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Abstract

We address the multi-period portfolio optimization problem with the constant rebalanc-
ing strategy. This problem is formulated as a polynomial optimization problem (POP) by
using a mean-variance criterion. In order to solve the corresponding POPs of high degree, we
develop a cutting-plane algorithm based on semidefinite programming. Our algorithm can
solve problems that can not be handled directly by any of known polynomial optimization
solvers.
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1 Introduction

We consider the constant rebalancing strategy in the multi-period portfolio selection. In this
strategy, we rebalance the portfolio at the beginning of every period so that the investment
proportion will be restored to the fixed constant one. It is known that the constant rebalancing
achieves the optimal growth rate of wealth if the asset prices in each period are independent and
identically distributed $(i.i.d.)$ (see e.g., [1]). On the assumptions of i.i. $d$ . and infinite horizon, the
problem to be solved is a relatively easy convex program (see e.g., [6]). However, the constant
rebalancing strategy generally leads to nonconvex optimization. Because of its difficulty, most
studies (e.g., [3, 11]) have focused on approximately solving the constant rebalanced portfolio
optimization problem. To the best of our knowledge, only Maranas et al. [8] approached it
through global optimization by developing a specialized branch-and-bound algorithm.

In this paper, we use a mean-variance (M-V) criterion to formulate the constant rebalanced
portfolio optimization problem (see also [8]) as a polynomial optimization problem (POP). In
$\overline{lThis}$article isashort version of[12].
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order to solve the resulting POPs. we develop a cutting-plane algorithm based on semidefinite
programming (SDP). Our algorithm is iterative and solves in each iteration a POP of reduced
degree by applying Lasserre‘s approach [5]. In [5], Lasserre proved that small and medium
size POPs can be efficiently solved using SDP. This approach is intractable for the polynomial
reformulation of the constant rebalanced portfolio optimization problem when the number of
planning periods is large. However, it is rather easy to handle in the framework of our cutting-
plane algorithm in which we implement corresponding polynomials of reduced degree. Our
numerical results verify the efficiency of our approach.

2 Mean-Variance Portfolio optimization with Constant Rebal-
ancing Strategy

We define the terminology and notation as follows:
$\mathbb{R}^{N}$ : set of N-dimensional real vectors
$Z_{+}^{N}$ : set of N-dimensional nonnegative integer vectors

Index Sets
$\mathcal{I}$ $:=\{1,2, \ldots, I\}$ : index set of investable financial assets
$\mathcal{T}:=\{1,2, \ldots, T\}$ : index set of planning periods
$S$ $:=\{1,2, \ldots, S\}$ : index set of given scenarios

Decision Variables
$v_{t}^{s}$ : portfolio value at the end of period $t$ under scenario $s$ $(t\in \mathcal{T}, s\in S)$

$w_{i}$ : investment proportion in asset $i(i\in \mathcal{I})$ $($where $w:=(w_{1},$ $w_{2},$ $\cdots,$
$w_{I})\in \mathbb{R}^{I})$

Given Constants
$V$ : initial wealth for investment
$R_{i,t}^{s}$ : total return of asset $i$ at period $t$ under scenario $s(i\in \mathcal{I}, t\in \mathcal{T}, s\in S)$

$P_{s}$ : occurrence probability of scenario $s$ $(s\in S)$

$L_{i}(U_{i})$ : lower (upper) bound of the investment proportion in asset $i$ $(i\in I)$

User-Defined Parameters
$\lambda$ : trade-off parameter between return and risk (where $\lambda\in(0,1)$ )

Figure 1 illustrates a portfolio dynamics under scenario $s$ . Suppose that one starts investing
$Vw_{i}$ in each asset $i$ . Because of the return of each asset, the invested amount $Vw_{i}$ is changed
to $R_{i,1}^{s}Vw_{i}$ over the first period. Accordingly, the portfolio value at the end of the first period

under scenario $s$ is given by

$v_{1}^{s}= \sum_{i\in \mathcal{I}}R_{i,1}^{s}Vw_{i}=V\sum_{i\in \mathcal{I}}R_{i,1}^{s}w_{i}$
. (1)

