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Abstract

The semi-infinite program (SIP) is normally represenfed with infinitely
many inequality constraints, and has been studied extensively so far. However,
there have been very few studies on the SIP involving conic constraints, even
though it has important applications such as Chebyshev-like approximation,
filter design, and so on.

In this paper, we focus on the SIP with a convex objective function and
infinitely many conic constraints, called an SICP for short. We show that,
under Slater $s$ constraint qualification, an optimum of the SICP satisfies the
KKT conditions that can be represented only with a finite subset of the conic
constraints.

1 Introduction
In this paper, we focus on the following optimization problcm with an infinite $nu$lrlber
of conic constraints:

Minimize $f(x)$
(1.1)

subject to $A(t)^{T}x-b(t)\in C$ for all $t\in T$ ,

where $f$ : $\mathbb{R}^{n}arrow \mathbb{R}$ is a continuously differentiable convex function, $A$ : $Tarrow \mathbb{R}^{n\cross m}$

and $b$ : $Tarrow \mathbb{R}^{m}$ are continuous functions, $T\subset \mathbb{R}^{\ell}$ is a given compact set, and
$C\subset \mathbb{R}^{m}$ is a closed convex cone with nonempty interior. We call this problem the
semi-infinite conic program, SICP for short. Throughout this paper, we assume that
SICP (1.1) has a nonempty solution set.
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When $m=1$ and $C=\mathbb{R}_{+}:=\{z\in \mathbb{R}|z\geq 0\}$ , SICP (1.1) reduces to the
classical semi-infinite program (SIP) [3, 5, 7, 9, 10, 13], which has wide appli-
cations in engineering, e.g., the air pollution control, the robot trajectory plan-
ning, the stress of materials, etc.[7, 9]. So far, many algorithms have been pro-
posed for solving SIPs, such as the discretization method [3], the local reduction
based method [4, 8, 14] and the exchange method [5, 6, 13]. A more general
choice for $C$ is the symmetric cone such as the second-order cone (SOC) $\mathcal{K}^{m}$ $:=$

$\{(z_{1}, z_{2}, \ldots, z_{m})^{T}\in \mathbb{R}^{m}|z_{1}\geq\Vert(z_{2}, z_{3}, \ldots, z_{m})^{T}\Vert_{2}\}$ al$1d$ the semi-definite cone $S_{+}^{m}$ $:=$

$\{Z\in \mathbb{R}^{mxm}|Z=Z^{T}, Z\succeq 0\}$ .
There are some important applications of SICP (1.1). For example, when $C$ is an

SOC, SICP (1.1) can be used to formulate a Chebyshev-like approximation problem
involving vector-valued functions. Specifically, let $Y\subseteq \mathbb{R}^{n}$ be a given compact set,
and $\Phi$ : $Yarrow \mathbb{R}^{m}$ and $F$ : $\mathbb{R}^{\ell}\cross Yarrow \mathbb{R}^{m}$ be given functions. Then, we want to
determine a parameter $u\in \mathbb{R}^{p}$ such that $\Phi(y)\approx F(u, y)$ for all $y\in Y$ . One relevant
approach is to solve the following problem:

Minimizeu $\max_{y\in Y}\Vert\Phi(y)-F(u, y)\Vert_{2}$ .

By introducing the auxiliary variable $r\in \mathbb{R}$ , we can transform the above problem
to

$Minimu,r$ize $r$

subject to $(\begin{array}{ll} r\Phi(y)- F(u,y)\end{array})\in \mathcal{K}^{m+1}$ for all $y\in Y$,

which is of the form (1.1) when $F$ is affine with respect to $u$ .
The main purpose of the paper is to study the Karush-Kuhn-Tucker (KKT)

conditions for SICP (1.1). Although the original KKT conditions for SICP (1.1)
could be described by means of integration and Borel measure, we show that they
can be represented by a finite number of elements in $T$ under Slater $s$ constraint
qualification.

