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Abstract

Recently, just-in-time (JIT) modeling, such as locally weighted partial least squares

(LW-PLS), has attracted much attention because it can cope with changes in pro-

cess characteristics as well as nonlinearity. Since JIT modeling derives a local

model from past samples similar to a query sample, it is crucial to appropriately

define the similarity between samples. In this work, a new similarity measure

based on the weighted Euclidean distance is proposed in order to cope with non-

linearity and to enhance estimation accuracy of LW-PLS. The proposed method

can adaptively determine the similarity according to the strength of the nonlinear-

ity between each input variable and an output variable around a query sample. The

usefulness of the proposed method is demonstrated through numerical examples

and a case study of a real cracked gasoline fractionator of an ethylene production

process.
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1. Introduction1

In various industrial processes, it is necessary to measure and control prod-2

uct quality to produce high-quality, competitive products. However, online mea-3

surement is not always available due to unacceptable expenses of analytical in-4

struments or long measurement/analysis delay. To solve this problem, inferential5

models using online measured variables as predictor variables have been adopted6

in many fields such as the chemical, bioprocess, steel, and pharmaceutical [1, 2].7

According to the recent questionnaire survey of process control in the chemical8

industry in Japan [3], 90% of the inferential models are constructed by using lin-9

ear regression methods such as multiple regression analysis (MRA) and partial10

least squares (PLS). This fact shows that linear models are practically useful. In11

some cases, nonlinear models are required to achieve high estimation accuracy12

for processes having strong nonlinearity. Thus, nonlinear modeling methods such13

as neural networks [4–7], support vector regression [8–10] and polynomial func-14

tions [11–13] have been used to construct nonlinear inferential models.15

The above-mentioned questionnaire survey revealed that the most important16

problem of current inferential models is how to cope with changes in process17

characteristics and keep high estimation accuracy for a long period of time, i.e.,18

model maintenance [3]. The importance of this problem was also pointed out19

in [1, 14]. To cope with changes in process characteristics, many kinds of recur-20

sive modeling methods, which update models by prioritizing newer samples, have21

been developed [15]. When process characteristics change gradually, the priori-22

tized samples are supposed to be similar to a query sample, for which an output23

estimation is required. For such a case, recursive methods can cope with grad-24

ual changes in process characteristics. However, they cannot cope with an abrupt25
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change in process characteristics caused by replacement of a catalyst, cleaning26

of equipment, etc., because a query sampled just after an abrupt change becomes27

significantly different from the prioritized samples.28

Locally weighted regression (LWR) [16], which is also called just in time29

learning, lazy learning or model-on-demand, constructs a local model by pri-30

oritizing samples in a database according to the similarity between them and a31

query sample. Hence, LWR can cope with abrupt changes as well as gradual32

ones in contrast to the recursive methods introduced in [15]. Furthermore, it can33

cope with nonlinearity since it builds a local model repeatedly. To build an ac-34

curate model with LWR, the similarity needs to be properly defined. In general,35

similarity is defined on the basis of the Euclidean distance or the Mahalanobis36

distance [10, 17–22]. Other similarity measures proposed so far include the an-37

gle [14, 24], the distance between an output estimate for a query sample derived38

by a global model and output measurements for samples in a database [23, 25],39

the correlation [26, 27] and the weighted Euclidean distance [28–30]. In addi-40

tion to define the similarity properly, it is crucial to update a database when new41

data become available in order to cope with changes in process characteristics.42

More detailed explanation and review of the problem of the changes in process43

characteristics and LWR can be found in [31].44

This study focuses on the problem of nonlinearity and the definition of the sim-45

ilarity, and does not deal with the problem of changes in process characteristics.46

The similarity based on the weighted Euclidean distance is further investigated for47

its simplicity. PLS is adopted for local modeling since it can cope with collinear-48

ity and has been widely accepted in various fields. The main contribution of this49

paper is to discuss how the weight of each input should be determined and to pro-50