The amount $R_{i,1}^{s}Vw_{i}$ is adjusted to $v_{1}^{s}w_{i}$ according to the constant rebalancing strategy at
the beginning of the second period. Because of the return of each asset, the invested amount
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Period 1 Period 2 Period 7

Figure 1: Portfolio Dynamics under Scenario $s$

$v_{1}^{s}w_{i}$ is changed to $R_{i,2}^{s}v_{1}^{s}w_{i}$ over the second period. Accordingly, the portfolio value at the end
of the second period under scenario $s$ is given by

$v_{2}^{s}= \sum_{i\in \mathcal{I}}R_{i,2}^{s}v_{1}^{s}w_{i}=v_{1}^{s}\sum_{i\in \mathcal{I}}R_{i,2}^{s}w_{i}$
. (2)

Continuing in the same vein, the portfolio value at the end of the planning horizon of $T$

periods under scenario $s$ is given by

$v_{T}^{s}=v_{T-1}^{s} \sum_{i\in \mathcal{I}}R_{i,T}^{s}w_{i}$

$=v_{T-2}^{s}( \sum_{i\in \mathcal{I}}R_{i,T-1}^{s}w_{i})(\sum_{i\in \mathcal{I}}R_{i,T}^{s}w_{i})=$ . . . $=V \prod_{t\in \mathcal{T}}(\sum_{i\in \mathcal{I}}R_{i,t}^{s}w_{i})$ . (3)

In the sequel we formulate the constant rebalanced portfolio optimization problem. We
consider here both, minimizing the variance of the portfolio value:

Var $(w):= \sum_{s\in S}P_{s}(v_{T}^{s})^{2}-(\sum_{s\in S}P_{s}v_{T}^{s})^{2}$

$(3)= \sum_{s\in S}P_{s}(V\prod_{t\in \mathcal{T}}(\sum_{i\in \mathcal{I}}R_{i,t}^{s}w_{i}))^{2}-(\sum_{s\in S}P_{s}V\prod_{t\in \mathcal{T}}(\sum_{i\in \mathcal{I}}R_{i,t}^{s}w_{i}))^{2}$ ,

(4)

and maximizing the mean of the portfolio value:

$\sum_{s\in S}P_{s}^{(3)}v_{T}^{s}=\sum_{s\in S}P_{s}V\prod_{t\in \mathcal{T}}(\sum_{i\in \mathcal{I}}R_{i,t}^{s}w_{i})$ , (5)

49



at the same time by taking the weighted sum of them (see also [8]). This leads to the following
optimization problem:

$minimizew\in \mathbb{R}$

$(1- \lambda)(\sum_{s\in S}P_{s}(V\prod_{t\in \mathcal{T}}(\sum_{i\in \mathcal{I}}R_{i,t}^{s}w_{i}))^{2}-(\sum_{s\in S}P_{s}V\prod_{t\in \mathcal{T}}(\sum_{i\in \mathcal{I}}R_{i,t}^{s}w_{i}))^{2})$

$- \lambda(\sum_{s\in S}P_{s}V\prod_{t\in \mathcal{T}}(\sum_{i\in \mathcal{I}}R_{i,t}^{s}w_{i}))$
(6)

subject to
$\sum_{i\in \mathcal{I}}w_{i}=1$

; $L_{i}\leq w_{i}\leq U_{i},$ $i\in \mathcal{I}$ .

The above problem can be reformulated as the following POP:

$minimizew\in \mathbb{R}$ OF
$(w):=(1- \lambda)\sum_{\alpha:\Sigma\alpha_{i}=2T}C_{5}(\alpha)w^{\alpha}-\lambda$

$\sum_{\alpha:\Sigma\alpha_{i}=T,\mathcal{I}i\in \mathcal{I}}C_{2}(\alpha)w^{\alpha}$

(7)

subject to
$\sum_{i\in \mathcal{I}}w_{i}=1$

; $L_{i}\leq w_{i}\leq U_{i},$ $i\in \mathcal{I}$ ,

where

$\alpha:=(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{I})\in Z_{+}^{I}$
and

$w^{\alpha}:= \prod_{i\in \mathcal{I}}w_{i}^{\alpha_{i}}$
,

and see [12] for details of $C_{2}(\alpha)$ and $C_{5}(\alpha)$ .

