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Abstract

The capabilities and operation of electromagnetic devices can be dramatically en-
hanced if artificial materials that provide certain prescribed properties can be de-
signed and fabricated, provided that the structure of electromagnetic devices can be
properly designed. This thesis describes how topology optimization can be used for
the microstructure design of electromagnetic materials that exhibit desirable electro-
magnetic properties, and for the macrostructure design to enhance the response of
the electromagnetic devices. In addition, in the practical design of mechanical and
electromagnetic devices, manufacturability is a crucial concern, as are several design
requirements such as the maximum volume of the material used, the prevention of
mechanical interference, the maximum allowable stress, and so on. Optimization
methods that can effectively deal with these requirements are also discussed. This
thesis consists of three main parts.

The first part (Chapters 3 and 4) discusses two topology optimization methods
that take into account manufacturability and the design requirements of compliant
mechanisms and normal structures. In Chapter 3, a new formulation for reducing
the number of design variables in a multiple phase projection method (MPPM) is
discussed that can impose a minimum length scale in the topology optimization.
Chapter 4 deals with a level set-based topology optimization using mathematical
programming that is applied to several optimization problems that include a mean
compliance constraints, a mutual mean compliance constraint, and a stress constraint.

The second part (Chapters 5 and 6) deals with the microstructure design of electro-
magnetic materials. In Chapter 5, a level set-based topology optimization is applied
for the design of dielectric metamaterials that have negative permeability . The effec-
tive permeability minimization problem and effective permeability design problems
are formulated and applied for two- and three-dimensional problems to demonstrate
that the presented method successfully finds clear configurations that have the de-
sired negative effective permeability. Chapter 6 discusses the microstructure design
of dielectric materials that exhibit set degrees of effective permittivity. An energy-
based homogenization method is used to obtain the effective permittivity tensor and
isotropic and anisotropic materials are designed using density-based topology op-
timization procedures. The theoretical bounds of the two- and three-dimensional
anisotropic effective property in the principal direction when the effective property in
the other principal direction(s) is/are set to a prescribed value are derived, to evaluate
the effective permittivity values obtained by the optimization.

The third part (Chapter 7) addresses the macrostructure design of electromag-
netic devices. An electromagnetic cloak and a metallic waveguide design problem
are considered, both using a ferrite material. Ferrite materials exhibit a frequency-
dependent degree of permeability, due to a magnetic resonance phenomenon that
can be influenced by applying an external DC magnetic field. Thus, the use of an
appropriately designed ferrite material for the electromagnetic cloaking device and
metallic waveguide is expected to result in novel functions, such as on-off operation
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in response to on-off application of an external magnetic field, or a tunable frequency
range under which the cloak or waveguide operates. The level set-based topology
optimization method is used to design the configurations of the ferrite material and
the results show that the presented method yields appropriate optimization results.
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Chapter 1

Introduction

1.1 Motivation

Recent studies on artificial materials such as metamaterials have demonstrated that
such materials can exhibit extraordinary electromagnetic properties not available in
nature. These unusual properties can dramatically improve the performance of elec-
tromagnetic devices such as electrostatic actuators, waveguides, antennas, and so on,
if artificial materials that provide certain prescribed properties can be effectively de-
signed and fabricated. The macroscopic structural design of electromagnetic devices,
such as the distribution of electromagnetic material in an antenna or waveguide, also
greatly affects the response of these devices. Because it is usually difficult or time-
consuming to find appropriate micro- or macrostructure designs by trial and error
methods, there is a need for systematic design methods that assist or simplify the
design of artificial materials. Furthermore, manufacturability and a various design
requirements, such as the maximum volume of the material used, prevention of me-
chanical interference, maximum allowable stress, and so on, must all be satisfied in
practical designs of mechanical and electromagnetic devices.

This thesis focuses on topology optimization for the microstructure design of
dielectric-based electromagnetic materials that are artificially designed to exhibit
desirable electromagnetic properties, and for the macrostructure design of electro-
magnetic devices that are fabricated from a ferrite material. In addition, topology
optimization methods that handle the above design requirements are also discussed.

1.2 Structure of thesis

This thesis is a summary of research done during my doctoral course. The outline of
each chapter is as follows:

Chapter 2 briefly introduces the concepts of structural optimization methods. A
brief history of topology optimization is provided, and the formulations of the density-
based topology optimization method and the level set-based topology optimization
method used in later chapters are explained.

In Chapter 3, a topology optimization method that can consider manufacturability
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is considered. A new projection function that reduces the number of design variables
in a multiple phase projection method that imposes a minimum length scale in the
topology optimization is formulated and applied to a minimum mean compliance
problem and a compliant mechanism design problem.

In Chapter 4, a level set-based topology optimization method using mathemati-
cal programming is formulated to facilitate the treatment of constraint functionals.
Several constraint functions are discussed and implemented. These include a mean
compliance constraint that ensures that sufficient stiffness is obtained even when a
load is applied in a direction slightly different from the prescribed direction, a mutual
mean compliance constraint so that the structure deforms in a designed direction,
and a stress constraint. The presented method updates the level set function using
the Method of Moving Asymptotes (MMA). Stress constraints and mean compliance
constraints are serially applied in a number of minimum mean compliance problems
and compliant mechanism design problems.

Chapter 5 discusses a topology optimization method applied to the design of neg-
ative permeability dielectric metamaterials. The constructed optimization algorithm
uses a level set-based topology optimization and the S-parameter retrieval method to
obtain the effective permeability value that is the objective of the design optimiza-
tion. The effective permeability minimization problem and the effective permeability
design problem are formulated, and numerical results for two- and three-dimensional
problems are provided to demonstrate that the presented method successfully finds
clear configurations that have the desired negative effective permeability.

Chapter 6 deals with the microstructure design of dielectric materials that demon-
strate a desired permittivity value. An energy-based homogenization method is used
to obtain the permittivity tensor. Isotropic and anisotropic materials are designed
using a density-based topology optimization method. The optimization problem is
formulated to minimize the difference between the obtained effective value and the
prescribed value. We derive the theoretical bounds of the two- and three-dimensional
anisotropic effective property in the principal direction when the effective property
in the other principal direction(s) is/are set to a prescribed value, to evaluate the
effective permittivity values obtained by the optimization. The results show that the
obtained values using the presented method are in good agreement with theoretical
bounds.

Chapter 7 addresses the design of an electromagnetic cloaking device and a metal-
lic waveguide, both using a ferrite material. Ferrite materials exhibit a frequency-
dependent degree of permeability due to a magnetic resonance phenomenon that
can be influenced by applying an external DC magnetic field. Thus, the use of an
appropriately designed ferrite material for the electromagnetic cloaking device and
metallic waveguide is expected to result in novel functions, such as on-off operation
in response to on-off application of an external magnetic field, or a tunable frequency
range under which the cloak or waveguide operates. A level set-based topology op-
timization method is used to design the configurations of the ferrite material and
the optimization problem is formulated to minimize the integral value of the norm
between the electric field and the reference field prescribed in the scattering domain
for the cloak design problem and to maximize the transmission power for the waveg-
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uide design problem. The results show that the presented method yields appropriate
optimization results.

Finally, conclusions for the entire thesis are provided in Chapter 8.
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Chapter 2

Topology optimization

2.1 Structural optimization

Structural optimization methods can be categorized into three types, according to the
degree of design flexibility: size, shape, and topology optimization. Size optimization
[1, 2], first proposed by Schmit [1] in the 1960’s, focuses on the size attributes of
structural designs, such as thickness, width, and length. Shape optimization, studied
from the 1970’s [3–5], deals with design aspects pertaining to the shape of structures,
such as their outer boundaries and the shapes of inner holes. Topology optimization
[6–9], widely applied now in a range of industries, is the most flexible type of structural
optimization method because it allows topological changes that include increasing the
number of holes in the design domain, in addition to changes in a structure’s shape.

2.2 Topology optimization

The basic ideas of topology optimization are (1) the extension of the design domain
to a fixed design domain and (2) the replacement of the optimization problem by
a material distribution problem in the fixed design domain, using the characteris-
tic function [10]. Since the characteristic function is a discontinuous function that
represents the structure using values of 0 or 1, optimization problems are usually
ill-posed. Various approaches to overcome this difficulty have been proposed, such
as the Homogenization Design Method (HDM) [6], and density approaches such as
the SIMP method [7], in which optimized configurations are represented as density
distributions that assume continuous values from 0 to 1. The obtained optimized
configurations therefore often include grayscale areas where the density is an inter-
mediate value between 0 and 1, and there also exist the problems of checkerboards
and mesh-dependency. Various schemes have been proposed to overcome such prob-
lems and provide grayscale-free optimized configurations, or configurations that do
not include impractically complex structures. These schemes can be roughly divided
into two categories: those that impose geometric constraints, and filtering schemes.
Detailed reviews [11,12] of these methods are in the literature.

Concerning constraint schemes, Ambrosio and Buttazzo [13] and Haber et al.
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[14] imposed a constraint on the perimeter of structural boundaries. Petersson and
Sigmund [15] constrained local density gradients and Zhou et al. [16] extended this
scheme to achieve structures with a minimum member size. Borrvall and Petersson
[17] introduced a regularized penalty function to constrain intermediate densities.
Poulsen [18] proposed the monotonicity-based minimum length scale (MOLE) method
that imposes the same minimum length scale on both material and void domains. In
the MOLE method, an additional constraint restricts the number of phase changes
within the radius of a set minimum length scale.

Concerning filtering schemes, Sigmund [19, 20] first proposed a sensitivity filter
in which filtered sensitivities used to update the design variables are obtained as
weighted averages of sensitivities in mesh-independent neighborhood domains. Bruns
and Tortorelli [21] introduced a density filter based on a sensitivity filter formula-
tion [19,20] and Bourdin [22] proved the existence of a solution to a minimum mean
compliance problem, using a density filter [21]. Subsequently, Wang and Wang [23]
introduced a bilateral filtering scheme originally developed for use in image process-
ing, in which material densities are obtained as a nonlinearly weighted average of
neighborhood density according to their closeness and similarity, using a Gaussian
distribution function. Recently, several filtering schemes using a projection method
have been proposed.

Guest et al. [24] proposed a Heaviside density filter that imposes a minimum length
scale, using the Heaviside projection function so that all elements within the radius
set by this scale become solid when a design variable has a nonzero value. Sigmund
[12] used min/max operators so that the element volume fraction is defined as the
min/max value within the radius of a minimum length scale. In this method, min/max
operators are redefined using the Kreisselmeier and Steinhauser (KS) functions [25],
and named dilate/erode operators. Based on a Heaviside density filter [24], Almeida et
al. [26] introduced an inverse projection scheme where direct or inverse projections are
used, depending on the volume of void surrounding elements, and Guest [27] proposed
a multiple phase projection method (MPPM) to restrict the minimum length scale in
both solid and void phases. Subsequently, Guest and Genut [28] proposed the use of
adaptive design variables for the MPPM, to reduce computation times. Furthermore,
based on the Heaviside filter, Guest [29] proposed a projection scheme that can impose
both minimum and maximum length scales.

