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Abstract 

Position-dependent geometric errors, or "error map," of a rotary axis rep
resent how position and orientation of the axis of rotation change with its 
rotation. This paper proposes a scheme to calibrate the error map of rotary 
axes by on-the-machine measurement of test pieces by using a contact-type 
touch-trigger probe installed on the machine's spindle. The present scheme 
enables more efficient and automated error calibration, which is crucial to 
implement periodic check of rotary axes error map or periodic update of its 
numerical compensation for five-axis machine tools . The uncertainty analy
sis of the error calibration is also presented with a particular interest in the 
influence of error motions of linear axes. The experimental demonstration is 
presented. 
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1. Introduction 

Machine tools with two rotary axes to tilt and rotate a tool and/ or a 
workpiece, in addition to three orthogonal linear axes, are collectively called 
five-axis machine tools. Many error calibration schemes for five-axis machine 
tools have been recently studied as is reviewed in [L 2]. 

In ISO 230-7 [3], location eTroTs of a rotary axis represent position and 
orientation errors of the a:r:i8 avemge line of a rotary axis, i.e. the straight 
line representing the mean location and orientation of its axis of rotation. 
Location errors are clearly one of the most fundamental error factors in the 
five-axis kinematics. ISO 10791-1 [4], currently under a revision process in 
ISO TC39/SC2, contains quasi-static or no-load tests with a main interest 
in calibrating location errors of rotary axes. The application of the ball bar 
measurement to the calibration of location errors have been reported in many 
research works [5, 6, 7]. The R-test [8, 9, 10, 11] can be seen its extension to 
three-dimensional measurement. Dynamic interpolation tests using the ball 
bar or the R-test are included in ISO/DIS 10791-6:2012 [12], also currently 
under a revision process in ISO TC39/SC2. 

It must be emphasized that location errors only represent "average~' po
sitions or orientations of a rotary axis. The position and the orientation of 
the axis of rotation may change with its rotation. It is of a practical impor
tance to calibrate not only the "average" of error motions, but also how error 
motion changes with its rotation. For example, for the machine configura
tion with a rotary table (C-axis) mounted on a swiveling axis (A-axis) (see 
Fig. 1), C-axis error motions may be larger when the rotary table is vertical 
(at A = ±90°) due to e.g. the gravity-induced deformation of its bearings. 
Such an influence of the angular position of a rotary axis on its error motions, 
or error motions of the other axis mounted on it, can be parameterized by 
location errors that vary depending on the angular position of a rotary axis. 
Such position-dependent geometric errors [13], or an "error map" of a rotary 
axis [2] models a larger class of more complex error motions of rotary axis, 
such as the gravity deformation , angular positioning error, pure radial error 
motions or tilt error motions of a rotary axis. The application of the R-test 
to numerically calibrate such an "error map" was presented by a part of the 
authors [10, 14] . 

Many machine tools in today's market have on-machine probing capabil
ity, usually used for part setup compensation. High-accuracy touch-trigger 
probes for machine tools, which typically have one-directional measurement 
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repeatability less than 1 p,m, are available from some vendors. The standard 
of test codes for the performance of such a touch-trigger probe is available 
(ISO 230-10 [15]). 13y its nature, such a probe has good communication 
capability with a CNC system: which potentially facilitates the automation 
of error calibration and compensation. For rotary axes: probe-based cali
bration of their axis average line position can be done on some commercial 
CNCs [16]. Its extension to a set of all location errors of rotary axes has 
been reported in the literature [17: 18]. The authors also presented: in our 
previous publication [19], a probe-based calibration scheme for location er
rors. ISO 10360-3:2000 [20] describes a similar test for coordinate measuring 
machines ( CNil\Is) vvith a rotary table as the fourth axis. 

While all these past works focused only on the calibration of location 
errors, the objective of this paper is to present a error calibration scheme 
based on on-the-machine measurement by a touch-trigger probe to identify 
not only location errors, but also position-dependent geometric errors. Its 
experimental demonstration on a cornrnereial five-axis machining center of a 
tilting rotary table configuration will be presented. 