3



pose a method for deriving appropriate weights from operation data stored in a51

database.52

The rest of this paper is organized as follows. In Section 2, the algorithm of53

locally weighted PLS (LW-PLS) is explained. Section 3 discusses how to deter-54

mine the weight of each input, and a method for deriving the appropriate weights55

from operation data is proposed. Section 4 shows the effectiveness of the pro-56

posed method through numerical examples. In Section 5, an application result of57

the proposed method to an industrial distillation process is reported. Finally, this58

research is concluded in Section 6.59

2. Locally Weighted Partial Least Squares60

Thenth sample (n = 1, 2, · · · , N ) of input and output variables is denoted by61

xn = [xn1, xn2, · · · , xnM ]T (1)

yn = [yn1, yn2, · · · , ynL]T (2)

whereM is the number of input variables,L is the number of output variables and62

the superscriptT denotes the transpose of a vector or matrix.X ∈ <N×M and63

Y ∈ <N×L are input and output variable matrices whosenth rows arexT
n andyT

n ,64

respectively.N is the number of samples.65

LW-PLS is a just-in-time (JIT) modeling method.X andY are stored in a66

database in order to construct a local PLS model. When an output estimation is67

required for a query samplexq, the similarityωn betweenxq andxn is calculated,68

and a local PLS model is constructed by weighting samples with a similarity ma-69

trix Ω ∈ <N×N defined by70

Ω = diag(ω1, ω2, · · · , ωN) . (3)
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In general, the output estimatêyq ∈ <L is calculated through the following71

procedure.72

1. Determine the number of latent variablesR and setr = 1.73

2. Calculate the similarity matrixΩ.74

3. CalculateXr, Yr andxq,r75

Xr = X − 1N [x̄1, x̄2, · · · , x̄M ] (4)

Yr = Y − 1N [ȳ1, ȳ2, · · · , ȳL] (5)

xq,r = xq − [x̄1, x̄2, · · · , x̄M ]T (6)

x̄m =
N∑

n=1

ωnxnm/
N∑

n=1

ωn (7)

ȳl =
N∑

n=1

ωnynl/

N∑
n=1

ωn (8)

where1N ∈ <N is a vector of ones.76

4. Derive therth latent variable ofX77

tr = Xrwr (9)

wherewr is the eigenvector ofXT
r ΩYrY

T
r ΩXr which corresponds to the78

maximum eigen value.79

5. Derive therth loading vector ofX80

pr =
XT

r Ωtr

tT
r Ωtr

(10)

and the regression coefficient vector81

qr =
Y T

r Ωtr

tT
r Ωtr

. (11)
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6. Derive therth latent variable ofxq82

tq,r = xT
q,rwr . (12)

7. If r = R, calculate the output estimate83

ŷq = [ȳ1, ȳ2, · · · , ȳL]T +
R∑

r=1

tq,rqr (13)

and finish estimation. Otherwise, set84

Xr+1 = Xr − trp
T
r (14)

Yr+1 = Yr − trq
T
r (15)

xq,r+1 = xq,r − tq,rpr . (16)

8. Setr = r + 1 and go to step 4.85

When the similarity matrixΩ is an identity matrix, LW-PLS becomes the same86

as linear PLS. At step 3, the weighted mean of each variable is subtracted from87

each column ofX, Y andxT
q to make the query sample near to the origin of88

the multidimensional space. At steps 4-8, the latent variablet, the loading vector89

p and the regression coefficient vectorq are derived iteratively, and the output90

estimateŷq is calculated whenr = R.91

The definition of the similarity affects the estimation performance of LW-PLS92

significantly. In the original algorithm of LW-PLS [32], the similarityωn is de-93

fined on the basis of the Euclidean distance. The similarity based on the Euclidean94

distance or the Mahalanobis distance is used most frequently to construct a local95

regression model [10, 17–21, 32]. In addition, the estimation accuracy can be im-96

proved by using the similarity based on the weighted Euclidean distance [28–30].97
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In these researches, weights were defined on the basis of regression coefficients98

of a global MRA model or an LW-PLS model where all the weights were one.99

However, the conventional weighted Euclidean distance may deteriorate the esti-100

mation performance as described below. Hence, this research discusses how the101

weight of each input should be determined in Section 3.1 and proposes a method102

for deriving appropriate weights from operation data in Section 3.2.103

3. New Similarity Measure104

3.1. How Should Weights Be Determined?105

In the present work, it is assumed that the number of output variables is one,106

and the following form of the similarityω is investigated:107

ωn = exp

(
− dn

σdϕ

)
(17)

dn =
√

(xn − xq)TΘ(xn − xq) (18)

