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The evolution of 13- and 17-year periodical cicadas (Magicicada) is enigmatic because 

at any given location up to three distinct species groups (Decim, Cassini, Decula) with 

synchronized life cycles are involved. Each species group is divided into one 13- and 

one 17-year species with the exception of the Decim group which contains two 13-year 

species; 13-year species are M. tredecim, M. neotredecim, M. tredecassini and M. 

tredecula, and 17-year species are M. septendecim, M. cassini and M. septendecula. 

Here we show, for the first time, that the divergence leading to the present 13- and 

17-year populations differs considerably among the species groups despite the fact 

that each group exhibits strikingly similar phylogeographic patterning. The earliest 

divergence of extant lineages occurred approximately 4 million years ago (mya) with 

one branch forming the Decim species group and the other subsequently splitting 2.5 

mya to form the Cassini and Decula species groups. The earliest split of extant 

lineages into 13- and 17-year life cycles occurred in the Decim lineage 0.5 mya. All 

three species groups experienced at least one episode of life-cycle divergence since the 

last glacial maximum. We hypothesize that despite independent origins, the three 

species groups achieved their current overlapping distributions because life-cycle 

synchronization of invading congeners to a dominant resident population enabled 

escape from predation and population persistence. The repeated life-cycle divergences 

supported by our data suggest the presence of a common genetic basis for the two life 

cycles in the three species groups.  
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Periodical cicadas (Magicicada) in the eastern United States represent one of the most 

spectacular life history and population phenomena in nature (1-10). These periodical 

cicadas spend most of their lives (13-years in the south, 17-years in the north) as 

underground juveniles except for a brief two- to four-week period when adults emerge 

simultaneously in massive numbers. With few exceptions, at any given location, all the 

periodical cicadas share the same life cycle and emerge on the same schedule, forming a 

single year class referred to as a “brood.” Surprisingly, each brood consists of multiple 

species from three species groups (Decim, Cassini, Decula).  

These three groups were considered to have diverged from each other allopatrically 

and to have later become sympatric and formed 13- and 17-year life cycles (2). The 

prolonged, prime-numbered life cycles were hypothesized to have evolved in response to 

Pleistocene climatic cooling (9,11) to avoid the adverse effect of low population density on 

mating success (9,12,13). Another view hypothesized that the long synchronized life cycles 

evolved in association with the predator avoidance strategy (2,4,8) and that this took place 

prior to both the glacial periods and the split of the three species groups (10) based on 

approximate genetic distances among species groups (8). To test these hypotheses, 

phylogenetic information about the relationships of species, broods, and populations is 

essential. However, phylogenetic studies of Magicicada have been largely limited to the 

Decim group (6,14-18), and only rough divergence times among species have been inferred 

(8,10). Thus, a comprehensive molecular phylogeny covering all the extant broods, their 

phylogeography and divergence time has been lacking until now. 

We conducted molecular phylogenetic and population genetic analyses using nuclear 

and mitochondrial DNA markers for samples collected over a thirty-year period (1978–

2008). These samples represent all 15 extant broods and all known species (Table S1). 

 

 

Results and discussion 

Phylogenetic analyses and divergence time estimation based on four nuclear and three 

mitochondrial genes (Table S2) clearly reveal the monophyly of each of the three species 
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groups (Decim, Cassini and Decula) and the sister relationship between Cassini and Decula 

(Fig. 1). A Bayesian relaxed clock analysis shows that the three species groups diverged 3.9 

million years ago (mya). Initially the Decim group diverged from the ancestor of Cassini + 

Decula, then Cassini and Decula separated 2.5 mya (Fig. 1). The mitochondrial gene 

genealogy further shows divergence associated with regions, and partly with life cycles 

(Fig. 2, Figs. S1 and S2 and Table S3). We distinguished four mitochondrial haplotype 

groups in Decim, and three each in Cassini and Decula (Fig. 2A-C). The geographic 

distributions of mitochondrial haplotype groups within each species group show similar 

divisions among eastern, middle and western regions (Fig. 2D-F). In Decim, there is also a 

major divergence between northern and southern groups corresponding to formally 

distinguished mitochondrial lineages A and B, respectively (15). Group A is divided into 

three groups, Ae, Am, and Aw, which occur in the eastern, middle and western parts of the 