2. Error parameters to be identified and measuring instrument 

2.1. Machine configuration 

This paper considers a 5-axis machine configuration with a titling rotary 
table (driven by A- and C-axes) depicted in Fig. 1. It must be emphasized 
that the basic idea of this paper can be straightforwardly extended to any 
configurations of five-axis machines. 

2. 2. Geometric error parameters to be ident~fied 

Table 1 shows position-dependent geometric errors for the machine con
figuration in Fig. 1. It is to be noted that parameters associated with A-axis 
are dependent only on the A-axis angular position: while those associated 
with C-axis are dependent on both A- and C-axis angular positions. This 
is because an error motion of C-axis may be affected by A-axis angular po
sition (its typical causes include gravity-induced deformation of bearings or 
mechanical structure). 
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To eliminate the redundancy: geometric errors of C-axes are defined such 
that: 

Nc 

L (5xcA (Ai: Cj) 
j=l 

Nc 

L acA(Ai: Cj) 
j=l 

Nc Nc 

L OYcA (Ai: Cj) = L c5zcA (Ai, Cj) = 0 
j=l j=l 

N c Nc 

L tJcA(Ai: Cj) = L ~fcA(Ai , Cj) = 0 (1) 
j=l j=l 

It is important to note that this paper assumes geometric errors of linear 
axes (X: Y, and Z-axes) are negligibly small compared to those of rotary axes. 
As was revievved in Section 1: many five-axis error calibration methodologies 
have been recently studied (e.g. ball bar tests and the R-test). All of them 
only measure the relative displacement of the spindle tip to the table, and it 
is therefore not possible in principle to separate error motions of rotary axes 
and linear axes. To identify error motions of rotary axes, error motions of 
linear axes are required to be separately pre-calibrated by conventional mea
surement (e.g. ISO 10791-1 [4]). The influence of linear axis error motions 
on the estimation uncertainty will be discussed in Section 6. 

2.3. Kinematic Modeling of Five-axis Machine 

The kinematic model to compute the tool center position (TCP) relative 
to the work table is the basis of the error calibration presented in this paper. 
Since its derivation can be found in many previous publications [6, 10, 22], 
this subsection only briefly reviews it. 

Define the machine coor·dinate system as the coordinate system fixed 
to the Y-axis frame. This coordinate system is independent of A- and C
rotations. Suppose that the TCP in the machine coordinate system is given 
by 7·q E IR 3

. The left-side superscript r represents a vector in the machine 
coordinate system. 

Define the workpiece coordinate system as the coordinate system with its 
Z-axis attached to the machine:s C-axis of rotation , and with its origin at 
the Z-height where the A-axis of rotation intersects with its YZ plane. The 
homogeneous transformation matrix (HTM) representing the transformation 
from the workpiece coordinate system to the machine coordinate system is 
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given by: 

aTe Dx(oxc:A (Ai, CJ))Dy(OYc:A (Ai, CJ))Dz (ozc:A (Ai, CJ)) 

Da(ac:A.(Ai, Cj) )Db(,Bc:A (Ai, Cj) )DJ!'c:A (Ai, Cj) )De( -Ci) 

YTa Dx( SxAY (Ai) )Dy ( OYAY (Ai) )Dz ( OZ.4y (Ai)) 
Da(aA.y(Ai) )Db(,BA.y(Ai) )De( /AY(Ai) )Da( -Ai) 

(2) 

where Dx(x), Dy(y), and Dz(z ) E IR 4 x4 represent the HTM for linear motions 
in X-, Y-, and Z-directions. Da(a), Db(b), and Dc(c) E IR 4 x4 represent the 
HTM for angular motions about X, Y and Z axes. See e.g. [6, 22] for their 
formulation. Ai and Cj E IR represent the command angular position of A 
and C axes, respectively. 

Hence, the TCP in the workpiece coordinate system, wq E IR 3
, 1s g1ven 

by: 

(3) 

The left-side superscript w denotes the vector defined in the workpiece 
coordinate system. 