3 Cutting-Plane Algorithm

If a POP contains a polynomial of high degree, then the relaxation order, $\omega$ (for details see
[5] $)$ , is also high. Accordingly, the corresponding SDP relaxations are large-scale and it is hard

to solve them. In this section, we present a cutting-plane algorithm for solving POPs of high
degree.

The fundamental principle of our algorithm, which is regarded as a natural extension of

Kelley’s convex cutting-plane algorithm (see e.g., Section 14.8 of [7]), is to solve a sequence of
relaxed POPs and to approximate the feasible region of the original problem by cutting off the
current infeasible solution of the relaxed problem.

The algorithm for the M-V portfolio optimization problem (7) is described as follows (see

[12] for details):

Algorithm $CPM\vee$:Cutting-Plane Algorithm for the $M-\vee$ Portfolio optimization Problem (7)

Step $0$ . (lnitialization) Let $\epsilon\geq 0$ be a tolerance for optimality, $K$ be the maximum number of
iterations, and $\omega\geq\lceil T/2\rceil$ be the relaxation order. Set

$\mathcal{Z}arrow\{(w, z)|\sum_{i\in \mathcal{I}}w_{i}=1$
; $L_{i}\leq w_{i}\leq U_{i},$ $i\in \mathcal{I}$ ; $z\geq 0\}$ .
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Set the initial upper bound as $UB_{0};=\infty$ . Set $karrow 1$ .
Step 1. (Lower-Bound Estimation) Solve the the following POP by using the SDP approach

[5] with the relaxation order $\omega$ :

$(w,z)\in R^{I_{\cross}}minimize_{R}$
$(1- \lambda)z-\lambda\sum_{\alpha:\Sigma\alpha_{i}=T}C_{2}(\alpha)w^{\alpha}$

subj ect to $(w . z)\in \mathcal{Z}$ .
(8)

Note that the maximal degree of monomials in the problem (8) is $T$ while in the POP (7) is $2T$ .
This reduction of the degree is crucial for the success of our algorithm, i.e., the corresponding
SDP relaxations are easier to solve. A general form of the above algorithm and its convergence
theorem are shown in [12].

4 Computational Experiments

In our computations, we use the following numbers for assets $I\in\{4,7,10\}$ , periods $T\in\{2,4,6\}$ ,
and scenarios $S\in\{100$ , 1,000 $\}$ . The initial wealth is $V=1$ and the occurrence probability is
$P_{s}=1/|S|$ for all $s\in S$ . The lower bound, $L_{i}$ , and the upper bound, $U_{i}$ , of the investment
proportion are set to $0$ and 0.5, respectively for each $i\in \mathcal{I}$. In the cutting-plane algorithm, we
set the tolerance for optimality $\epsilon=10^{-5}$ , and the maximum number of iterations $K=30$ . All
computations were performed on a PC with a Core2 Duo CPU (1.40 GHz) and $2GB$ memory.
We used MATLAB 7.10.0 $(R2010a)$ to program our algorithm and the global optimization solver
over polynomials GloptiPoly 3.6.1 [4], which uses SeDuMi 1.3 [10] to solve SDP problems. The
results obtained by our algorithm are compared with the global optimization solver BARON [9]
and the NLP solver CONOPT [2], that are available via NEOS Server2. In BARON, a tolerance
for optimality is set to the same value as in the cutting-plane algorithm, i.e., to $10^{-5}$ .

