4 The flow diagram of the regularized particle filter with the MCMC move step in the 

lagged filtering approach. 

4.3 Implementation 

4.3.1 Study area 

The SMC methods are applied to the Katsura River catchment (Fig. 4-5) to show the 

applicability of the proposed particle filtering approach. This catchment is located in 

Kyoto, Japan, and covers an area of 1,100 km2 (887 km2 at the Katsura station). 

Topography in the catchment is characterized by a mountainous upstream in the 

north and a flatter plain in the south. The elevation in the catchment ranges from 4 to 

1,158 m, with an average of about 325 m. The land use consists of forest (76.7%), 

agricultural area (9.3%), residential area (7.5%), water body (2.0%), public area 

(2.7%), vacant land (1.2%), and road (0.6%), respectively. There are 13 rainfall 
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observation stations, 1 meteorological observation station, and 4 river flow 

observation stations. Annual precipitation and temperature are about 1,422 mm and 

16.2 ℃ in Kyoto city (2001~2010). Precipitation is concentrated in the summer 

season from May to September. The Hiyoshi dam is located upstream. The 

controlled outflow record from the dam reservoir is given as inflow to the hydrologic 

model, and the model simulates rainfall-runoff processes for the downstream of the 

dam.  

4.3.2 Hydrological model and particle filtering 

The hydrologic model used is the water and energy transfer processes (WEP) model, 

which was developed for simulating spatially variable water and energy processes in 

catchments with complex land covers (Jia and Tamai, 1998; Jia et al., 2001). State 

variables of WEP include soil moisture content, surface runoff, groundwater tables, 

discharge and water stage in rivers, heat flux components, etc. (Fig. 4-6). The spatial 

calculation unit of the WEP model is a square or rectangular grid. Runoff routing on 

slopes and in rivers is carried out by applying a one-dimensional kinematical wave 

approach from upstream to downstream. The WEP model has been applied in several 

watersheds in Japan, Korea, and China with different climate and geographic 

conditions (Jia et al., 2001, 2009; Kim et al., 2005a, 2005b; Qin et al., 2008).  

The model setup uses 250 m grid resolution and an hourly time step. We use hourly 

observed rainfall from 13 observation stations organized by the Ministry of Land, 

Infrastructure, Transport and Tourism in Japan (http://www1.river.go.jp/) and hourly 

observed meteorological data including air temperature, relative humidity, wind 

speed, and duration of sunlight from the Kyoto station, which is organized by Japan 

Meteorological Agency (http://www.jma.go.jp/jma/index.html). The nearest 

neighbour interpolation method is used for representation of spatial distribution of 

rainfall. An SRTM 90 m digital elevation map (DEM) is adopted 

(http://srtm.csi.cgiar.org/) and converted to 250 m resolution. Soil distribution is 

obtained from the website of the Food and Agriculture Organization of the United 

Nations (http://www.fao.org/nr/land/soils/en/). 



4.3  Implementation 47  

 

 
Fig. 4-5 The Katsura River catchment. 

 

 
Fig. 4-6 Schematic view of WEP model structure. Adapted from Jia et al. (2009). 
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Physical property of soil is derived from soil texture information using the 

ROSETTA model (Schaap et al., 2001). However, the saturated hydraulic 

conductivity of several soils is roughly adjusted for the data period of 2007, since 

soil property estimated from large-scale soil maps varies greatly. For other 

parameters related to aquifers and vegetation, we apply parameter ranges from the 

earlier studies mentioned above. No flux boundary condition is specified at the 

catchment boundary for the groundwater flow. Artificial water use is approximately 

estimated as 3 m3s-1 and subtracted directly from simulated discharge at the Katsura 

station.  

Ensemble simulation of 192 particles is conducted on a multi-processing computer 

(96 cores in the supercomputing system of Kyoto University) via parallel-computing 

techniques of open MPI (http://www.open-mpi.org/). The parallel programming code 

is written using a single-program multiple-data (SPMD) approach, which means the 

same modelling procedure with different state variables. A master process 

aggregates particle statistics and controls resampling/regularization steps. Message 

passing commands of MPI is used effectively to transfer spatially distributed state 

variables from one particle to another in the resampling step.  

4.3.3 Process and measurement error models 

The Particle filters perform suboptimal estimation of the system states by 

considering the uncertainty in both the measurement and modelling systems. 

Therefore, the choice of the error models is crucial to obtaining a better estimation 

(Weerts and El Serafy, 2006). Another important point is to choosing hidden state 

variables for filtering. Since there are numerous state variables in a distributed 

hydrologic model, it is not practical to consider the uncertainty of all state variables 

with a limited number of particles. Therefore, it is necessary to choose a limited 

number of state variables, which process error of the modelling system is aggregated 

in, and is easily updated by observable variables. In this chapter, we select soil 

moisture content and overland flow in each grid as hidden state variables and 

streamflows at the Katsura station as an observable variable for data assimilation. 
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Global multipliers are introduced to perturb state variables stochastically and 

effectively. In the case of soil moisture content, the total soil moisture depth at the 

previous time step 1−kS  is aggregated for three soil layers within the catchment as: 

∑∑
= =

− =
3

1 1
1

l

m

j

l
j

l
jk dS θ        (4-13) 

where l
jθ and l

jd are the volumetric soil moisture content (m3/m3) and the soil depth 

(m) in each layer, and l and m represent the number of soil layers and the total 

number of grids within the catchment, respectively. Then, process noise of the soil 

moisture content 
ksoilw is added to the aggregated state variable 1−kS as: 

ksoilkk wSS += −1
ˆ        (4-14) 

ksoilw is assumed as Gaussian distribution ),0( 2
ksoilN σ  having a heteroscedastic 

standard deviation as: 

soilksoilsoil S
k

βασ += −1        (4-15) 

In the above, soilα  and soilβ  are adaptable parameters that can be obtained from 

sensitivity analysis. Although proper tuning of these adaptable parameters is 

important, their optimum value changes according to different data periods, which is 

another source of uncertainty in data assimilation. We will discuss the effects of 

adaptable parameters, especially soilα , on two different particle filters later. The value 

of soilβ is set as 50 mm for the whole simulation. When the process error of soil 

moisture content
ksoilw is generated for each particle, the perturbed states of soil 

moisture l
jθ̂  are calculated using multiplicative factor sγ  as follows: 

1

ˆ

−

=
k

k
s S

Sγ         (4-16) 

l
js

l
j θγθ =ˆ         (4-17) 

In the above equations, if perturbed soil moisture at each grid and layer l
jθ̂  becomes 

greater or smaller than the physical limitation, l
jθ̂ is adjusted at its maximum (i.e., 
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porosity) or minimum (i.e., wilting point). It is also worth noting that non-linearity of 

the distributed hydrologic model can alleviate loss of spatial diversity in the 

perturbation process, which is one of the disadvantages of global multipliers. For 

example, even if the same noise is applied, the spatial pattern of state variables can 

become different due to antecedent soil moisture and the non-linear system response 

for that. Similar noise definition for soil moisture has been applied for state updating 

of a distributed hydrologic model in the study of Kim et al. (2007). 

The perturbation of overland flow is also applied in a multiplicative way as: 

jkj ovovov qwq )1(ˆ +=        (4-18) 

where 
jovq and 

jovq̂ are overland flow with and without process noise 
kovw , 

respectively, which is assumed as a Gaussian distribution ),0( 2
kovN σ . The standard 

deviation of overland flow noise 
kovσ is parameterized as follows: 

)/exp( 110 ovksimov

k

y
ovov c βασ −−=       (4-19) 

where ovα and ovβ are adaptable parameters with settings of -10 and 5 m3/s, 

respectively, as obtained from sensitivity analysis. 1−ksimy is the simulated discharge of 

data assimilation at the previous time step. ovc  is the constant coefficient. The value 

of ovc is estimated through the sensitivity analysis and set as 0.02 for the whole 

simulation. This formulation was originally proposed by Seo et al. (2009) to enhance 

the forecast in periods of low flow. Eq. (4-19) specifies progressively smaller 

uncertainty if the simulated flow falls below the threshold, ovβ (m3/s). We adopt this 

error formulation because an error of overland flow routing is expected to decline in 

low flow periods.  

The measurement error of the discharge is assumed as a Gaussian distribution 

),0( 2
kobsN σ  similar to previous studies (Georgakakos, 1986; Weerts and El Serafy, 

2006; Salamon and Feyen, 2010). The standard deviation of the measurement error is 

chosen as: 

obskobsobs y
k

βασ +=        (4-20) 



4.3  Implementation 51  

 

In the above equation, obsα is set as 0.1, which means 10% of the measurement error, 

and the constant coefficient obsβ is applied as 5 m3/s to consider uncertainty in 

periods of low flow such as artificial water use and dam reservoir control. The 

uncertainty of forcing data is not considered in this chapter to make it easy to 

evaluate the difference of each particle filter. Fifteen percent of perturbation from the 

uniform distribution is applied for the initial soil moisture condition. 

4.3.4 Results and discussion 

We implement two kinds of particle filters, SIR and the LRPF, for the hindcasting of 

streamflow using the WEP model. The resampling step is implemented in both SIR 

and the LRPF. An additional regularization step is executed only in the LRPF when 

sample impoverishment occurs or the ensemble mean falls outside 20% of the 

observed discharge. Simulation periods and observation are shown in Table 4-1. 

Hourly observed discharges at the Katsura station are used for the data assimilation, 

and observation at the Kameoka station is used for comparison. A five-day warm-up 

period is added before the data assimilation starts. 

 
Table 4-1   Simulation periods and observed flow. 

Simulation period Max. observed flow at 
Katsura (m3s-1) 

Data availability at each location 

Katsura Kameoka 

1 Jun.-31 Jul. 2007 336.9 O X 
1 Aug.-30 Oct. 2004 2276.7 O O 
1 Jun.-31 Aug. 2003 361.6 O O 

 

Deterministic simulation results and 6-hour-lead forecasts of each particle filter at 

the Katsura station for the years 2007, 2004, and 2003 are shown in Figs. 4-7, 4-8, 

and 4-9, respectively. The lag time of 8 hours is applied in the LRPF. The applied 

values of soilα are 0.05 for 2007 and 0.03 for 2004 and 2003. The forecasted 

streamflow via two particle filters shown in Figs. 4-7, 4-9 indicates good conformity 

between observation and simulation, while the deterministic modeling shows 

significant underestimation, especially in the high flood period. Ninety percent of 
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confidence intervals of SIR are larger than those of the LRPF, although the same 

error assumption is used. Compared with results of other years, the differences of 

confidence intervals between two filters are small in the year of 2004, shown in Fig. 

4-8, since the deterministic modeling results show better agreement with observation, 

relatively. Elapsed simulation time for the year of 2007 is about 11 hours in SIR and 

16 hours in the LRPF for a 2-month period simulation with 24-hour-lead forecast at 

every time step, respectively.  

Various ranges of process noise, soilα , are simulated for each particle filter to assess 

the effects of process noise on the forecast. The mean and 90% confidence intervals 

of 6-hour-lead forecasts for varying parameter value of soilα are illustrated in Fig. 4-

10. In the case of SIR, confidence intervals of forecast widen rapidly, and the 

ensemble mean becomes unstable when the value of soilα increases. On the other 

hand, those of the LRPF show stable results regardless of the process noise.  

Fig. 4-11 illustrates streamflow forecast of varying lead times via the LRPF and SIR. 

Two particle filters show different patterns, especially in the rising limb of the 

hydrograph from 1000 to 1010 time step. When the lead time becomes shorter, 

forecasts via the LRPF show better results compared to SIR. Conversely, two 

particle filters show similar forecasts from 1050 to 1180 time step, and the varying 

pattern is relatively smooth. When the observed flows change sharply, even if the 

heteroscedastic error assumption is applied, the process error becomes too small in a 

moment for the prior distribution to cover the observation distribution, which leads 

to sample impoverishment. In the case of the LRPF, new particles, generated from 

the kernel and selected in the lagged time window, mitigate the loss of sample 

diversity, while the recovery of particle diversity needs more time steps in the case 

of SIR. 
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Fig. 4-7 Observed versus 6-hour-lead forecasts at the Katsura station via the LRPF and SIR (1 

Jun.-31 Jul. 2007): (a) a deterministic modeling case; (b) the LRPF; and (c) SIR. The 

blue line and area represent the mean value and 90% confidence intervals, respectively. 