Throughout the paper, we use the following notations. $\Vert\cdot\Vert$ denotes the Euclidean
norm defined by $\Vert z\Vert$

$:=\sqrt{z^{T}z}$ for $z\in \mathbb{R}^{m}$ . For a given cone $C\subseteq \mathbb{R}^{m},$ $C^{d}$ denotes
the dual cone defined by $C^{d}$ $:=\{z\in \mathbb{R}^{m}|z^{T}w\geq 0, \forall w\in C\}$ . For vectors $z\in \mathbb{R}^{m}$

and $w\in \mathbb{R}^{m}$ , the conic complementarity condition, $z^{T}w=0,$ $z\in C$ and $w\in C^{d}$ ,
is also written as $C\ni z\perp w\in C^{d}$ . For a nonempty set $D\subseteq \mathbb{R}^{m}$ and a function
$h$ : $\mathbb{R}^{m}arrow \mathbb{R},$ $\arg\min_{z\in D}h(z)$ denotes the set of minimizers of $h$ over $D$ . In addition,
for $z\in \mathbb{R}^{m}$ and $\delta>0,$ $B(z, \delta)\subseteq \mathbb{R}^{m}$ denotes the closed ball with center $z$ and radius
$\delta$ , i.e., $B(z, \delta):=\{w\in \mathbb{R}^{m}|\Vert w-z\Vert\leq\delta\}$ .

2 Karush-Kuhn-Tucker Conditions
In this section, we provide the optimality conditions for SICP (1.1). When $m=1$
and $C=\mathbb{R}_{+}$ , SICP (1.1) reduces to the classical semi-infinite program and the
optimality conditions are given as follows [9, Theorem 2].
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Let $\overline{x}$ be an optimum of SICP (1.1) with $m=1$ and $C=\mathbb{R}_{+}$ . Suppose
that the Slater constraint qualification holds for SICP (1.1) with $C=\mathbb{R}_{+}$ ,
i.e., there exists an $x_{0}\in \mathbb{R}^{n}$ such that $A(t)^{T}x_{0}-b(t)>0(\forall t\in T)$ . Then,
there exist $p$ elements $t_{1},$ $t_{2},$

$\ldots,$
$t_{p}\in T$ such that $p\leq n$ and

$\nabla f(\overline{x})-\sum_{i=1}^{p}\eta_{i}A(t_{i})=0$ ,

$\mathbb{R}_{+}\ni\eta_{i}\perp A(t_{i})^{T}\overline{x}-b(t_{i})\in \mathbb{R}_{+}(i=1,2, \ldots,p)$ . (2.1)

In this section, we define the generalized Slater constraint qualification (GSCQ),
and show that the optimality conditions can be represented with finitely many conic
constraints under the GSCQ.

This section consists of two subsections. In Subsection 2.1, we define the GSCQ
and the generalized Abadie constraint qualifications (GACQ) and show that the
GACQ holds under the GSCQ. In Subsection 2.2, we derive the optimality conditions
for SICP (1.1) by using the results of Subsection 2.1 and Carath\’eodory‘s Theorem.

Before going to the subsections, we provide some propositions, which play im-
portant roles in proving the propositions and theorems.

Proposition 2.1. [11] Let $C\subseteq \mathbb{R}^{n}$ be an arbitrary nonempty cone. Then, we have

$C^{dd}=c1$ co $C$.

Particularly, when $C$ is a closed convex cone, we have $C=C^{dd}$ .

Proposition 2.2. Let $D\subseteq \mathbb{R}^{n}$ be an arbitmry convex set with nonempty interior.
Then, we have

$x\in$ int $D,$ $y\in$ cl $D,$ $\lambda\in[0,1)$ $\Rightarrow$ $(1-\lambda)x+\lambda y\in$ int D. (2.2)

Proof. Choose $x\in$ int $D,$ $y\in$ cl $D$ and $\lambda\in[0,1)$ arbitrarily. We will show that
there exists an $\epsilon>0$ such that $(1-\lambda)x+\lambda y+B(0, \epsilon)\subseteq D$ , where $B(0, \in)$ $:=\{x\in$

$\mathbb{R}^{n}|\Vert x\Vert\leq\epsilon\}$ . From $y\in$ cl $D$ , we have $y\in D+B(0, \epsilon)$ for any $\epsilon>0$ . Therefore,
by choosing a sufficiently small $\epsilon>0$ , we have

$(1-\lambda)x+\lambda y+B(0, \epsilon)\subseteq(1-\lambda)x+\lambda(D+B(0, \epsilon))+B(0, \epsilon)$

$=(1-\lambda)(x+(1-\lambda)^{-1}(1+\lambda)B(0, \epsilon))+\lambda D$

$\subseteq(1-\lambda)D+\lambda D=D$ ,

where the equalities hold since $\alpha X+\beta X=(\alpha+\beta)X$ for any $\alpha,$ $\beta\geq 0$ and any
convex set $X$ , and the last inclusion is due to $x\in$ int D. $\square$