Θ = diag(θ1, θ2, · · · , θM) (19)

whereσd is a standard deviation ofdn (n = 1, 2, · · · , N) andϕ is a localization108

parameter; the similarity decreases steeply whenϕ is small and gradually whenϕ109

is large. In addition,Θ ∈ <M×M is a weighting matrix andθm is a weight of the110

mth input variable.111

Figure 1 shows simple examples, in which a relationship between a local linear112

model and weightsθm(m = 1, 2, 3) is illrustrated by using very small number of113

samples. In each figure, it is assumed that the values and the weights of the other114

inputs, andϕ are constant. Relationship between input 1 and the output variable115

is linear as shown in Figure 1 (top). Largeθ1 causes overfitting by prioritizing116

samples 4 and 5; therefore,θ1 should be small. On the contrary, the relationship117
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between input 2 and the output variable is nonlinear as shown in Figure 1 (middle).118

Thus,θ2 should be large to cope with nonlinearity between input 2 and the output119

variable. In addition, the strength of nonlinearity around a query sample may120

change depending on the value of the input variable as shown in Figure 1 (bottom).121

In this case,θ3 should be large for query 1 and small for query 2.122

The weights proposed in [28–30] do not necessarily correspond to the strength123

of nonlinearity around a query sample. For example, a regression coefficient of124

an input can be large even when the input-output relationship is linear. In such a125

case, the large weight might cause a deterioration of the estimation performance126

as shown in Figure 1 (top).127

3.2. Proposed Procedure for Calculating Similarity128

In Section 3.1, it was revealed that weights of inputs should correspond to129

strength of nonlinearity between the inputs and an output around a query sample.130

In addition, a regression coefficient, i.e. slope in Figure 1, significantly changes131

around a query sample when the nonlinearity around it is strong. Although the re-132

gression coefficient is constant when input-output relationship is linear, it changes133

depending on the strength of nonlinearity. To evaluate the change of the regres-134

sion coefficient of an input around a query sample and to determine the weights,135

the weighted variance of each input’s regression coefficients of LW-PLS models136

is utilized. The similarities between a query sample and samples in a database are137

utilized as the weights when the weighted variance is calculated. Since similarity138

depends on the weightθ, iterative calculation is conducted to derive similarity and139

θ.140

Offline and online calculation procedures of the weights are as follows.141

· Offline part142
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1. Determine the number of latent variablesR, the localization parameterϕ143

and the maximum iteration numberI.144

2. Seti = 1 andθm,i−1 = 1 for all m.145

3. Regard each ofN samples in the database as a query sample and construct146

N LW-PLS models by usingθm,i−1.147

4. Calculate the varianceVm,i of N regression coefficients of themth input148

variableanm,i, then setθm,i = (Vm,i)
α. Here,α is a tuning parameter.149

5. If i = I or the following equation is satisfied for allm, finish the offline150

calculation. Here,ε1 is a tolerance.151 ∣∣∣θm,i − θm,i−1

θm,i−1

∣∣∣ ≤ ε1 (20)

6. Seti = i + 1 and go to step 3.152

In the offline part,θm is first set to 1, thenθm is updated to(Vm,i)
α; anm andVm153

are calculated repeatedly untilθm converges.154

· Online part155

1. Determine the maximum iteration numberJ , and setj = 1 andθm,j−1 = θm156

obtained in the offline part.157

2. Calculate the similarityωn,j−1 by usingθm,j−1.158

3. Calculate the weighted varianceVm,j of anm obtained in the offline part.159

Vm,j =
N∑

n=1

ωn,j−1(anm − ām)2/

N∑
n=1

ωn,j−1 (21)

ām =
N∑

n=1

ωn,j−1anm/
N∑

n=1

ωn,j−1 (22)

4. Setθm,j = [(Vm,j)
α + θm,j−1]/2.160
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5. If j = J or the following equation is satisfied for allm, finish the online161

calculation. Here,ε2 is a tolerance.162 ∣∣∣θm,j − θm,j−1

θm,j−1

∣∣∣ ≤ ε2 (23)

