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Compressive Sampling for Remote Control Systems

Masaaki NAGAHARA†a), Takahiro MATSUDA††b), and Kazunori HAYASHI†c), Members

SUMMARY In remote control, efficient compression or representation
of control signals is essential to send them through rate-limited channels.
For this purpose, we propose an approach of sparse control signal represen-
tation using the compressive sampling technique. The problem of obtaining
sparse representation is formulated by cardinality-constrained �2 optimiza-
tion of the control performance, which is reducible to �1-�2 optimization.
The low rate random sampling employed in the proposed method based
on the compressive sampling, in addition to the fact that the �1-�2 opti-
mization can be effectively solved by a fast iteration method, enables us to
generate the sparse control signal with reduced computational complexity,
which is preferable in remote control systems where computation delays
seriously degrade the performance. We give a theoretical result for control
performance analysis based on the notion of restricted isometry property
(RIP). An example is shown to illustrate the effectiveness of the proposed
approach via numerical experiments.
key words: remote control, compressive sampling, compressed sensing,
sparse representation, �1-�2 optimization

1. Introduction

Remote control systems are those in which the controlled
objects are located away from the control signal genera-
tors. They are widely used at the present day, from video
games [1] to spacecraft [2], see [3] for other examples. In
remote control systems, control signals are to be transmit-
ted through rate-limited channels such as wireless channels
[4] or the Internet [5]. In such systems, efficient signal com-
pression or representation is essential to send control signals
through communication channels. For this purpose, we pro-
pose an approach of sparse control signal representation us-
ing the compressive sampling technique [6]–[8] for remote
control systems.

Compressive sampling, also known as compressed
sensing, is a technique for acquiring and reconstructing sig-
nals in the sparse-land [9]. Signal acquisition and recon-
struction is one of the fundamental issues in signal process-
ing. In many applications, signals are analog (or continuous-
time) before they are acquired and converted to digital (or
discrete-time) signals. The problem is how to acquire and
convert analog signals to digital ones without much informa-
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tion distortion, such as aliasing. A well-known and widely-
used solution to this problem is Shannon’s sampling theo-
rem [10], [11]. This theorem gives an acquisition and recon-
struction method for perfect reconstruction; if the sampling
rate is faster than twice the Nyquist rate, the maximum fre-
quency contained in the original analog signal, then the orig-
inal signal can be perfectly reconstructed via sinc series. On
the other hand, in the sparse-land, signals are sparse or com-
pressible under a certain signal representation (e.g., Fourier
or wavelet). This sparsity assumption on signals is known
to be valid for many real signals, e.g., see examples in [12].
Compressive sampling is based on this fact, by which one
can reconstruct the original signal with very high fidelity
from far fewer samples than what the conventional sampling
theorem requires. Hence signal acquisition and compression
can be performed in much more efficient manner, than the
conventional scheme such as the image compression JPEG
[13], where one acquires the full signal, then transforms it
into the frequency domain, and finally discards most of them
to obtain a compressed signal.

The purpose of this paper is to propose to use compres-
sive sampling for remote control systems. Our contributions
in this paper are as follows:

• We propose a new feed-forward-based remote control
system with compressive sampling.
• The proposed system can efficiently compress the con-

trol signals with sparse representation.
• The design problem is formulated by �1-�2 optimiza-

tion which can be efficiently solved.

The theory of compressive sampling has been applied
to not only signal processing but also statistics [14], infor-
mation theory [15], machine learning [16], and so on. For
theory and application of compressive sampling, see books
[12], [17], [18]. However, to the best of our knowledge, so
far only a few studies have applied compressive sampling to
control: [19] proposes to use compressive sensing in feed-
back control systems for perfect state reconstruction and
[20] proposes sparse representation of transmitted control
packets for feedback control. For remote control systems,
[21] also proposes to use �1-�2 optimization as in this paper,
but the compressive sampling technique (Fourier expansion
and random sampling) is not used. As we mentioned above,
it is desirable that signals in remote control systems are ef-
fectively acquired and compactly compressed. Therefore,
we propose to adopt compressive sampling technique to re-
mote control systems.
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Compressive sampling in this paper can be considered
as a kind of lossy compression. In many lossy data com-
pression problems, the objective is to find efficient approxi-
mate representations of the original data [22], and the distor-
tion is measured by the signal reconstruction error. On the
other hand, in this paper, we consider a different aspect of
the distortion, that is, we measure the efficiency of the lossy
compression with control performance. In other words, our
method aims at optimizing the control performance, e.g.,
minimizing the tracking error, while usual compressive sam-
pling minimizes the �2 norm of the reconstruction error, with
a sparsity constraint. This is a natural notion in control; we
do not care about how small the compression error of the
control signal is but how good the control performance is.
Thus we call the proposed approach control-oriented com-
pressive sampling.