A gray dashed line represents a deterministic modeling case. The black dots represent 

observed discharge. 
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Fig. 4-8 Observed versus 6-hour-lead forecasts at the Katsura station via the LRPF and SIR (1 

Aug.-30 Oct. 2004): (a) a deterministic modeling case; (b) the LRPF; and (c) SIR. The 

blue line and area represent the mean value and 90% confidence intervals, respectively. 

A gray dashed line represents a deterministic modeling case. The black dots represent 

observed discharge.  
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Fig. 4-9 Observed versus 6-hour-lead forecasts at the Katsura station via the LRPF and SIR (1 

Jun.-31 Aug. 2003): (a) a deterministic modeling case; (b) the LRPF; and (c) SIR. The 

blue line and area represent the mean value and 90% confidence intervals, respectively. 

A gray dashed line represents a deterministic modeling case. The black dots represent 

observed discharge.  
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Fig. 4-10 Observed versus 6-hour-lead forecasts at the Katsura station via the LRPF and SIR 

for varying parameter values of the process error variance, soilα  (11 to 17 July 2007). 

The blue line and area represent the mean value and 90% confidence intervals, 

respectively. A gray dashed line represents a deterministic modeling case. The black 

dots represent observed discharge. 
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Fig. 4-11 Observed versus forecasts of varying lead times at the Katsura station via the LRPF 

and SIR with soilα  of 0.05 (11 to 17 July 2007): (a) the LRPF; and (b) the SIR 

particle filter. The blue lines represent forecasts of varying lead times. A gray dashed 

line represents a deterministic modeling case. The black dots represent observed 

discharge. 
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Fig. 4-12 shows the sensitivity of the lag time of the LRPF and process noise 

parameter, soilα , for each particle filter are estimated for varying lead times in the 

year of 2007 using Nash-Sutcliffe efficiency. When the lag time is larger than 4 

hours, the difference of Nash-Sutcliffe efficiency (NSE) for varying lead times 

becomes negligible, as shown in Fig. 4-12(a). Eight hours of the lag time are applied 

to the other simulations by the LRPF. NSE scores for varying lead times show 

different behaviours for each particle filter (Fig. 4-12(b)). While NSE of the LRPF 

shows a consistent behaviour regardless of error assumption, with all the red lines 

overlapping along the lead time, that of SIR changes according to the values of soilα . 

Overall, the LRPF shows improved NSE for any range of soilα . NSE shows rather 

significant differences between the two particle filters when plotted for the high 

flows (not shown). 

Fig. 4-13 shows NSE of each particle filter for varying lead times in the years 2004 

and 2003. Overall, LRPF forecasts show less variation compared to SIR forecasts, 

except the forecast of 2003 at Kameoka. Similarly to the year 2007 (Fig. 4-12(b)), 

NSE scores of SIR in 2004 and 2003 drop sharply when the process error soilα

increases. Although NSE scores of the LRPF show less change than does SIR, NSE 

differences of the LRPF of 2003 increase according to the lead time. Relatively 

excessive perturbation in the regularization step for the smoothly varied flood events 

may be one potential reason. However, differences of NSE appear to be negligible 

within 8-hour lead times. The forecasts at Kameoka show reduced NSE scores in 

both particle filters. In the case of 2004, LRPF shows better forecasts within 4-hour 

lead times, while SIR outperforms for other lead times in 2004 and 2003. Since the 

H-Q relationship of Kameoka is made with limited data, the Kameoka station 

appears to have larger uncertainty than does Katsura. Due to the lack of data, more 

extensive comparison is beyond the scope of this chapter. Nevertheless, we can 

observe that the statistical stability of the LRPF is superior to that of SIR in terms of 

confidence intervals and accuracy for uncertain process noise, soilα (not shown), 

similar to the results of 2007 (Fig. 4-10). 
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Fig. 4-12 Nash-Sutcliffe model efficiency for varying parameter values of the process error 

variance, soilα . The red lines represent the lagged regularized particle filter. The 

dashed lines represent the SIR particle filter. A dotted line represents a deterministic 

modeling case.  



60 Chapter 4. Applying sequential Monte Carlo methods into a distributed hydrologic model 

  

 

 

 



4.3  Implementation 61  

 

 
Fig. 4-13 Nash-Sutcliffe model efficiency for varying parameter values of the process error 

variance, soilα . The red lines represent the lagged regularized particle filter. The 

dashed lines represent the SIR particle filter. A dotted line represents a deterministic 

modeling case.  
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Table 4-2 shows statistics of streamflow forecasts with varying lead times at Katsura 

including NSE, root mean square error (RMSE) and correlation coefficient (COR) 

for a given process noise ( soilα  = 0.03). Statistics shown in Table 4-2 indicate that 

the LRPF is somewhat better than SIR especially in the years 2007 and 2004. The 

improvement by the LRPF over SIR is larger for shorter lead times and the high 

flows (not shown). COR shows high values for both cases in overall periods. It is 

worth noting that SIR has different optimum values of process noise for data periods, 

and thus it shows large variation of statistics depending on the process noise (not 

shown) as the patterns shown in Figs. 4-11 and 4-12. 

 
Table 4-2   Statistics of streamflow forecasts with varying lead times ( soilα = 0.03). 

Year Method 

Lead time (hour) 

1 3 6 12 24 

NSE RMSE COR NSE RMSE COR NSE RMSE COR NSE RMSE COR NSE RMSE COR 

2007 

DET 0.87 16.7 0.96 0.87 16.7 0.96 0.87 16.7 0.96 0.87 16.7 0.96 0.87 16.7 0.96 

LRPF 0.98 7.9 0.99 0.95 11.5 0.98 0.93 13.6 0.97 0.91 16.1 0.95 0.88 18.3 0.94 

SIR 0.96 10.1 0.98 0.95 12.2 0.97 0.93 13.7 0.97 0.91 15.6 0.96 0.88 18.2 0.95 

2004 

DET 0.84 59.9 0.93 0.84 59.9 0.93 0.84 59.9 0.93 0.84 59.9 0.93 0.84 59.9 0.93 

LRPF 0.89 48.1 0.95 0.85 57.5 0.92 0.86 55.4 0.93 0.84 58.8 0.93 0.83 61.4 0.92 

SIR 0.87 53.2 0.93 0.85 56.8 0.92 0.85 56.9 0.93 0.84 59.7 0.92 0.83 61.1 0.92 

2003 

DET 0.70 26.9 0.98 0.70 26.9 0.98 0.70 26.9 0.98 0.70 26.9 0.98 0.70 26.9 0.98 

LRPF 0.99 4.4 1.00 0.98 6.7 0.99 0.96 9.4 0.98 0.93 12.6 0.97 0.87 17.6 0.96 

SIR 0.99 4.5 1.00 0.98 6.5 0.99 0.97 9.0 0.98 0.94 12.1 0.97 0.89 16.6 0.96 

 

4.4 Conclusions 
 

A lagged particle filtering approach was proposed as a framework to deal with the 

delayed response, which originates from different time scales of hydrologic 

processes in a distributed hydrologic model. The regularized particle filter with the 

MCMC move step was implemented to preserve sample diversity under the lagged 

filtering approach. As a process-based distributed hydrologic model, WEP was 
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implemented to illustrate the strength and weakness of the LRPF compared to SIR 

for short-term streamflow forecast. 

Two particle filters showed significantly improved forecasts compared to 

deterministic modelling cases in different simulation periods. Various ranges of 

process noise related to soil moisture were simulated for varying lead times. While 

SIR has different values of optimal process noise and shows sensitive variation of 

confidence intervals according to the process noise, the LRPF shows consistent 

forecasts regardless of the process noise assumption. Due to the preservation of 

particle diversity by the kernel, the LRPF showed enhanced forecasts, especially 

when the discharge changed sharply in a short time (the year 2007) and flood peak 

was high (the year 2004). However, the relatively large perturbation by the kernel 

could produce negative effects when the flood peak was relatively small and the 

hydrograph varied smoothly (the year 2003). 

The SMC methods have significant potential for high non-linearity problems, 

especially for process-based distributed models in hydrologic investigation. However, 

the computational cost and marginal adequacy of the SMC methods for distributed 

modelling have been bottlenecks to their practical implementation. As shown in this 

chapter, a particle filtering process can be effectively parallelized and implemented 

in the multi-core computing environment via a MPI library. The LRPF is expected to 

be used as one of the frameworks for sequential data assimilation of process-based 

distributed modelling. The main benefits of the LRPF are the improved forecasts for 

rapidly varied high floods and the stability of confidence intervals for uncertainty of 

process noise. More extended implementation for multi-site forecasting and effective 

sequential estimation of model parameters remain open problems, indeed. 



 

 

  



 

 

 Chapter 5        

 
Ensemble Kalman filtering and particle 

filtering in a lag-time window for short-

term streamflow forecasting with a 

distributed hydrologic model 
 

 

Abstract Performance of ensemble Kalman filtering (EnKF) and particle filtering 

(PF) is assessed for short-term streamflow forecasting with a distributed hydrologic 

model, namely, the water and energy transfer processes (WEP) model. To mitigate 

the drawbacks of conventional filters, the ensemble square root filter (EnSRF) and 

the regularized particle filter (RPF) are implemented. For both the EnSRF and the 

RPF, sequential data assimilation is performed within a lag-time window to account 

for lag and response times for internal hydrologic processes in a hydrologic model. 

Proposed methods are applied to two catchments in Japan and Korea to assess the 

performance of the methods. The forecasting accuracy of both the EnSRF and the 

RPF is improved when sufficient lag times are provided. The EnSRF is sensitive to 

lag times and exhibits limited forecasting ability with short lead times, while the RPF 

exhibits more stable forecasting ability for the range of lead times examined. 

Filtering in a lag-time window also yields improved performance with a limited 

number of ensembles. 
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5.1 Introduction 

 

Flood disaster is the main cause of losses from natural hazards in the world and is 

responsible for a greater number of damaging events than any other type of natural 

event that threatens human safety. In recent years, steady increases in flood damage 

have contributed to a growing interest in the development of flood forecast systems 

and their operation in real time. Accurate streamflow predictions with a forecast lead 

time of several hours are of considerable value in mitigating flood damage and 

addressing operational flood scenarios (Barbetta et al., 2011). However, due to 

various uncertainties originating from simulation models, observations and forcing 

data, it is difficult to obtain accurate flood forecasting results for required lead times. 

In the past few years, ensemble forecasting techniques based on the sequential data 

assimilation methods have become increasingly popular, due to their potential ability 

to explicitly handle the various sources of uncertainty in operational hydrological 

models (Vrugt et al., 2006). The basic idea of sequential data assimilation is to 

quantify errors for both the hydrological model and observations and to recursively 

update hydrological model states in a way that optimally combines model 

simulations with observations when new observations become available (Clark et al., 

2008). 

Among the various data assimilation methods, Kalman filtering (KF) is the optimal 

data assimilation method for linear and Gaussian dynamics (Kalman, 1960). For a 

nonlinear system, the extended Kalman filter (EKF) has been applied, but the EKF 

could lead to unstable results when the nonlinearity in a system is severe. The 

ensemble Kalman filtering (EnKF), introduced by Evensen (1994), is a Monte Carlo 

approximation to traditional KF. EnKF uses an ensemble of forecasts to estimate 

background error covariances (Whitaker and Hamill, 2002). The advantage of EnKF 

over the EKF is that it does not require the development of the linearized state-space 

formulation of the hydrological model (Clark et al., 2008). A number of previous 

studies have demonstrated the performance of EnKF in improving hydrological 

predictions (e.g., Vrugt et al., 2006; Clark et al., 2008; Komma et al., 2008; 
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Moradkhani et al., 2005b, 2008; Nie et al., 2011; Han et al., 2012; He et al., 2012; 

McMillan et al., 2012; Li et al., 2012). However, the posterior probability density of 

hydrologic states in a model is often non-Gaussian and cannot be adequately 

characterized by the first two moments (Leisenring and Moradkhani, 2011). In 

addition, as EnKF actively updates states, it does not explicitly comply with the 

principle of conservation of mass (Salamon and Feyen, 2010).  