US east of Great Plains, respectively. Populations of Ae and Am exhibit a 17-year cycle (M. 

septendecim); those of Aw both 17-year (M. septendecim) and 13-year (M. neotredecim) 

cycles, and those of B show only a 13-year cycle (M. tredecim). At the boundary of Ae and 

Am, a few populations possess both Ae and Am haplotypes. The Cassini group consists of 

three haplotype groups, Ce, Cm and Cw, again occurring in the eastern, middle and western 

regions, respectively (Fig. 2). Populations with Ce and Cm show 17-year cycles only (M. 

cassini), whereas those of Cw show both 17- and 13-year cycles (M. cassini and M. 

tredecassini, respectively). Lastly, the Decula group shows the least divergence of 

mitochondrial haplotypes, but yet there are differences in haplotype among the eastern (De), 

middle (Dm) and western (Dw) regions (Fig. 2). Each haplotype group is associated with 

both 17- and 13-year cycles (M. septendecula and M. tredecula, respectively), suggesting 

that life-cycle divergence occurred independently in the three regions.  

The boundaries of haplotype groups roughly coincide among the three species groups 

(Fig. 2D-F). In each species group, an isolation-by-distance pattern was detected by a 

Mantel test (Decim, Mantel’s r = 0.223, P = 0.0007; Cassini, r = 0.349, P = 0.0001; Decula, 

r = 0.377, P = 0.0001), suggesting that contiguous range expansion resulted in the present 

distribution. Parts of broods of each species group were associated with two or three 
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haplotype groups and occurred in different geographic regions, suggesting multiple origins 

of the same broods even within a single species (Fig. 2; Fig. S2). In Decim, brood VI, IX, 

X and XIV are found in Ae and Am, and brood XIX and XXIII in Aw and B. In Cassini, 

brood V and IX are found in Ce and Cm, and brood X and XIV in Ce, Cm and Cw. In 

Decula, brood V and XIV are found in De and Dm, brood VI and XXIII in De and Dw, and 

brood XIX in De, Dm and Dw. Thus, the broods of multiple lineages are shared among the 

three species groups and show similar geographic patterns. The divergence pattern of the 

two life cycles differs among the three species groups in relation to haplotype groups (Fig. 

2). Although genetic differentiation between 13-year M. tredecim and 17-year M. 

septendecim in Decim are evident, naturally, because these belong to different haplotype 

groups (Table S4; AMOVA), significant differentiation between 13-year M. neotredecim 

and 17-year M. septendecim within the haplotype group Aw was also detected by an 

AMOVA (Table S4; FCT = 0.234; df = 1, P < 0.001). However, there was not significant 

differentiation between 13- and 17-year cicadas in Cassini haplotype group Cw or in the 

whole Decula group (Table S4; Cassini Cw: FCT = 0.068, df = 1, P > 0.05; Decula: FCT = 

-0.039, df = 1, P > 0.05). 

The analysis of amplified fragment length polymorphism (AFLP) markers show 

results generally consistent with the mitochondrial data results (Fig. 3). Each species group 

showed a significant differentiation in terms of the fixation index among groups defined by 

life cycle and regions associated with mitochondrial haplotype groups (Decim, Fst = 0.0241, 

P = 0.0000; Cassini, Fst = 0.0099, P = 0.0000; Decula, Fst = 0.0109, P = 0.0040). In Decim, 

the 13-year M. tredecim (haplotype group B) was significantly differentiated from other 

groups as indicated by pairwise Fst values, whereas another 13-year group M. neotredecim 

(haplotype group Aw) and 17-year M. septendecim groups were not differentiated from one 

another except for one case (Fig. 3). In Cassini, the closest relationship between 13-year M. 

tredecassini and 17-year M. cassini within the haplotype group Cw was revealed (Fig. 3). 

In Decula, the six groups divided by life-cycle and haplotype group showed relationships 

different from those inferred using mitochondrial data; 13-year M. tredecula in haplotype 

groups De and Dm were closely related to each other, as were 17-year M. septendecula in 
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these haplotype groups (Fig. 3). Note, however, that haplotype groups De and Dm show 

only 1-bp difference in the mitochondrial sequence (Fig. 2C).  