In remote control systems, control delays due to heavy
computation seriously degrade the performance. In com-
pressive sampling, signal acquisition is realized by a random
non-uniform sampler [7] or a random demodulator [23],
which takes almost no computational time. In contrast, ob-
taining sparse representation of a signal is achieved by solv-
ing �1-�2 optimization [24], also known as LASSO [25] or
basis pursuit de-noising [26]. The solution to the �1-�2 op-
timization cannot be represented in an analytical form as in
�2 optimization, and hence we resort to iteration method to
achieve the optimal solution. There have been recently a
number of researches on this type of optimization, and there
are several efficient algorithms for the solution [24], [27],
[28]. Moreover, the low rate random sampling leads to re-
duced computational complexity of optimization. That is,
we can use such computationally efficient algorithms with
the low rate sampling in remote control to reduce control
delays.

The paper is organized as follows: In Sect. 2, we define
our control problem. In Sect. 3, we formulate and solve the
problem via conventional sampling theorem. In Sect. 4, we
propose a new control method based on compressive sam-
pling. Section 5 gives a theoretical result for performance
analysis of the proposed control. We show a numerical
example in Sect. 6 to illustrate the effectiveness of the pro-
posed method. Finally, we make a conclusion in Sect. 7.

Notation

In this paper, we use the following notation. Z, R and C
denote the sets of integral, real and complex numbers, re-
spectively. Rn and Rm×n (Cn and Cm×n) denote the sets of
n-dimensional real (complex) vectors and m×n matrices, re-
spectively. We use j for the imaginary unit in C. For a com-
plex number z ∈ C, z̄ and Re z represent the conjugate and
the real part of z, respectively. For a matrix (a vector) M, M�
and M∗ represent the transpose and the Hermitian conjugate
of M, respectively. For a vector u = [v1, . . . , vn]� ∈ Cn,
we define �0 “norm” ‖u‖0 of u as the number of the nonzero
elements in u, and also define �1, �2, and �∞ norms as

‖u‖1 :=
n∑

i=1

|vi|, ‖u‖2 :=
√
u∗u, ‖u‖∞ := max

i=1,...,n
|vi|,

respectively. For a finite set I = {I1, . . . , IK} ⊂ Z, we de-
fine |I| := K. We denote by L2[0, T ] the Lebesgue space
consisting of all square integrable functions on [0, T ] ⊂ R,
endowed with the inner product

〈x, y〉 :=
∫ T

0
x(t)y(t) dt, x, y ∈ L2[0, T ],

and the L2 norm ‖x‖ :=
√〈x, x〉.

2. Control Problem

In this paper, we consider a control problem of a linear sys-
tem P on a finite time interval (or horizon) [0, T ], T > 0,
given by

P :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ(t) = Ax(t) + bu(t),

y(t) = c�x(t), x(0) = x0 ∈ Rν, t ∈ [0, T ],

(1)

where A ∈ Rν×ν, b, c ∈ Rν×1. In this equation, x(t) ∈ Rν is
the state, u(t) ∈ R is the input, and y(t) ∈ R is the output
of the system P. The initial state x0 ∈ Rν is assumed to be
given. We also assume that the system is stable, that is, the
eigenvalues of A are in C− = {λ ∈ C : Re λ < 0}. Then
the system P can be considered as a bounded operator in
L2[0, T ] for any T > 0. We use the notation y = Pu for
representing the input/output relation of the linear system P.
Figure 1 shows the block diagram of the system P with the
input u, the output y = Pu, and the initial state x0.

In order to show the significance of the proposed ap-
proach, we consider tracking problem in this paper as an
example of the control problem. In the tracking problem,
the controller attempts to reduce the tracking error between
a given reference r and the output y = Pu over [0, T ]. In
other words, we design a control signal {u(t)}t∈[0,T ] for a ref-
erence signal {r(t)}t∈[0,T ] such that r ≈ Pu over [0, T ]. More
precisely, the control object is described as follows: Find a
control signal {u(t)}t∈[0,T ] such that

1. the tracking error E(u) := ‖Pu − r‖2 is small,
2. the “size” Ω(u) of the control signal u is not too large,
3. and the maximum frequency contained in u is bounded

u y = Pu

x0

⎧⎪⎪⎨⎪⎪⎩ẋ = Ax + bu

y = c�x

Fig. 1 Linear system P to be controlled. The control signal u is transmit-
ted through a communication channel. The initial state x0 is assumed to be
measured.
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by a fixed frequency.