Particle filtering (PF), also known as the sequential Monte Carlo (SMC) methods, is 

a Bayesian learning process in which the propagation of all uncertainties is 

conducted by a suitable selection of randomly generated particles without any 

assumptions about the nature of the distributions (Gordon et al., 1993; Musso et al., 

2001; Arulampalam et al., 2002; Johansen, 2009). Unlike Kalman filter-based 

methods, PF performs updating on particle weights instead of state variables (Liu 

and Gupta, 2007), which has the advantage of reducing numerical instability, 

especially in physically based or process-based models. In addition, PF is applicable 

to non-Gaussian state-space models. In recent years, applications of these versatile 

methods have been increasing in hydrology and earth sciences (e.g., Moradkhani et 

al., 2005a; Weerts and El Serafy, 2006; Zhou et al., 2006; Salamon and Feyen, 2009, 

2010; van Delft et al., 2009; van Leeuwen, 2009; Qin et al. 2009; Karssenberg et al., 

2010; Dechant and Moradkhani, 2011; Giustarini et al., 2011; Hiemstra et al., 2011; 

Montzka et al., 2011; Noh et al., 2011a, 2011b, 2012; Frei and Künsch, 2012; Plaza 

et al., 2012; Pasetto et al., 2012; Vrugt et al., 2012).  

Recently, there have been advances in both EnKF and PF that have improved their 

performance. In conventional EnKF, perturbation of measurements is used to update 

ensemble members, which is an additional source of uncertainty. The ensemble 

square root filter (EnSRF) was developed to avoid sampling issues associated with 

the use of "perturbed observations" in the ensemble update step (Whitaker and 

Hamill, 2002). In the case of PF, the sequential importance resampling (SIR) particle 

filter, which is the basic particle filter, may lead to a sudden loss of diversity in 

particles due to the resampling step (Ristic et al., 2004). In the hydrologic modeling 

community, mitigation methods for the SIR filter have been suggested that involve 
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changing resampling methods, such as residual resampling (Weerts and El Serafy, 

2006) and using an empirical likelihood function rather than a Gaussian function 

(Leisenring and Moradkhani, 2011). Another remedy for sample degeneracy is the 

regularization particle filter (RPF) with the Markov chain Monte Carlo (MCMC) 

move step, which preserves sample diversity by adding noise from kernels and by 

selecting importance particles through an additional move step. In a previous study, 

the RPF was successfully applied to streamflow forecasting with a distributed 

hydrologic model (Noh et al., 2011b). 

There have been attempts to compare the performance of EnKF and PF in the 

hydrologic modeling community (Weerts and El Serafy, 2006; Zhou et al., 2006; 

Leisenring and Moradkhani, 2011). PF tends to outperform EnKF when the 

ensemble size is sufficiently large, as reported for other research fields. However, on 

the subject of the ensemble size required for operational uses, the performance of 

filters has been observed to be different for different hydrologic models and filtering 

methods. Weerts and El Serafy (2006) and Zhou et al. (2006) reported that EnKF 

outperformed PF when the ensemble size was small, while PF performed better than 

EnKF even at relatively small ensemble sizes according to results obtained by 

Leisenring and Moradkhani (2011). In addition, performance assessment was 

focused on a lumped hydrologic model and the comparison was limited to short 

ranges of forecast lead times. The comparison of EnKF and PF in a distributed 

hydrologic model, which is usually highly non-linear and non-Gaussian in its 

distribution, has not been fully addressed in terms of operational uses such as 

varying lead times and ensemble sizes. 

In this chapter, the performance of the ensemble Kalman filter and the particle filter 

is assessed for short-term streamflow hindcasting with a distributed hydrologic 

model. To alleviate the drawbacks of conventional filtering methods resulting from 

disturbed observations in EnKF and a loss of diversity in PF, the ensemble square 

root filter and the regularized particle filter are selected. For the EnSRF and the RPF, 

state variables are analyzed and updated through a lag-time window to consider 

different response times of internal hydrologic processes in a distributed hydrologic 
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model. A lag-time window enables filtering processes to consider a time lag in the 

routing process and use all available measurement information. The proposed 

methods are applied to two different catchments in Japan and Korea to assess 

performance of the methods.  

In this chapter, Bayesian filtering theory, EnKF and PF, including the EnSRF and the 

RPF, are outlined below. Procedures for applying the EnSRF and the RPF in a lag-

time window are then presented. Experiment setups, including study areas, a 

distributed hydrologic model, uncertainty assumption of modeling and observation, 

are presented next. The performance of these two filters for different catchments is 

analyzed for varying lag-time windows and ensemble numbers. A summary and 

concluding remarks are provided in the last section.  

5.2 Bayesian filtering in a lag-time window  
 

In this section, we briefly explain Bayesian filtering methods such as ensemble 

Kalman filtering (EnKF) and particle filtering (PF) and then propose a new scheme 

to apply two filters in a lag-time window.  

5.2.1 Ensemble Kalman filtering 

EnKF (Evensen, 1994) is a suboptimal estimator, where the error statistics are 

predicted using Monte Carlo methods. EnKF consists of update and prediction steps. 

The ensemble means of the hidden and observable states are defined as 
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where i
kx  and )( i

kxh denote the hidden and observable states of ith ensemble, 

respectively, and n is the number of ensemble members. If the measurements are a 

nonlinear combination of state variables, the Kalman gain is calculated as 
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where kV denotes the variance of the measurement noise (Houtekamer and Mitchell, 

2001).  

The update equation is calculated according to 
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In conventional EnKF (e.g., Burgers et al. (1998)), i
ky  in Eq. (5-6) represents 

perturbed observations given by 
i
kk

i
k vyy +=        (5-7) 

where i
kv  is a zero-mean random variable with a normal distribution and variance kV . 

The derivation and detailed description of EnKF is given by Evensen (2003) and 

Oke et al. (2007). 

5.2.2 Ensemble square root filter 

The perturbed observations in Eqs. (5-6) and (5-7) can have a detrimental effect in 

that they add noise to the analysis. Whitaker and Hamill (2002) introduced the 

ensemble square root filter (EnSRF) to provide the correct analysis error covariance 

without perturbing the observations. With this method, the ensemble is broken into 

mean and anomaly portions, and updating is performed separately for the ensemble 

mean and anomalies: 
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where the prime denotes the deviations of each ensemble from the ensemble mean. 

The ensemble mean is updated with the traditional gain given by Eq. (5-3), while 

anomalies are updated with a reduced gain given by 



5.2  Bayesian filtering in a lag-time window 71  

 

( ) ( )[ ] 11 −−
++



 +=′ kkyy

T

kyyxy VVPVPPK
kkk     (5-10) 

In Eq. (5-9), 0=′iky , which indicates no perturbation of observation in anomalies. 

Therefore, each ensemble member is updated by 
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Whitaker and Hamill (2002) showed that the sampling error associated with 

perturbed observations makes the EnSRF more accurate than EnKF. 

5.2.3 Particle filtering 

PF is a set of simulation-based methods that provide a flexible approach to 

computing posterior distributions without any assumptions being made about the 

nature of the distributions. The key idea of PF is based on point mass (“particle”) 

representations of probability densities with associated weights: 
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where i
kx and i

kw denote the ith posterior state (“particle”) and its weight, respectively, 

and )(⋅δ denotes the Dirac delta function. Weight can be updated as: 
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where )|( i
tt xyp is the likelihood of each particle i

tx . A common problem in PF is the 

degeneracy phenomenon, which can be reduced by performing the resampling step 

whenever a significant degeneracy is observed. A more detailed description of PF is 

presented in Chapter 2. 

5.2.4 Regularized particle filter 

The main idea of the regularized particle filter (RPF) consists of changing the 

discrete approximation of a posterior distribution to a continuous approximation. 

With conventional particle filters, the weight of a particle is defined at a discrete 

point; therefore, the same particles are duplicated in the resampling step. However, 

the RPF defines particle weights in a continuous mode, which enables a new particle 
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system with different particle locations in the resampling step, also called the 

regularization step, as follows: 
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where 
*i

kx is a new particle generated from kernel density, opth  is the optimal 

bandwidth with unit covariance matrix, kD  is estimated from Lk, which is the 

empirical covariance matrix such that k
T
kk LDD = , and iε  is the random noise from 

the kernel.  

The theoretical drawback of the RPF is that its samples are no longer guaranteed to 

asymptotically approximate those from the posterior distribution. This drawback can 

be mitigated by including the Markov chain Monte Carlo (MCMC) move step (Gilks 

and Berzuini, 2001) based on the Metropolis-Hastings algorithm (Robert and Casella, 

1999). A more detailed description of the RPF is given in Chapter 4. 

5.2.5 Filtering in a lag-time window 

In catchment hydrology, different types of patterns are often encountered at different 

time and space scales, and these are associated with different processes (Grayson and 

Blöschl, 2001). Generally, different hydrologic processes such as groundwater flow, 

infiltration and streamflow have different temporal scales (e.g., Blöschl and 

Sivapalan, 1995). In addition, unlike other states, streamflow is an aggregated 

variable routed from headwater areas. There is a time lag until precipitation is 

infiltrated, subsurface/surface runoff occurs and generated runoff is routed as 

streamflow into the measurement site. Therefore, we introduce a lag-time window 

for filtering processes to consider a time lag in the routing process and different time 

scales of the hydrologic processes and also to use all of the available measurement 

information. Figs. 5-1 and 5-2 illustrate a single cycle of EnKF and PF, respectively, 

in a lag-time window. Here, k is the current time step, and j is the lag time required 

for responses of internal state variables to be transmitted into the observable 
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variables. For simplicity, we assume that an observation becomes available in every 

time step.  

The procedure for applying a lag-time window for the ensemble square root filter is 

as follows: 

 

1. To have a prediction at the current time step k, simulation is initiated at the 

time step k-j.  

2. At the time step k-j+1, state variables are stored. 

3. When ensembles arrive at the current time k, state variables are updated using 

Eq. (5-9). 

4. State variables at the time step k-j+1 are updated as: 
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In a similar manner, the procedure for applying a lag-time window for the 

regularized particle filter can be defined as follows: 

 

1. To have a prediction at the current time step k, simulation is initiated at the 

time step k-j.  

2. At the time step k-j+1, state variables are stored. 

3. When ensembles arrive at the current time step k, the weights of the 

ensembles are estimated using Eq. (5-13). 

4. According to the estimated weights, ensembles are resampled. During the 

resampling step, all state variables at the time step k-j+1 and k are duplicated 

together from the highly weighted particles to particles having negligible 

weights. 

5. When a loss of sample diversity occurs, the regularization step is executed, 

which means that steps 1 to 3 are repeated by newly generated states at time 

step k-j using Eq. (5-14) and the acceptability of each ensemble is checked at 

time step k using the MCMC move step. 
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For both filters, updated or resampled states at the time step k-j+1 are used as initial 

conditions in the next assimilation window. It is best to set the lag time j to be 

sufficiently large to cover plausible ranges. The sensitivity of the time lag for each 

filter will be assessed in the following section. 

 
Fig. 5-1 A cycle of the ensemble Kalman filter in a lag-time window. 

 
Fig. 5-2 A cycle of the particle filter in a lag-time window. 
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5.3 Evaluation experiments and results 

5.3.1 Hydrological Model  

The applied hydrologic model is the water and energy transfer processes (WEP) 

model, which was developed for simulating spatially variable water and energy 

processes in catchments with complex land covers (Jia and Tamai, 1998; Jia et al., 

2001). A more detailed description of the WEP model is presented in Chapter 4. 