However, since the Heaviside density filter is not a volume-preserving filter, that
is, since the volume of the design variables is not the same as that of the mate-
rial density, and since the parameter β that controls the curvature of the smoothed
Heaviside function is updated every several iterations during optimization procedure,
the applied volume constraint is temporarily violated, leading to relatively poor op-
timization stability, as pointed out by Xu et al. [30]. Xu et al. proposed a volume
preserving filter that combines a Heaviside filter [24] with a modified Heaviside fil-
ter [12]. To preserve the volume, the appropriate threshold value for the Heaviside
function is obtained by a line search. Guest et al. [31] researched the parameters
used in Heaviside density filters in order to improve the convergence of optimization
computations. Note that the open/close operators in some research [12] are volume
preserving, while basic filters, dilate/erode operators, are not.
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Sigmund [32] andWang et al. [33] proposed a robust topology optimization method
using dilate and erode operators. Three designs, obtained using original, dilated,
and eroded density distributions implicitly represent the manufacturing error, and
the worst objective function of three designs is maximized or minimized during the
optimization. This procedure guarantees optimized designs with good performance
even for thin or broad structures. In [33], three threshold values for the Heaviside
function are used to obtain three different designs, and a volume constraint is applied
to the eroded design. The threshold values for the dilate and erode operators can be
independently set in this method.

Furthermore, partial differential equation (PDE)-based filtering schemes have re-
cently been proposed [34–36]. In most previously proposed filtering schemes, the
filtered density or sensitivity values are obtained by a convolution operator [9] that
computes weighted averages over neighborhood domains. In PDE-based filtering
schemes, however, a Helmholtz-type PDE is used instead of a convolution opera-
tor. The relatively low computational cost is one advantage of PDE-based filters, as
discussed in [33]. Another advantage is their ease of implementation, because such
filters can directly use the FEM framework for solving state or adjoint problems.
Lazarov and Sigmund applied a PDE-based filter to sensitivities [34] and, later, to
densities [36]. Kawamoto et al. [35] introduced a PDE-based filter combined with the
Heaviside function.

Topology optimization methods have been applied to a variety of problems, such
as stiffness maximization problems [37], eigen-frequency problems [38], compliant
mechanism design problem [20, 39], elastic wave propagation problems [40], thermal
problems [41], fluid problems [42–44], magnetic problems [45], acoustic problems [46–
48], and so on.

Topology optimization has also been applied to a variety of electromagnetic prob-
lems. To address antenna design problems, Kiziltas et al. [49, 50] applied topology
optimization for the design of dielectric substrates for patch antennas. Nomura et
al. [51] proposed a topology optimization method to the design of dielectric resonator
antennas, integrating topology optimization with the Finite-Difference Time-Domain
(FDTD) method so that multi-frequency problems can be easily handled. Erentok
and Sigmund [52] applied topology optimization to sub-wavelength antenna designs in
which the conductivity distribution is designed. Aage et al. [53] proposed a topology
optimization method that imposes a design-dependent element impedance boundary
condition on each finite element, to handle the problem of skin depth in the design
of metallic devices, and applied this method to magnetic and electric resonator de-
sign problems and a monopole antenna design problem. For photonic crystal design
problems, Jensen and Sigmund designed a photonic crystal waveguide [54] and T-
junction [55] using topology optimization. Frei et al. [56] designed a photonic crystal
waveguide termination that maximizes directional emission. A comprehensive review
of topology optimization for nanophotonics is available [57]. Hirayama et al. [58]
designed dielectric material distributions for a metallic waveguide and Nishiwawki et
al. [59] developed cross-section designs for metallic waveguides. Andkjær et al. [60] de-
signed a plasmonic grating coupler, and Soh et al. [61] and Soh and Yoo [62] designed
thin film solar cells.
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For metamaterial design problems, Diaz and Sigmund [63] proposed a topology
optimization method for the design of negative permeability metamaterials using an
S-parameter retrieval method, where the imaginary part of the effective permeabil-
ity was minimized at a specific frequency, and several designs for metallic structures
attached to dielectric substrates that achieve negative permeability were provided.
Sigmund [64] proposed a density-based topology optimization method for dielectric
metamaterials to obtain dielectric material designs that minimize the effective perme-
ability at a specific frequency, which also employed the S-parameter retrieval method
to obtain the effective properties. Choi and Yoo [65] introduced an inverse homog-
enization method [66] for the design of magnetic materials that attain a desirable
prescribed effective permeability value. Zhou et al. [67] proposed an inverse ho-
mogenization method for the design of metamaterials, where both permittivity and
permeability are simultaneously maximized. El-Kahlout and Kiziltas [68] introduced
inverse homogenization methods for the design of dielectric materials that realize a
prescribed effective permittivity value, using an asymptotic expansion-based homoge-
nization method and Genetic Algorithms (GAs) [68]. GAs have also been used to find
optimized layouts of the metallic inclusion in metamaterial unit cells for a negative
permeability design problem [69], and for different multi-objective problems [70, 71]
in which the refractive index and impedance were simultaneously designed [70], and
the bandwidth of the negative refractive index was maximized and the dissipation
minimized [71].

2.3 Level set-based structural optimization

A type of structural optimization method using level set boundary expressions has
been proposed in which the boundaries of the optimal configuration are implicitly rep-
resented using the level set function. A level set-based structural optimization method
was first proposed by Sethian and Wiegmann [72] where the level set function is up-
dated based on the von Mises stress. Wang et al. [73] and Allaire et al. [74] proposed a
level set-based structural optimization method where the level set function is updated
using the Hamilton-Jacobi equation, based on the shape sensitivities. Level set-based
structural optimization methods have been applied to many problem such as a multi-
material problem [75, 76], and a stress minimization problem [77]. This method also
extended to integrate with the boundary element method (BEM) [78], where the
mesh immersion method is used to integrate the boundary element mesh with the
Eulerian mesh in which the level set function is defined. However, because these
particular level set-based methods are based on the boundary advection concept, the
introduction of holes during the optimization procedure is not allowed, although the
number of holes can be decreased. As a result, the obtained optimized configurations
are greatly affected by initial configuration setting, and several approach have been
proposed to alleviate this problem. Allaire et al. [79] proposed a level set-based ap-
proach where holes are introduced according to a topological gradient method [80,81])
applied after a certain number of iterations, while the structural boundaries are up-
dated by the Hamilton-Jacob equation based on smoothed shape sensitivities. Burger
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et al. [82] introduced a topological derivative into the Hamilton-Jacobi equation, and
He et al. [83] extended this method to deal with general objective functionals.

In level set-based methods using the Hamilton-Jacobi equation, the level set func-
tion must be re-initialized to maintain numerical accuracy, which is computationally
costly. Several approaches that are not based on the boundary advection concept
have been proposed. Wang and Wang [84] proposed a method that represents the
level set function by superposition of a radial basis function. Luo and Tong [85]
proposed a level set-based topology optimization method incorporating a radial basis
function for the design of compliant mechanisms, but the choice of appropriate values
for the radial basis function parameters depends on experience. Wei and Wang [86]
proposed a method that uses a piecewise constant level set function [87] and updated
the level set function using the additive operator splitting (AOS) scheme [88,89]. This
method imposes a constraint, named a piecewise constant constraint, to ensure that
the level set function has piecewise values, and the optimization problem is solved
using the augmented Lagrangian method. However, the parameters used for han-
dling constraint functionals affect the stability of optimizations and also the obtained
configurations, as discussed in [86]. Yamada et al. [90] proposed a level set-based
topology optimization method where the optimization problem is regularized using
the Tikhonov regularization method [91]. In this method, a regularization term is
added to the primary objective functional and the level set function is updated based
on a reaction-diffusion equation. This method enables the complexity of optimized
configurations to be adjusted by using appropriate magnitudes of a regularization pa-
rameter, and has been applied to a variety of problems such as stiffness maximization
problems, eigen-frequency problems, compliant mechanism design problems [90], and
problems to maximize thermal diffusivity [92].

Level set-based methods have been applied to many electromagnetic design prob-
lems, such as metallic waveguides [93,94] and dipole antennas [95]. For metamaterial
design problems, Zhou et al. [96] proposed a level set-based structural optimization
method for the design of double negative metamaterials, that is, metamaterials with
negative permittivity and negative permeability. The aim of the optimization problem
in this case was to find an optimized layout of metallic inclusions, and the objective
function was formulated using current flow, instead of using the effective permittivity
or permeability directly. Subsequently, Zhou et al. [97] proposed a level set-based
structural optimization method in which the effective permeability is directly used as
an objective function. Concerning the design optimization of metamaterial applica-
tions, Yamasaki et al. [98] proposed a level set-based structural optimization method
for the design of composite right- and left-handed transmission lines consisting of a
metallic waveguide with dielectric inclusions. The aim of optimization problem was
to find the optimized configuration of the dielectric inclusion within the unit cell
of the particular transmission line that provides desired dispersion behavior for the
composite right- and left-handed lines.
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2.4 Formulation of topology optimization

As mentioned above, the basic ideas of topology optimization are (1) the extension
of the design domain to a fixed design domain D so that the fixed design domain D
encompasses the entire original design domain Ω (Fig.2.1), and (2) the replacement
of the optimization problem by a material distribution problem in the fixed design
domain, using the characteristic function [10]. The characteristic function χ is defined
as follows:

χ(x) =

{
1 if x ∈ Ω

0 if x ∈ D \ Ω,
(2.1)

where x represents the coordinate in the fixed design domain.
Since this characteristic function lies in L∞ and is allowed to be discontinuous

everywhere, the optimization problem is usually ill-posed. As Cheng and Olhoff [99]
and Haber et al. [14] described, an obtained optimized configuration may contain
an infinite number of infinitely thin members. To overcome this obstacle, the Ho-
mogenization Design Method (HDM) [6], and density approaches such as the SIMP
method [7,100–102] were proposed, in which optimized configurations are represented
as density distributions, with the density assuming continuous values from 0 to 1.
Bendsøe and Kikuchi [6] proposed the HDM to relax the design domain, using the
homogenization method [8,103,104]. In the HDM, a discontinuous material distribu-
tion is represented using a periodic microstructure and the problem of discontinuity is
then solved by homogenizing the material property tensor. The HDM design variables
are parameters that determine the geometrical configuration of a unit cell, such as the
size or angle of an inner hole. Several unit cell geometries have been proposed, such
as layered structures, square rectangular [7], and hexagonal [105] unit cells, according
to the requirements of the material used and details of the design problem.

Figure 2.1: Fixed design domain D.
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2.4.1 Density-based method

Here, a formulation of density-based topology optimization [7, 102] is briefly intro-
duced. In this thesis, density-based topology optimizations are described and applied
in Chapters 3 and 6. In a density-based approach, a material property tensor a
such as an elasticity tensor, permeability tensor, permittivity tensor, or the like, is
represented using a density function f(ρ), as follows.

a = a1f(ρ), (2.2)

where ρ is the normalized density and a1 is the material property tensor in the
material domain Ω.