2.1 Generalized Slater and Abadie constraint qualifications
In the case of the convex optimization problem with finitely many $i\iota$lequality con-
straints, it is known that Abadie’s constraint qualification holds under Slater $s$ con-
straint qualification, and then the KKT conditions serve as a necessary and sufficient
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condition for the global optimality [1]. In this subsection, we define the generalized
Slater and Abadie constraint qualifications (GSCQ and GACQ) for SICP (1.1). and
show that the GACQ always holds under $t1$ 1 $(^{\backslash }$, GSCQ. Let $\overline{x}$ be an arbitrary feasible
solution of SICP (1.1), and $S$ be the feasible solution set of SICP (1.1), that is,

$S:=\{x\in \mathbb{R}^{n}|A(t)^{T}x-b(t)\in C(\forall t\in T)\}$ .

We define the following cones:

$G_{t}(\overline{x}):=\{\alpha(A(t)^{T}\overline{x}-b(t))|\alpha\leq 0\}$ ,
$\Lambda_{t}(\overline{x}):=C+G_{t}(\overline{x})$ , (2.3)
$C_{t}(\overline{x}):=\{y\in R^{n}|A(t)^{T}y\in cl\Lambda_{t}(\overline{x})\}$ , (2.4)

$C_{S}( \overline{x}):=\bigcap_{t\in T}C_{t}(\overline{x})$
. (2.5)

We Ilotc that the closure of $\Lambda_{t}(\overline{x})$ is the tangent cone of $C$ at $A(t)^{T}\overline{x}-b(t)$ , and the
dual cone of $\Lambda_{t}(\overline{x})$ characterizes the directions satisfying the conic complementarity
conditions for $A(t)^{T}\overline{x}-b(t)$ , i.e., $\Lambda_{t}(\overline{x})^{d}=\{y\in \mathbb{R}^{m}|C\ni y\perp A(t)^{T}\overline{x}-b(t)\in C\}$ .
(See Proposition 2.9 below.) Also, $C_{S}(\overline{x})$ is a generalization of the linearized cone
as defined in [2], for the case where $|T|<\infty$ and $C=\mathbb{R}_{+}$ .

Now, we define GSCQ and GACQ by using thc above cones.

Definition 2.3 (GSCQ). We say that the generalized Slater constmint qualification
(GSCQ) holds for SICP (1.1) if there exists some $x_{0}\in \mathbb{R}^{n}$ such that

$A(t)^{T}x_{0}-b(t)\in$ int $C(\forall t\in T)$ . (2.6)

Definition 2.4 (GACQ). Let $S$ and $\overline{x}\in S$ be the feasible set and a feasible solution
of SICP $(l.l)$ , respectively. Then, we say that the genemlized Abadie constraint
qualification $GACQ$ holds at $\overline{x}\in S$ if

$C_{S}(\overline{x})\subseteq T_{S}(\overline{x})$ , (2.7)

where $C_{S}(\overline{x})$ is defined by (2.5) and $T_{S}(\overline{x})$ is the tangent cone to $S$ at $\overline{x}$ .

Next, we show that the GACQ holds under the GSCQ. To this end, we show the
following two lemmas by using the following set:

$C_{\mathring{s}}(\overline{x})$

$:= \bigcap_{t\in T}\{y\in \mathbb{R}^{n}|A(t)^{T}y\in$
int $C+G_{t}(\overline{x})\}$ . (2.8)

Notice that $C_{\mathring{S}}(\overline{x})$ is not empty for the GSCQ.

Lemma 2.5. Assume that the GSCQ holds for SICP (1.1). Let $\overline{x}$ be an arbitmry
feasible solution of SICP (1.1). Let $C_{S}(\overline{x})$ and $C_{\mathring{S}}(\overline{x})$ be defined by (2.5) and (2.8),
respectively. Then, $C_{\mathring{s}}(\overline{x})$ is nonempty and $C_{S}(\overline{x})=$ cl $C_{s}^{o}(\overline{x})$ .
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Proof. If we have $C_{S}(\overline{x})=$ cl $C_{\mathring{S}}(\overline{x})$ , then $C_{S}^{o}(\overline{x})$ must be nonempty since $0\in C_{S}(\overline{x})$ .
So, we only show $C_{S}(\overline{x})=$ cl $C_{\mathring{s}}(\overline{x})$ . Notice that $C_{S}(\overline{x})\supseteq C_{\mathring{S}}(\overline{x})$ . Then, we have
$C_{S}(\overline{x})\supseteq$ cl $C_{\mathring{S}}(\overline{x})$ , since $C_{S}(\overline{x})$ is closed. Thus, it suffices to show $C_{S}(\overline{x})\subseteq$ cl $C_{\mathring{s}}(\overline{x})$ .
Let $y\in C_{S}(\overline{x})$ be chosen arbitrarily. Then, we have to show that there exists some
$\{y^{k}\}\subseteq C_{\mathring{S}}(\overline{x})$ such that $y^{k}arrow y$ as $karrow\infty$ . By the GSCQ, there is an $x_{0}\in \mathbb{R}^{n}$