5.3.2 Study area and input data 

The proposed methods are applied to two small-sized catchments, the Katsura River 

catchment and the Gyeongancheon catchment, which are located in Japan and Korea, 

respectively (see Fig. 5-3). The Katsura River catchment in Japan covers an area of 

887 km2, and its dominant land uses are forests (76.7%), agricultural areas (9.3%) 

and residential areas (7.5%). The grid resolution is 250 m for all distributed input 

data, including topography, soil, land use, etc. There are 13 rainfall observation 

stations and 1 meteorological observation station, the hourly data from which are 

used as model inputs. The Hiyoshi dam is located upstream, and the outflow record 

from the dam reservoir is used as inflow to the hydrologic model. The soil 

distribution is obtained from the website of the Food and Agriculture Organization of 

the United Nations (http://www.fao.org/nr/land/soils/en/).  

The Gyeongancheon catchment is located in Gyeonggido, Korea, and covers an area 

of 565 km2. The Gyeongancheon stream flows from south to north, joining the Han 

River, one of the main rivers in Korea. The dominant land uses are forests (78.6%), 

agricultural areas (16.0%) and residential areas (4.2%). The grid resolution is 200 m. 

There are 5 rainfall observation stations and 2 meteorological observation stations. 

The soil distribution is obtained from the National Academy of Agricultural Science 

of Korea. 

Simulation periods and observed rainfall and flow are shown in Table 5-1. Hourly 

observed discharges at each outlet are used for the data assimilation. The nearest-

neighbor interpolation method is used for representation of the spatial distribution of 
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rainfall. Physical properties of soils are derived from soil texture information using 

the ROSETTA model (Schaap et al., 2001). For other parameters, such as aquifers 

and vegetation, we apply parameter ranges identified in the earlier studies mentioned 

previously.  

 
Table 5-1   Simulation periods and observed flow and rainfall. 

Observation station Simulation period 
Max. observed 

flow (m3s-1) 

Total observed 

rainfall (mm) 

Katsura 1 Jun. - 31 Aug. 2003 361 729 

Gyeongan 1 Jul. - 31 Sep. 2010 793 1225 

 

 
Fig. 5-3 The Gyeongancheon catchment and the Katsura River catchment located in Korea 

and Japan, respectively: (a) elevation map, (b) soil distribution, and (c) rainfall 

network for the Gyeongancheon catchment; and (d) elevation map, (e) soil 

distribution, and (f) rainfall network for the Katsura River catchment. 

Korea Japan
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5.3.3 Noise models for data assimilation 

In this chapter, we select soil moisture content as a hidden state variable and 

streamflow measured at the catchment outlet as an observable variable for data 

assimilation. Global multipliers are used to perturb state variables for both filters. In 

the case of the EnSRF, states are aggregated and updated for each rainfall network 

(see Fig. 5-3). However, a single multiplier is implemented in the RPF because direct 

updating of states is not required in the particle filters. In this section, we briefly 

explain how ensembles are perturbed by process noises in both filters. To avoid 

complexity in notation, we exclude the index i, indicating the ith ensemble member, 

from the equations. The total soil moisture depth at the previous time step 1−kS  is 

aggregated for three soil layers within the catchment as follows: 
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where l
jθ and l

jd are the volumetric soil moisture content (m3/m3) and the soil depth 

(m) in each layer, and l and m represent the number of soil layers and the total 

number of grids within the catchment, respectively. The process noise of the soil 

moisture content 
ksoilw is added to the aggregated state variable 1−kS as follows: 

ksoilkk wSS += −1
ˆ       (5-18) 

where 
ksoilw is assumed to follow a Gaussian distribution ),0( 2

ksoilN σ  with a 

heteroscedastic standard deviation given as follows: 

soilksoilsoil S
k

βασ += −1       (5-19) 

In the above equation, soilα  and soilβ  are adaptable parameters that can be obtained 

from sensitivity analysis. As shown in a previous study (Noh et al. 2011b), the 

selection of adaptable parameters, soilα  and soilβ , is not sensitive if a lag-time 

window is used in PF. Therefore, a value of 0.05 is used for both filters.  

The measurement error of the discharge is assumed to follow a Gaussian distribution, 

),0( 2
kobsN σ , as reported in previous studies (Georgakakos, 1986; Weerts and El 



78 Chapter 5. EnKF and PF for streamflow forecasting in a lag-time window with a DHM 

  

 

Serafy, 2006; Salamon and Feyen, 2010). The standard deviation of the measurement 

error is chosen as follows: 

obskobsobs y
k

βασ +=       (5-20) 

In the above equation, obsα is set at 0.1, meaning that 10% of the measurement error 

and the constant coefficient obsβ are applied to estimating the uncertainty in periods 

of low flow such as artificial water use. Fifteen percent of perturbation from the 

uniform distribution is applied to the initial soil moisture condition.  

5.3.4 Results and discussion 

We implement two sequential data assimilation methods, the ensemble square root 

filter and the regularized particle filter, for hindcasting of streamflow using the WEP 

model. For both filters, warm-up periods of 120 hours are allowed before the data 

assimilation starts. The number of ensembles is set as 64 for EnKF and PF, 

considering the capacity of computing resources and ensemble diversity after the 

sensitivity analysis. Simulations are conducted for two small catchments in Japan 

and Korea to demonstrate the applicability of proposed methods for short-term 

streamflow forecasting. 

Fig. 5-4 shows 6-hour-lead forecasts of the EnSRF and the RPF and deterministic 

simulation results at the Katsura station in Japan from 1 June to 31 August 2003. The 

blue line and area represent the ensemble mean and 90% confidence intervals, 

respectively. The dashed gray line represents the deterministic modeling case. The 

black dots represent observed discharge at the Katsura station. The applied lag times 

are 10 and 8 hours for the EnSRF and the RPF, respectively. While the deterministic 

simulation significantly underestimates streamflow, the streamflows forecasted with 

the two filters agree well with observations, indicating that sequential data 

assimilation contributes to correcting internal states properly in both filters. Ninety-

percent confidence intervals around the EnSRF predictions are larger than those 

around the RPF predictions, although the same noise assumptions are used.  

The effects of a lag-time window on both filters are assessed for various ranges of 

lag times using Nash-Sutcliffe efficiency (NSE). 
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Fig. 5-4 Observed versus 6-hour-lead forecasts at the Katsura station (1 Jun.–31 Aug. 2003): 

(a) the EnSRF, (b) the RPF, and (c) deterministic modeling. 
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(a) Katsura, Jun.-Aug. 2003, EnSRF, lag time = 10 hours
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(b) Katsura, Jun.-Aug. 2003, RPF, lag time = 8 hours
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(c) Katsura, Jun.-Aug. 2003, deterministic
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Fig. 5-5 shows NSE for varying lag-time windows and lead times in the EnSRF and 

the RPF. The other simulation conditions are the same as those shown in Fig. 5-4. 

While the forecasts are inferior to the deterministic modeling results without DA 

when lag-time windows are short, the performance of both filters improves as the lag 

time increases. Overall, the RPF outperforms the EnSRF for varying lead times when 

the lag time is greater than 4 hours. There appears to be a threshold value for both 

filters beyond which prediction performance does not improve. The EnSRF seems to 

be sensitive to the size of the lag-time window and reaches stable performance when 

the lag time is approximately 10 hours. The performance of the RPF improves more 

quickly than that of the EnSRF and becomes stable when the lag time is greater than 

8 hours. Different patterns of NSE are also detected in each filter. In the case of the 

EnSRF, the best performance is achieved with approximately 5 and 7 hours of lag 

time, while performance decreases with shorter lead times (< 4 hours). The RPF, on 

the other hand, exhibits the best performance when the lead time is the shortest (1 

hour). In this chapter, soil moisture contents are perturbed and updated in a lag-time 

window. Therefore, even if the hidden states are properly updated by the EnSRF, 

transition time seems to be required before updating effects appear in the forecast. 

However, in the case of the RPF, although soil moisture contents are considered as 

target states, all states, including network variables such as streamflows, are 

duplicated or renewed in the resampling step.  

The effects of varying the length of the lag-time window on a high flood are 

illustrated in Fig. 5-6. The simulation data are the same as those shown in Fig. 5-5, 

and the selected flood event, from 8 to 19 August 2003, is the largest that occurred 

during the simulation period. Without a lag-time window (lag time = 1 hr), both 

filters show very unstable forecasts in terms of means and confidence intervals, 

which indicates that ensembles are updated in advance, before the effects of 

perturbation are transmitted into observation variables. However, as the lag time 

increases, confidence intervals decrease in size, and the ensemble mean more closely 

approximates the mean of the observations, demonstrating that the lag-time window 

may contribute to reduce uncertainty in the prediction. 
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Fig. 5-5 Nash-Sutcliffe model efficiency for varying lag-time windows for the Katsura station: 

(a) the EnSRF and (b) the RPF.  
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Fig. 5-6 Observed versus 6-hour-lead forecasts at the Katsura station with the EnSRF and the 

RPF for varying lag-time windows (8 to 19 August 2003): lag times of (a) 1 hr, (b) 2 

hrs, (c) 4 hrs, (d) 6 hrs, (e) 8 hrs, and (f) 10 hrs for the EnSRF; lag times of (g) 1 hr, (h) 

2 hrs, (i) 4 hrs, (j) 6 hrs, (k) 8 hrs, and (l) 10 hrs for the RPF.  



5.3  Evaluation experiments and results 83  

 

A sensitivity analysis of the ensemble number is illustrated in Fig. 5-7. The model 

efficiency is assessed by varying particle numbers from 32 to 192 for both filters. 

The same simulation conditions as shown in Fig. 5-4 are specified. Even when the 

ensemble number decreases, no significant changes in the performance of either the 

EnSRF or the RPF are observed, although the confidence intervals increase slightly 

(not shown). The RPF performs better than the EnSRF even when the number of 

ensembles is extremely low. From the point of view of operational use, the number 

of ensembles required for filtering is one of the important criteria for choosing a 

method. The results show that if both filters are analyzed in a lag-time window, their 

performance can be improved with a limited number of ensembles. 

Application results for the Gyeongancheon catchment in Korea for the period from 1 

July to 31 September 2010 are shown in Fig. 5-8. Lag times of 8 and 6 hours for the 

EnSRF and the RPF,  respectively, were determined in the other calibration period 

(not shown). The deterministic approach exhibits good performance, and 6-hour-lead 

forecasts obtained with the two filters also agree well with observations. In terms of 

NSE shown in Fig. 5-9, the two filters yield better results than the deterministic 

approach for overall lead times. The EnSRF and the RPF yield equivalent 

predictions for lead times from 5 to 14 hours, while the RPF outperforms the EnSRF 

for other lead times. A similar trend is observed for NSE; therefore, NSE of the 

EnSRF decreases when the lead time is decreased for the Katsura River catchment. 

Similar results were obtained for the Gyeongancheon catchment.  

Statistics of streamflow forecasts for the two catchments for varying lead times are 

shown in Table 5-2. NSE and root mean square error (RMSE, m3s-1) are estimated, 

and the best scores are underlined for each lead time. Comparing the results for the 

two catchments, the forecasts for the Katsura catchment are better than those for the 

Gyeongancheon catchment. Different magnitudes of uncertainty for rainfall and 

discharge observations in the two catchments may be among the reasons for this 

difference. In terms of overall statistics, the RPF yielded predictions equal to or 

better than the EnSRF in accuracy for both catchments.  
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Fig. 5-7 Nash-Sutcliffe model efficiency for varying ensemble numbers for the Katsura station: 

(a) the EnSRF and (b) the RPF. 
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Fig. 5-8 Observed versus 6-hour-lead forecasts for the Gyeongan station (1 Jul.–31 Sep. 2010): 

(a) the EnSRF, (b) the RPF, and (c) deterministic modeling. 
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(a) Gyeongan, Jul.-Sep. 2010, EnSRF, lag time = 8 hours
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(b) Gyeongan, Jul.-Sep. 2010, RPF, lag time = 6 hours
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(c) Gyeongan, Jul.-Sep. 2010, deterministic
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Fig. 5-9 Nash-Sutcliffe model efficiency for the Gyeongan station for the EnSRF and the RPF. 