The density function is often expressed as a power function, and the material
property tensor is then defined as

a = (a1 − a0) ρ
p + a0 , (2.3)

where p is a penalization parameter and a0 is the material property tensor in the void
domain D \ Ω. The design domain relaxation method employing Eq.2.3 is called the
solid isotropic material with penalization (SIMP) method [7, 100–102]. Because this
interpolation scheme, unlike the homogenization method, is not based on a mathemat-
ical or physical viewpoint, the material property tensor of obtained grayscale areas is
hard to interpret. Bendsøe and Sigmund [102] rigorously compare the interpolation
of the SIMP method with various theoretical bounds of composite materials, (e.g.
the Hashin-Strikman bound [106,107] and the Voigt-Reuss bound [108]), and demon-
strate the use of several different microstructures that realize the material property
tensor of grayscale areas obtained by the SIMP interpolation, based on the magnitude
of normalized density.

The design variable in density-based topology optimization is the normalized den-
sity that is typically located at the nodes of a finite element mesh, or the center
of finite elements, and it is usually updated using a mathematical programming
method such as an Optimality Criteria (OC) method, Sequential Linear Programming
(SLP), Sequential Quadratic Programming (SQP), a Convex Linearization (CON-
LIN) [109] method, or the Method of Moving Asymptotes (MMA) [110,111]. Ma and
Kikuchi [112] reviewed these methods and developed an extension, the Generalization
of Sequential Approximation Optimization (GSAO) method.

2.4.2 Level set-based method

Here, a level set-based topology optimization method that incorporates a fictitious
interface energy [90] is briefly introduced that will be used for the design of negative
permeability dielectric metamaterials in Chapter 5, and the design of ferrite cloak-
ing devices and waveguides in Chapter 7 in this thesis. This method is dealt with
in Chapter 4 as well. The topology optimization problems in these examples are
formulated using a fixed design domain D that consists of a domain Ω filled with
solid material, a domain filled with void, and structural boundaries ∂Ω. As shown in
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Figure 2.2: Fixed design domain D and level set function ϕ.

Fig.2.2, the structural boundaries in a level set-based topology optimization method
are implicitly represented using the iso-surface of the level set function, as follows.

1 > ϕ(x) > 0 for ∀x ∈ Ω \ ∂Ω
ϕ(x) = 0 for ∀x ∈ ∂Ω

0 > ϕ(x) > −1 for ∀x ∈ D \ Ω
(2.4)

The level set function ϕ is used to represent the boundaries of the target struc-
ture, where positive values represent the solid domain, negative values represent the
void domain, and zero represents the structural boundaries. The optimization prob-
lem that minimizes objective functional F under a constraint functional G is then
formulated as follows, using the above defined level set function ϕ.

inf
χϕ

F (χϕ) =

∫
D

f1(x, χϕ)dΩ +

∫
Γ

f2(x, χϕ)dΓ (2.5)

subject to G(χϕ) =

∫
D

g(x, χϕ)dΩ−Gmax 6 0, (2.6)

where f1 and f2 are density functions of the objective functional, g is the density
function of the constraint functional, and Gmax is the upper limit value of G. The
characteristic function χϕ(ϕ) is defined as follows.

χϕ(ϕ) =

{
1 if ϕ > 0

0 if ϕ < 0
(2.7)

The above optimization problem is an ill-posed problem because the level set function
is allowed to be discontinuous at every point, so the optimization problem must be
regularized. Here, the Tikhonov regularization method is applied and the above
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formulation is replaced with the following optimization problem:

inf
ϕ

FR(χϕ, ϕ) = F +R (2.8)

subject to G(χϕ) 6 0, (2.9)

where R in the above equation is defined so that with

R =

∫
D

1

2
τ | ∇ϕ |2 dΩ. (2.10)

The τ parameter is a regularization parameter that can be used to adjust the degree
of regularization. This formulation is then replaced with an optimization problem
without constraints, using Lagrange’s method of undetermined multipliers, as follows.

inf
ϕ

F̂R(χϕ, ϕ) = F̂ +R, (2.11)

where F̂ = F + λG, F̂R is the Lagrangian, and λ is the Lagrange multiplier. Based
on the above formulation, the KKT (Karush-Kuhn-Tucker) conditions of this opti-
mization problem are described as⟨

dF̂R

dϕ
, ϕ̃

⟩
= 0, λG = 0, λ > 0, G ≤ 0, (2.12)

where the notation
⟨

dF̂R

dϕ
, ϕ̃
⟩

represents the Fréchet derivative of the regularized

Lagrangian F̂R with respect to ϕ.
Level set functions that satisfy the above KKT conditions are candidate solutions

of the level set function that represent optimized configurations. However, optimized
solutions are difficult to find directly, so the optimization problem is replaced by a
time evolution equation, by introducing a fictitious time t. The level set function
is updated by solving this equation, and an optimized configuration is ultimately
obtained, as explained below.

Level set function updating scheme

For the following formulation, which introduces a fictitious time t, it is assumed that
the variation of the level set function is proportional to the gradient of Lagrangian
F̂R, as follows.

∂ϕ

∂t
= −K(ϕ)

dF̂R

dϕ
, (2.13)

where K(ϕ) > 0 is a coefficient of proportionality. Substituting Eq.(2.11) into
Eq.(2.13) and setting appropriate boundary conditions, the following equations are
obtained. 

∂ϕ

∂t
= −K(ϕ)

(dF̂
dϕ

− τ∇2ϕ
)

∂ϕ

∂n
= 0 on ∂D \ ∂DND

ϕ = 1 on ∂DND

(2.14)
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where ∂DND is non-design boundaries where the Dirichlet boundary condition is ap-
plied. The optimized configuration can be then obtained by solving the above time
evolution problem, and in this research, candidate optimum solutions are found by
solving the above equation. Here, since the objective functional F̂ (χϕ) is represented

as a functional of χϕ, the derivative of F̂ (χϕ) is equivalent to the magnitude of the

topological derivative (e.g., [80, 81, 113–115]). The derivative of F̂ (χϕ) can then be

obtained as a derivative with respect to χϕ, namely, −dF̂ (χϕ)/dχϕ [83, 90].
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Chapter 3

Multiple phase projection method

3.1 Introduction

This chapter discuss a new methodology for reducing the number of design variables
in a multiple phase projection method (MPPM), which advantageously reduces the
computation time. The MPPM is a density filtering method that imposes a minimum
length scale on solid as well as void phases, and two design variables associated with
these phases are typically required at each node, but the design variables themselves
are physically meaningless. The design variables are first passed through the projec-
tion function to yield weighted average design variables. The projection function is
a mesh-independent weighted average function based on the minimum length scale.
The weighted average design variables are then passed through a Heaviside function
to yield the element volume fractions. The approximated Heaviside function is an
exponential function that approaches the Heaviside step function as the value of a
parameter approaches infinity. Black and white solutions are obtained by the prop-
erty of the approximated Heaviside function. The primary drawback of the MPPM
is an increased number of design variables. Although two variables are required at
each node in the previously proposed MPPMs, only one of the design variables has
a nonzero value. The new methodology proposed here requires only a single design
variable at each node, which can assume any value in a range from −1 through +1.
Positive values of this design variable are associated with the solid phase and negative
values are associated with the void phase. Optimum design examples for two mini-
mum compliance problems and a compliant mechanisms design problem are provided
to verify that the new methodology provides appropriate solutions that incorporate
a given minimum length scale when a reduced number of design variables is used.

3.2 Formulation

3.2.1 Heaviside projection method

In this section, the Heaviside projection method (HPM) is briefly reviewed. In topol-
ogy optimization methods, a structural optimization problem is replaced by a material
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Figure 3.1: Domain showing constraint according to a minimum length scale.

distribution problem within a fixed design domain, and the material distribution is
typically represented by normalized density values in finite elements or nodes. That
is, a domain where the normalized density has a value of 1 represents a solid domain,
and that with a value of 0 represents a void domain. In the HPM, the design variables
ϕj are independent of the finite element mesh and can be located at any point in the
design domain. In this study, the design variables are located at the nodes of the
finite element mesh, and the normalized densities obtained after mapping through a
projection function are located at the center of the finite elements, as in [24, 26, 27].
Figure 3.1 shows a domain neighborhood where the design variables that are mapped
to the normalized density of the e-th finite element are defined. As shown in the
figure, the design variables at the nodes in the area defined according to the radius
of the prescribed minimum length scale rmin are defined as follows:

ϕj ∈ N e if r ≡ |xj − x̄e| 6 rmin, (3.1)

where N e is the domain neighborhood corresponding to the e-th finite element, xj

is the location of design variable j, and x̄e is the location of the center of element
e. The weighted average design variables µe are then computed using the following
projection function,

µe =

∑
j∈Ne

ϕjw(|xj − x̄e|)∑
j∈Ne

w(|xj − x̄e|)
, (3.2)

where w is the distance weighting function that imposes increasing weights for closer
design variables, defined as follows:

w(|xj − x̄e|) =


rmin − r

rmin

ϕj ∈ N e

0 otherwise.

(3.3)
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Figure 3.2: Smoothed Heaviside functions for µe.

The weighted average design variables µe are then passed through a Heaviside function
to yield the element volume fractions ρe.

When a minimum length constraint is applied to solid domains, the normalized
density for the e-th finite element is obtained by the Heaviside step function expressed
as follows:

ρe1 = H(µe) =

{
1 if µe > 0

0 if µe = 0.
(3.4)

The basic idea of the Heaviside projection method is that the elements become solid
when any design variable in the area defined by the radius of the minimum length
scale has a nonzero value, and the elements become void only when all the design
variables within this defined area have a value of zero. This condition prevents the
creation of any feature smaller than the minimum length scale. Since the minimum
length scale is not influenced by the mesh size, the Heaviside projection method is
mesh-independent.

In the numerical computation, the above Heaviside step function is modified to
the following continuous function so that the gradient with respect to µe, used in the
optimization algorithm, can be obtained.

ρe1 = Hs(µ
e) = 1− e−βµe

+ µee−β, (3.5)

where β is a parameter that can be used to control the curvature of the approximated
Heaviside function. Figure 3.2 shows the approximated Heaviside function for various
magnitudes of β. The approximated Heaviside function approaches the Heaviside step
function as the value of parameter β approaches infinity.

On the other hand, when the minimum length constraint is applied to void do-
mains, the normalized density for the e-th finite element is obtained using the Heav-
iside step function as follows:

ρe0 = 1−H(µe) =

{
0 if µe > 0

1 if µe = 0.
(3.6)
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Again, the above Heaviside step function is modified in the numerical computation
as follows.

ρe0 = 1−Hs(µ
e) = e−βµe − µee−β. (3.7)

As discussed above, the minimum length constraint can only be applied to either
solid or void domains. Therefore, undesirably complex configurations may appear in
domains that do not have a minimum length constraint applied.