such that $A(t)^{T}x_{0}-b(t)\in$ int $C$ for any $t\in T$ . Let $y_{0}$ $:=x_{0}-\overline{x}$ . Then, we have
$A(t)^{T}y_{0}=(A(t)^{T}x_{0}-b(t))-(A(t)^{T}\overline{x}-b(t))\in$ int $C+G_{t}(\overline{x})$ . Since int $C+G_{t}(\overline{x})$

is an open convex set, we have

$A(t)^{T}y_{0}\in$ int $C+G_{t}(\overline{x})=$ int $($ int $C+G_{t}(\overline{x}))$ .

for any $t\in T$ . Since $y\in C_{S}(\overline{x})$ and cl $\Lambda_{t}(\overline{x})=$ cl $(C+G_{t}(\overline{x}))=$ cl $($ int $C+G_{t}(\overline{x}))^{1}$ ,
we have

$A(t)^{T}y\in$ cl $($ int $C+G_{t}(\overline{x}))$ .

Applying Proposition 2.2 with $D$ $:=$ int $C+G_{t}(\overline{x}),$ $x$ $:=A(t)^{T}y_{0},$ $\lambda$ $:=1-\eta$ and
$y:=A(t)^{T}y$ , we have

$A(t)^{T}((1-\eta)y+\eta y_{0})\in$ int $C+G_{t}(\overline{x})$ (2.9)

for any $t\in T$ and $\eta\in(0,1]$ . Let $\{\eta_{k}\}\subseteq(0,1]$ be a sequence such that $\lim_{karrow\infty}\eta_{k}=0$

and $\{y^{k}\}$ be defined by $y^{k}$ $:=(1-\eta_{k})y+\eta_{k}y_{0}$ . Then, (2.9) implies that $A(t)^{T}y^{k}\in$

int $C+G_{t}(\overline{x})$ for any $k$ and $t\in T$ . Therefore, $\{y^{k}\}\subseteq C_{\mathring{s}}(\overline{x})$ and $\lim_{karrow\infty}y^{k}=y$ .
This completes the proof. $\square$

Lemma 2.6. Assume that the GSCQ holds for SICP (1.1). Let $\overline{x}$ be an arbitmry
feasible solution of SICP (1.1). For $y\in \mathbb{R}^{n}$ and $t\in T$ , let $\alpha_{y}(t)\in \mathbb{R}$ be defined by

$\alpha_{y}(t):=\max_{\alpha\in[0,1]}\{\alpha|A(t)^{T}(\overline{x}+\alpha y)-b(t)\in C\}$. (2.10)

Then, for any $y\in C_{\mathring{S}}(\overline{x})$ , we have

$\inf_{t\in T}\alpha_{y}(t)>0$ .

Proof. Let $y\in C_{\mathring{s}}(\overline{x})$ and $t\in T$ be chosen arbitrarily. First note that $\alpha_{y}(t)\geq 0$ ,
since $\overline{x}$ is feasible to SICP (1.1). Then. we first prove $\alpha_{y}(t)>0$ . To this end, it
suffices to show the existence of $\alpha\in(0,1]$ such that

$A(t)^{T}(\overline{x}+\alpha y)-b(t)\in$ int C. (2.11)

Since $y\in C_{\mathring{S}}(\overline{x})$ , we have $A(t)^{T}y\in$ int $C+G_{t}(\overline{x})$ , which together with the definition
of $G_{t}(\overline{x})$ implies the existence of some $\beta\geq 0$ such that

$\beta(A(t)^{T}\overline{x}-b(t))+A(t)^{T}y\in$ int C. (2.12)