2.4. MeasuTing Instn],rnent 

This paper uses a typical contact-type touch-trigger probe for discrete
point probing. The probe approaches to the object surface in the direction 
normal to it. When the contact of a probe ball with the object is detected, 
a signal is sent to a CNC to stop the drive and record its position in the 
machine coordinate system. The position of the contact point on the sur
face is calculated from the machine position, the approaching direction, the 
calibrated ball radius, and the probe's pre-travel. The term "probed point" 
hereafter represents the measured position of the contact point on the test 
piece surface. According to the probe software's standard procedure or [15], 
the pre-travel variation for different approaching directions must be compen
sated. 

3. Probing procedure 

The proposed test procedure is described as follows: 
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1. Three test pieces of a square column geometry are fixed on the ma
chine's rotary table as shown in Fig. 2(a). The nominal position and 
size of each test piece is also shown in Fig. 2( a). Each test piece is 
aligned to the machine's linear axes only roughly. 

2. At (I) Ai = oo and Cj = oo, total 15 points are probed from the 
direction normal to the surface, as illustrated in Fig. 2(a). In Fig. 2(a), 
the index k labels the probing sequence. 

3. Then, index A- and C-axes at the given set of angular positions; in 
our experiment, each combination of Ai = 0, -30, -60, -90° (Na = 4) 
and Cj = 0, 60, 120, 180, 240, 300°(Nc = 6). The probing sequence is 
performed at total Na · Nc = 24 positions. 

4. The number of probed points may vary at each indexed angle. For 
example, at Ai = oa and Cj = 60°, total 12 points are probed as 
illustrated in Fig. 2 (b). Same points are probed at Ai = oa and Cj = 

60, 0 0 0 '300°. 
5. At A1 # oo, to avoid unwanted interference of the probe to test pieces, 

less points are probed. For example, Fig. 2(c) shows probed points at 
Ai = -900 and C1 = oo. Total 8 points are probed. 

For indexed angles Ai and C1, suppose that the reference location of the k-th 
probed point is represented by p( i, j, k) E IR 3

. Denote its measured position 
by p ( i , j, k) E IR 3 

. 

Remark #1: 
Our previous vvork [1 9] presented the identification of location errors of rotary 
axes by probing a single test piece. In this paper , multiple test pieces are 
used to magnify the influence of angular (tilt) error motions of rotary axis in 
measured displacements. For example, as illustrated in Fig. 3, the angular 
positioning error of C-axis, represented by /cA(Ai, Ci), affects theY-position 
of probed points by: 

(4) 

where y1 and y2 represent the Y-position of each probed point. The infiu
enee of the measurement uncertainty in y 1 and y2 to the identification of 
'YcA(Cj,Ai) becomes smaller when L 1 is larger. 

vVhen the test objective is to identify location errors only, the "average" 
orientation of C-axis over 360° rotation can be observed by measuring the 
trajectory of the position of a single test piece. On the other hands, for 
the identification of position-dependent geometric errors , the orientation of 
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C-axis must be measured at each indexed angle, Cj. By observing the tra
jectory of a single point in the workpiece coordinate system (as in the R-test 
or the ball bar test): it is in principle not possible to observe the tilt error 
motion of the rotary table at each indexed angle. The observability of tilt er
ror motion of both C- and A-axes is an advantage of the present probe-based 
approach, although it is restricted to static measurement. Considering the 
symmetry of test piece locations in both X- and Y-directions, we used three 
test pieces as shown in Fig. 2. 
Remark #2: 
The present probing procedure can be modified according to experimental 
setup. For example, the present procedure is for the machines \Vhere the 
A-axis rotates only from Ai = oo to goo. \\Then the A-axis rotates e.g. from 
Ai = -180° to 180°, the probing sequence should be modified in an analo
gous manner. 