 
Table 5-2   Statistics of streamflow forecasts in the two catchments. 

Catchment Method 
lag 

time 

Lead time (hour) 

1 3 6 12 24 

NSE RMSE NSE RMSE NSE RMSE NSE RMSE NSE RMSE 

Katsura River 

catchment 

Deterministic - 0.87 15.7 0.87 15.7 0.87 15.7 0.87 15.7 0.87 15.7 

EnSRF 10 0.94 8.8 0.95 7.7 0.95 7.8 0.91 10.5 0.82 14.9 

RPF 8 0.99 3.3 0.98 4.9 0.96 7.0 0.93 9.4 0.85 13.4 

Gyeongancheon 

catchment 

Deterministic - 0.83 21.6 0.83 21.6 0.83 21.6 0.83 21.6 0.83 21.6 

EnSRF 8 0.86 13.7 0.90 12.7 0.90 11.7 0.88 12.8 0.84 14.6 

RPF 6 0.96 7.2 0.92 9.1 0.89 12.1 0.88 12.9 0.87 13.4 

 

5.4 Conclusions 
 

Two sequential data assimilation methods, the ensemble Kalman filter and the 

particle filter, have been assessed for short-term streamflow hindcasting with a 

distributed hydrologic model, WEP. The ensemble square root filter and the 
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regularized particle filter were implemented to avoid flaws associate with 

conventional methods. The updating of state variables was performed through a lag-

time window to consider lag and response times among internal hydrologic 

processes in a distributed hydrologic model. The EnSRF and the RPF were applied 

to two small catchments in Japan and Korea to assess the performance of the two 

methods. Ensembles perturbed by the noise of variation in soil moisture content were 

assimilated by streamflows observed at each outlet. In the case of the Katsura River 

catchment in Japan, in the predictions of both the EnSRF and the RPF improved 

when the lag time increased.  Updated ensembles produced improved streamflow 

predictions for lead times of up to 15 hours (Fig. 5-5). Without a lag-time window, 

the predictions became unstable in terms of means and confidence intervals (Fig. 5-

6).  In the sensitivity analysis of the ensemble number, no significant variation in 

model efficiency was detected with variation in ensemble number (Fig. 5-7). The 

results of this chapter indicate that the RPF performed better than the EnSRF even 

when the number of ensembles was extremely low, but the further study is required. 

In the case of the Gyeongancheon catchment in Korea, the predictions obtained with 

the EnSRF and the RPF were equivalent for lead times ranging from 5 to 14 hours, 

while the prediction accuracy of the RPF was superior to the EnSRF for other lead 

times. 

In both catchments, a lag-time window contributed to improving performance of the 

EnSRF and the RPF, and the RPF yielded predictions equal to or better than those of 

the EnSRF in prediction accuracy. In the case of the EnSRF, a decrease in model 

performance was observed for both catchments when the lead times were short (< 4 

hours). The sequential data assimilation methods have significant potential for 

application to highly non-linear, non-Gaussian problems, such as process-based 

distributed models. Therefore, further study should be focused on real-time and 

multi-site data assimilation for hydrologic forecasting for a large-scale catchment, 

for which a lag-time window may provide an essential framework. 

 



 

 

 



 

 

 Chapter 6 

 
Development of a hydrological modeling 

framework for data assimilation with 

particle filters 
 

 

Abstract In this chapter, we develop a hydrologic modeling framework for data 

assimilation, namely MPI-OHyMoS. While adapting object-oriented features of the 

original OHyMoS, MPI-OHyMoS allows users to build a probabilistic hydrologic 

model with DA. In this software framework, sequential DA based on particle filtering 

is available for any hydrologic models considering various sources of uncertainty 

originating from input forcing, parameters, and observations. Ensemble simulations 

are parallelized by the message passing interface (MPI), which can take advantage 

of a high-performance computing (HPC) system. Structure and implementation 

processes of DA via MPI-OHyMoS are illustrated using a simple lumped model. This 

software framework is applied for uncertainty assessment of a distributed hydrologic 

model in both synthetic and real experiment cases. In the synthetic experiment, dual 

state-parameter updating results in a reasonable estimation of parameters to cover 

synthetic true within their posterior distributions. In the real experiments, dual 

updating with identifiable parameters results in a reasonable agreement to the 

observed hydrograph with reduced uncertainty of parameters. 
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6.1 Introduction 
 

Data assimilation (DA) has received increased attention due to its capability to 

handle explicitly the sources of uncertainty in various areas. Numerous sophisticated 

DA algorithms have been proposed from ruled-based, direct-insertion methods, to 

advanced smoothing and sequential techniques, as well as the variants of these 

techniques (Liu et al., 2012).  In the hydrologic research community, applications of 

DA have proved promising in improving prediction accuracy and quantifying 

uncertainty. Despite their potential, applicable general modeling frameworks to 

probabilistic approaches and DA are still limited because most modeling frameworks 

are based on a deterministic modeling approach. With increasing need for DA 

modeling platforms, a few frameworks such as openDA (Weerts et al., 2011) and 

PCRater applications (Karssenberg et al., 2010) have appeared recently (van Velzen, 

2010). These approaches seem to provide innovative DA environments to overcome 

limitations of conventional deterministic modeling. However, there still remain 

cumbersome procedures such as development of model wrapper and further steps to 

use DA in more effective ways.  

Over the last couple of decades, meanwhile, there have been improvements in 

modular modeling approaches to integrate modeling systems, including the modular 

modeling system (MMS) (Leavesley et al., 2002), object-oriented hydrologic 

modeling system (OHyMoS) (Ichikawa et al., 2000) and interactive component 

modeling system (ICMS) (Reed et al., 1999). These sorts of modular approaches 

provide a flexible platform on which various models and tools are integrated. Thus, 

modelers can develop various types of models for problem objectives, available data, 

and spatio-temporal scales of application by organizing registered modules in diverse 

ways (Lee et al., 2011). 

OHyMoS is a hydrological modeling framework designed on the basis of the object-

oriented programming concepts. Using OHyMoS as a computational library, users 

can develop their own element models and easily build a total simulation system 

model for hydrological simulations (Ichikawa et al., 2001). Unlike a process-based 
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modeling framework, OHyMoS benefits from its object-oriented feature to represent 

hydrological processes flexibly without any change of the main OHyMoS library. 

However, OHyMoS, like most other modular modeling approaches, is designed 

based on a deterministic approach. The original version of OHyMoS supports neither 

probabilistic simulation nor data assimilation. 

In this chapter, MPI-OHyMoS is developed for supporting stochastic hydrologic 

simulations and data assimilation, while adapting all object-oriented features of 

original OHyMoS. Ensemble simulations are computed in parallel via the message 

passing interface (MPI), which can take advantage of the computational power of a 

high performance computing (HPC) system. Among the data assimilation methods, 

particle filtering (PF) is selected. The proposed framework is applied for uncertainty 

assessment of lumped and distributed hydrologic models in synthetic and real 

experiment cases. 

This chapter is organized in the following way. Section 6.2 outlines basic features of 

MPI-OHyMoS: particle filtering, dual state-parameter estimation and parallelization 

for ensemble simulation. Section 6.3 illustrates DA processes in MPI-OHyMoS 

using a lumped hydrologic model. In Section 6.4, MPI-OHyMoS is implemented for 

the uncertainty assessment of a distributed hydrologic model in synthetic and real 

experiments. Section 6.5 summarizes the methodology and implementation results. 

6.2 Features of MPI-OHyMoS 
 

As MPI-OHyMoS is a stochastic and interactive version of OHyMoS, the basic 

concept of OHyMoS is reviewed briefly. OHyMoS is constructed as a set of dynamic 

elements communicating with each other based on object-oriented programming 

(Lee et al., 2011). As illustrated in Fig. 6-1, it provides an operation module, 

including the common functions required in hydrological simulations such as 

initialization of parameters and state variables, and setting the computational time 

steps and data exchange among element modules through input/output ports. 

Through OHyMoS, users can easily develop their own hydrologic modules by 
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connecting them to other modules and transferring data using predefined ports in the 

system library. Detailed information about OHyMoS and its implementations can be 

found and downloaded in at the web page of Hydrology and Water Resources 

Research Laboratory, Kyoto University (http:// hywr.kuciv.kyoto-u.ac.jp/ohymos/). 

In MPI-OHyMoS, hydrologic modeling is implemented in the stochastic way. Fig. 6-

2 shows how model ensembles are interactively assimilated in MPI-OHyMoS. Each 

ensemble member, representing a probable projection based on different parameters 

and state variables, is implemented independently. When a new observation arrives, 

the likelihood of ensemble members is estimated. In the resampling step, the whole 

information of each ensemble is renewed depending on its weight. In this way, 

ensembles can move to the regions with high conditional probability in each time 

step. Detailed features of MPI-OHyMoS are summarized below. 

 

 
 

Fig. 6-1 The structure of original OHyMoS. 
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Fig. 6-2 Sequential data assimilation by MPI-OHyMoS 

 

6.2.1 Particle filtering 

Particle filtering (PF) is a Bayesian learning process that has the capability to handle 

non-linear, non-Gaussian state-space models. Unlike Kalman filter-based methods, 

PF performs updating on particle weights instead of state variables (Liu and Gupta, 

2007), which has the advantage of reducing numerical instability, especially in 

physically based or process-based models. The key idea of PF is based on point mass 

representations of probability densities with associated weights (Ristic et al., 2004). 

To fix the notations, let us introduce tx , which represents all target states at time t . 

Then, the posterior filtered density
 

)|( :1tt yxp  can be approximated as 

∑
=
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n
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i
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where i
tx and i

tw denote the ith posterior state (“particle”) and its weight, respectively, 

)(⋅δ denotes the Dirac delta function and ty :1  denotes all available measurements. In 

typical circumstances, the recursive weight updating can be derived as follows: 
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where )|( i
tt xyp is the likelihood of each particle i

tx .  
The SIS algorithm shown above is a Monte Carlo method that forms the basis for 

most particle filters. A common problem with the SIS algorithm is the degeneracy 

phenomenon: after a few iterations all but one particle will have negligible weight. 

The degeneracy phenomenon can be reduced by performing the resampling step 

whenever a significant degeneracy is observed. 

In MPI-OHyMoS, a likelihood function is constructed as an independent element 

model to estimate the likelihood and weight of each particle, which can be combined 

with any element model and allow any user-defined density function.  

6.2.2 Dual state-parameter updating 

During the resampling step, information of different states and parameters is updated 

simultaneously. In the case of state updating, state variables, which are perturbed in 

the initial stage, are projected to the next time point by the state-space equation (e.g. 

hydrologic models) and updated in the resampling step. However, in the case of 

parameter updating, we need additional constraints because there is usually no time-

evolution information. 

To handle inference of the unknown parameters θ , kernel smoothing (Liu and West, 

2001) is adapted to improve parameter identifiability. The smooth kernel density can 

be a mixture of Gaussian densities as follows: 
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where h is the variance reduction parameter and θ
1−tV is the variance of parameter 

particles at time t-1 before resampling. The kernel locations i
tm 1−  are specified by a 

shrinkage rule forcing the particles to be closer to their mean: 

111 )1( −−− −+= t
i
t

i
t aam θθ  with 21 ha −=    (6-4) 

where 1−tθ  is mean of parameter at time t-1. It can be verified that the mixture 

probability in Eq. (6-4) has a covariance matrix θ
1−tV  and that it does not increase over 

time (Liu and West, 2001). Several issues related with parameter estimation are 
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discussed in Appendix C. MPI-OHyMoS provides the kernel smoothing scheme as a 

basic option of parameter updating. The statistics of parameters can be estimated in 

the log scale, which will be shown in the distributed modeling case. 

6.2.3 Parallelized ensemble simulation 

MPI, a parallel computing protocol for a distributed memory system which is 

common in HPC, is used for the parallelization of the ensemble simulation and data 

assimilation in MPI-OHyMoS. Among variants of MPI libraries, openMPI 

(www.openmpi.org) and Boost library (www.boost.org) are selected. Note that MPI 

is different from OpenMP, commonly used in hydrology for loop parallelization in a 

single model, whose applicability is limited to a shared memory system. 