6. Setj = j + 1 and go to step 2.163

In the online part,θm is updated by using the weighted varianceVm of anm ob-164

tained in the offline part and the similarityωn between a query sample to evaluate165

the strength of nonlinearity around a query sample.166

This procedure contains seven parameters to be determined: the number of167

latent variablesR, the localization parameterϕ, the tuning parameterα, the max-168

imum iteration number in the offline partI and in the online partJ , and the tol-169

erance in the offline partε1 and in the online partε2. R, ϕ andα can be de-170

termined by applying cross validation to all data or by building and validating171

models with different datasets, i.e., model construction data and parameter tun-172

ing data. The proposed method includes the conventional LW-PLS, which uses173

normal Euclidean distance since the proposed method becomes the same as the174

conventional one whenα = 0. Thus, the estimation accuracy of the proposed175

LW-PLS model is the same as or better than that of the conventional LW-PLS176

model whenα is tuned properly.177

4. Numerical Example178

In this section, the proposed method is compared with the conventional meth-179

ods in two numerical examples. The following four methods are compared.180

LW-PLS 1) LW-PLS withθm = 1.181
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LW-PLS 2) LW-PLS withθm defined as the absolute value of themth variable’s182

regression coefficient of a global MRA model [28].183

LW-PLS 3) LW-PLS withθm defined as the absolute value of themth variable’s184

regression coefficient of a LW-PLS model constructed by LW-PLS 1 [29].185

LW-PLS 4) LW-PLS withθm defined by the proposed method.186

4.1. Problem Settings187

The following two cases are investigated; in each case,xm andy are inputs188

and an output, respectively.189

· Case 1190

wm ∼ N(0, 0.022) (m = 0, 1, 2, 3) (24)

sm ∼ rand(−5, 5) (m = 1, 2, 3) (25)

xm = sm + wm (m = 1, 2, 3) (26)

y = 10s1 + 5s2
2 + exp(s3) + w0 (27)

· Case 2191

wm ∼ N(0, 0.022) (m = 0, 1, · · · , 6) (28)

sm ∼ rand(−5, 5) (m = 1, 2, · · · , 6) (29)

xm = sm + wm (m = 1, 2, · · · , 6) (30)

x7 = s6 + w6 (31)

y = s2
3 + 3s3 + s4

2

+ exp(s5) + 3s6 + w0 (32)
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Here, rand(a, b) denotes the uniform random distribution in closed interval[a b],192

andN(µ, σ2) denotes the normal distribution whose mean isµ and standard de-193

viation isσ. In both cases, 3000 samples were generated and divided into three194

groups: samples for model construction (1000 samples), parameter tuning (1000195

samples) and model validation (1000 samples). Models were constructed with196

different values of localization parameterϕ, the number of latent variablesR, and197

α, by using samples for model construction. Then, the estimation errors were198

calculated by using samples for parameter tuning, and the set of parameters that199

minimized the estimation error was selected. The search range ofϕ, R andα is200

[0.01, 0.03,· · ·, 0.09], [1, 2, 3] and [0.01, 0.03,· · ·, 0.09], respectively. The ap-201

propriate search range of the parameters depends on the situation; therefore, it is202

recommended to make the search range wide enough in order to get the optimal203

parameters. In LW-PLS 4, tolerancesε1 andε2 are 0.01. Both of the maximum204

iteration numbersI andJ are 30.205

4.2. Results and Discussions206

Table 1 shows the selected parameters and root mean square error for valida-207

tion samples (RMSE 1) . The proposed method achieved the minimum RMSE 1208

in both cases and was considerably superior to the conventional methods. Figure 2209

shows the relationship between RMSE for parameter tuning samples (RMSE 2).210

andϕ when the proposed method is applied to case 1 (R = 3). RMSE 2 was large211

whenϕ was too small or too large. Overfitting occurred whenϕ was too small,212

and models were unable to cope with nonlinearity between input and output vari-213

ables whenϕ was too large. Tables 2 and 3 showθm whenxq = [0, 0, 3]T and214

xq = [0, 0,−3]T in case 1, respectively. Figure 3 shows the transition ofθm in the215

online part of the weights calculation procedure. Here,θm is normalized so that216
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Table 1: Selected parameters and RMSE for validation samples in numerical examples.