4. Algorithm to identify position-dependent geometric errors 

4.1. Calculation of table po8ition and orientation 

The objective of the present algorithm is to identify position-dependent 
geometric errors of A- and C-axes shown in Table 1 for each of Ai and C 7 
(i = 1· · · Na, j = 1· · · 2Vc) from probed positions, p(i, j, k) (k = 1· · · Nk)· 

For ( Ai , Cj), represent the position error oft he workpiece coordinate sys
tem (attached to the rotary table) from its nominal position in X, Y, and Z 
directions of the machine coordinate system by (..6.x(i,j), ..6.y(i,j), ..6.z (i,j)). 
Represent its orientation error around X, Y, and Z directions of the machine 
coordinate system by (..6.a('i,j), ..6.b('i,j), !:lc('i,j)). They can be roughly seen 
as position and orientation errors of the rotary table at Ai and Cj. 

As the first step of the proposed algorithm, this subsection presents an 
algorithm to calculate !:lx(i,j) , · · ·, !:lc(i,,j) from probed positions, p(i,j, k). 

The k-th probed point at Ai = Cj = 0°, p(1 , 1, k) (k = 1 .. · Nk), nomi
nally moves at given Ai and Cj to: 

(5) 
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When there exist table position and orientation errors at Ai and CJ, ~x(i, j), · · · , ~'Y(i, j), 
it moves to: 

Dx(~x(i, j))Dy(~y(i, j))Dz(~z(i, j)) · 

Da(~a(i,j))Db(~b(i,j))Dc(~c(i,j)) [ jj(i,i, k) ] (6) 

It must be noted that a touch-trigger probe is sensitive to the displace
ment of the probed point only in its approaching direction (for example, when 
the probe approaches to the test piece surface in the X-direction, Y- and Z
positions of the probed point cannot be observed). For the k-th point, sup
pose that the approaching direction is given by a unit vector, fi(i,j, k) E= IR 3

. 

Then, the table position and orientation at Ai and Ci, ~x(i,j), · · ·, ~c(i,j ), 
are computed by solving the following minimization problem at each (i .. j): 

Nk 

. min . . L {~p(i,j, k) · ii(i,j, k)} 2 

6.x( Z,J) ,-·· ,6.')'( Z,J) 
k=l 

(7) 

where: 
~p(i,j,k) =p(i,j,k) -p(i,j,k) (8) 

represents the displacement of the probed point, measured at (Ai,C_1L from 
its initial position, measured at Ai = Cj = 0°. 

When ~x, ~y, ~z , ~a, ~b, and ~c E= IR are sufficiently small, the 
following approximation generally holds: 

8 

-~c 

1 
~a 

0 

~b 

-~a 

1 
0 

~X l ~y 

~z 

1 
(9) 



By using this, the problem (7) can be approximated as a linear programming 
problem by: 

min t [{ p(i,j, k) - p(i,j, k) 
6.x(i,j)~6.-y(i,_j) k=l 

(10) 

.6.x(i, j) 
2 

- [ ~ 0 0 0 f>z(i,j,k) -py(i, j, k) l 
.6.y(i, j) 
.6.z(i, j) 

1 0 -pz(i,j,k) 0 Px( i, j, k) .6.a( i , j) 
0 1 Pv( i, j, k) -fJx(i,j, k) 0 

.6.b( i , j) 

·n(i,.i,k) 

.6.c( i , j) 

where p(i,j, k) = [Px(i,j, k),Py(i,j, k),i5z(i,j, k)f E IR 3
. This can be solved 

by the least square method. 

4.2. Calculation of position-dependent geometric errors of rotary axes 

The table position and orientation at AJ and Ci, .6.:z:(i,j), · · ·, .6.c(i, j), 
are then separated into position-dependent geometric errors of A- and C-axes 
shown in Table 1. 

When the nominal TCP in the machine coordinate system is given by 
rp E IR:\ its actual position under position-dependent geometric errors of A
and C-axes, rp E IR 3

, is given based on the kinematic model (3) as follows : 

(11) 

where ~'Tw E IR 4
x

4 is given by Eq. (2). r~v E IR 4
x

4 is the HTM representing 
the nominal rotation by Ai and C1, i.e. 