3.2.2 Multiple phase projection method (MPPM)

To overcome the above problem, minimum length constraints are applied to both solid
and void domains in the MPPM [27]. The MPPM uses two design variables in each
node, ϕ1j and ϕ0j, associated with solid and void domains, respectively. Following
the same procedure as that of the HPM, the weighted average design variables µe

1

and µe
0 are obtained using the projection function on domain neighborhoods N e

1 and
N e

0 , defined using minimum length scales rmin,1 and rmin,0 applied to the solid and
void domains, respectively. The normalized densities ρe1 and ρe0 that respectively
correspond to the solid and void domains are then obtained using the Heaviside
function, through Eqs.(3.4) and (3.6). Finally, the normalized density ρe for each
finite element is computed as the average of the normalized densities ρe1 and ρe0, as
follows.

ρe =
1

2
(ρe1 + ρe0) =

1

2
(H(µe

1) + 1−H(µe
0)) . (3.8)

Again, in the numerical computation, the above Heaviside step function is modified
as below.

ρe =
1

2

[(
1− e−βµe

1 + µe
1e

−β
)
+
(
e−βµe

0 − µe
0e

−β
)]
. (3.9)

In the above formulation, domains where ρe1 = ρe0 = 1, so that ρe = 1, represent solid
domains, and domains where ρe1 = ρe0 = 0, so that ρe = 0, represent void domains.
However, domains where ρe1 = 1 and ρe0 = 0, and domains where ρe1 = 0 and ρe0 = 1,
represent grayscale areas. Such grayscale areas can be avoided by penalizing the
element stiffness matrix using the SIMP method, as follows.

ke = [(ρe)p + ρmin]k
e
0, (3.10)

where p is the penalization parameter, ke
0 represents the element stiffness matrix in

solid domains, and ρmin is a sufficiently small positive value applied to maintain a
positive definite global stiffness matrix.

3.2.3 Proposed MPPM

The main drawback of the above MPPM is the increased number of design variables.
Although this MPPM requires two variables at each node, only one of the design

18



variables has a nonzero value. Here, a new methodology is discussed, one that requires
only a single design variable at each node, with values ranging from −1 through +1.
Positive and negative values of this design variable are associated with the solid and
void phase, respectively.

Solid phase projection

The projection function is modified as shown in Eq.(3.11) so that positive values of
the design variable are associated with the solid phase. When any design variable ϕj

within the radius of the minimum length scale N e
1 is positive, µe

1 becomes positive,
and when all design variables ϕj within this radius are non-positive, µe

1 becomes zero.

µe
1 =

∑
j∈Ne

1

(|ϕj|+ ϕj)w(|xj − x̄e|)

2
∑
j∈Ne

1

w(|xj − x̄e|)
. (3.11)

Void phase projection

The projection function for the void phase is modified as follows so that negative
values of the design variable are associated with the void phase. When any design
variable ϕj within the radius of the minimum length scale is negative, µe

0 becomes
positive, and when all design variables ϕj within this radius are non-negative, µe

0

becomes zero.

µe
0 =

∑
j∈N0

(|ϕj| − ϕj)w(|xj − x̄e|)

2
∑
j∈N0

w(|xj − x̄e|)
. (3.12)

Normalized density

The normalized density ρe for each finite element is then defined as the mean value
of µe

1 and µe
0, the same as in Eq.(3.8). The rest of the procedure is the same as that

used in the conventional MPPM.

3.2.4 Optimization problem

Consider a fixed design domain D and a material domain Ω. The displacement is
fixed at boundary Γu and a traction f is applied at boundary Γf . The objective is
to find the optimum layout of the design space that minimizes the mean compliance
under the given volume constraint.
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The optimization problem is defined as follows:

minimize c = fTu (3.13)

subject to
N∑
e=1

ρeve 6 Vmax (3.14)

Ku = f (3.15)

− 1 6 ρj 6 1, (3.16)

where c is the mean compliance, v is the volume of each finite element and u is
obtained displacement. K is the global stiffness matrix, Vmax is the given volume
constraint, and N is the number of elements. Note that the optimization problem
here is described using the discretized form, since the formulation used in the MPPM
has been discussed in the previous subsections using this form.

The sensitivity of the minimum mean compliance problem can be derived as fol-
lows:

∂c

∂ϕj

=
∑
e∈D

∂c

∂ρe
∂ρe

∂ϕj

. (3.17)

In the above equation, the sensitivity with respect to the normalized density of the
e-th finite element ∂c

∂ρe
can be obtained as follows, since the optimization problem is

self-adjoint:
∂c

∂ρe
= −uT ∂K

∂ρe
u = −p (ρe)p−1 ueTke

0u
e, (3.18)

where ue represents the displacement of the e-th finite element. The sensitivities are
finally obtained as follows by substituting Eq.(3.18) into Eq.(3.17).

∂c

∂ϕj

= −
∑
e∈D

p (ρe)p−1 ueTke
0u

e ∂ρ
e

∂ϕj

, (3.19)

where

∂ρe

∂ϕj

=
∑
i=1,0

∂ρe

∂µe
i

∂µe
i

∂ϕj

, (3.20)

∂ρe

∂µe
i

=
1

2
(−1)i+1

(
βe−βµe

i + e−β
)
, and (3.21)

∂µe
i

∂ϕj

=

 ϕj√
ϕ2
j + ϵ2

+ (−1)i+1

 w(|xj − x̄e|)(√
1 + ϵ2 + 1

) ∑
k∈Ne

i

w(|xk − x̄e|)
. (3.22)

3.3 Numerical implementation

3.3.1 Approximation of absolute values

The gradient of the absolute value is not continuous at ϕj = 0. In order to use sen-
sitivity analysis in the topology optimization, the absolute value |ϕ| is approximated
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by the smoothed function A(ϕj) =
√
ϕ2
j + ε2. Figure 3.3 shows the approximated

absolute value. The parameter ε is given a small positive value. Several values were
evaluated and ε = 0.1 is applied here, as in [18]. The weighted average design vari-
ables µ1 and µ0 are then modified to regularize their values so that they fall between
0 and 1, as follows:

µe
1 =

∑
j∈N1

(√
ϕ2
j + ε2 + ϕj

)
w(|xj − x̄e|)

(√
1 + ε2 + 1

) ∑
j∈N1

w(|xj − x̄e|)
, (3.23)

µe
0 =

∑
j∈N0

(√
ϕ2
j + ε2 − ϕj

)
w(|xj − x̄e|)

(√
1 + ε2 + 1

) ∑
j∈N0

w(|xj − x̄e|)
. (3.24)

3.3.2 Optimization algorithm

Figure 3.4 shows the optimization flowchart. First, the design variables are initial-
ized. The weighted average design variable µe

1, µ
e
0 and the element density ρe are

then computed using the projection function and Heaviside function, respectively.
The objective functional is computed using the FEM. If it is converged, the optimiza-
tion procedure terminates, otherwise the sensitivities are computed using the adjoint
variable method (AVM). The design variables are then updated using the method of
moving asymptotes (MMA), and the process returns to the second step.

3.3.3 Updating scheme applied to optimization parameters.

Although larger values of the SIMP penalization parameter may reduce the number
of grayscale areas in an obtained configuration, it is well known that such adjustment
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is detrimental to the convergence of optimization computations. Therefore, the values
of the penalization parameter p and the parameter β used in the Heaviside projection
function are gradually increased from initially set low values during optimization,
as implemented in [24, 26, 27]. Figure 3.5 shows the flowchart of the scheme used
to update these parameters. In this research, p and β are gradually increased from
initial values of 1, and the parameters used in the updating scheme are set to the
following values: ∆p = 0.5, ∆β = 1.1k, pmax = 5.0, and βmax = 50.0, where k is the
iteration number.

3.4 Numerical examples

3.4.1 Minimum mean compliance problems

The design domain and boundary conditions for the first example are shown in Fig.3.6.
The design domain has a length of 120, height of 20, and unit width. A force is applied
at the center of the top of the domain. The volume constraint is set to 50.0% of the
volume of the design domain. The domain is axially symmetric, so only the right half
of the design domain is considered in the optimization problem.

Post processing

Figure 3.7 shows the obtained configuration obtained by the proposed MPPM, and
significant grayscale areas around the boundaries of the structure are present. The
small bars at the top right of the figure indicate the magnitude of the applied minimum
length scale. Although the minimum length is defined according to a radius in the
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Figure 3.6: Design domain and boundary conditions for minimum mean compliance
problem.

formulation, the bars in the figure represents the diameter dmin(= 2rmin). Here, the
minimum length scale is set with dmin = 2.0.

Figure 3.8 shows the design variable distribution of the obtained configuration.
As shown in the Fig.3.8, the neighboring domain around the structural boundaries,
e,g, a domain A highlighted by circle in the figure, contains design variables that
have both positive and negative values, so both solid and void domains are mapped
by the projection function in domains near the structural boundaries. Therefore, the
obtained configuration contains grayscale areas along the structural boundaries with
the width of the applied minimum length. These grayscale areas are now removed,
using the following procedure.

First, for elements with normalized density values of 0.25 < ρe < 0.75, the average
value of the normalized density ρ̂e in the neighboring elements is computed as follows.

ρ̂e =



∑
j=Ne

ρj∑
j=Ne

1
if 0.25 < ρe < 0.75

ρe if otherwise.

(3.25)

The grayscale areas can then be removed by using an appropriate threshold value,
ρthres, for the density value that maintains the volume constraint. This threshold
value is obtained using the bi-section method, starting with an initial value of 0.5
and maintaining the value within a range from 0 to 1. The post processed normalized
density ρ̄e is then obtained as follows.

ρ̄e =

{
1 if ρ̂e > ρthres

0 if ρ̂e < ρthres.
(3.26)

Comparison of the HPM and the MPPM

Figures 3.9(a), (b), (c), and (d) respectively show the obtained configurations ob-
tained using solid phase projection in the HPM [24], void phase projection in the
HPM [12], a previous MPPM [27], and the proposed MPPM. The minimum length
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Figure 3.7: Configuration using the proposed MPPM before removing grayscales.
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Figure 3.8: Distribution of design variable ϕ using the proposed MPPM.

scale rmin is set to 2.0. The threshold value ρthres used to remove grayscale areas is
0.533. The small bar(s) at the top right in these figures indicate the applied minimum
length, with NA indicating that the minimum length constraint was not applied.

The gray circle and ellipse in the (a) and (b) figures, respectively, highlight the
fact that the optimal configuration has very sharp corners and tiny holes when the
minimum length scale is applied only to the solid phase (Fig.3.9 (a)), and that the fin-
like structural members may become extremely thin when the minimum length scale
is applied only to void phase (Fig.3.9 (b)). In contrast, the configuration obtained
using either MPPM does not contain such complex structures.

The average computation times are now compared to demonstrate the utility of
the proposed method. The computation time in seconds for the sensitivity analysis
per iteration is shown at the bottom of each of the four figures in Fig.3.9. These
values represent the average time per iteration for the first 100 iterations for each
method, using the same computational environment and the same computer (a IntelR⃝

Core2TM Quad CPU,Q6700 2.66GHz, 4.0GB RAM, and MATLAB version 7.5). The
computation time consumed on tasks other than the sensitivity analysis was almost
the same for all methods and is ignored in this comparison. The results show that
the computation time was significantly reduced with the proposed MPPM, compared
to that of the previous MPPM.