When $\beta=0,$ $(2.12)$ reduces to $A(t)^{T}y\in$ int $C$ , which together with $A(t)^{T}\overline{x}-b(t)\in C$

and Proposition 2.2 implies $\frac{1}{2}A(t)^{T}y+\frac{1}{2}(A(t)^{T}\overline{x}-b(t))=\frac{1}{2}(A(t)^{T}(\overline{x}+y)-b(t))\in$

$\overline{1}$This equality can be obtained easily from the fact that cl (int $C$) $=C$
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int $C$ , and hence, $A(t)^{T}(\overline{x}+y)-b(t)\in$ int $C$ . We thus have (2.11) with $\alpha=1$ . When
$\beta>0$ , by multiplying (2.12) by $\beta^{-1}$ , we have $A(t)^{T}(\overline{x}+\beta^{-1}y)-b(t)\in$ int $C$ . Due
to Proposition 2.2, we have $A(t)^{T}(\overline{x}+sy)-b(t)\in$ int $C$ for any $s\in(0, \beta^{-1}]$ , which
implies $A(t)^{T}( \overline{x}+\min(\beta^{-1},1)y)-b(t)\in$ int $C$ . Hence, we also have (2.11).

In what follows, we show $\inf_{t\in T}\alpha_{y}(t)>0$ . Suppose to the contrary that there
exists a sequence $\{t^{k}\}\subseteq T$ such that $\alpha_{y}(t^{k})arrow 0$ as $karrow\infty$ . Let $t^{*}$ be an arbitrary
accumulation point of $\{t^{k}\}$ . Then, by taking an appropriate subsequence, we have

$\lim_{karrow\infty}t^{k}=t^{*}$ , $\lim_{karrow\infty}\alpha_{y}(t^{k})=0$ . (2.13)

From (2.11), there exists an a $>0$ such that

$A(t^{*})^{T}(\overline{x}+\overline{\alpha}y)-b(t^{*})\in$ int C. (2.14)

Hence, by the continuity of functions $A$ and $b$ , we have

$A(t^{k})^{T}(\overline{x}+\overline{\alpha}y)-b(t^{k})\in$ int $C$ (2.15)

for all $k$ sufficiently large. From (2.15) and (2.10). we have $0<\overline{\alpha}\leq\alpha_{y}(t^{k})$ , which
together with (2.13) implies $\overline{\alpha}=0$ . However, this contradicts $\overline{\alpha}>0$ . Hence, we
have $\inf_{t\in T}\alpha_{y}(t)>0$ .

口

Now, we show the main theorem of this section, which claims that the GSCQ
implies the GACQ for SICP (1.1).

Theorem 2.7. Let $\overline{x}$ be an arbitmry feasible solution of SICP (1.1). Assume that
the GSCQ holds. Then, the $GACQ$ holds at $\overline{x}$ .

Proof. Let $C_{\mathring{S}}(\overline{x})$ be defined by (2.8). Then we have cl $C_{s}^{O}(\overline{x})=C_{S}(\overline{x})$ from Lemma
2.5. Therefore, due to the closedness of $T_{S}(\overline{x})$ , we only have to show

$C_{\mathring{S}}(\overline{x})\subseteq T_{S}(\overline{x})$ .

Let $y\in C_{S}^{o}(\overline{x})$ be chosen arbitrarily and $\alpha_{y}:=\inf_{t\in T}\alpha_{y}(t)$ , where $\alpha_{y}(t)$ is given by
(2.10). Then, we have

$A(t)^{T}(\overline{x}+\beta y)-b(t)\in C$ (2.16)

for any $\beta\in[0, \alpha_{y}]$ and $t\in T$ , since $A(t)^{T}\overline{x}-b(t)\in C$ and $C$ is convex.
By Lemma 2.6, we have $\alpha_{y}>0$ . Hence, we can choose $\{b_{k}\}\subseteq(0, \alpha_{y}]$ such that

$\lim_{karrow\infty}b_{k}=0$ . By (2.16), we have

$A(t)^{T}(\overline{x}+b_{k}y)-b(t)\in C$ $(\forall t\in T)$ ,

which implics $\overline{x}+b_{k}y\in S$ for all $k$ . Now, recall that the definition of $T_{S}(\overline{x})$ is given
by

$T_{S}( \overline{x}):=\{y\in \mathbb{R}^{n}|\lim_{karrow\infty}a_{k}(x_{k}-\overline{x})=y,\lim_{karrow\infty}x_{k}=\overline{x},$ $x_{k}\in S,$ $a_{k}\geq 0(k=1,2, \ldots)\}$ .
(2.17)