The estimated age using a Bayesian relaxed clock analysis of the most recent 

common ancestor (MRCA) of all Decim mitochondrial haplotypes is 0.53 mya, after which 

time it separated into clades A (Ae+Am+Aw) and B (Fig. 1). The MRCA of each haplotype 

group is more recent (0.16—0.08 mya). The MRCA of the Decim Aw group containing 

13-year (M. neotredecim) and 17-year (M. septendecim) cicadas is 0.12 mya (Fig. 1). In the 

Cassini group, the MRCA of all mitochondrial haplotype groups is traced back to 0.32 mya, 

and the MRCA of Cw back to 0.16 mya. Lastly, mitochondrial haplotypes of the Decula 

group had their MRCA 0.23 mya. The divergence time of 13- and 17-year cicadas within 

the same mitochondrial lineage was estimated together with the gene flow between them 

using the isolation-with-migration approach (Fig. 4; Fig. S3). In Cassini Cw, divergence 

time was approximately 23 thousand years ago (kya), whereas in Decim Aw, divergence 

time was approximately 10 kya. In Decula, the divergence time was not clearly estimated 

(close to zero) due to the lack of haplotype differences between M. septendecula and M. 

tredecula, so their life-cycle divergence must have occurred quite recently. 

The Bayesian Skyline Plot based on mitochondrial gene sequence data (Fig. 5) as 

well as that based on both mitochondrial and nuclear gene sequence data (Fig. S4) revealed 

that the population sizes of both the Decim and the Cassini groups were relatively small 

during the last glacial period, probably due to a population bottleneck, but increased 

markedly after 10,000 years ago following the abrupt rise of temperature in the Holocene 

(19). By contrast, there was no increase in population size for the Decula group. This 

difference in the demographic history corresponds with the fact that except in some 

southern populations, today Decula is generally rare, compared to Decim and Cassini (8). 

Our results are broadly consistent with the previous idea that an ancestor of all 

Magicicada diverged into three species allopatrically, and later, the three became sympatric 

and each species independently diverged into 13- and 17-year cicadas (2). Surprisingly, 

however, the divergence of 13- and 17-year cicadas was asynchronous among the species 

groups and occurred repeatedly even within a species group. This finding is all the more 
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interesting given that each species group shows similar eastern, middle and western 

phylogeographic divisions (Fig. 2) similar to post-Pleistocene patterns observed in other 

North American taxa (20), suggesting that the three Magicicacda groups shared multiple 

refugia during the last glacial maximum. The Decim group showed the deepest (0.53 mya; 

middle Pleistocene) divergence in extant haplotype groups between north and south (i.e., 

Ae+Am+Aw vs. B). Meanwhile, the divergence between 13- and 17-year cicadas in Decim 

Aw, Cassini Cw and Decula occurred during or after the last glacial maximum (< 23 kya), 

possibly following population bottlenecks, suggesting that the life-cycle divergence in 

Magicicada is closely associated with global climatic fluctuations and shorter growing 

seasons in the north versus the south. The divergences into the present 13- and 17-year 

cicadas have occurred since the middle Pleistocene when climatic fluctuation became 

prominent (19), consistent with the glacial-period-origin hypothesis of the life cycles (9,11). 

However, the splits into species groups date to the Pliocene, suggesting that the origin of 

the life cyles was not directly related to the onset of the Pleistocene glacial period given our 

reasoning below (10). 

We suggest that the recent, repeated life-cycle divergences are caused by shifts 

between the alternative life cycles. We further suggest that the genetic basis of these life 

cycles and shifts is the same in each species group because it is unlikely that the same 

regulatory system evolved three times. The origin of M. neotredecim has been proposed to 

be a recent life-cycle shift of M. septendecim from a 17-year to a 13-year cycle by genetic 

assimilation of life-cycle plasticity, perhaps facilitated by other 13-year cicada “nurse 

broods” that protected them from predation (4,17,21). The plasticity of Magicicada life 

cycle length has been suggested based on records of off-schedule emergences (22). 