(12) 

From this formulation, vvith the approximation (9), the relationship of the 
table position and orientation, .6.x ( i, j), · · · , .6.c('i , j), and position-dependent 
geometrie errors of A- and C-axes given in Table 1 is formulated as fol-
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lows [10]: 

.6.x( i, j) 

.6.y( i, j) 

.6.z(i: j) 

.6.a( i, j) 

.6.b(i,j) 

.6.c( i, j) 

oxAy(Ai) + OXcA(Ai, Cj)- .6.xo(i.j) 

SyAy(Ai) + c5ycA(Ai, Cj) cos Ai + OZcA (Ai, cj) sinAi - .6.yo( i.j) 

6z.4y(Ai) + 6zcA (Ai: CJ) cos Ai - 6ycA (Ai, Ci) sinAi - .6.zo ( i..j) 

a.4y(Ai) + acA(Ai, Cj)- .6.ao(i.j) (13) 

f3Ay(Ai) + (J'cA(Ai, CJ) cos Ai + /cA(Ai , Cj) sinAi - t1bo(i.j) 

/AY(Ai) + /cA(Ai, CJ) cosAi- ,BcA(Ai: Cj) sinAi - .6.co(i .. i) 

Recall that the table position and orientation, .6.:z:(i,j),· · ·, .6.c(i,j), are de
fined relative to those at Ai = Cj = oo (i = j = 1) (see Eq. (8)). In other 
words, !1x( i , j), · · · , !1c( i, j) are restricted at i = j = 1 as: 

.6.x(1, 1) = · · · = .6.c(1, 1) = 0 (14) 

In Eq. (13), the terms .6.x0 (i.j), · · · .6.c0 (i.j) represent this restriction. From 
Eq. (5): they are given by: 

(15) 

where the follmving initial condition is imposed to eliminate the redundancy 
in the definition of geometric error parameters of A- and C-axes: 
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From Eq. (13), under the definition in Eq. (1), geometric errors of A-axis can 
be computed from ~x(i,j),· · ·, ~c(i,j) by: 

8xA.y(Ai) mean{~x(i,,j) +~x0 (i.j)} 
.1 

8yAY (Ai) mean{~y(i , j) + ~Yo(i.j)} 
.1 

c5zA.y(Ai) mean {~z (i, j) + ~z0 (i.j)} 
J 

&A.y(Ai) mean{~a(i,j) + ~a0 (i.j)} (17) 
J 

,BA.y(Ai) mean {~b(i, j) + ~b0 (i .. j)} 
.1 

')' AY (Ai) mean { ~c( i, j) + ~co ( i.j)} 
.1 

Then, by solving Eq.(13), geometric errors of C-axis are computed by: 

5. Experimental case study 

5.1. Experimental setup 

The present error calibration scheme is applied to a commercial middle
si:te five-axis machining center of the configuration shown in Fig. 1. Its 
major specifications are shown in Table 2. A touch-trigger probe, R'viP-600 
by Renishaw, is used in experiments. RMP-600 employs strain gauges to 
deteet the contaet of the probe ball. Its major speeifieations are shown in 
Table 3. 

Three test pieces of carbon steel JIS S50C are used (approximate size: 
50 x 50 x 150 mm) . Their setup on the machine table is shown in Fig. 2. 
The probing procedure \Vas presented in Section 3. Total 219 points were 
probed, and total measurement time was about 28 min. Figure 4 shows 
the experimental setup. To check the repeatability of the measurement , the 
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probing procedure vvas repeated for total four times. 

5.2. Measurement result 

Figure 5 shows graphical presentation of measured results. Only (a) 
A1 = oo, Cj = 180° and (b) Ai = -goo: Cj = oo are shown as exam
ples. In the plots, red dots represent nominal probed positions, jj(i: J: k) in 
Eq. (5). Black dots represent the measured displacement of each probed 
point, p( i, .i, k). The displacement is magnified 200 times. The line segment 
from the nominal point (red dot) directed normal to the test piece surface 
represents the pro be:s sensitive direction. The measured point (black dot) is 
always on this line. 