Thus, by setting $x_{k}$ $:=\overline{x}+b_{k}y$ and $a_{k}$ $:=1/b_{k}$ , we have $y\in T_{S}(\overline{x})$ . The proof is
completed. 口
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2.2 The KKT conditions for SICP
As we have shown in the previous subsection, the GACQ holds under the GSCQ.
In this subsection, by using this result, we show that the optimality condition for
SICP (1.1) can be represented as the KKT conditions with finitely many conic con-
straints. It is well known that the following Carath\’eodory‘s Theorem plays a signif-
icant role in deriving the optimality condition for the ordinary SIP with inequality
constraints. The theorem is also important in deriving the optimality conditions for
SICP (1.1).

Lemma 2.8. (Carath\’eodory‘s Theorem [11, Theorem 17.1]) Let $D\subseteq \mathbb{R}^{n}$ be an
arbitmry nonempty set, and co $D$ be the convex hull of D. Then, for any $x\in$ co $D$ ,
there exist $p$ elements $s_{1},$ $s_{2},$

$\ldots,$
$s_{p}\in D$ and $p$ positive numbers $\lambda_{1},$ $\lambda_{2},$

$\ldots,$
$\lambda_{p}>0$

such that $p\leq n+1,$ $\sum_{i=1}^{p}\lambda_{i}=1$ , and $x=\lambda_{1}s_{1}+\lambda_{2}s_{2}+\cdots+\lambda_{p}s_{p}$ .

The conic complementarity condition that appears in the KKT conditions is
written as $C\ni y(t)\perp A(t)^{T}x-b(t)\in C$ with a Lagrange multiplier vector $y(t)$ .
The next proposition claims that the dual cone of $\Lambda_{t}(\overline{x})$ defined by (2.3) characterizes
the Lagrange multiplier $y(t)$ .

Proposition 2.9. Let $t\in T$ be chosen arbitrarily, and $\overline{x}$ be an arbitmry feasible
solution of SICP (1.1). Let $\Lambda_{t}(\overline{x})$ be defined by (2.3). Then, we have

$\Lambda_{t}(\overline{x})=co(C\cup G_{t}(\overline{x}))$ ,
$\Lambda_{t}(\overline{x})^{d}=C\cap G_{t}(\overline{x})^{d}$

$=\{y\in \mathbb{R}^{m}|C\ni y\perp A(t)^{T}\overline{x}-b(t)\in C\}$ .
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Now, in order to obtain the optimality condition for SICP (1.1), we introduce
the following cones:

$H_{t}(\overline{x}):=\{z\in \mathbb{R}^{n}|z=A(t)\lambda_{J}.\lambda\in\Lambda_{t}(\overline{x})^{d}\}$, (2.18)

$H( \overline{x}):=\bigcup_{t\in T}H_{t}(\overline{x})$
, (2.19)

where $t\in Ta1$ 1 $d\overline{x}$ is a feasible solution. Note that $H_{t}(\overline{x})$ is a convex cone but may
not be closed, and $H_{t}(\overline{x})$ is a cone but may not be closed or convex.

The next proposition shows the relation between $H(\overline{x})$ and $C_{S}(\overline{x})$ .

Proposition 2.10. Let $\overline{x}\in S$ be an arbitrary feasible solution of SICP $(l.l)$ . Let
$C_{S}(\overline{x})$ and $H(\overline{x})$ be defined by (2.5) and (2.19), respectively. Then, we have

$C_{S}(\overline{x})^{d}\subseteq clcoH(\overline{x})$ .

Proof. It suffices to prove $C_{S}(\overline{x})\supseteq H(\overline{x})^{d}$ . Choose $y\in H(\overline{x})^{d},$ $t\in T$ and $\lambda\in\Lambda_{t}(\overline{x})^{d}$

arbitrarily. Since $y\in H(\overline{x})^{d}$ and $A(t)\lambda\in H_{t}(\overline{x})\subseteq H(\overline{x})$ , we have $\langle A(t)^{T}y,$ $\lambda\rangle=$

$\{y, A(t)\lambda\}\geq 0$ . Note that $t\in T$ and $\lambda\in\Lambda_{t}(\overline{x})^{d}$ were chosen arbitrarily. Therefore,
we have $A(t)^{T}y\in\Lambda_{t}(\overline{x})^{dd}=$ cl co $\Lambda_{t}(\overline{x})=$ cl $\Lambda_{t}(\overline{x})$ for any $t\in T$ , which implies
$y\in C_{S}(\overline{x})$ . 口

The following lemma is also important for the proof of the subsequent theorem.