6.3 Illustrative example of data assimilation via MPI-

OHyMoS 
 

In this section, an example is shown to illustrate the basic features and simulation 

processes of MPI-OHyMoS. A synthetic experiment is implemented using a linear 

reservoir model with an unknown initial condition and a model parameter.   

6.3.1 Linear reservoir model 

The linear reservoir model shown in Fig. 6-3 is based on the concept that a 

catchment behaves as a reservoir in which storage S is linearly related to outflow Q 

(US Army Corps. Eng. HEC, 1980). It can be described as:  

 
Fig. 6-3 A linear reservoir model. 
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QKS =                        (6-5) 

QI
dt
dS

−=                        (6-6) 

where K , called the storage coefficient, is a rate constant, t is the time, and I is 

inflow. For the computational implementation, a parameter K  and the initial state 

0S  should be specified. The state S  should be stored at each time step as the initial 

condition of the next time step. 

 

6.3.2 DA processes via MPI-OHyMoS 

Fig. 6-4 illustrates processes of sequential data assimilation via MPI-OHyMoS in a 

linear reservoir model case. In this case, the total system of MPI-OHyMoS consists 

of two elements: a linear reservoir model and a likelihood function. At each time 

step, the linear reservoir model calculates the states S and Q  using Eqs. (6-5) and (6-

6). Because each ensemble has different model parameter and initial storage 

perturbed by random noises, n  ensembles of the linear reservoir model result in 

different values of outflow Q . In the likelihood element, the likelihood of simulated 

outflow is estimated according to measurement outflow. Weights are then calculated 

and normalized such that 1
1

=∑ =

n

i
i
kw . Parameters and states are stored in the memory 

at each time step. In the resampling step, ensembles having large weight are 

duplicated to other ones. For example, in Fig. 6-4, Ensemble 2 is duplicated to 

Ensemble 1 between time step k and 1+k . After the resampling step, Ensemble 1 

has the same parameter and state with Ensemble 2. However, as random noises are 

added to parameter and state at each time step, Ensemble 1 and 2 result in slightly 

different outflows at time step 1+k . In this way, state and parameter of ensembles 

are filtered at each time step. Estimated distributions of parameter and state represent 

posterior distribution. 
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Fig. 6-4  Data assimilation processes of a linear reservoir model via MPI-OHyMoS. 
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6.3.3 Results of synthetic experiment 

The synthetic experiment is implemented using a linear reservoir model to illustrate 

basic features of data assimilation in MPI-OHyMoS. Here we assume that the true 

values of parameters and initial states are unknown. Prior information on the ranges 

of parameters and initial conditions are shown in Table 6-1. Synthetic observation is 

calculated using synthetic true values, adding small perturbation generated from 

uniform distribution U(-0.1, 0.1) as measurement error. 

Fig. 6-5 shows two hundred ensemble simulations without PF. As shown in Fig. 6-

5(a), the values of parameter K do not change during simulation. Ensemble 

discharge varies within large uncertainty bounds shown in Fig. 6-5(b). Fig. 6-6 

shows ensemble simulations with PF. Parameter and state are updated using the 

synthetic observation every ten time intervals. The uncertainty bounds of parameter 

K  and outflow reduce sharply via PF, showing a good agreement with the synthetic 

true. Note that the simulation is converged to synthetic true values quickly because 

the applied system is linear. A non-linear, non-Gaussian case is followed in the next 

section. 

 

 

 

 
Table 6-1   Information of parameter and initial state. 

Parameters and initial states Synthetic true values Ranges of parameter/state values 
for ensemble simulation 

1K  10 5~25 

iniS1  20 5~25 
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(a) 

 
(b) 

Fig. 6-5 Parallel simulations of the linear reservoir model without particle filtering by 200 

ensembles. (a) Traces of parameter K . (b) Traces of inflow and outflow. Black dots 

represent synthetic observation. Grey lines represent 200 ensembles. A red line 

represents mean of ensembles. A blue line represents inflow.  
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(a) 

 
(b) 

Fig. 6-6 Parallel simulations of the linear reservoir model with particle filtering by 200 

ensembles. (a) Traces of parameter K . (b) Traces of inflow and outflow. Black dots 

represent synthetic observation. Grey lines represent 200 ensembles. A red line 

represents mean of ensembles. A blue line represents inflow.  
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6.4 Uncertainty assessment of a distributed hydrologic 

model 
 

Synthetic and real experiments are implemented for uncertainty assessment of a fully 

distributed hydrologic model (Takasao and Shiiba, 1988; Ichikawa et al., 2001) to 

illustrate the applicability of MPI-OHyMoS. 

6.4.1 Study area 

The study area is the Maruyama River catchment in Japan with an area of about 909 

km2. Fig. 6-7 shows the streamflow gauging locations and rainfall measuring stations. 

Streamflow measurement at Fuichiba is used for data assimilation in both synthetic 

and real experiments. Land use consists of 37% forest, 10% savannas, and 53% crop 

land and natural vegetation (Hunukumbura, 2009). 

 

 
Fig. 6-7 The Maruyama River catchment (Hunukumbura, 2009). 
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6.4.2 A distributed hydrologic model 

We construct a probabilistic distributed hydrologic model for the Maruyama River 

catchment based on three element modules: a hillslope runoff generation module, a 

river routing module, and a likelihood function. The hillslope and river routing 

modules were developed as elements of a deterministic distributed hydrological 

model using the kinematic wave theory in the previous study (Tachikawa et al., 

2004). In this model, it is considered that the catchment consists of a number of 

rectangular slope elements which drain to the deepest gradient of its surrounding, as 

shown in Fig. 6-8. 

Fig. 6-9 shows the flow process and the stage discharge relationship used in the 

hillslope model given in Eq. (6-7). 

 

 
Fig. 6-8 Spatial flow movement.             Fig. 6-9 Flow process in the hillslope model. 
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where t is the time (s), x is space (m), and r(t) is the rainfall intensity (mm/hour) to 

the slope element. The discharge per unit width q (m2/s) is estimated by Eq. (7) 

combined with the continuity equation, Eq. (6-8), where ikV cc = (m/s), ikV aa =

(m/s), β/ac kk = (m/s), slopeni /=α  (m1/3s-1), m=5/3, i is the slope unit gradient, ck
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(m/s) is the hydraulic conductivity of the capillary soil layer, ak (m/s) is the hydraulic 

conductivity of the non-capillary soil layer, slopen  (m-1/3s) is the roughness coefficient 

of the hillslope component. h (m) is the water stage, Va and Vc are flow rates, and cd

and sd  are soil depth in the capillary pore and non-capillary pore, respectively. β  is 

a parameter.  

For channel routing, we use a one-dimensional kinematic wave equation as follows: 

Lq
x
q

t
h

=
∂
∂

+
∂
∂

   
  (6-9) 

mhq α=             (6-10) 

where h (m) is the channel water depth, q (m2/s) the channel discharge per unit width, 

qL is lateral inflow, riverni /=α  (m1/3s-1),  m =5/3 and rivern  (m-1/3s) is the roughness 

coefficient of the river component. 

6.4.3 Model setup for data assimilation 

The measurement error of the discharge is assumed as a Gaussian distribution, 

),0( 2
tobsN σ . The standard deviation of the measurement error is chosen as: 

obstobsobs y
t

βασ +=          (6-11) 

In Eq. (6-11), yt is observed discharge at time t. obsα and obsβ are parameters 

representing uncertainty of observations. 

The process noise is generated by a Gaussian distribution, ),0(~ 2
simsim N σε . The 

standard deviation of the process error is selected through sensitivity analysis. Then, 

the state variables of slope and river component in each grid are perturbed at each 

observation time step in a multiplicative manner as: 
j

tsim
j

t xx )1(ˆ ε+=          (6-12) 

where j
tx  and j

tx̂ are state variables before and after perturbation, respectively. 

Among various parameters in the distributed hydrologic model, four parameters are 

selected for data assimilation. These parameters are cd , ak , slopen and rivern .  
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The model setup uses 250 m grid resolution. The simulation time steps are six 

hundred seconds for the hillslope element and twenty seconds for the river routing 

element. Ensembles are updated hourly by the streamflow measurements at the 

Fuichiba gauging station. We use hourly observed rainfall from nine observation 

stations organized by the Ministry of Land, Infrastructure, Transport and Tourism in 

Japan (http://www1.river.go.jp/). Selected flood events are shown in Table 6-2. 

Event 3 is used for the synthetic experiment, while all events are used for the real 

experiment.  

 
Table 6-2   Details of selected flood events in Fuichiba. 

Flood Event Date Peak flow (m3/s) Initial flow of the event (m3/s) 

Event 1 10-20 Sep. 2001 715 42 

Event 2 7-10 Sep. 2002 293 6 

Event 3 19–24 Oct. 2004 4782 32 

 

6.4.4 Synthetic experiment 

The synthetic experiment is implemented using a distributed hydrologic model to 

demonstrate the applicability of MPI-OHyMoS for the missing data problem in 

complex cases and assess the identifiability of parameters. The basic procedures of 

the synthetic experiment in the distributed hydrologic model are the same in the 

lumped model case. Synthetic observation of streamflow is calculated by synthetic 

true values of parameters, shown in Table 6-3, adding small Gaussian noise.  

For probabilistic modeling, the initial condition of states is perturbed by using noise 

from the uniform distribution, ),0(~ 2
iniini U σε , in a multiplicative manner shown in 

Eq. (6-12). The applied value of iniσ is 0.1. The standard deviation of process noise 

of states, simσ , is set as 0.01, which accounts for the predictive uncertainty of state 

variables. The process noise of parameters is controlled by kernel smoothing using 
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the information of ensemble mean and variance at the previous time step shown in 

Eqs. (6-3) and (6-4).  

The statistics of parameter ak  are estimated in the log scale to cover wider ranges of 

uncertainty bounds compared to others. Parameters of observation error in Eq. (6-11), 
obsα and obsβ , are set as 0.05 and 5, respectively.  The size of ensembles is 1000. 

The synthetic experiment is implemented in two separate simulations. In the 

preliminary stage, initial distributions of parameters are selected to cover ranges 

adopted in the previous study, while results of the preliminary stage are used as prior 

information in the second stage simulation. Values of synthetic true and uncertainty 

ranges of parameters at each stage are shown in Table 6-3.  

Results of the preliminary stage of the synthetic experiment are shown in Fig. 6-10. 

Simulated streamflow, which is one-step-ahead prediction, shows good conformity 

with synthetic observation in terms of ensemble mean and distributions. Uncertainty 

of parameters lasts before the flood event as in the initial distributions and reduces 

sharply around the flood peak. Dual state-parameter updating via PF results in a 

reasonable estimation of parameters to cover synthetic true values within their 

posterior distributions. However, identifiability of parameters is different and the 

roughness coefficient of slope component shows diffusive distribution. 

Results of the second stage are shown in Fig. 6-11. With reduced uncertainty ranges, 

traces of parameters show stable variations reaching synthetic true values according 

to sequential updating. Mean and confidence intervals of estimated parameters in the 

second stage are shown in Table 6-4. Identifiability of parameters is increased in the 

second stage with reduced initial probabilistic distributions. However, there seem to 

be asymptotic bounds where probabilistic distributions cannot be narrower, because 

the uncertainty of states and observations are considered simultaneously in data 

assimilation. 
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Table 6-3   Information of parameters in the synthetic experiment (Event 3). 

Parameters Synthetic true values 
Initial ranges of parameters for ensemble simulation 

Preliminary stage Second stage 

ak  (m/s) 0.006 0.001~0.1 0.001~0.01 

cd (m) 0.4 0.1~0.5 0.36~0.42 

rivern (m-1/3s) 0.038 0.015~0.055 0.3~0.4 

slopen (m-1/3s) 0.33 0.15~0.55 0.035~0.043 

 

 

 

 
Table 6-4 Mean and confidence intervals of estimated parameters in the second stage of the 

synthetic experiment (Event 3).  