Supporting the nurse brood model is the fact that M. neotredecim is found in two of three 

extant 13-year cicada broods, XIX and XXIII with broad ranges, but not in XXII with a 

narrow range far away from the range of M. neotredecim. Thus, the origin of M. 

neotredecim may have involved some influence by pre-existing 13-year broods XIX and 

XXIII. Introgressive hybridization between M. septendecim and M. tredecim (23,24) has 

also been proposed to explain the origin of M. neotredecim. Our results corroborate the 
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previously reported genetic closeness of M. neotredecim to M. septendecim and not to M. 

tredecim (15-18), more consistent with the plasticity/nurse-brood model (but see ref. 25 for 

the theoretical possibility of the introgressive hybridization model). In the Cassini and the 

Decula groups, the hybridization hypothesis cannot be applied because there is no evidence 

of secondary contact between cicadas with different life cycles of the same species group. 

These species group may have been monotypic (either 13- or 17-year) at the beginning of 

the last glacial period and may have changed their life cycles to match those of pre-existing 

“nurse-brood” populations (e.g., of Decim) with which they became sympatric. Natural 

selection would have promoted synchronization of invading populations to resident 

populations because invaders would gain protection from predation (2,4,8) and 

consequently avoid Allee effects (failure to reproduce due to low population density) (9). 

The repeated shifts between the two prime-numbered life cycles in all three Magicicada 

species groups suggests a common genetic basis that evolved prior to the origin of the 

species groups, 3.9 Ma. Our results support the idea that life-cycle plasticity has been a 

creative force in the evolution of Magicicada (26). However, the regulatory system of 

Magicicada life cycles and the mechanism of putative life-cycle shift are completely 

unknown and require future comparative genomic studies of 13- and 17-year periodical 

cicadas. 

 

 

 

Materials and Methods 

Sampling. Adults of Magicicada were collected from 27 states of the USA from 1978 to 

2008 (Table S1) and stored in freezers. Total genomic DNA was extracted from leg 

muscles of each ethanol fixed specimen using the Wizard® Genomic DNA Purification Kit 

(Promega, Madison WI). For Decim, Cassini and Decula, 332, 238 and 165 individuals, 

respectively, were used. Specimens are kept in the Department of Zoology, Kyoto 

University as vouchers and for future analyses of DNA. We used the sister genera of 
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Magicicada (27) as outgroup taxa; specifically, Tryella crassa, T. graminea, T. burnsi, 

Aleeta curvicosta, and A. curvicosta. 

 

Gene sequence analysis. We sequenced partial gene regions of nuclear 18S rRNA (18S; 

808-bp sequence), wingless (Wg; 376-bp exon sequence) and Elongation Factor 1-alpha 

(EF1-a; 1302—1303-bp for Magicicada; 1270—1616 bp exon and intron for the outgroup) 

and Calmodulin (Cal; 385—394-bp intron sequence) gene and a 1832-bp mitochondrial 

DNA region encompassing partial sequences of cytochrome oxidase subunit I and II genes 

(COI, COII) and a sequence of tRNA (Leu) in between. Primers used for PCR-amplification 

and direct sequencing are given in Table S2. Direct sequencing of PCR products used an 

ABI3130xl sequencer (Applied Biosystems). When sequence data for the COI-II sequence 

were affected by putative nuclear mitochondrial DNA (numt), we used specific internal 

primers (Table S2). Samples of each species group representing different broods and 

regions were sequenced for all gene regions. The samples consisted of 25 from the Decim 

group, 18 from the Cassini group and 19 from the Decula group. Two outgroup specimens 

(Tryella crassa and Aleeta curvicosta) were also sequenced. For the mitochondrial DNA, 

sequences were obtained for 329, 238 and 165 specimens of Decim, Cassini and Decula, 

respectively (Table S1). All nuclear gene sequences and all mitochondrial haplotype 

sequences detected have been deposited in DDBJ database (accession numbers; 18S, 

AB740543—AB740606; Cal, AB740607—AB740670; EF1-a, AB740671—AB740734; 

Wg, AB740735—AB740798; COI-II, AB740799—AB740917; see also Table S3 for 

COI-II haplotypes). 