Lemma 2.11. Assume that the GSCQ holds for SICP (1.1). Let $x_{0}$ be an arbitmry
point satisfying (2.6) and $z\in C$ be an arbitrary vector. Then, there exists some
$\epsilon>0$ such that

$(A(t)^{T}x_{0}-b(t))^{T}z\geq\epsilon\Vert z\Vert$ (2.20)

for any $t\in T$ .

Proof. For simplicity, let $y(t)$ $:=A(t)^{T}x_{0}-b(t)$ . When $z=0$ , inequality (2.20)
holds obviously for any $t\in T$ . So we only consider the case where $z\neq 0$ . Let

$\delta(t):=\frac{y(t)^{T}z}{\Vert z\Vert}$ . (2.21)

To show (2.20). it suffices to prove $i_{I}1f_{t\in T}\delta(t)>0$ . Suppose that $\inf_{t\in T}\delta(t)\leq 0$ for
contradiction. Then, we must have $\inf_{t\in T}\delta(t)=0$ since $y(t)\in$ int $C$ and $z\in C$

implies $\delta(t)\geq 0$ . Due to the compactness of $T$ , there exist some subsequence
$\{t^{k}\}\subseteq T$ and $t^{*}\in T$ such that $\lim_{karrow\infty}\delta(t^{k})=0$ and $\lim_{karrow\infty}t^{k}=t^{*}$ . Moreover,
the continuity of $y(t)$ yields $\lim_{karrow\infty}y(t^{k})=y(t^{*})$ . Then, by (2.21), we obtain
$y(t^{*})^{T}z=0$ . However, this contradicts $0\neq z\in C$ and $y(t^{*})\in$ int $C$ . Therefore, we
have $\inf_{t\in T}\delta(t)>0$ . 口

Now, we are in the position to show the theorem on the optimality condition for
SICP (1.1).
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Theorem 2.12 (Optimality condition). Assume that the GSCQ holds for SICP
(1.1). Let $x^{*}$ be an arbitmry optimizer of SICP (1.1). Then, there exist $t_{1},$ $t_{2},$

$\ldots,$
$t_{p}\in$

$T$ and $y_{1},$ $y_{2},$
$\ldots,$

$y_{p}\in \mathbb{R}^{m}$ such that $p\leq n+1$ and

$\nabla f(x^{*})-\sum_{i=1}^{p}A(t_{i})y_{i}=0$ , (2.22)

$C\ni y_{i}\perp A(t_{i})^{T}x^{*}-b(t_{i})\in C(i=1,2, \ldots,p)$ . (2.23)

Proof. From $x^{*} \in\arg\min_{x\in S}f(x)$ and [12, Theorem 3.6], we have $\nabla f(x^{*})\in T_{S}(x^{*})^{d}$ .
Also we have $T_{S}(x^{*})^{d}\subseteq C_{S}(x^{*})^{d}\subseteq$ cl co $H(x^{*})$ , where the first inclusion $hol(ls$

since $C_{S}(x^{*})\subseteq T_{S}(x^{*})$ from Theorem 2.7, and the second inclusion follows from
Proposition 2. 10. Therefore, we have

$\nabla f(x^{*})\in clcoH(x^{*})$ ,

which indicates the existence of a sequence $\{z^{k}\}\subseteq$ co $H(x^{*})$ such that

$\lim_{karrow\infty}z^{k}=\nabla f(x^{*})$ .

By Lemma 2.8, (2.18) and (2.19), there exist $n+1$ nonnegative scalars2 $\alpha_{1)}^{k}\alpha_{2}^{k},$

$\ldots,$
$\alpha_{n+1}^{k}\geq$

$0$ such that $\sum_{i=1}^{n+1}\alpha_{i}^{k}=1$ and

$z^{k}= \sum_{i=1}^{n+1}A(t_{i}^{k})\alpha_{i}^{k}\lambda_{i}^{k}$ , $\lambda_{i}^{k}\in\Lambda_{t_{i}^{k}}(x^{*})^{d}$ . (2.24)

Denote $y_{i}^{k}$
$:=\alpha_{i}^{k}\lambda_{i}^{k}\in\Lambda_{t_{i}^{k}}(x^{*})^{d}$ for each $i$ in (2.24).