The first objective is for tracking performance; if E(u)
is smaller, the performance is said to be better. Theoreti-
cally, E(u) can be made arbitrarily small if the size Ω(u) is
not restricted.

Example 1: Let P̂(s) denote the Laplace transform of the
impulse response of the linear system P. Suppose P̂(s) is
given by

P̂(s) =
s − α
s + α

,

where α > 0, and the reference r is given in the Laplace
transform by r̂(s) = 1/s. Then if we choose u with its
Laplace transform

û(s) = P̂(s)−1r̂(s) =
s + α

s(s − α)
,

then the performance in terms of the tracking error will be
perfect, that is, E(u) = 0 over [0, T ]. However, the inverse
Laplace transform of û(s) is given by u(t) = 2 exp(αt) − 1,
t ∈ [0,∞), and hence u(t) has the property limt→∞ u(t) =
∞ since α > 0. That is, if T becomes large, then |u(T )|
increases exponentially. �

This example is not a special case; we can generally
say that a small tracking error leads to a large control signal
if P̂(s) has an unstable zero, that is, there exists z ∈ C+ =
{z ∈ C : Re z ≥ 0} such that P̂(z) = 0. For example, suppose
that the size of u is measured by Ω(u) = ‖u‖2, the energy of
the control signal u. As mentioned above, a smaller tracking
error E(u) leads to a larger energy Ω(u) = ‖u‖2. It follows
that we have to transmit the information of a signal with
a very large energy through a communication channel. In
many cases, a larger energy results in a larger amplitude of a
signal, and hence the variance becomes larger if the mean of
u(t) is 0. This implies that the entropy of the signal increases
and so does the amount of information. Moreover, large
Ω(u) leads to high sensitivity to noise in measurement of
the initial value x0 or uncertainty in the model parameters
A, b, and c. We therefore add a constraint on Ω(u) as the
second control objective. The size Ω(u) is not restricted to
the energy; one can take another function as will be defined
in Sect. 4.

The third objective is also needed in real control sys-
tems. The control signal u is applied to the controlled object
through an actuator (e.g., a motor), which cannot act at a
speed faster than a fixed frequency. To describe this con-
straint mathematically, we define a subspace of L2[0, T ] by

VM := span{ψm : m = −M, . . . , M} ⊂ L2[0, T ],

where M is a given positive integer and

ψm :=
1√
T

exp(jωmt), ωm :=
2πm

T
.

VM is the set of T -periodic band-limited signals up to the

Table 1 Regularization term.

Ω(u) Purpose
0 Least squared error (ideal)
‖u‖2 Energy-saving (conventional)

card(u) Sparsity-promoting (proposed)

frequency ωM = 2πM/T [rad/sec]. We restrict the control
signal u and the reference r to this subspace.

The control problem considered in this paper is sum-
marized as follows:

Problem 1 (Tracking control problem): Given a reference
signal r ∈ VM , find a control signal u ∈ VM which minimizes

J(u) = ‖Pu − r‖2 + μΩ(u) (2)

where μ is a positive parameter which controls the tradeoff
between ‖Pu − r‖2 and Ω(u).

If the regularization term Ω(u) in (2) is defined as
Ω(u) ≡ 0, the optimization problem becomes the least-
square optimization. The solution is ideal in the sense that
this gives the least squared error, as the controller given
in Example 1. As mentioned above, this ideal control
may have very large energy or amplitude, and the energy-
saving constraint Ω(u) = ‖u‖2 is conventionally used (see
Sect. 3). On the other hand, we propose to use another
constraint, sparsity-promoting constraint, Ω(u) = card(u),
where card(u) is the cardinality (or sparsity) of the signal u,
which is mathematically defined in Sect. 4. We sum up these
regularization terms in Table 1.

3. Conventional Approach via Sampling Theorem

A conventional solution to the problem is obtained by the
sampling theorem [10], [11]. First, since the signals r and
u are band-limited up to the frequency ωM, we may safely
sample the signals r and y = Pu at a rate faster than the
Nyquist rate 2ωM , based on the sampling theorem. Then,
we define the sampled error functional

Ed(u) = h
N∑

n=1

|y(tn) − r(tn)|2 = h
N∑

n=1

|(Pu)(tn) − r(tn)|2,

where N := 2M + 1 is the number of sampled data, h :=
T/(N − 1) the sampling period, and tn := (n − 1)h the n-
th sampling instant. Then we assume u ∈ VM , that is, u is
represented by

u =
M∑

m=−M

θmψm, (3)

where θm ∈ C, m = −M, . . . , M. The following lemma gives
the expression of the output y in terms of the coefficients θm.