The numbers to the right of “Obj” in these figures indicate the obtained minimum
mean compliance value for the optimal configuration. Although the value obtained by
the proposed MPPM is about 3% higher than that obtained by the previous MPPM,
an appropriate configuration was obtained by the proposed MPPM using roughly half
the computation time.
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Figure 3.9: Optimal configurations obtained under various conditions.
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Figure 3.10: Optimal configurations via the proposed MPPM with various dmin values.

Comparison of results when using different minimum lengths

Figure 3.10 shows configurations obtained with the proposed MPPM when different
magnitudes of the minimum length, rmin, are used. The results show that adjusting
the minimum length scale successfully controls the complexity of the obtained config-
urations. When a small minimum length scale value is applied, a relatively complex
configuration is obtained (Fig. 3.10(a)), and when a larger value is applied, a simpler
configuration is obtained (Fig.3.10(c)).

To further investigate the utility of the proposed MPPM, a minimum mean com-
pliance problem is considered with a different numerical model. Figure 3.11 shows
the design domain and boundary conditions. A force is applied at the center of the
bottom boundary. The displacement at the left bottom corner is fixed and the vertical
displacement at the right bottom corner is constrained to zero.

Figure 3.12 shows obtained configurations using the proposed method with vari-
ous magnitudes of rmin. Again, the results show that the adjusting the value of the
minimum length scale successfully controls the complexity of the obtained configura-
tions.
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Figure 3.11: Design domain and boundary conditions for second minimum mean
compliance problem.
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Figure 3.12: Optimal configurations for second minimum mean compliance problem
via the proposed MPPM with various magnitudes of dmin.

3.4.2 Compliant mechanism design problem

Here, a compliant mechanism design problem is considered. Figure 3.13 shows the
design domain and boundary conditions. A force is applied at the center of the
left boundary and the optimization objective is to maximize the displacement at the
center of the right boundary in the direction opposite that of the applied force. The
displacement at the upper and lower corners of the left boundary is fixed. A detailed
formulation of this optimization problem is provided in the next chapter.

Figure 3.14 shows two configurations obtained via the proposed method when
using two different magnitudes of rmin. Again, the results show that adjusting the
minimum length scale successfully controls the complexity of the obtained configura-
tions.

3.5 Conclusions

This chapter discussed a new methodology that reduces the number of design variables
needed in a multiple phase projection method (MPPM). This new MPPM formulation
requires only a single design variable at each node, rather than the usual two, which
advantageously reduces computation time. The proposed method was applied to two
minimum mean compliance problems and a compliant mechanism design problem.
Although the optimal configurations contained some grayscale areas, these can be
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Figure 3.13: Design domain and boundary conditions for compliant mechanism design
problem.

(a)  dmin = 1.0 (b) dmin = 2.0

Figure 3.14: Optimal configurations for compliant mechanism design problem via the
proposed MPPM with various magnitudes of dmin.

removed by using a threshold value obtained by the bi-section method, which allows
appropriate configurations to be effectively obtained. Furthermore, the proposed
method can successfully control the complexity of optimized configurations by varying
the value of the minimum length scale applied in the optimization.
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Chapter 4

Level set-based method using
mathematical programming

4.1 Introduction

This chapter discusses a structural optimization method that is based on the level
set method and uses mathematical programming, the method of moving asymptotes
(MMA) [110]. The developed level set-based topology optimization method is ap-
plied to minimum mean compliance problems and two compliant mechanism design
problems.

Several design requirements must be satisfied when developing practical designs for
mechanical and electromagnetic devices. These requirements include the maximum
volume of the material used, the prevention of mechanical interference, the maximum
allowable stress, and so on, and are especially important for the design of devices that
include a movable function, such as compliant mechanisms. A compliant mechanism is
a monolithic joint-free mechanism designed to be flexible to obtain a specified motion.
To successfully obtain a specified mechanical function, a compliant mechanism design
must meet several requirements, such deforming in a designed direction, and must
also incorporate a consideration of stress concentrations.

Compliant mechanisms are gaining increasing attention as their application in
myriad mechanical devices such as MEMS broadens. The major advantages of com-
pliant mechanisms are their simplified manufacturing and assembly requirements,
reduced cost, lack of mechanical play, silent operation, and freedom from lubrica-
tion requirements [116]. The first approach to compliant mechanism design was a
kinematic synthesis approach in which rigid-body mechanisms were synthesized into
compliant mechanisms (e.g., [117]). This approach, however, was limited to lumped
compliant mechanism designs. For the design of fully compliant mechanisms, topol-
ogy optimization methods using the continuum synthesis approach have been used.
In such methods, Sigmund [20] formulated the objective function as the ratio between
input and output forces, called the mechanical advantage. Nishiwaki et al. [39] pre-
sented a structural topology optimization method for compliant mechanisms in which
the concept of mutual energy was used in the formulation of flexibility.
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The aim of the research described in this chapter is to extend the previously pro-
posed level set-based topology optimization method [90] so that the design require-
ments, such as the constraints on displacement and stress, can easily be considered.
In this presented method, the level set function is updated using the MMA [110], to
facilitate the treatment of constraint functionals. In Section 4.2, the formulation of
the level set-based topology optimization procedure and the optimization problems
are discussed. The numerical implementation is discussed in Section 4.3, and numeri-
cal examples are provided in Section 4.4. These examples include the design problem
with a mean compliance constraint so that sufficient stiffness is obtained even when
a load is applied in a direction slightly different from its prescribed direction, the
problem with a mutual mean compliance constraint so that the structure deforms in
a designed direction, and the problem with a stress constraint.

4.2 Formulation

4.2.1 Level set function updating scheme

As shown in Section 2.4.2, in level set-based topology optimization, the optimization
problem is expressed as follows [90]:

inf
ϕ

FR(χϕ, ϕ) = F +R (4.1)

subject to G(χϕ) 6 0. (4.2)

The presented method updates the level set function ϕ using mathematical program-
ming, the method of moving asymptotes (MMA) based on the sensitivities of the
objective and constraint functionals.

4.2.2 Minimum mean compliance problem

Consider the design domain D where the displacement is fixed at boundary Γu, a
force t is imposed at boundary Γt, and a body force b is applied on material domain
Ω. The minimum mean compliance problem under the volume constraint is then
formulated as

inf
ϕ

F = l1(u) (4.3)

subject to a(u,v) = l1(v) for ∀v ∈ U,u ∈ U (4.4)

G1(χϕ) =

∫
D

χϕdΩ− Vmax 6 0, (4.5)

where,

a(u,v) =

∫
D

ϵ(u) : E : ϵ(v)χϕdΩ (4.6)

l1(v) =

∫
Γ1

t · vdΓ +

∫
D

b · vχϕdΩ, (4.7)
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where u, ϵ, and E are respectively the displacement, strain, and Young’s modulus.
Vmax is the upper limit of the volume constraint. U is the functional space defined
with

U = {v = viei : vi ∈ H1(D) with v = 0 on Γu}. (4.8)

The sensitivities are obtained using the adjoint variable method (AVM). The Lagrangian
of the optimization problem is given by the following.

F̄ = F − (a(u,v)− l1(v)) . (4.9)

The sensitivity of F is obtained as follows.⟨
dF̄

dχϕ

, δχϕ

⟩
=

⟨
∂l1(u)

∂u
, δu

⟩⟨
∂u

∂χϕ

, δχϕ

⟩
−
⟨
∂a(u,v)

∂u
, δu

⟩⟨
∂u

∂χϕ

, δχϕ

⟩
−
⟨
∂a(u,v)

∂χϕ

, δχϕ

⟩
, (4.10)

=

(⟨
∂l1(u)

∂u
, δu

⟩
−
⟨
∂a(u,v)

∂u
, δu

⟩)⟨
∂u

∂χϕ

, δχϕ

⟩
−
⟨
∂a(u,v)

∂χϕ

, δχϕ

⟩
,

(4.11)

where
⟨

∂l1(v)
∂χϕ

, δχϕ

⟩
= 0, and the adjoint field is defined so that the

⟨
∂u
∂χϕ

, δχϕ

⟩
term

is canceled out. The following adjoint field is then obtained.

a(v, δu) = l1(δu) for ∀δu ∈ U,v ∈ U. (4.12)

Note that the a is bilinear, the minimum mean compliance problem is self-adjoint
problem. The sensitivities are finally obtained using the following equation.⟨

dF̄

dχϕ

, δχϕ

⟩
= −

⟨
∂a(u,v)

∂χϕ

, δχϕ

⟩
.

4.2.3 Minimum mean compliance problem with a mean com-
pliance constraint

Here, a mean compliance constraint is considered, so that sufficient stiffness is ob-
tained even when a load is applied in a direction slightly different from its prescribed
direction. Let l+ and l− be respective mean compliances when load t+p or load t−p is
applied orthogonally to the prescribed load t, respectively, for two-dimensional de-
sign problem. The optimization problem with a mean compliance constraint is then
defined as follows:

inf
ϕ

F = l1(u1) (4.13)

subject to a(u1,v) = l1(v) for ∀v ∈ U,u1 ∈ U (4.14)

a(u2,v) = l+(v) for ∀v ∈ U,u2 ∈ U (4.15)

a(u3,v) = l−(v) for ∀v ∈ U,u3 ∈ U (4.16)

G1 6 0 (4.17)

G2 = l+(u2)− αl1(u1) 6 0 (4.18)

G3 = l−(u3)− αl1(u1) 6 0, (4.19)
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where

l+(v) =

∫
Γ1

t+p · vdΓ (4.20)

l−(v) =

∫
Γ1

t−p · vdΓ. (4.21)

where u2 and u3 are the displacement when t+p or t−p is applied at boundary Γ1,
respectively. α represents the ratio between mean compliance l and l+, and between l
and l−. As the magnitude of α is reduced, the orthogonal mean compliance constraint
is increased so that the obtained configuration will have sufficient stiffness even when
a load is applied in a direction slightly different from the prescribed direction.

4.2.4 Compliant mechanism design problem with a mutual
mean compliance constraint

The optimum design problem of a compliant mechanism is briefly discussed now. The
main goal of the present optimum design process is to maximize the output displace-
ment in a desired direction. Consider a design domain D where the displacement is
fixed at boundary Γu, an input force tin is applied at boundary Γin, and a dummy
vector tout is introduced at the output port, boundary Γout, along the desired output
direction.