Parameters Ensemble mean Ranges of 60% confidence interval 

cd (m) 0.394 0.385~0.404 

ak  (m/s) 0.0052 0.0048~0.0055 

slopen (m-1/3s) 0.343 0.320~0.364 

rivern (m-1/3s) 0.0385 0.0369~0.040 
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Fig. 6-10 Parallel simulations of the distributed hydrologic model with PF in the preliminary 

stage of the synthetic experiment (Event 3). Red dots represent synthetic observation. 

Grey lines represent traces of streamflow of ensembles. Grey dots represent traces of 

parameters of ensembles. Blue lines represent mean of ensembles. Black lines 

represent 60% confidence intervals.  
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Fig. 6-11 Parallel simulations of the distributed hydrologic model with PF in the second stage 

of the synthetic experiment (Event 3). Red dots represent synthetic observation. Grey 

lines represent traces of streamflow of ensembles. Grey dots represent traces of 

parameters of ensembles. Blue lines represent mean of ensembles. Black lines 

represent 60% confidence intervals.  
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6.4.5 Real experiment 

The real experiment is conducted in two stages using Event 1. The applicability of 

two-stage estimation is verified in simulations of Event 2 and 3, which are conducted 

using results of the preliminary stage as initial ranges of parameters. For parameter 

updating, ak , cd  and rivern are selected excluding slopen  because the identifiability of 

slopen  is found to be relatively lower in the synthetic experiment. 

In the preliminary stage, the initial ranges of parameters ak , cd  and rivern  are the 

same as in the synthetic experiment shown in Table 6-5, while the value of slopen  is 

set as 0.3 selected from the previous study (Lee et al., 2011; Kim et al., 2008). In the 

real experiment, the uncertainty of process and observation is assumed to be larger 

than that in the synthetic case. The standard deviation of process noise of states simσ  

is set as 0.05 and parameters of observation error obsα and obsβ  are set as 0.1 and 20, 

respectively.  The standard deviation of initial states iniσ is 0.3. 

Simulation results of preliminary and second stages of Event 1 are shown in Figs. 6-

12~6-13. As shown in Fig. 6-12, the uncertainty of parameters sharply reduces 

around the flood peak. Distribution of parameter ak  becomes narrow rapidly around 

the flood peak, while distribution of rivern shows smoothed movement. In the second 

stage, initial distribution of parameters is selected to cover 60% confidence intervals 

of the preliminary stage. As shown in Fig. 6-13, there is no rapid movement of 

parameter distribution during the second stage simulation leading to narrower 

posterior distribution, compared to the preliminary stage, whose estimated values are 

shown in Table 6-5.  
Table 6-5   Mean and confidence intervals of estimated parameters in the second stage of the real 

experiment (Event 1).  

Parameters Ensemble mean Confidence interval (60%) 

ak  (m/s) 0.262 0.182~0.335 

cd (m) 0.174 0.152~0.196 

rivern (m-1/3s) 0.019 0.016~0.021 
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Fig. 6-12 Parallel simulations of the distributed hydrologic model with PF in the preliminary 

stage of the real experiment (Event 1). Red dots represent synthetic observation. Grey 

lines represent traces of streamflow of ensembles. Grey dots represent traces of 

parameters of ensembles. Blue lines represent mean of ensembles. Black lines 

represent 60% confidence intervals. Green lines represent deterministic modeling 

with parameters using mean of initial distribution. 
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 Fig. 6-13 Parallel simulations of the distributed hydrologic model with PF in the second stage 

of the real experiment (Event 1). Red dots represent synthetic observation. Grey lines 

represent traces of streamflow of ensembles. Grey dots represent traces of parameters 

of ensembles. Blue lines represent mean of ensembles. Black lines represent 60% 

confidence intervals. Green lines represent streamflow of deterministic modeling with 

parameters using mean of preliminary stage. 
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Streamflow prediction via PF is compared with the deterministic modeling case 

using mean of initial distribution or posterior of the preliminary stage. It is seen that 

the deterministic streamflow simulation is improved in the second stage. 

Simulation results of Events 2 and 3 are shown in Figs. 6-14~6-15. In these cases, 

the initial conditions of parameters are adopted from the posterior estimated in Event 

1 to assess the applicability of the parameters for the different flood events. In the 

results of both cases, the traces of parameter distributions show stable movement 

reaching narrow posteriors within the initial bounds. One-step-ahead prediction of 

streamflow also results in reliable discharge hydrographs in both cases. Note that the 

magnitudes of observed flood peak are quite different in each case. 

Model performance is summarized in Table 6-6 using two indices: NSE and RMSE. 

The statistics show the improvement of the model performance via PF in all events 

compared to deterministic modeling cases. Parameter distributions estimated by PF 

at Event 1 result in good performance in Event 3, whose peak flood is about six 

times higher than Event 1. In Event 3, deterministic modeling presents improved 

performance, demonstrating transferability of the parameters for an unexperienced 

high flood. However, application into a smaller flood (Event 2) shows limited 

performance. Due to uncertainties coming from hydrologic models and observations, 

optimal parameters may change according to the magnitude of flood events and 

initial conditions. The results of deterministic modeling show that parameters 

estimated at large events (Event 1) may not be appropriate for small events (Event 2) 

or vice versa. This situation is found frequently in numerous hydrologic modeling 

cases. However, probabilistic approach and dual state-parameter updating could 

compensate the uncertainty of model structures. 

 
Table 6-6   Summary of model performance for real experiment. 

 
Deterministic modeling Particle filtering 

NSE RMSE (m3s-1) NSE RMSE (m3s-1) 

Event 1 0.96 23 0.98 16 

Event 2 -0.40 93 0.81 33 

Event 3 0.94 217 0.98 117 
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Fig. 6-14 Parallel simulations of the distributed hydrologic model with PF in the real 

experiment (Event 2). Red dots represent synthetic observation. Grey lines represent 

traces of streamflow of ensembles. Grey dots represent traces of parameters of 

ensembles. Blue lines represent mean of ensembles. Black lines represents 60% 

confidence intervals. Green lines represent streamflow of deterministic modeling with 

parameters using results of Event 1. 
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Fig. 6-15 Parallel simulations of the distributed hydrologic model with PF in the real 

experiment (Event 3). Red dots represent synthetic observation. Grey lines represent 

traces of streamflow of ensembles. Grey dots represent traces of parameters of 

ensembles. Blue lines represent mean of ensembles. Black lines represents 60% 

confidence intervals. Green lines represent streamflow of deterministic modeling with 

parameters using results of Event 1. 
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6.5 Conclusions 
 

MPI-OHyMoS was developed as a hydrologic modeling framework for stochastic 

simulation and data assimilation. The flexible framework provided particle filtering, 

dual state-parameter updating and kernel smoothing to consider various sources of 

uncertainty in hydrologic modeling. Ensemble simulation was parallelized by MPI 

taking advantage of a high performance computing (HPC) system. Structure and 

implementation processes of data assimilation via MPI-OHyMoS were shown using 

a simple lumped model. 

The applicability of MPI-OHyMoS was demonstrated using different hydrologic 

models such as lumped and distributed models. A synthetic experiment of a linear 

reservoir model and a distributed hydrologic model showed the dual state-parameter 

updating scheme of MPI-OHyMoS could be conducted properly for missing data 

problems. Especially, identifiability of model parameters was evaluated by two stage 

simulation in the distributed modeling case. The roughness coefficient of the slope 

component showed diffusive probabilistic distribution in the preliminary simulation. 

However, further study is needed for various conditions. 

In real experiment cases of the distributed hydrologic model, simulated discharge via 

particle filtering showed good conformity with observation.  Uncertainty bounds of 

ensembles were also reduced significantly. The assimilated results could be used to 

improve streamflow forecasting. 

Despite their potential to estimate and mitigate uncertainty for non-linear, non-

Gaussian models, implementation of sequential data assimilation including the 

particle filters has been limited due to lack of general modeling frameworks. MPI-

OHyMoS is expected to make it easy to build a stochastic hydrologic model and to 

support data assimilation as a general modeling framework. In the future, we plan to 

improve MPI-OHyMoS in terms of parameter estimation methods and flexible 

assimilation control. The software framework developed in this paper can be 

obtained from the authors by request via email. 



 

 



 

 

 Chapter 7 

 
Conclusions  
 
 
 
The main objectives of this thesis were as follows: 
 
1. Development of a dual state-parameter updating scheme (DUS) based on the 

SMC methods to estimate both state and parameter variables of a lumped 
hydrologic model.  

 
2. Development of a robust particle filtering approach for considering different 

response times of internal state variables in a distributed hydrologic model.  
 

3. Comparison of performance of ensemble Kalman filtering and particle filtering 
for short-term streamflow forecasting using a distributed hydrologic model.  

 
4. Development of a hydrologic modeling framework for data assimilation: MPI-

OHyMoS. 

 
In Chapter 3, the sequential Monte Carlo (SMC) filters were applied to a conceptual 

hydrologic model, the storage function model, using state only updating and the dual 

state-parameter updating scheme. The river discharge forecast via the SMC filters 

was compared with observations. The forecast provided by the dual state-parameter 

updating scheme was superior to that of state only updating and deterministic 

modeling in terms of the model accuracy criteria, a scatter diagram, and simulated 

hydrographs. In the dual state-parameter updating scheme, parameter inference was 

performed by the kernel smoothing method. A significant reduction of parameter 
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uncertainty was observed for all parameters after the first flood peak, and estimated 

parameter distributions showed good conformity with off-line optimum. 

Performance results of SIR and the RPF showed similar forecasting accuracy, while 

ASIR resulted in a slightly higher number of errors than others. However, RMSE 

statistics of three SMC filters presented stable results when the number of particles 

was over 1,000. 

 

In Chapter 4, a lagged particle filtering approach was proposed as a framework to 

deal with the delayed response, which originates from different time scales of 

hydrologic processes in a distributed hydrologic model. The regularized particle 

filter with the MCMC move step was implemented to preserve sample diversity 

under the lagged filtering approach. As a process-based distributed hydrologic model, 

WEP was implemented to illustrate the strength and weakness of the lagged 

regularized particle filter (LRPF) compared to SIR for short-term streamflow 

forecast. Two particle filters showed significantly improved forecasts compared to 

deterministic modelling cases in different simulation periods. Various ranges of 

process noise related to soil moisture were simulated for varying lead times. While 

SIR has different values of optimal process noise and shows sensitive variation of 

confidence intervals according to the process noise, the LRPF shows consistent 

forecasts regardless of the process noise assumption. Due to the preservation of 

particle diversity by the kernel, the LRPF showed enhanced forecasts, especially 

when the discharge changed sharply in a short time (the year 2007) and flood peak 

was high (the year 2004). However, the relatively large perturbation by the kernel 

could produce negative effects when the flood peak was relatively small and the 

hydrograph varied smoothly (the year 2003). 

 

In Chapter 5, two sequential data assimilation methods, the ensemble Kalman filter 

and the particle filter, have been assessed for short-term streamflow hindcasting with 

a distributed hydrologic model, WEP. The ensemble square root filter and the 

regularized particle filter were implemented to avoid flaws associate with 
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conventional methods. The updating of state variables was performed through a lag-

time window to consider lag and response times among internal hydrologic 

processes in a distributed hydrologic model. The EnSRF and the RPF were applied 

to two small catchments in Japan and Korea to assess the performance of the two 

methods. Ensembles perturbed by the noise of variation in soil moisture content were 

assimilated by streamflows observed at each outlet. In the case of the Katsura River 

catchment in Japan, in the predictions of both the EnSRF and the RPF improved 

when the lag time increased.  Updated ensembles produced improved streamflow 

predictions for lead times of up to 15 hours. Without a lag-time window, the 

predictions became unstable in terms of means and confidence intervals.  In the 

sensitivity analysis of the ensemble number, no significant variation in model 

efficiency was detected with variation in ensemble number. The results of this study 

indicate that the RPF performed better than the EnSRF even when the number of 

ensembles was extremely low, but further study of this difference is required. In the 

case of the Gyeongancheon catchment in Korea, the predictions obtained with the 

EnSRF and the RPF were equivalent for lead times ranging from 5 to 14 hours, while 

the prediction accuracy of the RPF was superior to the EnSRF for other lead times. 