At each (Ai, Cj): the table position: (6.x(i:j), 6.y(i:j), 6.z(i,j)), and ori
entation: (6.a(i, j), 6.b(i: j), 6.c(i: j)), are calculated from measured positions 
as presented in Section 4.1. Boxes painted in green in Fig. 5 show the position 
and the orientation of each test piece calculated from ,6,x(i~ .n, · · · ~,6,c(i,j). 
Since side faces of test piece are measured only at the same height, their 
inclination around X- or Y-axes cannot be seen. In Fig. 5, all side faces of 
test piece are assumed to be vertical. 

From graphical presentation shown in Fig. 5, many intuitive observations 
can be made on error motions of rotary axes. For example, Fig. 5(a-l) shows 
that test pieces are shifted by about 40 fJ..IIl in the X-direction: and by about 
50 JLIIl in theY-direction with the C-axis rotation from cj = oo to cj = 180° 
at Ai = oo. This is mostly caused by the miscalibration of the C-axis average 
line position, represented by OXAy(Ai) and OYAY(Ai) at Ai = oo. It can be 
furthermore observed in Fig. 5 (b-1) that two lower test pieces are slightly 
shifted (by about 15 jtm) to-Y direction compared the upper test piece at 
Ai = 90°. This suggests the angular positioning error of A-axis at Ai = - 90°. 

5.,'J. Identification of position-dependent geometric errors 

By the algorithm presented in Section 4.2, position-dependent geo
metric errors can be identified. Figures 6(a) to (f) show A-axis geometric 
errors , OX 11y(Ai) , · · · , /!lv(Ai)· They represent how error motions of A-axis 
varies at Ai = 0,-30,-60 , and -90°. Figure 7 shows position-dependent ge
ometric errors of C-axis. Only those at Ai = -90° are shown as an example. 
To show the repeatability of the tests, estimates in four repeated tests are all 
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shown. Error bars represent the estimation uncertainty due to contributors 
shown in Table 4 (see Section 6). The following observations can be made: 

• A constant offset in c5xAY(Ai), 6yA y (Ai), and 6zAy(A-i) (in Fig. 6(a) to 
(c)) represent the position error of the axis average line of A-axis (or 
C-axis) , i.e. location errors, 6x~y, 6y~y; and c5z~y-

• Not only these '(average" position errors, but also gradual shift of C-axis 
centerline to the X-direction with A-axis rotation (.6.x.w(Ai), Fig. 6(a)) 
and that of A-axis centerline to theY-direction (.6.YAY(Ai), Fig. 6(b)), 
are also observed (about 10 !Jill for Ai = 0 to -90°) . Such an error 
cannot be observed by evaluating location errors only. 

• aAy(Ai) (in Fig. 6(d)) represents the angular positioning error of A
axis . It is sufficiently small at Ai = oa, but it becomes about 32 tJm/m 
at Ai = -goo. This is also a position-dependent geometric error. 

• ,BAY(Ai) and rAY(Ai) (in Fig. 6(e) and (f)) represent tilt error motions 
of A-axis. The orientation of A-axis changes with its rotation by about 
10 tJm/m around both Y- and Z-axes. 

6. Uncertainty analysis 

The probing patterns presented in Section 3 probe nominally same points 
on test pieces at each Ai and Cj. The error parameter calibration presented 
in Section 4 is based on the measured displacement of each point from its ini
tial position (measured at Ai = Cj = oo) in the workpiece coordinate system. 
Therefore, the geometric inaccuracy of test pieces or its setup (alignment) 
error does not impose significant effect on the estimates of geometric error 
parameters. This is an important feature of the proposed approach. On the 
other hands, as was stated in Section 2.2, the present scheme assumes negli
gibly small geometric errors of linear axes. Error motions of linear axes may 
have significant influence on the estimates. 