 

Phylogenetic analysis. We conducted a simultaneous analysis of five gene sequences with 

64 operational taxonomic units (OTUs) using an optimal data-partitioning scheme (28). The 

nuclear gene sequence data was divided into 9 subsets: 18S, Cal (intron), four of EF1-a (1st, 

2nd, 3rd position and intron), and three codon positions of Wg. Mitochondrial gene 

sequence data was divided into 7 subsets: three codon positions of COI; tRNA; three codon 

positions of COII. These 16 subsets were used in a heuristic search to identify the best 
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partitioning scheme and evolutionary model for each partition according to the Bayesian 

Information Criterion (BIC) using the program PartitionFinder version 1.0.1 (28). The best 

scheme consisted of six partitions: (1) 18S + EF1-a 2nd + Wg 2nd (substitution model: JC 

[Juckes-Cantor]); (2) COI 1st + tRNA(Leu) + COII 1st + Cal + EF1-a intron (HKY 

[Hasegawa-Kishino-Yano] +G); (3) Wg 3rd (TVM [transversion model] +G); (4) EF1-a 1st 

+ Wg 1st (F81 [Felsenstein 1981]); (5) COI 2nd + COII 2nd + EF1-a 3rd (HKY + I); and 

(6) COI 3rd + COII 3rd (HKY + I). For mitochondrial gene sequences, a larger data set 

with 119 OTUs (114 unique sequences of Magicicada and 5 outgroup sequences) was 

analyzed. The optimal partitioning scheme consisted of three partitions: (1) COI 1st + 

tRNA(Leu) + COII 1st (TrN [Tamura-Nei] +G); (2) COI 2nd + COII 2nd (TrN+I); and (3) 

COI 3rd + COII 3rd (TrN+I). For each sequence data set, a partitioned 

maximum-likelihood analysis was conducted by using Treefinder ver. October 2008 (29). 

Bootstrapping analysis with 1000 replications was performed also using Treefinder using 

the ML tree as the starting tree.  

 

Haplotype network and population genetic analyses of mitochondrial gene sequences. 

The relationships among mitochondrial haplotypes were assessed by constructing statistical 

parsimony networks with a 95% connection limit using TCS version 1.21 (30). Haplotype 

groups within each species group were assigned based on monophyly or the segregation 

from other groups with two or more missing haplotypes. Mantel tests for the 

isolation-by-distance trend in pairwise genetic distance between populations were 

conducted using the R-package (31). Analyses of molecular variance (AMOVA) for genetic 

differentiation by haplotype groups, broods, and life cycles were performed using Arlequin 

ver. 3.11 (32). 

 

Divergence time estimation. Estimation of divergence times was conducted with all 

nuclear and mitochondrial DNA sequence data using BEAST ver. 1.7.2 (33). No fossil or 

geographic evidence for calibrating nodes is available for the Magicicada phylogeny. 

Therefore, we attempt to determine a plausible range of age for the node of the most recent 
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common ancestor (MRCA) of Magicicada using a recently proposed evolutionary rate for 

insect mitochondrial genes (ref. 34: Figure 3), which was estimated by compiling sequence 

divergence rates at various time spans based on sequence divergence corrected for rate 

heterogeneity among sites using a gamma distribution and fitting them to a time-dependent 

rate equation (35): rate of sequence divergence (%) per million year = 17.256 exp[-1.157t] 

+ 2.0968. We can estimate divergence time for a given sequence divergence with this rate 

by using equation 7 in ref. 35, which relates sequence divergence to divergence time. For 

the mitochondrial sequences of Magicicada, the optimal substitution model was GTR+G 

based on the Akaike’s Information Criterion according to MrModeltest ver. 2.3 (36). To 

determine the node age for the MRCA of Magicicada, the GTR+G corrected sequence 

divergence between Decim and Cassini + Decula, 0.2351 (SD = 0.0223), was converted to 

4.16 million years by using the above time-dependent sequence divergence rate. In 

divergence time estimation with BEAST, the node age prior was set as a normal 

distribution function with mean = 4.16 and SD = 0.3943 (proportional to original SD). Ref. 