Lemma 1: For the control u given in (3), the output y of
the plant P defined in (1) is given by

y(τ) = c� exp(τA)x0 +

M∑
m=−M

θm〈κ(τ, ·), ψm〉, τ ∈ [0, T ],
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(4)

where κ(τ, t) is defined by

κ(τ, t) :=

⎧⎪⎪⎨⎪⎪⎩c� exp [(τ − t)A] b, if 0 ≤ t < τ ≤ T,

0, otherwise.

Proof: The proof is given in Appendix A. �
This lemma gives the sampled output y(tn), n =

1, 2, . . . ,N, by

y(tn) = c� exp(tnA)x0 +

M∑
m=−M

θm〈φn, ψm〉, (5)

where φn = κ(tn, ·), n = 1, 2, . . . ,N. Note that the function
φn is known as the control theoretic spline [29]. By this,
the sampled error functional Ed(u) is described in terms of
θ := [θ−M , . . . , θM]� ∈ CN :

Ed

⎛⎜⎜⎜⎜⎜⎝ M∑
m=−M

θmψm

⎞⎟⎟⎟⎟⎟⎠ = h ‖Gθ − Hx0 − r‖22 ,

where

G :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
〈φ1, ψ−M〉 . . . 〈φ1, ψM〉
〈φ2, ψ−M〉 . . . 〈φ2, ψM〉

...
. . .

...
〈φN , ψ−M〉 . . . 〈φN , ψM〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ C
N×N , (6)

r :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
r(t1)
r(t2)
...

r(tN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ R
N , H :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
c� exp (t1A)
c� exp (t2A)

...
c� exp (tN A)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ R
N×ν.

The regularization term Ω(u) is in this case naturally taken
by

Ω(u) = ‖u‖2 = ‖θ‖22,
where the second equality is due to Parseval’s identity [30]

Finally, the problem is described as follows:

Problem 2 (�2 optimization): Find a vector θ ∈ CN which
minimizes the following cost functional:

J2(θ) := ‖Gθ − β‖22 + μ2‖θ‖22, (7)

where β := r − Hx0 and μ2 := μ/h.

The solution of the above problem is given by [31]

θ2 = (μ2I +G�G)−1G�β. (8)

Thus, in conventional approach, all the elements of θ2 (or
N samples of the corresponding control signal u) will be
sent through a rate-limited communication channel. Fig-
ure 2 shows the remote control system considered here. In
this figure, a continuous-time signal is drawn by a continu-
ous arrow and a transmitted vector by a dotted arrow. The
function E maps the reference {r(t)}t∈[0,T ] and the initial state

r(t) θ u(t) y(t)

x0

E Ψ P

Fig. 2 Remote control system.

x0 of the system P to the optimal vector θ = θ2 using (8),
and the computed θ is encoded and transmitted through the
channel. Then the signal θ is received at Ψ which converts
θ to the control signal {u(t)}t∈[0,T ] via the Fourier expansion
as in (3). Finally, the control signal u is added to the system
P.

4. Proposed Approach via Compressive Sampling

We here propose sparse representation of transmitted vector
θ in Fig. 2 for data compression via compressive sampling.

4.1 Proposed Formulation Using Sparse Representation

As we have seen in Sect. 2, there is a trade-off between the
performance and size of the control signal, and in the con-
ventional approach, the balance is taken by employing �2

norm as the definition of the size. In order to further reduce
the size (or the amount of information) of the control signal
u, while keeping a certain degree of the distortion ‖Pu− r‖2,
we impose a stronger but acceptable assumption on signals,
that is, sparsity.

We first assume that the reference r ∈ VM is sparse
with respect to the basis {ψm}, that is, a few of the Fourier
coefficients of r are nonzero while the others are zero. This
is represented by

r =
∑
m∈I

rmψm, I ⊂ {−M, . . . , M}, |I| = Sr,

where Sr � N = 2M + 1. The sparsity assumption on the
reference signal is realistic in actual control systems. For
example, the step reference r̂(s) = 1/s in Example 1, or a
sinusoidal reference with one frequency or a sum of sev-
eral sinusoids, which are typical reference signals, are all
sparse in the Fourier expansion. In general, it is difficult to
find a proper basis with which reference signals are sparse.
However, we fix the Fourier basis and assume the reference
signals are sparse in the Fourier domain. Under this assump-
tion, checking the sparsity Sr of a given reference signal r
can be performed by the following steps:

1. sample the reference r(t) with sampling frequency
2ωM,

2. compute the Fourier coefficients via FFT from the sam-
pled data,

3. truncate small coefficients,
4. count the number of the nonzero coefficients.