In what follows, we show that the sequence $\{y_{i}^{k}\}$ is bounded and any accumula-
tion point satisfies (2.22) and (2.23). From the GSCQ, there exists an $x_{0}\in \mathbb{R}^{n}$ such
that $A(t_{i}^{k})^{T}x_{0}-b(t_{i}^{k})\in$ int $C$ for each $i$ . By $y_{i}^{k}\in\Lambda_{t_{i}^{k}}(x^{*})^{d}\subseteq C$ and Lemma 2.11,
there exists $\epsilon>0$ such that

$\{y_{i}^{k}, A(t_{i}^{k})^{T}x_{0}-b(t_{i}^{k})\}\geq\epsilon\Vert y_{i}^{k}\Vert$ (2.25)

for each $i$ . Since $y_{i}^{k}\in\Lambda_{t_{i}^{k}}(x^{*})^{d}\subseteq G_{t_{i}^{k}}(x^{*})^{d}$ from Proposition 2.9, we have

$\langle y_{i}^{k},$ $A(t_{i}^{k})^{T}x^{*}-b(t_{i}^{k})\}\leq 0$ . (2.26)

It, then, follows from (2.26) and (2.25) that

$\{y_{i}^{k},$ $A(t_{i}^{k})^{T}(x_{0}-x^{*})\rangle\geq\epsilon\Vert y_{i}^{k}\Vert$ . (2.27)

From (2.24), (2.27) and $y_{i}^{k}=\alpha_{i}^{k}\lambda_{i}^{k}$ , we have $(z^{k})^{T}(x_{0}-x^{*})= \sum_{i=1}^{n+1}\{y_{i}^{k},$ $A(t_{i}^{k})^{T}(x_{0}-$

$x^{*}) \rangle\geq\sum_{i=1}^{n+1}\epsilon\Vert y_{i}^{k}\Vert$ . Moreover, since $\{z^{k}\}$ is convergent, there exists $M>0$ such
that $(z^{k})^{T}(x_{0}-x^{*})\leq M$ for all $k$ . Therefore, we have

$M \geq\epsilon\sum_{i=1}^{n+1}\Vert y_{i}^{k}\Vert$ .

2If we have $p<n+1$ scalars, then we can set $\alpha_{p+1}^{k}=\alpha_{p+2}^{k}=\cdots=\alpha_{n+1}^{k}=0$ without loss of
generality.
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which implies the boundedness of $\{y_{i}^{k}\}$ . Now, let $y_{i}$ and $t_{i}$ be arbitrary accumulation
points of $\{y_{i}^{k}\}$ and $\{t_{i}^{k}\}$ , respectively. Then there exist subsequences such that
$z^{k}arrow\nabla f(x^{*}),$ $t_{i}^{k}arrow t_{i}$ and $y_{i}^{k}arrow y_{i}$ for each $i=1,2,$ $\ldots,$ $n+1$ . From (2.24) with
$y_{i}^{k}=\alpha_{i}^{k}\lambda_{i}^{k}$ and the continuity of function $A$ , we obtain $\nabla f(x^{*})=\sum_{i=1}^{n+1}A(t_{i})y_{i}$ .
Hence, we have (2.22). From $y_{i}^{k}\in\Lambda_{t_{i}^{k}}(x^{*})^{d}$ and Proposition 2.9, it follows that
$C\ni y_{i}^{k}\perp A(t_{i}^{k})^{T}x^{*}-b(t_{i}^{k})\in C$ for each $k$ . Since $C$ is closed, we have $y_{i}\in C$ and
$A(t_{i})^{T}x^{*}-b(t_{i})\in C$ . Moreover, we have $\langle y_{i},$ $A(t_{i})^{T}x^{*}-b(t_{i})\}=0$ , since the function
defined by $\theta(y, t)$ $:=\langle y,$ $A(t)^{T}x^{*}-b(t)\}$ is continuous at any $y\in \mathbb{R}^{m}$ and $t\in T$ .
Therefore, (2.23) is obtained. $\square$

3 Concluding remarks
For the semi-infinite program with an infinite number of conic constraints (SICP),
we have shown that the KKT conditions can be represented with finitely many conic
constraints, as long as the Slater constraint qualification holds. It is an interesting
subject of future research to extend the result to the more general SICP without
the convexity assumption on the objective and constraint functions.
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