34 also provides another time dependent clock based on uncorrected P sequence divergence 

from different data sets. Using this clock equation and an uncorrected sequence divergence 

of 0.0844 ± 0.0034 (SD) for Magicicada MRCA, we obtain 3.57 ± 0.1442 mya. Because 

this alternative estimate is well included in the range (3.4—4.9 mya for 95% HPD interval) 

of the previous estimate (assuming a normal distribution with mean = 4.16 and SD = 

0.3943), our age prior included the age estimation based on a conservative substitution rate 

without accounting for rate heterogeneity among sites. In the BEAST analysis, data 

partitioning and substitution models followed the previous phylogenetic analysis. Both 

substitution model and clock model were unlinked among partitions, but the tree was linked. 

We tested runs with the strict clock model and the uncorrelated lognormal (ULN) 

relaxed-clock model, and compared these by Bayes factor (BF) for marginal likelihood 

using TRACER ver. 1.5 after the runs. The BEAST MCMC run was conducted for 100 

million generations sampling every 10,000th generation. The initial 1 million generations 

were discarded as burn-in when we obtained the maximum clade credibility tree. Based on 

BF, we selected ULN relaxed-clock model. 
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AFLP analysis. Amplified fragment length polymorphism (AFLP) analysis (37) was 

performed for 237, 95 and 96 specimens of Decim, Cassini and Decula, respectively, 

encompassing all broods from each species group (Table S1). We used a plant mapping kit 

(Applied Biosystems) and six primer combinations for selective amplification (EcoRI + 

/MseI +: ACT/CTG, AGG/CAC, AGC/CAT, ACA/CAC, AGG/CTA and ACC/CAT). The 

amplified fragments were electrophoresed on an ABI 3130xl sequencer and binary-coded 

using GeneMapper ver. 4.0 (Applied Biosystems). To ensure high reliability of analyzed 

AFLP loci, every specimen was genotyped twice, and a total of 440 loci with >90% 

repeatability was used in the analysis. The differentiation in AFLP loci among groups 

defined by life cycle and regions associated with mitochondrial haplotype groups within 

each species group was assessed using pairwise Fst using AFLP-surv ver. 1.0 (38). The 

significance of Fst was assessed by 1000 permutations. We controlled the false positive rate 

using the B-H method (39) to determine statistical significance of multiple pairwise Fst 

values between groups. We also obtained pairwise Nei’s distances between groups and 

1000 bootstrap distance matrices using AFLP-surv. We constructed neighbor-joining trees 

and a bootstrap consensus tree using PHYLIP ver. 3.69 (40).  

 

Divergence and gene flow between 13- and 17-year cicadas. We applied the 

isolation-with-migration approach (41) using the IMa2 program (42) to explore the 

divergence time between 13- and 17-year cicadas within the same mitochondrial lineage, 

i,e., those in Aw of Decim (M. septendecim and M. neotredecim), those in Cw of Cassini 

(M. cassini and M. tredecassini), and those in the whole Decula (M. septendecula and M. 

tredecula). The whole mitochondrial sequence (1832 bp) was treated as one locus. For each 

group, we attempted 7 to 12 runs to find the appropriate priors of t (time of population 

splitting), q (effective population size), and m (migration rate), with 104 or 105 burn-in 

generations and 104 to 106 post burn-in generations. The mutation rate of the mitochondrial 

locus was set to 2.9 × 10-7 per locus per year based on the substitution rate 0.016/site/my 

estimated in a BEAST analysis with the entire mitochondrial sequence data (see below).  
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Demographic history. To explore the demographic history of each species group, we 

applied the Bayesian Skyline Plot (BSP) analysis (43) with the mitochondrial COI-II 

sequence data using programs BEAST ver. 1.6.2 and TRACER ver. 1.5. Sequence data sets 

were prepared for Decim (n=329), Cassini (n=238) and Decula (n=165). The whole 

mitochondrial sequence (1832 bp) was treated as one locus. For each data set, the BEAST 

run was conducted for 108 generations sampling every 5000th generation. Substitution 

models selected by MrModeltest ver. 2.3 were HKY+I for Decim and Cassini data sets, and 