If the number is small enough relative to the size N =

2M + 1, we can say the signal is sparse. We have assumed
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that the reference r is in the signal subspace VM , that is
the reference is T -periodic and band-limited up to the fre-
quency ωM , the above procedure should work well. Under
the above assumption, we then consider the control signal u
defined in (3). In general, the optimal control signal u may
not be sparse even if the reference r is sparse (see Example
1). Nevertheless, we propose to assume the control signal u
to be sparse by designing u to be sparse. The validity of the
approach could be justified as follows:

1. The coefficient vector θ = [θ−M , . . . , θM]� of the con-
trol signal is transmitted through a rate-limited com-
munication channel (see Fig. 2). A sparse vector is then
more desirable than the full vector θ2 in (8) from a view
point of data compression.

2. We will adopt the �1 norm minimization for θ as a
sparsity-promoting criterion in Sect. 4. Then a small
�1 norm of θ leads to a small L1 norm of u since∫ T

0
|u(t)|dt ≤

M∑
m=−M

|θm|
∫ T

0
|ψm(t)|dt = T‖θ‖1.

Thus, the size of u measured by L1 norm can be made
small. It follows that it can gain robustness against
noise and model uncertainty.

3. If the control input u is sparse, then the output y = Pu
is also sparse at steady state. In fact, by the theory of
linear systems [30], the steady state response yss of P
for the input u given in (3) becomes

yss =

m∑
m=−M

P̂(jωm)θmψm,

where P̂(s) is the Laplace transform of the impulse
response of P. Therefore, if {θm} is sparse, so is
{P̂(jωm)θm}. This fact endorses the sparsity constraint
on the control signal u when the reference r is sparse.

Now we formulate our problem. We denote by card(u)
the number of the nonzero Fourier coefficients with respect
to the basis {ψm}. If u is represented as in (3), then card(u) =
‖θ‖0. For promoting sparsity of the control signal u, we set
the regularization term Ω(u) = card(u). In summary, our
problem is formulated as follows:

Problem 3 (Sparsity-promoting optimization): Given a
reference signal r ∈ VM with card(r) = S � N, find a
control signal u ∈ VM which minimizes

J0(u) := ‖Pu − r‖2 + μ card(u).

4.2 Random Sampling and �1-�2 Optimization

The control signal u can be obtained by using the sampled
error functional J0(u) with the Nyquist rate sampling as in
Sect. 3, and by solving the optimization problem. However,
based on the idea of compressive sampling [6]–[8], we can
obtain the sparse control signal with much reduced compu-
tational complexity. Specifically, we adopt low rate random

3

t

Tti(4)ti(3)ti(2)ti(1)0

Fig. 3 Random sampling.

sampling of signals instead of the uniform Nyquist rate sam-
pling.

Let U be a random “decimation” matrix of the form

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ei(1)

ei(2)
...

ei(K)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ {0, 1}
K×N ,

where i(1) < i(2) < · · · < i(K) are the random variables of
the uniform distribution on {1, 2, . . . ,N}, and

ei := [0, . . . , 0,

i
∨
1, 0, . . . , 0], i = 1, 2, . . . ,N.

This is a model of low rate random sampling of a signal on
[0, T ] as shown in Fig. 3, where the sampling instants are
given by

ti(k) = i(k) · h = i(k) · T
N − 1

, k = 1, 2, . . . ,K < N.

Remark 1: The choice of the number K is a fundamental
problem in compressive sampling. Suppose that the spar-
sity of the vector θ is ‖θ‖0 = Sθ. Then, for large N, one
can choose K as K ≥ CSθ(log N)4, where C is some con-
stant [32]. It is believed that the bound may be reduced to
CSθ(log N), but there is no theoretical proof [6].

By using the matrix U, random sampling of y(t) on
[0, T ] is given by:

y = UGθ + UHx0.

Then the cost functional is given by

J0(θ) = ‖Φθ − α‖22 + μ‖θ‖0,
where Φ := UG and α = U(r − Hx0).

It should be noted that, thanks to the low rate random
sampling matrix U, the computational complexity of J0(θ) is
reduced compared as the case with the Nyquist rate uniform
sampling. However, minimization of J0 may still be hard to
solve, because the optimization problem is a combinatorial
one. It is common to employ convex relaxation by replacing
the �0 norm with the �1 norm, thus we have

J1(θ) = ‖Φθ − α‖22 + μ1‖θ‖1. (9)

The cost functional J1(θ) in (9) is convex in θ and hence the
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Table 2 Cost functional.