Case Method R ϕ α RMSE

1

LW-PLS 1 3 0.05 - 3.84

LW-PLS 2 3 0.05 - 5.29

LW-PLS 3 3 0.05 - 4.69

LW-PLS 4 3 0.03 0.8 1.59

2

LW-PLS 1 6 0.21 - 18.93

LW-PLS 2 6 0.09 - 16.53

LW-PLS 3 5 0.21 - 21.17

LW-PLS 4 6 0.06 0.8 5.31

the sum ofθm be 1 in LW-PLS 2, 3 and 4. In case 1, where the relationship be-217

tweenx1 and the output is linear, therefore,θ1 should be 0. Whenxq = [0, 0, 3]T,218

θ3 should be larger thanθ2 becausex3 has stronger nonlinearity around the query219

sample thanx2, i.e.220

abs
( ∂2y

∂x2
2

∣∣∣
x=[0,0,3]T

)
< abs

( ∂2y

∂x3
2

∣∣∣
x=[0,0,3]T

)
(33)

where abs(a) denotes the absolute value ofa. On the other hand, whenxq =221

[0, 0,−3]T, θ2 should be larger thanθ3 because222

abs
( ∂2y

∂x2
2

∣∣∣
x=[0,0,−3]T

)
> abs

( ∂2y

∂x3
2

∣∣∣
x=[0,0,−3]T

)
(34)

. The proposed method derived appropriateθ for both query samples while the223

other methods could not. This is the reason why the proposed method could224

achieve the best performance in the four methods.225
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Table 2: Derived weights ofxq = [0, 0, 3]T in case 1

Method θ1 θ2 θ3

LW-PLS 1 1.00 1.00 1.00

LW-PLS 2 0.53 0.08 0.39

LW-PLS 3 0.32 0.02 0.66

LW-PLS 4 0.00 0.32 0.68

Table 3: Derived weights ofxq = [0, 0,−3]T in case 1

Method θ1 θ2 θ3

LW-PLS 1 1.00 1.00 1.00

LW-PLS 2 0.53 0.08 0.39

LW-PLS 3 0.57 0.34 0.09

LW-PLS 4 0.01 0.81 0.18

5. Application to an Industrial Distillation Process226

In this section, an application result of the proposed method to an industrial227

distillation process is reported. A soft-sensor for estimating the aroma concen-228

tration was constructed in order to realize highly efficient operation of a cracked229

gasoline (CGL) fractionator of an ethylene production process at the Showa Denko230

K.K. (SDK) Oita plant in Japan. Aroma denotes the generic name for benzene,231

toluene, xylene and styrene, etc. In this case study, linear PLS, LW-PLS 1, 2, 3232

and 4 were compared. The search range ofϕ, R andα is [0.2, 0.4,· · ·, 2, 2.5, 3.0,233

· · ·,10], [1, 2,· · ·,9], [0.2, 0.4,· · ·, 2.0] ,respectively.234
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5.1. CGL Fractionator235

A schematic diagram of the CGL fractionator of the ethylene production pro-236

cess is shown in Figure 4. The CGL fractionator is controlled with multivariable237

model predictive control (MPC) with an optimizer, and the aroma concentration238

in the CGL is used as one of the constraints in the optimizer. Although the opera-239

tion data of the CGL fractionator are stored in the database every hour, the aroma240

concentration is analyzed in a laboratory usually once a day because of its long241

analysis time. For safety, the process was operated at a condition that has a wide242

margin and is far from the constraints. Thus, real-time accurate estimation of the243

aroma concentration is crucial in order to make the operating condition closer to244

the constraint and reduce the energy consumption.245

5.2. Operation Data246

Although 19 variables are measured in the CGL fractionator, only eight vari-247

ables were selected as the input variables of the soft-sensor on the basis of the248

process knowledge. In addition, the coil outlet temperature of a cracking furnace249

measured four hours before was used together with the selected input variables,250

since the product composition is affected by the operating condition of the crack-251

ing furnace which is located in the upstream of the CGL fractionator, and it takes252

about four hours for materials to reach the CGL fractionator from the cracking253

furnace. Hence, the total number of input variables is nine. The selected input254

variables of the soft-sensor are listed in Table 4 and Figure 4. The operation data255

obtained from January 1, 2010 to August 4, 2011 were stored in the database.256

Then, the tuning parameters were determined using these data, and the aroma257

concentration was estimated for the operation data obtained from August 6, 2011258
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Table 4: Input variables of the soft-sensor for the CGL fractionator.