It is therefore practically important to assess the uncertainty in identified 
geometric error parameters due to, especially, error motions of linear axes. 
Statistical analysis ba.sed on the :VIonte Carlo simulation is common and well 
established in the measurement uncertaint:y assessment [24]. The uncertainty 
analysis presented in this section is analogous to the one presented in [25 ~ 26], 
and similar analysis was presented in our previous study [19]. 
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Principal contributors to the uncertainty are listed in Table 4. Associ
ated with the probing, only the unidirectional repeatability (random mea
surement error) is taken into account; the measurement error caused by the 
directional pre-travel variation or other factors are neglected assuming proper 
pre-calibration and compensation [15]. The main focus of this analysis is to 
assess the influence of error motions of linear axes. Error motions of linear 
axes are modelled as follows, analogously as in [26]: 

E (x) XX 

Eyx(.r) 

E~ (x) ~x 

Ex:r,lin ·X+ interpolate(Xi, Exx,rand(Xi), x) 
interpolate( Xi, Eyx,rand (Xi), X) 

interpolate(Xi, Ezx,rand(Xi), x) 
(19) 

where Exx ( x), Eyx ( x), and Ezx( x) respectively represent positioning errors 
in X, Y, and Z directions of X-axis at the nominal position, x . The function 
interpolate represents the linear interpolation of the function E* (Xi) at :z:. 

Xi is given by Xi = Prand · i, where Prand is a random number uniformly dis
tributed in [20, 50] mm. The squareness errors of linear axes are also taken 
into account. Error motions of all the linear axes are modelled analogously. 
Angular errors of linear axes are neglected , a.ssurning small-sized machines. 

The magnitude of each error is chosen randomly with the normal dis
tribution given in Table 4. These distributions are taken from comparative 
measurements, manufacturer specifications or tolerances in ISO standards. 
At each probing point, the machine's positioning error and the test piece's 
position and orientation are calculated, and error parameters are identified 
by exactly the same procedure presented in Section 4. Test setups are the 
same as shmvn in Fig. 2. Monte Carlo simulations are used with 1,000 runs 
to assess the uncertainty in the estimates. 

Figures 6 and 7 also show, by error bars, the standard deviation of esti
mation uncertainty for each geometric error parameter. 

7. Conclusion 

Position-dependent geometric errors, or an "error map" of rotary axes, 
represent how the rotation of a rotary axis influences its error motions, or 
error motions of the other axis mounted on it. This paper proposes a scheme 
to calibrate an "error map" of rotary axes by on-the-machine measurement 
of test pieces by using a contact-type touch-trigger probe installed on the 
maehine's spindle. Corn pared to eonventional calibration schemes described 
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in ISO/DIS 10791-1:2012 [4] and ISO/DIS 10791-6:2012 [12], where a preci
sion sphere and a linear displacement sensor(s) or the ball bar is used: the 
proposed approach is more suitable to efficient and automated calibration 
procedure of error map. It is therefore advantageous in the application to 
periodic check of error map: or periodic updating of its numerical compen
sation. 

The geometric inaccuracy and the setup error of test pieces impose only 
negligibly small influence on the estimates. Therefore, there is no need to 
use a calibrated artefact to perform the present scheme. On the other hand, 
similarly as many other methodologies reported in the literature on the cali
bration ofrotary axes (e.g. ball bar measurement and the R-test): the present 
scheme measures the relative displacement of the spindle to the table, and 
it is therefore not possible in principle to separate error motions of rotary 
axes and linear axes. The uncertainty analysis was presented to quantita
tively assess the influence of error motions of linear axes on the estimates of 
geometric error parameters. 
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Table 1: Description and notation of position-dependent geometric errors associated with 
rotary axes for the machine configuration in Fig. 1. Correspondence to symbols depends 
on the setup of the machine tool coordinate system [21]. 