Cost Purpose Optimization
J2(θ) Energy-saving (conventional) Closed form solution
J0(θ) Sparsity-promoting (ideal) NP-hard
J1(θ) Sparsity-promoting (proposed) Iteration

optimal value θ1 uniquely exists. However, an analytical ex-
pression as in (8) for this optimal vector is unknown except
when the matrix Φ is unitary. To obtain the optimal vec-
tor θ1 , one can use an iteration method. Recently, several
fast algorithms to obtain the optimal �1-�2 solution has been
proposed, which is called iterative shrinkage [24], [28]. In
this paper, we use the algorithm called FISTA (Fast Iter-
ative Shrinkage-Thresholding Algorithm) [28]. The algo-
rithm converges to the optimal solution minimizing the �1-�2

cost functional (9) for any initial guess of θ1 with a worst-
case convergence rate O(1/ j2) [27], [28]. The algorithm is
very simple and fast; it can be effectively implemented in
digital devices, which leads to a real-time computation of a
sparse vector θ1 . For this algorithm, see Appendix C.

In summary, the proposed remote control system with
the structure in Fig. 2 employs the process E which maps
{r(t)}t∈[0,T ] and x0 to the �1-�2 optimal vector θ1 using
FISTA. Since the vector θ1 is sparse, one can encode the
vector in a small size. The transmitted signal θ1 is received
at Ψ and the control signal {u(t)}t∈[0,T ] is obtained by (3).
Again since θ1 is sparse, this procedure can be efficiently
done.

We have considered 3 cost functionals; J2(θ) in Sect. 3,
and J0(θ) and J1(θ) in this section. We sum up these cost
functionals in Table 2.

5. Performance Analysis

In this section, we consider the performance analysis of the
proposed remote control systems.

Let y the ideal output of the plant P under the control
vector θ which minimizes ‖Pu− r‖2, that is,Ω(u) = 0 (See
Table 2). Let also y1 be the output with the proposed �1-�2-
optimal vector θ1 . Clearly, the tracking performance by the
�1-�2 optimal vector θ1 is not better than that of the ideal θ,
that is,

‖y − r‖ ≤ ‖y1 − r‖.
The problem here is to guarantee the boundedness of the
tracking error ‖y1 − r‖ of the proposed �1-�2 control, and to
estimate the difference between the two errors, ‖y − r‖ and
‖y1 − r‖, when the errors are bounded.

Suppose that the ideal control vector θ is approxi-
mately S -sparse, that is, there exist a positive integer S and
a sufficiently small ε1 such that

‖θ − θ[S ]‖1 ≤ ε1,

where θ[S ] is the vector θ with all but the largest S compo-
nents set to 0. Then, we introduce the notion of restricted
isometry property (RIP) [6].

Definition 1: For each integer l = 1, 2, . . ., define the isom-
etry constant δl of a matrix Φ as the smallest number such
that

(1 − δl)‖θ‖22 ≤ ‖Φθ‖22 ≤ (1 + δl)‖θ‖22
holds for all vectors θ such that ‖θ‖0 = l.

By using the notion of RIP, we have the following lemma:

Lemma 2: Assume that the isometry constant of the ma-
trix Φ satisfies δ2S <

√
2 − 1. Then, with sufficiently small

μ1 > 0 in the cost functional J1(θ) defined in (9), we have
the following estimate:

‖θ1 − θ‖2 ≤ C1
ε1√
S
+ C2ε2, (10)

where

C1 := 2 · 1 + (
√

2 − 1)δ2S

1 − (
√

2 + 1)δ2S

, C2 :=
4
√

1 + δ2S

1 − (
√

2 + 1)δ2S

,

ε2 := ‖Φθ1 − α‖2.
Proof: The proof is given in Appendix D. �

By this lemma, we obtain the following bound for
tracking error by the �1-�2 optimal control.

Theorem 1: Assume δ2S <
√

2 − 1. Then we have

‖y1 − r‖ ≤ ‖y − r‖ +
(
C0

ε1√
S
+C1ε2

)
η,

where

η :=

√√
M∑

m=−M

∫ T

0
|〈κ(τ, ·), ψm〉|2dτ.

Proof: By Lemma 1, for τ ∈ [0, T ], we have

y1 (τ) − y1 (τ) =
M∑

m=−M

(
θ1,m − θm

)
〈κ(τ, ·), ψm〉,

where θ1,m and θm are respectively the m-th components of
θ1 and θ. Then, the Cauchy-Schwartz inequality [33] gives

|y1 (τ) − y(τ)|2 ≤ ‖θ1 − θ‖22
M∑

m=−M

|〈κ(τ, ·), ψm〉|2.

It follows that

‖y1 − y‖ =
√∫ T

0
|y1 (τ) − y(τ)|2dτ

≤
√√∫ T

0
‖θ1 − θ‖22

M∑
m=−M

|〈κ(τ, ·), ψm〉|2dτ

= ‖θ1 − θ‖2 · η
≤

(
C0

ε1√
S
+ C1ε2

)
η.
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The last inequality is due to Lemma 2. Finally, we have

‖y1 − r‖ = ‖y1 − y + y − r‖
≤ ‖y − r‖ + ‖y1 − y‖
≤ ‖y − r‖ +

(
C0

ε1√
S
+C1ε2

)
η.