The design of a compliant mechanism has three requirements. The first is to
provide sufficient flexibility for deformation along a desired direction specified by a
dummy vector tout when an input force is applied. The mutual mean compliance
between Γin and Γout is used here to formulate the flexibility of the target structure.
By maximizing the mutual mean compliance, the output displacement is maximized
along the direction of the dummy vector tout. The second requirement is for sufficient
stiffness to maintain the integrity of mechanism’s structural shape when an input
force is applied. Here, a dummy spring is imposed at the input port to represent
the input force. And the third requirement is for sufficient stiffness to maintain the
integrity of mechanism’s structural shape when a workpiece reaction force is applied.
Here, a dummy spring is imposed at the output port to represent this reaction force.
The formulation of the optimum design problem for a compliant mechanism is now
extended to a problem that includes a mutual mean compliance constraint, so that
the displacement in the direction orthogonal to the desired output direction will be
constrained.

inf
ϕ

F = −l2(u1) (4.22)

subject to a(u1,v) + s2(u1,v) = l1(v) for ∀v ∈ U,u1 ∈ U (4.23)

a(u2,v) = l1(v) for ∀v ∈ U,u2 ∈ U (4.24)

G1 6 0 (4.25)

G2 = [l3(u2)]
2 − ϵ20 6 0, (4.26)
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where

s2(u,v) =

∫
Γout

(koutu) · vdΓ (4.27)

l2(v) =

∫
Γout

tout · vdΓ (4.28)

l3(v) =

∫
Γ′
out

t′out · vdΓ. (4.29)

where l2 is the mutual mean compliance corresponding to dummy vector tout, u1 is
the displacement when load tin is applied at boundary Γin, and a spring with spring
constant kout is attached at boundary Γout to satisfy the third requirement mentioned
above. u2 is the displacement when tin is applied at boundary Γin and spring is not
attached at boundary Γout. l3 represents the flexibility in the direction of t′out and G2

is the constraint functional imposed on the displacement in the t′out direction along
which the displacement is to be suppressed. The parameter ϵ0 is a constant given a
sufficiently small value, introduced to improve the convergence of the optimization
computation.

The sensitivity of the objective functional is obtained as follows, using the adjoint
variable method.⟨

dF

dχϕ

, δχϕ

⟩
= −

⟨
∂l2(u1)

∂u1

, δu1

⟩⟨
∂u1

∂χϕ

, δχϕ

⟩
+

⟨
∂a(u1,v)

∂u1

, δu1

⟩⟨
∂u1

∂χϕ

, δχϕ

⟩
+

⟨
∂a(u1,v)

∂χϕ

, δχϕ

⟩
+

⟨
∂s2
∂u1

, δu1

⟩⟨
∂u1

∂χϕ

, δχϕ

⟩
(4.30)

=

(
−
⟨
∂l2(u1)

∂u1

, δu1

⟩
+

⟨
∂a(u1,v)

∂u1

, δu1

⟩
+

⟨
∂s1
∂u1

, δu1

⟩)⟨
∂u1

∂χϕ

, δχϕ

⟩
+

⟨
∂a(u1,v)

∂χϕ

, δχϕ

⟩
+

⟨
∂s2
∂u1

, δu1

⟩⟨
∂u1

∂χϕ

, δχϕ

⟩
−
⟨
∂s1
∂u1

, δu1

⟩⟨
∂u1

∂χϕ

, δχϕ

⟩
,

(4.31)

where the adjoint field is defined as

a (v, δu1) + s1(v, δu1) = l2 (δu1) for ∀δu1 ∈ U,v ∈ U, (4.32)

and s1 is defined as follows, using a spring with spring constant kin that is attached
at boundary Γ1 to satisfy the second requirement mentioned above:

s1(u,v) =

∫
Γ1

(kinu) · vdΓ. (4.33)

The sensitivities are finally obtained using the following equation.⟨
dF

dχϕ

, δχϕ

⟩
=

⟨
∂a(u1,v)

∂χϕ

, δχϕ

⟩
+

⟨
∂s2
∂u1

, δu1

⟩⟨
∂u1

∂χϕ

, δχϕ

⟩
−
⟨
∂s1
∂u1

, δu1

⟩⟨
∂u1

∂χϕ

, δχϕ

⟩
. (4.34)
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The sensitivity of constraint functional G2 is simply obtained as follows, using the
AVM. ⟨

dG2

dχϕ

, δχϕ

⟩
= 2l3(u2)

⟨
∂a(u2,v)

∂χϕ

, δχϕ

⟩
, (4.35)

where the adjoint field is defined as follows:

a (v, δu2) = l3 (δu2) for ∀δu2 ∈ U,v ∈ U. (4.36)

4.2.5 Minimum mean compliance problem with a stress con-
straint

Several different stress constraint formulations have been studied, which can be
broadly categorized into three types: local stress constraints [118], global stress con-
straints [119, 120], and a hybrid approach that combines local and global stress con-
straints [121]. These formulations are compared in the literature [120,122,123]. The
implementation of local stress constraints is based on a straightforward approach,
with stress constraints imposed at predefined points such as the center of finite ele-
ments, but this often increases computational demands to the point of intractability.
On the other hand, global stress constraints impose a single global constraint that
aggregates the effect of all local stress constraints. Although local stress constraints
may not be strictly satisfied, the use of a global stress constraint greatly reduces
computational demands. Martins and Poon [119], and Paŕıs et al. [120–122] pro-
posed a global stress constraint that aggregates the local stress constraints using an
Kreisselmeier-Steinhauser function [25] to penalize any stress values that exceed that
of a local stress constraint. Furthermore, Martins and Poon [119] improved the accu-
racy of the global stress constraint by adaptively adjusting a parameter that controls
the magnitude of the penalization applied to stress values that violate the local stress
constraint. Guo et al. [124] imposed a stress constraint only on the node where the
stress is maximal, and Xia et al. [125] imposed stress constraints only on nodes where
the stress exceeds a local stress constraint value. These methods [124,125], therefore,
encounter convergence problems during the optimization computation. On the other
hand, Paŕıs et al. [122] proposed a hybrid approach where the fixed design domain is
divided into several blocks, and a global stress constraint is imposed on each divided
block so that the number of stress constraints is the same as the number of blocks.

In this study, a global stress constraint [120] is used to reduce computation time,
and for its ease of implementation. The minimum mean compliance problem with a
stress constraint is formulated as follows.

inf
ϕ

F = l1(u) (4.37)

subject to a(u,v) = l1(v) for ∀v ∈ U,u ∈ U (4.38)

G1 6 0 (4.39)

Gglobal (σvm, ϕ) 6 0, (4.40)
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where

Gglobal (σvm, ϕ) =
1

µ
ln

[∫
Ω

eµ(σ
∗−1)dΩ

]
− 1

µ
ln

(∫
Ω

dΩ

)
. (4.41)

µ in Eq.(4.41) is a parameter called the “aggregation parameter.” Increasing the
magnitude of µ increases the penalty for violated local constraints. σ∗ in Eq.(4.41) is
defined as

σ∗ =
σvm

σmaxψe

, (4.42)

where σvm represents the von Mises stress and σmax is the applied stress constraint. ψe

is a parameter called the “stress relaxation coefficient,” introduced to avoid singularity
phenomena and formulated as

ψe = 1− ϵ̂+
ϵ̂

H (ϕ)
, (4.43)

where ϵ̂ is a parameter called the “relaxation factor,” which adjusts the magnitude
of the relaxation and H (ϕ) is a Heaviside function. Note that although two types of
relaxation approach are commonly applied, ϵ-relaxation and the qp-approach, Bruggi
and Venini [126] showed that the qp-approach is a type of adaptive ϵ-relaxation.
ϵ-relaxation was applied in this study.

The sensitivity of the global stress constraint is formulated as follows:⟨
dGglobal

dχϕ

, δχϕ
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(4.44)

=
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∂Gglobal

∂χϕ

, δχϕ

⟩
−
⟨
∂a(u,v)

∂χϕ

, δχϕ

⟩
, (4.45)

where the adjoint field is defined as⟨
∂Gglobal

∂σvm
, δσvm

⟩⟨
∂σvm
∂u

, δu

⟩
−
⟨
∂a(u,v)

∂u
, δu

⟩
= 0. (4.46)

The sensitivities are then obtained using the following equation.⟨
dGglobal

dχϕ

, δχϕ

⟩
=

⟨
∂Gglobal

∂χϕ

, δχϕ

⟩
−
⟨
∂a(u,v)

∂χϕ

, δχϕ

⟩
,

4.2.6 Compliant mechanism design problem with a stress
constraint

The formulation of the optimum design problem for a compliant mechanism is now
extended to a problem that includes a stress constraint. Since the utility of compliant
mechanisms depends on their structural flexibility, stress concentrations easily occur
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at thin locations that are subject to repeated flexing. Therefore, the implementation
of a stress constraint in the optimization method can facilitate the design of reliable
compliant mechanisms that are robust against structural failures during their lifetime.

The optimization problem that includes a stress constraint is formulated as follows:

inf
ϕ

F = −l2(u) (4.47)

subject to a(u,v) + s2(u,v) = l1(v) for ∀v ∈ U,u ∈ U (4.48)

G1 6 0 (4.49)

Gglobal (σvm, ϕ) 6 0, (4.50)

4.3 Numerical implementation

4.3.1 Optimization algorithm

The optimization flowchart is shown in Fig.4.1. First, the level set function is ini-
tialized. Second, the equilibrium equation is solved using the Finite Element Method
(FEM) and the objective functional and constraint functionals are then calculated,
also using the FEM. If the objective functional is converged, the optimization proce-
dure is terminated. If not, the sensitivities of the objective and constraint functionals,
derived as a continuous expression in the previous section, are computed. The level
set function is then updated using the MMA, and the process returns to the second
step.

Note that in the method cited earlier [90], the level set function is updated using a
reaction-diffusion equation that is derived based on the Lagrange multiplier method.
The derivation of the Lagrange multiplier used in reaction-diffusion equations becomes
complicated in multi-constraint problems, so the proposed method uses the MMA to
update the level set function, since this facilitates the treatment of constraints. The
objective and constraint functionals are approximated using a convex function, and
the approximated subproblem is solved at each iteration.

4.3.2 Computation of sensitivities

In a level set-based structural optimization method, if the level set function is up-
dated using non-smoothed sensitivities during the optimization, the updated level set
function usually becomes non-smooth and the obtained structural boundaries also
become non-smooth. In the method presented here, ∇2ϕ is used in the sensitivi-
ties of regularization term, so it must be accurately calculated in order to compute
the sensitivity. A time evolutionary equation is introduced to compute this term,
as shown below. Note that the variation of the regularization term is formulated as
in [127]. Here, a Dirichlet boundary condition is applied on the non-design boundaries
and a Neumann boundary condition is applied on the other boundaries so that the
level set function is kept free from influences originating outside of the fixed design
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Figure 4.1: Optimization flowchart.

domain [90]. 
∂ϕ

∂t
= −

(
C
dF

dϕ
− τ∇2ϕ

)
∂ϕ

∂n
= 0 on ∂D\∂DND

ϕ = 1 on ∂DND,

(4.51)

where C represents a normalization parameter, defined so that C = c
∫
D
dΩ/

∫
D
|dF
dϕ
|dΩ.