In both catchments, a lag-time window contributed to improving performance of the 

EnSRF and the RPF, and the RPF yielded predictions equal to or better than those of 

the EnSRF in accuracy. In the case of the EnSRF, a decrease in model performance 

was observed for both catchments when the lead times were short (< 4 hours). 

Sequential data assimilation methods have significant potential for application to 

highly nonlinear and non-Gaussian problems, such as process-based distributed 

models. Therefore, further study should be focused on real-time and multi-site data 

assimilation for hydrologic forecasting for a large-scale catchment, for which a lag-

time window may provide an essential framework. 

 

In Chapter 6, MPI-OHyMoS was developed as an open software framework for 

stochastic simulation and data assimilation. The flexible framework provided particle 

filtering, dual state-parameter updating and kernel smoothing to consider various 
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sources of uncertainty in hydrologic modeling. Ensemble simulation was parallelized 

by MPI taking advantage of a high performance computing (HPC) system. The 

applicability of MPI-OHyMoS was demonstrated using different hydrologic models 

such as lumped and distributed ones. The synthetic experiment cases of a linear 

reservoir model and a distributed hydrologic model showed that the dual state-

parameter updating scheme of MPI-OHyMoS could be conducted properly for the 

missing data problem. Especially, the identifiability of model parameters was 

evaluated by two stage simulations in the distributed modeling cases. The roughness 

coefficient of slope component showed diffusive probabilistic distribution in the 

preliminary simulation. However, the further study was needed for various 

conditions. In the real experiment of the distributed hydrologic model, simulated 

discharge via particle filtering showed good conformity with observation.  

Uncertainty bounds of ensembles were also reduced significantly. Assimilated 

results could be used to improve streamflow forecasting. 

The SMC methods have significant potential for high non-linearity problems, 

especially for process-based distributed models in hydrologic investigation. However, 

the computational cost and lack of proper frameworks for distributed modelling in 

terms of methodology and software have been bottlenecks to their practical 

implementation. This thesis showed the SMC methods could be applied for 

hydrologic modelling to improve forecasting accuracy and identify uncertainty from 

various sources and the applicability of proposed methodologies was demonstrated 

in various case studies using different hydrologic models. The LRPF proposed in 

Chapter 4 is expected to be used as one of the frameworks for sequential data 

assimilation of process-based distributed modelling. The main benefits of the LRPF 

are the improved forecasts for rapidly varied high floods and the stability of 

confidence intervals for uncertainty of process noise. As shown in Chapter 5, the lag-

time window concept could be extended to ensemble Kalman filtering to improve 

performances in distributed modelling. MPI-OHyMoS developed in Chapter 6 is 

expected to make it easy to build a stochastic hydrologic model and to support data 

assimilation as a general modeling framework. 



 

 

 Appendices 
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A. Methods of resampling 
In this section, basic resampling methods such as multinomial, stratified, systematic, 

and residual resampling are described. Detailed descriptions are provided in Douc et 

al. (2005) and Ristic et al. (2004). Resampling involves a mapping of particles with 

weights into particles with uniform weights. To fix the notations, we use following 

notations: n is the particle number and iN are the particle duplication counts, which 

means how many times a particle i is duplicated in the resampling step. 

A.1 Multinomial resampling 

Multinomial resampling is based on an idea at the core of the bootstrap method 

(Doucet et al., 2001), where the duplication counts nNN ,,1   are defined according 

to the multinomial distribution ),...,;( 1 nwwnMult . In practice, multinomial 

resampling is achieved by repeated uses of the inversion method: 

1. Draw n independent uniforms iU  on the interval (0,1]. 

2. Sort iU in ascending order.  

3. Construct the cumulative sum of weights of random measure },{ i
k

i
k wx as

),...,2(1 niwcc i
k

ii =+= − . 

4. Count the number of ),...,1( njU j =  located between 1−ic and ic . Set the 

number as iN . 

As best sorting algorithm has a complexity of )log( nnO  this is a major limitation in 

practical applications. However, it is possible to implement the resampling procedure 

in O(n) operations by sampling n ordered uniforms using an algorithm based on 

order statistics (Ristic et al., 2004). 

A.2 Stratified resampling 

Stratified resampling is based on an idea of pre-partitioning the (0,1] interval into n 

disjoint sets ]1,/}1({]/1,0(]1,0( nnn −=   and drawing uniforms in each of these 

sub-intervals. The procedure of this method follows these steps: 
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1. Draw n independent uniforms iU  on the interval ]/,/}1({ nini −  

2. Construct the cumulative sum of weights of random measure },{ i
k

i
k wx as

),...,2(1 niwcc i
k

ii =+= − . 

3. Count the number of ),...,1( njU j =  located between 1−ic and ic . Set the 

number as iN . 

A.3 Systematic resampling 

Systematic resampling is an efficient scheme having computational simplicity and 

good empirical performance. The procedure of this method follows these steps: 

1. Draw an independent uniforms 1U  on the interval (0,1/n]. 

2. Set 1/)1( UniU i +−=  

3. Construct the cumulative sum of weights of random measure },{ i
k

i
k wx  as 

),...,2(1 niwcc i
k

ii =+= − . 

4. Count the number of ),...,1( njU j =  located between 1−ic and ic . Set the 

number as iN . 

A.4 Residual resampling 

Residual resampling is mentioned by Whitley (1994) and Liu and Chen (1998) as a 

method to decrease the variance due to resampling. In this approach, we have 

  iii NnwN +=       (A-1) 

where   denotes the integer part and nNN ,...,1 are distributed according to the 

multinomial distribution ),...,;( 1 nwwRnMult − with  ∑ =
=

n

i
inwR

1
 and 

 
Rn
nwnww

ii
i

−
−

=       (A-2) 

In practice, the multinomial counts nNN ,...,1 from the residual multinomial 

distribution are generated as in the multinomial resampling procedure drawing Rn −  

independent uniforms.  
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B. Parallel programming of resampling  
The resampling step is required to reduce the effects of degeneracy. However, it 

limits the opportunity to parallelize the computational implementation because all 

the particles must be combined. Therefore, effective programming is essential to 

reduce the computation time. In parallel computing via MPI, the resampling step is 

executed by communication commands such as combinations of “send” and “receive” 

functions between processes. It is the best practice to reduce the number of 

communications in MPI code because communication commands among processes 

need more computation time compared to individual computation in a process.  

The duplication procedure suggested in this section is designed to minimize the 

number of communications among particles in the resampling step. Table B-1 shows 

matrices required in this procedure (with only n = 10 particles). iN can be calculated 

by any resampling methods described in Appendix A. The “copytozero” vector 

denotes the real duplication counts by subtracting one for non-zero components in 
iN . The “copyfrom” and “copyorder” vectors denote the address of source particles 

and the duplication order for receiving particles, respectively. The “copyaccum” 

vector is needed in sending particles. The duplication can be performed from non-

zero components in “copytozero” to non-zero components in “copyfrom”. The 

information required in MPI functions is provided in each matrix. Implementation 

code in C++ is shown in Table B-2. Note that any forms of data can be 

communicated by this “Resampling” function with Boost library. 

 

Table B-1 Vectors for the effective duplication procedure (n = 10). 
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Table B-2 Implementation code of the effective duplication in C++. 
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C. Parameter estimation methods in SMC 
In this section, parameter estimation methods such as artificial evolution and kernel 

smoothing are described mainly focusing on stability of each method. The detailed 

descriptions on artificial evolution and kernel smoothing are provided in Liu and 

West (2001) and Chen et al. (2005). Discussion on other parameter estimation 

methods in SMC are also provided in Storvik (2002), Vo et al. (2004), Andrieu et al. 

(2005), Yang et al. (2008), and Kantas et al. (2009). 

For both methods, the general state-space model is extended to the sample-based 

framework with fixed parametersθ . At time k, we have a combined sample 

},...,1:,{ nix i
k

i
k =θ       (C-1) 

and associated weights 

},...,1:{ niwi
k =        (C-2) 

representing an importance sample approximation to the time k posterior 

)|,( :1kk yxp θ  for both parameter and state. Note that the k suffix on the θ  samples 

indicate that they are from the time k posterior, not that θ  is time-varying. The 

Monte Carlo approximation },{ i
k

i
k wθ has mean kθ and variance matrix θ

kV .  

The approach of artificial evolution is to add small random perturbations to all the 

parameter particles under the posterior at each time point before evolving to the next. 

kkk ζθθ += −1      ),0(~ θζ kk WN         (C-3) 

where kζ is random noise, θ
kW is the variance of parameter particles at time k before 

resampling. Pretending that parameters are in fact time-varying implies an artificial 

“loss of information” between time points, resulting in posteriors that are too diffuse 

relative to the theoretical posteriors for the actual fixed parameters. The undesirable 

“loss of information” can be easily quantified. In the evolution in Eq. (C-3) with the 

innovation kζ  independent of 1−kθ  as proposed, the implied prior )|( 1:1 −kk yp θ  has the 

correct mean kθ  but variance matrix θθ
kk WV +−1 . The loss of information is explicitly 

represented by the component θ
kW . In practice, we can control the variance using 

following treatment as θθ
1

2
−= kk VsW  with a small tuning parameter s. When the 
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dimension of parameters is small, we can have good empirical performance with the 

adjusted s. However, when the dimension of parameters increase it is difficult to 

choose a proper tuning parameter s due to different identifiability of parameters. 

In kernel smoothing, the Monte Carlo approximation is expressed by a kernel form  

),|(~)|( 1
1

11:1
θθθθ k

i
kk

n

i

i
kkk WNwyP −

=
−− ∑

 
   (C-4) 

As shown above this is over-dispersed relative to “target” variance θ
1−kV . To correct 

for the over-dispersion, the kernel method use the shrinkage rule pushing sample 
i
k 1−θ values towards their mean 1−kθ before adding a small degree of noise implied by 

the normal kernel. This suggests that the artificial evolution method should be 

modified by introducing correlations between 1−kθ and the random noise kζ . 

Assuming a non-zero covariance matrix, note that the artificial evolution equation 

(C-3) implies 

)|,(2)|()|( 1:111:111:1 −−−−− ++= kkkkkkkk yCWyVyV ςθθθ θθθ   (C-5) 

To correct to “no information lost” implies that we set 
θθθ θθ 11:111:1 )|()|( −−−− == kkkkk VyVyV     (C-6) 

which then implies 

2/)|,( 1:11
θςθ kkkk WyC −=−−      (C-7) 

Hence, there must be a structure of negative correlations to remove the unwanted 

information loss effect. In the case of approximate joint normality of )|,( 1:11 −− kkk yςθ , 

this would then imply the conditional normal evolution in which 

))(,)(|()|( 1
2

111
θθθθθθ −−−− −−+= kkkkkkkkk VAIAIANp   (C-8) 

where 

2/1
1
−

−−= θθ
kkk VWIA      (C-9) 

Although a generalized kernel form with complicated shrinkage patterns is available 

for shrinkage matrix kA , we just consider the very special case in which the matrix 

θ
kW  is specified using a standard discount factor technique. 
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)11(1 −= − δ
θθ

kk VW      (C-10) 

where is a discount factor in (0,1], typically around 0.95-0.99. In this case, aIAk =

with δδ 2/)13( −=a and the conditional evolution density above reduces 

),)1(|(~)|( 1
2

111
θθθθθθ −−−− −+ kkkkkk VhaaNp    (C-11) 

where 
22 1 ah −=       (C-12) 

so that 

( )22 2/)13(1 δδ −−=h     (C-13) 

The mean and variance matrix of the implied marginal distribution )|( 1:1 −kk yp θ are 

also 1−kθ  and θ
1−kV .This shows that kernel smoothing for fixed model parameters 

removes the problem of information loss over time.  
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