�
By this theorem, we conclude that the tracking error of

the proposed �1-�2 optimal control is bounded if ‖y − r‖,
the ideal control error, is bounded. We also argue that the
difference between the two performances, the ideal ‖y − r‖
and the proposed ‖y1 − r‖, is not so large if ε1 and ε2 are
sufficiently small.

6. Numerical Results

We here give numerical examples to show the effectiveness
of the proposed method. The matrices of the system P de-
fined in (1) to be controlled are given by

A =

[
0 1
−α −α − 1

]
, b =

[
0
1

]
, c =

[−α
1

]
,

with α = 0.5. Note that the Laplace transform P̂(s) is

P̂(s) =
s − α

(s + α)(s + 1)
.

and this system has an unstable zero at s = α = 0.5 as
mentioned in Example 1. We assume the initial state x0 =

[0, 0]�. The period T is 2π. The number of basis {ψm} is
N = 2M + 1 = 201 (M = 100). The reference signal r(t) is
given by

r(t) = sin(20t) + cos(50t),

and the sparsity (cardinality) of this reference is Sr = 4. For
compressive sampling, we take K = 201/3 = 67 random
samples among N = 201 sampled data, that is the compres-
sion ratio is 1/3.

We compute the �2 optimal Fourier coefficient vector
θ2 minimizing (7), given by (8), as a conventional design.
We also compute the �1-�2 optimal vector θ1 minimizing (9)
as the proposed method. The regularization parameters μ1

and μ2 respectively for �1-�2 and �2 optimization are set to
μ1 = μ2 = 10−4. Figure 4 shows the elements of the vector
θ2 . We can see that 4 elements are much larger than the
other. This vector however is not sparse, that is, ‖θ2 ‖0 = 201
(full). On the other hand, Fig. 5 shows the �1-�2 optimal θ1
which is very sparse. In fact, the sparsity is ‖θ1 ‖0 = 44,
about 21.9% of the full vector θ2 .

Figure 6 shows the output y(t) of the system P by the
�2 optimal control. The response is optimal in the sense that
the control uses the whole sampled data on the sampling in-
stants t1, . . . , t101. On the other hand, Fig. 7 shows the output
y(t) by the proposed �1-�2 optimal control. We also show in
Fig. 8 the output y(t) by using the 44 largest coefficients in
the �2 optimal vector θ2 (see Fig. 4). Note that this truncated

Fig. 4 The absolute values of the elements of the Fourier coefficient vec-
tor θ2 in the �2 optimal control signal u ∈ VM . The squared markers show
the 44 largest coefficients which are used for a truncated vector.

Fig. 5 The absolute values of the elements of the Fourier coefficient vec-
tor θ1 in the �1-�2 optimal control signal u ∈ VM . The 0-valued elements
are omitted. The sparsity is ‖θ1 ‖0 = 44.

Fig. 6 The reference r(t) (dots) and the output y(t) (solid), t ∈ [0, π], by
the �2-optimal control.

vector has the same cardinality as the �1-�2 optimal vector
θ1 . Although the proposed control signal θ1 was computed
by only K = 67 randomly sampled data, the output tracks
the reference with quite a good performance as the �2 opti-
mal control, and better than the truncation.

To see the difference more precisely, we run 1000 sim-
ulations with random sampling and compute the average of
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Fig. 7 The reference r(t) (dots) and the output y(t) (solid), t ∈ [0, π], by
the �1-�2 optimal control.

Fig. 8 The reference r(t) (dots) and the output y(t) (solid), t ∈ [0, π], by
the truncated �2 optimal control.

Fig. 9 The tracking error |r(t) − y(t)| by the �1-�2 optimal control (av-
eraged, solid), the �2 optimal control(dash), and the truncated �2 optimal
control (averaged, dash-dot) whose cardinality is the same as the �1-�2 op-
timal control.

the absolute value of the tracking error |r(t) − y(t)|. Figure 9
shows the result. We can see that the control performance
by the proposed method is almost comparable with that by
the �2 method, and much better than that by the truncated
�2 optimal vector. Note that the average of the cardinality
‖θ1 ‖0 is about 57.8, which is about 28.8% of that of θ2 .

Then we simulate for another reference signal, the step

Fig. 10 The average of the absolute error |y(t) − r(t)| of the �2 optimal
control (dash) and the proposed �1-�2 optimal control (solid). The perfor-
mance is comparable but the proposed control vector is much sparser.

function defined by

r(t) = 1, t ∈ [0, 2π].