Symbol l22j Symbol l21 j 
E.4.4. 
EBA 
EcA 
Exoc 
Ey.4 

EzA 
EAc- EAA 
EBc- EBA 
Ecc- EcA 
Exc 
Eye- Ey.4 
Ezc- EzA 

Description 
Angular positioning error of A-axis at Ai 
Parallelism error of A- to X-axis around Y-axis at Ai 
Sqnareness error of A- toY-axis at A.i 
C-axis position error in X-direction at Ai 
Radial error motion of A-axis in Y-direction at Ai 
Radial error motion of A-axis in Z-direction at A.,i 
Tilt error motion of C-axis around X-axis at Ai and Ci 
Tilt error motion of C-axis around Y-axis at Ai and Gj 
Angular positioning error of C-axis 
Radial error motion of C-axis in X-direction at Ai and Gj 
Radial error motion of C-axis in Y-direction at Ai and Ct 
Axial error motion of C-axis in Z-direction at Ai and Ci 

Table 2: Machine tool specifications. 

lllm, 

, , an : rotary servo motor 'Nlt 
A and C: direct drive 

Table 3: Touch-trigger probe and stylus specifications (RMP-600 by R.enishaw [23]). 
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Table 4: Contributors for identification uncertainties. 

t.;ontnbutors 
Probmg 
- unidirectional repeatability 
- directional pre-travel variation 
Lmear axes, X-ax1s 
- linear error, Exx,lin 
- non-systematic error, Exx rand 
- straightness error, Eyx,ran~' E zx,rand 
Y-axis 
- linear error, Eyy,lin 
- non-systematic error, Eyy,rand 
- straightness error, Exy,rand, Ezy,rand 
- squareness of Y- to X-axis, Sxy 
Z-axis 
- linear error, Ez z,lin 
- non-systematic error, Ezz 1·and 
- straightness error, Exz ,mr:d, Eyz,mnd 
- squareness of Z- to X-axis, Sxz 
- squareness of Z- to Y-axis, S yz 
t;ach test piece 
- position error in X, Y, Z 
- orientation error around X, Y, Z 
- influence of surface roughness to probing 

::i tandard uncertamty 

0.7 J.Lm 
0 

1 J.Lrn/ rnrn 
2 J.Lm 
2 J.Lm 

1 J.Lm/mm 
2 J1Ill 
2 J.Lm 
3 J.Lm/100mm 

1 J.Lrn/rmn 
2 J.Lm 
2 J.Lm 
3 J.Lm/ 100mm 
3 J.Lm/100mm 

10, 10, 120 J.Lm 
10, 10, 10J.Lm/ 100mm 
1 J.Lm 

t:c X 

Figure 1: The configuration of the five-axis machine tool considered in this paper. 
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Figure 2: Probed points at (Ai, Cj). 
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(a) With a single test piece. 

(b) With two test pieces. 

Figure 3: Magnification of the influence of angular positioning error of C-axis 
bcA(Cj,Ai)) by using two test pieces. 
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(b) At A; = -90° and Ci = 180°. 

24 
Figure 4: Experimental setup. 
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(b-1) At Ai = -90° and Cj = oo (projected onto YZ plane). 
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Figure 5: Probed point positions and estimated test piece positions and orientations 
(at (a) Ai = 0°, c1 = 180°, and (b) Ai = - 90° , Cj = 0°, as examples. 
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Figure 6: Estimated position-dependent geometric errors of A-axis. The present 
probing test was repeated three times, and the estimates at each test are all shown. 
Error bars represent the estimation uncertainty due to contributors shown in Ta

ble 4. (a) OX/tv(Ai) , (b) oy,w(Ai), (c) ~8AY(Ai), (d) aAy(Ai), (e) fJAv(Ai), and 
(f) !'Av(Ai)· 
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Figure 7: Estimated position-dependent geometric errors of C-axis at A i = -90°. 
The present probing test was repeated three times, and the estimates at each test 
are all shown. Error bars represent the estimation uncertainty due to contributors 
shown in Table 4. (a) 6xc,1 (-90°,Cj),2~) oyc11 (-90°,Cj), (c) ozc11 (-90° ,Cj), 
(d) acA(-90° ,Cj)), (e) ;3cA( - 90°,Cj), and (f) 1'cA(- 90°,Cj )· 