HKY for Decula data set. A strict clock model was employed using a clock rate of 0.016, 

which was estimated in a BEAST analysis for the entire mitochondrial data set also with a 

strict clock model and a Magicicada MRCA node age prior of the normal distribution with 

mean 4.16 mya and SD = 0.3943 mya (108 generations with sampling every 104th 

generation; 106 burn-in generations). After the BEAST skyline plot analysis, effective 

population size through time was reconstructed using TRACER ver. 1.5, discarding initial 

107 generations as burn-in. We also conducted an extended Bayesian Skyline Plot (EBSP) 

analysis (44) using BEAST ver. 1.7.2 using Cal, EF1-a and Wg for Decim, EF1-a and Wg 

for Cassini, and Cal and EF1-a for Decula, in addition to COI-II data, excluding nuclear 

genes which showed no intra-species group sequence difference. The number of sequences 

for each species group was 25, 18 and 19 for Decim, Cassini and Decula, respectively. 

Because sequence difference in each nuclear gene was fairly small, nuclear gene trees were 

linked, and in Cassini, substitution and clock models were linked between the two nuclear 

genes. Substitution models selected by MrModeltest ver. 2.3 were HKY+G for COI-II, 

HKY for Cal, and GTR+I for EF1-a and Wg. A strict-clock model was used for each gene 

partition, and the clock rate of 0.016 was applied to COI-II gene as in the previous BSP 

analysis. For each species group, the BEAST run was conducted for 50 million generations 

sampling every 5000th generation. Effective population size through time was 

reconstructed using TRACER ver. 1.5, discarding initial 5 million generations as burn-in. 
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Fig. 1. Phylogeny and divergence times of Magicicada resulting from a Bayesian relaxed 

clock analysis with nuclear and mitochondrial data showing different histories of 

divergence into 13- and 17-year species among the three species groups. Outgroup taxa are 

not shown. Bars show 95% highest probability density (HPD) intervals of estimated 

divergence times. For major nodes divergence times and 95% HPD intervals in brackets are 

described. Node supports are posterior probabilities of the Bayesian inference and bootstrap 

percentages in a maximum-likelihood analysis (shown when >0.70 or >70%). The label for 

each OTU describes the sample code (Table S1), species and brood number. Mitochondrial 

haplotype groups (Fig. 2) of samples are also shown. 
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Fig. 2. Mitochondrial haplotype networks for each species group (A-C) showing different 

patterns of haplotype sharing between 13- and 17-year species. Each circle represents a 

unique haplotype, where size is proportional to sample size. Lines represent one-bp 

differences, and open circles represent missing haplotypes not appearing in the samples. 

The composition (relative sample sizes) of broods is shown as a pie chart, in which broods 

are distinguished by different colors. Geographic distribution of haplotype groups 

(distinguished by the color of the circle) in each species group (D-F) showing similar 

phylogeographic divisions. Brood numbers are indicated by Arabic numerals beside the 

circles. Dotted lines indicate the boundary of 13- and 17-year life cycles. Colors in A-C do 

not correspond to colors in D-F.  
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Fig. 3. Differentiation in AFLP loci among groups defined by life cycle and mitochondrial 

haplotype group (geographic region). The relationships among groups are depicted by the 

unrooted neighbor-joining tree based on pairwise Nei’s distances. Node supports are 

bootstrap percentages (shown when >50%). Pairwise Fst and P values among groups in 

each species group are given in inset tables. Fst values in bold letters are significant at α = 

0.05 after controlling for the false-positive rate. 
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Fig. 4. Divergence times between 17- and 13-year cicadas in three groups inferred by the 

isolation-with-migration approach. A, between M. septendecim and M. neotredecim in 

Decim Aw; B, between M. cassini and M. tredecassini in Cassini Cw; C, between M. 

tredecula and M. septendecula in Decula. 
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Fig. 5. Bayesian Skyline Plots showing demographic histories of the three Magicicada 

species groups, Decim (A), Cassini (B), and Decula (C) based on mitochondrial gene 

sequence data. Thick solid curves indicate mean effective population sizes, and gray areas 

the 95% highest probability density (HPD) limits. Dotted lines indicate the beginning of the 

Holocene (elevated air temperatures). 