The sparsity of this reference is Sr = 1. We here assume that
K = N and run 1000 simulations with a random initial state
x0 ∼ N(0, I). The other parameters are the same as above.
Figure 10 shows the average of the absolute errors by the �2

optimal control and the �1-�2 optimal one. The performance
is comparable but the proposed control vector θ1 has the
average sparsity ‖θ1 ‖0 = 152.512, which is about 76% of
the full vector θ2 . That is, the proposed method can produce
much sparser control vectors without much deterioration of
control performance.

In conclusion, the proposed method has successfully
achieved an admissible level of control performance with
highly compressive sampling and sparse control signal rep-
resentation.

7. Conclusion

In this paper, we have proposed a new method for remote
control systems based on the compressive sampling tech-
nique. We have shown that, by assuming the sparse ref-
erence signal, the Fourier coefficients of the optimal track-
ing control signal can be much sparser with far fewer data
than what conventional design requires. The computational
cost is relatively low due to the combined use of the low
rate random sampling and an efficient optimization algo-
rithm. A theoretical result has been given for control perfor-
mance analysis based on the notion of RIP. Examples have
been shown that the proposed method provides a very sparse
control signal without much deterioration of control perfor-
mance. The sparsity of the control vector depends also on
the signal subspace VM . We leave open the problem how to
select this space for a given plant P and a set of reference
signals.
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Appendix A: Proof of Lemma 1

For an input u ∈ VM , the output y(τ), τ ∈ [0, T ] is given by

y(τ) = c� exp(τA)x0 +

∫ τ

0
c� exp [(τ − t)A] bu(t)dt

= c� exp(τA)x0

+

M∑
m=−M

θm

∫ τ

0
c� exp [(τ − t)A] bψm(t)dt

= c� exp(τA)x0 +

M∑
m=−M

θm

∫ T

0
κ(τ, t)ψm(t)dt

= c� exp(τA)x0 +

M∑
m=−M

θm〈κ(τ, ·), ψm〉.

Appendix B: Computing Inner Product

To compute the matrix G in (6), we have to compute the
inner product 〈φn, ψm〉. This value can be easily computed
by matrix exponentials [34]:
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〈φn, ψm〉 =
∫ T

0
φn(t)ψm(t) dt

=

∫ tn

0
c� exp [(tn − t)A] b exp(− jωmt)dt

= [c�, 0] exp

(
tn

[
A b
0 −jωm

]) [
0ν
1

]
,

where 0ν is the zero vector in Cν.

Appendix C: FISTA

We here give the algorithm of FISTA (Fast Iterative
Shrinkage-Thresholding Algorithm) by [28].

Give an initial value θ[0] ∈ CN , and let β[1] = 1,
θ′[1] = θ[0]. Fix a constant c such that c > ‖Φ‖2 :=
λmax(Φ�Φ). Execute the following iteration:

θ[ j] = S2μ1/c

(
1
c
Φ�(α − Φθ′[ j]) + θ′[ j]

)
,

β[ j + 1] =
1 +

√
1 + 4β[ j]2

2
,

θ′[ j + 1] = θ[ j] +
β[ j] − 1
β[ j + 1]

(θ[ j] − θ[ j − 1]),

j = 1, 2, . . . ,

where the function S2μ1/c is defined for θ = [θ1, . . . , θN]� by

S2μ1/c(θ) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
sgn(θ1)(|θ1| − 2μ1/c)+

...
sgn(θN)(|θN | − 2μ1/c)+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
where sgn(z) := exp(j∠z) for z ∈ C, and (x)+ := max{x, 0}
for x ∈ R.

Appendix D: Proof of Lemma 2

Let θ1 (μ1) be the minimizer of the �1-�2 cost function J1(θ)
with the regularization parameter μ1 > 0. We denote θ̃


1 (μ1)

the reduced dimensional vector built upon the nonzero com-
ponents of θ1 (μ1). Similarly, Φ̃ denotes the associated
columns in the matrixΦ. By the discussion in [35, Sect. IV],
for sufficiently small μ1 such that μ1 ∈ (0, μ0), the nonempty
interval in which sgn(θ̃


1 (μ1)) = sgn(Φ̃+α), the �1-�2 optimal

θ1 (μ1) is also the solution of

min
θ
‖θ‖1 subject to ‖Φθ − α‖2 ≤ ε2,

where ε2 = ‖Φθ1 (μ1) − α‖2. Then by the assumption δ2S <√
2 − 1, we have [36]

‖θ1 − θ‖2 ≤ C0

‖θ − θ[S ]‖1√
S

+ C1ε2

≤ C0
ε1√
S
+ C1ε2.
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