∂DND is non-design boundaries where the Dirichlet boundary condition is applied.
Next, the above equation is discretized in the time domain using the finite differ-

ence method, which leads to the following equation.
ϕ(t+∆t)− ϕ(t)

∆t
= −

(
C
dF

dϕ
− τ∇2ϕ(t+∆t)

)
∂ϕ

∂n
= 0 on ∂D\∂DND

ϕ = 1 on ∂DND,

(4.52)

where ∆t is the time increment. The above equation is then expressed in weak form
as follows.
∫
D

ϕ(t+∆t)

∆t
ϕ̃dD +

∫
D
∇Tϕ(t+∆t)(τ∇ϕ̃)dD =

∫
D

(
−C dF

dϕ
+
ϕ(t)

∆t

)
ϕ̃dD

for ∀ϕ̃ ∈ Φ̃

ϕ = 1 on ∂DND,

(4.53)

where Φ̃ is the following functional space,

Φ̃ = {ϕ ∈ H1(D) with ϕ = 1 on ∂DND}. (4.54)
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Using the obtained ϕ(t+∆t) solving the above equation, the sensitivity of the objec-
tive functional can be obtained by the following equation.

dFR

dϕ
≈ −ϕ(t+∆t)− ϕ(t)

∆t
(4.55)

Note that, using the above computation method, values of sensitivities can be com-
puted using a first-order element, which is advantageous for computational time, while
second-order or higher-order elements are usually required.

4.4 Numerical examples

4.4.1 Minimum mean compliance problem

First, a minimum mean compliance problem is considered to demonstrate the validity
and utility of the proposed method. Figure 4.2 shows the design domain and boundary
conditions. Displacement is fixed at the left boundary and a downward force is applied
at the center of the right boundary. The upper limit of the volume fraction Vmax is
set to 40% of the volume of the fixed design domain. The width w of the Heaviside
function is set to 1.0× 10−3.

Figure 4.3 shows configurations obtained using different magnitudes of the regu-
larization parameter τ , which was set to 7.0×10−4, 3.0×10−4, and 7.0×10−5 for Case
1, Case 2, and Case 3, respectively. The regularization parameter τ is a parameter to
adjust the degree of regularization as explained in Eq.(2.10), Subsection 2.4.2. The
results show that the complexity of the obtained configuration can be controlled by
adjusting the magnitude of τ .

To further confirm the validity of the presented method, we consider a minimum
mean compliance minimization problem using a different numerical model. Figure

1.0m

Fixed design domain D
0.8m

N/m100.1 5×

0.05 m

Figure 4.2: Design domain and boundary conditions of for minimum mean compliance
problem.
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(a) Case 1

Initial configuration Step 50 Step 100 Optimal configuration

(b) Case 2
Initial configuration Step 50 Step 100 Optimal configuration

(c) Case 3

Initial configuration Step 50 Step 100 Optimal configuration
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Figure 4.3: Optimal configurations and shape evolution for different τ values: (a)
τ = 7.0× 10−4; (b) τ = 3.0× 10−4; (c) τ = 7.0× 10−5.

4.4 shows the design domain and boundary conditions. Displacement is fixed at the
left bottom and right bottom corners and a downward force is applied at the center
of the bottom boundary. The volume fraction Vmax is set to 40% of the volume of the
fixed design domain. The width w of the Heaviside function is set to 1.0× 10−3.

Figure 4.3 shows the obtained configurations, using three different initial configu-
rations. The initial configuration for Case 1 has the material domain filled with ma-
terial; for Case 2, the initial configuration has 18 holes in the filled material domain;
and for Case 3, the initial configuration has the material domain asymmetrically filled
in the lower half of the fixed design domain. In all cases, clear and nearly the same
configurations were obtained. Thus, the dependency of the obtained configurations
upon the initial configurations is shown to be extremely low in this problem.

Figure 4.4 shows configurations obtained using different magnitudes of the regu-
larization parameter τ , which was set to 1.0 × 10−5, 7.0 × 10−6, and 4.0 × 10−6 for
Case 1, Case 2, and Case 3, respectively. The results show that the complexity of the
configuration obtained using the presented method can be controlled by adjusting the
magnitude of τ .
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1.0m

Fixed design domain D 0.5m

Figure 4.4: Fixed design domain and boundary conditions for second minimum mean
compliance problem.

(a) Case1

Initial configuration Step50 Step100 Optimal configuration

(b) Case2

Initial configuration Step50 Step100 Optimal configuration

(c) Case3

Initial configuration Step50 Step100 Optimal configuration

Figure 4.3: Initial configurations, intermediate results, and optimal configurations
using three different initial configurations: (a) the configuration filled with material;
(b) the configuration with 18 holes; (c) the configuration asymmetrically filled in the
lower half of the fixed design domain.

(b) Case2(a) Case1 (c) Case3

Figure 4.4: Optimal configurations for different magnitudes of τ : (a) τ = 1.0× 10−5;
(b) τ = 7.0× 10−6; (c) τ = 4.0× 10−6.
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4.4.2 Minimum mean compliance problem with a mean com-
pliance constraint

A minimum mean compliance problem that has a mean compliance constraint im-
posed is considered now, using the numerical model shown in Fig.4.4. The volume
fraction Vmax is set to 40% of the volume of the fixed design domain and the width w
of the Heaviside function is set to 1.0 × 10−3. The regularization parameter τ is set
to 7.0× 10−6. A configuration filled with material is used as initial configuration for
all cases.

Figure 4.5 compares configurations obtained using different magnitudes of the
parameter α (explained at the end of Section 4.2.3), which was set to 2.0 and 1.0 for
Case 2 and Case 3, respectively. A mean compliance constraint was not applied for
Case 1. The optimization results show that physically reasonable configurations were
obtained in all cases, and the configuration in Case 3 has a horizontal member at the
bottom of the design domain, which provides high stiffness along horizontal directions.
The mean compliance values for the obtained configurations are compared in Table
4.1. The values in parentheses to the right of each mean compliance value represent
the ratio between l and l1, and l and l2. Even though the mean compliance l achieved
with the constraint is larger than that without constraint, the mean compliance values
l1 and l2 are smaller than those without constraint. That is, the configuration obtained
when a mean compliance constraint is imposed has increased stiffness in the horizontal
direction.

(b) Case2(a) Case1

(a) Case0 

(α=0.8)

(c) Case3

Figure 4.5: Obtained configurations that include a mean compliance constraint under
horizontal loads for different magnitude of α: (a) constraint is not applied; (b) α=2.0;
(c) α=1.0.

Table 4.1: Comparison of mean compliance of obtained optimal configurations.

Case1 (l1/l+,−) Case2 (l1/l+,−) Case3 (l1/l+,−)
α N/A 2.0 1.0
l1 1.308× 10−2 1.399× 10−2 1.441× 10−2

l+ 9.098× 10−2 (7.0) 2.798× 10−2(2.0) 1.441× 10−2(1.0)
l− 9.098× 10−2 (7.0) 2.798× 10−2(2.0) 1.441× 10−2(1.0)
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4.4.3 Compliant mechanism design problem with a mutual
mean compliance constraint

A compliant mechanism design problem that has a mutual mean compliance con-
straint imposed is considered next. Figure 4.6 shows the fixed design domain and
boundary conditions for this model. A load is applied at the center of the left bound-
ary and segments at the top of the left edge and extreme left of the bottom edge are
fixed. A dummy vector tout is applied at the top right edge of the domain in the
horizontal direction. The fixed design domain is discretized using an 80× 80 mesh of
quadrilateral finite elements. The regularization parameter τ is set to 7.0×10−5. The
transition width of the Heaviside function w is set to 0.2, to stabilize the optimization
procedure.

Figure 4.7(a) shows the optimal configuration without an applied constraint, and
Fig.4.7(c) showing its deformed shape. Figure 4.7(b) shows the optimal configuration
with a constraint set so that the structure only deforms in the desired horizontal di-
rection, and Fig.4.7(d) shows its deformed shape. As Fig.4.7(d) shows, the constraint
effectively prevents deformation at the output port in a direction orthogonal to that
of the applied load. The mutual mean compliance represented by dummy vector t′out
is −2.43 × 10−9 without the constraint and −1.42 × 10−10 with the constraint, indi-
cating that displacement in the vertical direction is significantly reduced. The value
of the mutual mean compliance represented by dummy vector tout, however, is almost
the same without and with the constraint, 3.65× 10−9 and 3.60× 10−9, respectively.

Since the transition width of the Heaviside function w is set to 0.2, the optimal
configuration contains some grayscale areas, which are removed by setting w = 1.0×

80

Fixed design domain 80

outt

outt′

int D

8

8

8

8

Figure 4.6: Fixed design domain and boundary conditions for compliant mechanism
design problem with a mutual mean compliance constraint.
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(a) (b)

(c) (d)

Figure 4.7: Optimal configurations and its deformed shape of a compliant mechanism
design problem: (a) without mutual mean compliance constraint; (c) deformed shape
of (a); (b) with mutual mean compliance constraint; (d) deformed shape of (b).

10−3. The mutual mean compliance values represented by dummy vectors t′out and
tout are then −1.42 × 10−10 and 3.60 × 10−9, respectively, which are essentially the
same as the values before the grayscale areas were removed. The numerical results
show that the proposed method successfully imposed a displacement constraint for
the design of a compliant mechanism,using a mutual mean compliance constraint.

4.4.4 Minimum mean compliance problem with a stress con-
straint

Figure 4.8 shows the design domain and boundary conditions of a minimum mean
compliance problem with a stress constraint. The design domain is discretized using
quadratic elements that are 1.25× 10−2m in size. Here, the small domain illustrated
in black near the location of the imposed force is set as the non-design domain. The
stress becomes very high at the location where the force is imposed, but reducing the
stress in this domain is not the purpose of the optimization. Displacement is fixed at
the left boundary and a downward force is applied at the center of the right boundary.
The volume fraction Vmax is set to 40% of the volume of the fixed design domain. The
maximum stress value for the stress constraint is set to 100MPa. The parameters µ
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0.1 m

Figure 4.8: Design domain and boundary conditions for minimum mean compliance
problem with a stress constraint.

and ϵ used for the stress constraint are respectively set to 20 and 0.1. The width w of
the Heaviside function is set to 0.8. Figure 4.9(a) shows the obtained configuration
and the corresponding von Mises stress distribution when only the volume fraction
is applied. Figure 4.9(b) shows the obtained configuration when the stress constraint
is applied in addition to the volume fraction, and the corresponding von Mises stress
distribution. The maximum value of the von Mises stress is 203.05MPa without the
stress constraint and 137.65MPa with the stress constraint. The magnitude of the
local stress did not reach the stress constraint value because a global stress constraint
was applied, but the maximum value of the von Mises stress was reduced. The
obtained mean compliance values are roughly the same: 115.63J without the stress
constraint vs. 118.42J with the stress constraint.

Since the transition width of the Heaviside function w was set to 0.8, the optimal
configuration contains grayscale areas to some extent. The grayscale areas in the
optimal configuration can be removed by setting w = 1.0×10−3. Figure 4.10 shows a
comparison of density and stress distributions between an configuration obtained with
a stress constraint, and the same configuration after grayscale areas were removed.
The maximum stress values of the configuration after removing grayscale areas was
171.49MPa, indicating that, although removing the grayscale increased the maximum
stress, the value of the maximum stress of the configuration after removing grayscale
was reduced compared to that without the stress constraint.