$2http://www^{-}neos$ . mc $s$ . anl. gov
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Table 1: Numerical Results for Solving (7) by GloptiPoly

Table 2: Numerical Results of Algorithm CPMV

Numerical data and notations in Tables 1, 2 and 3 are as follows:
Rel.Order: the relaxation order $\omega$ ,

TotalCPU: the total CPU time (in seconds),

#Iteration : the number of iterations (i.e., k) in the cutting-plane algorithm,

#Ter.Con. : the number of times each termination condition was satisfied, $(\langle a\rangle, \langle b\}, \langle c\}, \langle d\rangle)$ ,

see CPMV algorithm and explanations therein,

Opt.Gap: the optimality gap, i.e., (the best upper bound) $-$ ( $the$ best lower bound),

#Mem.Sho. : the occurrence number of memory shortage,
OMS : out of memory in SeDuMi, and

OMG : out of memory in GloptiPoly.

For each pair of $(I, T, S)$ we solve eight problems corresponding to different values of the

trade-off parameter, $\lambda\in\{0.01,0.1,0.2,0.3,0.4,0.5,0.6,0.99\}$ . In the tables we show the

average value of the eight problems in TotalCPU and #lteration, and the largest value of those

in Opt.Gap.
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Table 3: Numerical Results of BARON and CONOPT

4.1 Numerical Results of POP Approaches

Numerical results for solving POP (7) by GloptiPoly and the cutting-plane algorithm are shown
in Tables 1 and 2, respectively. Note that all solutions reported in Table 1 are globally optimal.
However, only the problem involving four assets was solved when the number of periods was
four. To the contrary, all problems were solved by using the cutting-plane algorithm except
when $(I, T)=(10,6)$ (see Table 2). The algorithm has terminated several times due to the
numerical instability. Although it is possible that the attained solution is not very good in such
cases, the obtained optimality gap was sufficiently small (see worst-case optimality gap, Opt.Gap
in Table 2).

4.2 Comparison with BARON and CONOPT

Numerical results of BARON and CONOPT are presented in Table 3, where four periods and
1,000 scenarios are considered. CPU times for solving problems by BARON were very long in
comparison to the cutting-plane algorithm. In some cases, BARON stopped due to the memory
shortage and returned a locally optimal solution (see the last row in Table 3). Although solutions
obtained by CONOPT do not have a guarantee of global optimality, CONOPT attained locally
optimal solutions in very short time without leading to memory shortage.

Figure 2 shows the optimal investment proportions obtained by different approaches. The
solutions of the cutting-plane algorithm were slightly different from others. For instance, the
proportion in Asset 7 for $\lambda=0.5$ and 0.6 differs from other approaches (see Figure 2).

In Figure 3, we show the efficient frontiers of the solutions provided by different approaches
with the value of the trade-off parameter. The horizontal and the vertical axis are mean and
variance of the portfolio value, respectively. Although some solutions of the cutting-plane algo-
rithm were slightly different from others, it is clear that solutions of the cutting-plane algorithm
are not far from the frontiers of other approaches.
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(i) Algorithm CPMV (ii) BARON

(iii) CONOPT

Figure 2: Optimal Investment Proportion $(I=10, T=4, S= 1,000)$

1005 lDl 1015 102 1025 lP3 1035 104
Mean of portfollo value

口 CPMV BARON $\nearrow’$ CONOPT

Figure 3: Efficient Frontier $(I=10, T=4, S=1,OOO)$

5 Conclusion

We have formulated the constant rebalanced portfolio optimization problem as a POP and de-
veloped a cutting-plane algorithm for solving it. The computational experiments show that our
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algorithm can solve large-size problems that can not be directly solved by the global optimization
solver over polynomials GloptiPoly [4]. This success is due to implementation of the reduced
degree polynomials in the iterative algorithm. Our numerical results show that our algorithm
provides solutions with adequate accuracy for practical purposes. Moreover, our algorithm is
comparable to state-of-the-art global optimization solver BARON.

Furthermore, if there is an effective warm-starting approach for SDP, then our cutting-plane
algorithm might be even more efficient by starting a SDP solver from the solution attained in
the previous iteration.
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