No. Variable name

1 Outlet cracked gasoline density

2 Reboiler flow rate

3 Outlet cracked kerosene flow rate

4 Reflux volume

5 Outlet cracked gasoline flow rate

6 Tray #4 differential pressure

7 Tower top temperature

8 Feed flow rate

9 Cracked furnace coil outlet temperature

to December 31, 2011. Here, all variables were mean-centered and scaled in order259

to make each variable’s standard deviation one.260

5.3. Results and Discussions261

Table 5 shows the selected parameters and RMSE 1. In LW-PLS 4, tolerances262

ε1 and ε2 are 0.01. The maximum iteration numbersI and J are 20 and 30,263

respectively. The average calculation time of output estimation for each query264

was 4.8 msec when IntelR© CoreTM i7-2620M (2.7 GHz×2) and 8 GB RAM were265

used.266

In this process, the output variable (aroma concentration) is measured to one267

place of decimal, thus, the differences of RMSEs between Linear PLS and LW-268

PLS 1, and between LW-PLS 2, 3 and 4 are not significant. The reason why269

LW-PLS 2, 3 and 4 derived the better result than the other methods might be that270

the strength of nonlinear effect of each input on the output is different. Table 6271
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Table 5: Selected parameters and RMSE for validation samples in a case study of the CGL frac-

tionator.

Method R ϕ α RMSE

Linear PLS 2 - - 1.20

LW-PLS 1 2 6.5 - 1.15

LW-PLS 2 2 1.0 - 0.99

LW-PLS 3 2 1.0 - 0.98

LW-PLS 4 2 1.4 1.2 1.03

Table 6: Changes of weights in a case study of the CGL fractionator when LW-PLS 4 is applied.

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9

Maximum value 0.32 0.12 0.13 0.09 0.12 0.10 0.09 0.10 0.12

Mean value 0.26 0.09 0.11 0.08 0.09 0.09 0.09 0.08 0.11

Minimum value 0.21 0.07 0.10 0.07 0.08 0.08 0.08 0.08 0.09

Standard deviation 0.03 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.01

shows the maximum, mean and minimum values, and standard deviation of the272

mth weightθm when LW-PLS 4 is applied. Here,θ1, θ2, · · · , θ8 for each query273

are normalized so that their sum becomes 1.θ1 is the largest and the nonlinear274

effect of input 1 on the output is expected to be strong. In addition, the strength of275

nonlinear effect of each input on the output does not seem to depend on the value276

of since the standard deviations of the weights are small. This could be the reason277

why RMSEs of LW-PLS 2, 3 and 4 are similar.278
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6. Conclusion279

To construct highly accurate locally weighted partial least squares (LW-PLS)280

models, an adaptive similarity measure was proposed. In the proposed method,281

weights of input variables are determined through iterative calculation by using282

the weighted variance of the regression coefficients. The results of the case studies283

showed that the proposed method could adaptively derive the appropriate weights284

and more accurate models than the conventional methods in numerical examples.285

Furthermore, root mean square error was improved by 11.3 % by using the pro-286

posed method compared to LW-PLS in which conventional similarity based on the287

Euclidean distance without weights is used. These results clearly demonstrate the288

usefulness of the proposed method, which uses newly defined similarity based on289

the weighted Euclidean distance.290
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Figure 1: The relationship between a local model and weightsθm(m = 1, 2, 3). (top) a case where

relationship between an input and an output is linear. (middle) a case where relationship between

an input and an output is nonlinear. (bottom) a case where the strength of nonlinearity changes

depending on the value of an input variable.
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Figure 2: The relationship between RMSE for parameter tuning samples and the localization

parameterϕ when the proposed method is applied in case 1 (R = 3).
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Figure 4: Schematic diagram of the CGL fractionator of the ethylene production process at the

Showa Denko K.K. (SDK) Oita plant.
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