To further demonstrate the validity of the presented method, a minimum mean
compliance minimization problem with a stress constraint is considered using a differ-
ent numerical model. Figure 4.11 shows the design domain and boundary conditions.
The displacement is fixed at the upper boundary and a downward force is applied
at the center of the right boundary. The volume fraction Vmax is set to 40% of the
volume of the fixed design domain. The maximum value for the stress constraint is
set to 250MPa. The parameters µ and ϵ used for the stress constraint are set to 20
and 0.1, respectively. The width w of the Heaviside function is set to 0.8.

Figure 4.12(a) shows the obtained configuration and its corresponding von Mises
stress distribution when only the volume fraction is applied. Figure 4.12(b) shows the
obtained configuration when the stress constraint is applied in addition to the volume
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Figure 4.9: Comparison of optimal configurations and stress distributions: (a) without
stress constraint; (b) with stress constraint.
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Figure 4.10: Comparison of density and stress distributions: (a) optimization results
with stress constraint; (b) distributions after removing grayscale areas.
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Figure 4.11: Design domain and boundary conditions for second minimum mean
compliance problem with a stress constraint.

fraction, and its corresponding von Mises stress distribution. The maximum value of
the von Mises stress was 431.85MPa without the stress constraint and 279.90MPa with
the stress constraint. Again, the local stress did not reach the stress constraint value
because a global stress constraint was applied, but the maximum value of the von
Mises stress was reduced. The obtained mean compliance values show little difference:
115.56J without the stress constraint and 122.77J with the stress constraint.

Again, since the transition width of the Heaviside function w was set to 0.8, the
optimal configuration contains some grayscale areas, but these can be removed by
setting w = 1.0 × 10−3. Figure 4.13 shows a comparison of the density and stress
distributions for the configuration obtained with a stress constraint, and the same
configuration after grayscale areas were removed. The maximum stress values was
366.13MPa, indicating that the maximum stress in the configuration after remov-
ing grayscale was reduced compared to that without the stress constraint, although
grayscale removal deleteriously affected the value.

4.4.5 Compliant mechanism design problem with a stress
constraint

A compliant mechanism design problem with a stress constraint is considered using
the model shown in Fig. 4.14. Small segments at the top and bottom of the left
boundary are fixed, and a load is applied at the center of the left boundary. Since the
design domain is symmetric, only the top half is analyzed in the optimization process.
The applied stress constraint σmax is 5.0×103. The design domain is discretized using
an 80× 80 mesh of quadrilateral finite elements and regularization parameter τ is set
to 1.0× 10−4. The transition width of the Heaviside function w is set to 0.8 and the
global stress constraint relaxation factor ϵ̂ is set to 0.1.
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Figure 4.12: Comparison of optimal configurations and stress distributions: (a) with-
out stress constraint; (b) with stress constraint.
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Figure 4.13: Comparison of density and stress distributions: (a) optimization results
with stress constraint; (b) distributions after removing grayscale areas.
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Figure 4.14: Fixed design domain and boundary conditions for compliant mechanism
design problem with a stress constraint.
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Figure 4.15: Optimal configurations: (a) without stress constraint; (c) von Mises
stress distribution of (a); (b) with stress constraint; (d) von Mises stress distribution
of (b).
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Figure 4.16: (a) Optimal configuration density distribution; (b) von Mises stress
distribution of (a); (b) Configuration after removing grayscale areas; (d) von Mises
stress distribution of (b).

Figure 4.15(a) shows the optimal configuration without an applied stress con-
straint and Fig.4.15(c) shows the von Mises stress distribution of this configuration.
Figure 4.15(b) shows the optimal configuration with the stress constraint applied,
and Fig.4.15(d) shows the corresponding von Mises stress distribution. The von
Mises stresses at the center of the finite elements are considered. When the stress
constraint is not applied, the maximum value of the von Mises stress is 7.18 × 103,
and with the constraint, it is 5.83 × 103. Although the local stress constraints are
not strictly satisfied, the maximum value of the von Mises stress is reduced and the
obtained mutual mean compliance values show little difference: 7.62× 10−10 without
the stress constraint and 7.14× 10−10 with the stress constraint.

Figure 4.16 shows the density distribution before and after removing grayscale
areas that were present in the optimal configuration, by setting w = 1.0× 10−3. The
maximum value of the von Mises stress after removing grayscale areas was 5.86×103,
while the obtained mutual mean compliance was 7.25×10−10. Although the maximum
value of the von Mises stress is slightly increased after removing grayscale areas, the
value is sufficiently reduced compared with that obtained without an applied stress
constraint. Thus, useful optimal configurations can be qualitatively obtained using
the proposed method.
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4.5 Conclusions

In this chapter, a level set-based topology optimization method using mathematical
programming was presented. The level set function is updated using the method of
moving asymptotes to facilitate the treatment of constraint functionals. Such treat-
ment is more difficult in a previous method that updates the level set function using
a reaction-diffusion equation, because the derivation of the Lagrange multiplier be-
comes complicated in problems with multiple constraints. A new topology optimiza-
tion method was presented and minimum mean compliance problems and compliant
mechanisms design problems were formulated, using multiple constraint functionals.
These include a mean compliance constraint, so that sufficient stiffness is obtained
even when a load is applied in a direction slightly different from its prescribed di-
rection, a mutual mean compliance constraints, so that the structure deforms in a
designed direction, and a stress constraint.

The optimization results with a mean compliance constraint show that physically
reasonable configurations were obtained, and the reduced mean compliance values
when the load is applied in the horizontal indicate that the optimal configuration has
increased stiffness in the horizontal direction.

The deformed shape obtained when a mutual mean compliance constraint was
applied shows that the presented method can successfully impose a displacement
constraint for the design of a compliant mechanism using a mutual mean compliance
constraint.

Although the presented approach can not explicitly prevent the creation of lumped
compliant mechanisms for compliant mechanisms problems, applying the stress con-
straint strongly inhibits this, since small areas subject to flexure, and notch hinges,
tend to be locations where stress is high. A global stress constraint was applied,
but because it does not require satisfaction of the stress constraint at every point in
design domain, the optimal configurations do not strictly satisfy all local stress con-
straints, even though the global stress constraint is satisfied. The maximum stress
was effectively reduced in the obtained optimal configurations. And, although the op-
timal configurations contained some grayscale areas, it was demonstrated that useful
configurations can be qualitatively obtained using the proposed method.
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Chapter 5

Negative permeability dielectric
metamaterial design

5.1 Introduction

Electromagnetic metamaterials are artificial materials that exhibit extraordinary elec-
tromagnetic properties not available in nature, such as a negative refractive index,
that is, negative permittivity and permeability. The existence of such materials was
first proposed by Veselago [128] in 1968. After Pendry et al. [129] [130] and Smith
et al. [131] showed that arrangements of split-ring resonators that have negative per-
meability and metallic wires that have negative permittivity can exhibit negative
refraction at a certain frequency, considerable research was carried out to investigate
the unusual properties of such materials, and develop certain applications, such as
cloaking devices [132], waveguides [133], super lenses [134], leaky wave antennas [135],
energy harvesting devices [136, 137], and the like. The comprehensive review of neg-
ative refractive index materials is provided in [138–143].

Furthermore, recently, new types of metamaterials that utilize the magnetic and
electric resonance phenomena of dielectric materials rather than effects primarily de-
rived from metallic inclusions have been proposed [144–148]. These new dielectric
metamaterials are expected to offer advantages due to improved manufacturability
and the possibility of achieving isotropic metamaterials that provide advanced func-
tions under no metallic loss.

Holloway et al. [145] showed theoretically that negative effective permittivity and
negative effective permeability can be simultaneously achieved with appropriately de-
signed dielectric spheres embedded in a host material. Subsequently, more practical
structures based on this approach were suggested, such as structures using dielectric
particles of two different radii [146], structures using identically sized spheres but with
different values of dielectric constant [147], and arrays of cylindrical dielectric mate-
rials [148]. Experimental verifications are provided for three-dimensionally isotropic
dielectric metamaterials consisting of an array of dielectric cubes that exhibit negative
permeability [149], and an array of dielectric rods [150], and cubic dielectric parti-
cles [151] that exhibit negative permittivity and negative permeability simultaneously.
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Furthermore, applications such as all-dielectric cloaking devices [152] [153], as well as
waveguides [154] and leaky wave antennas [155] composed of dielectric materials and
metallic plates, have been discussed.

In addition, several other types of metamaterial components have been studied,
including ferromagnetic materials, piezoelectric materials, and others. Because the
permeability of ferromagnetic materials is frequency-dependent, due to a magnetic
resonance phenomenon, and this dependency can be influenced by the magnitude
of an externally applied DC magnetic field, such ferromagnetic materials allow the
creation of metamaterials whose characteristics can be tuned within range of frequen-
cies. Wu [156] demonstrated a negative refraction index at a microwave frequency in
a periodic metal-ferrite film composite. Ueda and Tsutsumi [157] numerically devel-
oped a metallic waveguide with periodic dielectric and ferrite inclusions that provided
left-handed behavior such as backward wave propagation. Wu and Ji [158] theoreti-
cally studied the existence of left-handed behavior in metallic magnetic composites.
Zou et al. [159] later described a periodic ferrite-semiconductor layer with a tunable
negative index, where the effect of the thickness ratio between ferrite and semicon-
ductor was investigated numerically. Zhao et al. developed a composite consisting of
a ferrite slab and metallic wires [160], and also an array of ferrite rods and metallic
wires [144], which exhibited a negative refraction index and tunability, experimen-
tally and through simulations. Garćıa-Miquel et al. [161] and Carbonell et al. [162]
showed that glass coated amorphous microwires in a rectangular waveguide can be-
have as a double negative material with frequency tunability. Zharov and Kurin [163]
demonstrated that composite nanostructure metamaterials enhance the Kerr effect.
Engelbrecht et al. [164] experimentally showed a ferromagnetic metal, such as Co and
Fe/Co, with a negative refractive index. A comprehensive review of ferromagnetic
nanowire metamaterials is available [165]. Moreover, Acher et al. [166] developed
piezoelectric materials that exhibit negative permeability.

Although the term “metamaterial” was originally applied in electromagnetic wave
problems, research on microstructural designs that exhibit unusual properties have
also been demonstrated in other physical problems, such as a negative thermal expan-
sion coefficient [167], a negative Poisson’s ratio [168], an artificially designed Young’s
modulus [66], and others. Recently, due to shared characteristics between electro-
magnetic and acoustic problems, acoustic metamaterials have also been studied and
developed, such as those with negative bulk modulus [169, 170], negative mass den-
sity [171,172], and double negative acoustic metamaterials [173–176]. Several interest-
ing acoustic applications have also been reported, such as acoustic cloaks [177–179],
acoustic super-lenses [180,181], and others.

Most electromagnetic metamaterials consist of periodic arrays of unit cells that
are adequately small compared to the wavelength of the target frequency, with cells
composed of a layer of dielectric material, with or without metallic inclusions. The
overall structure of such periodic arrays can be considered as an effectively homo-
geneous electromagnetic structure, so the electromagnetic metamaterial behaves as
a material having negative properties exhibited globally, whereas the individual cell
materials do not exhibit these properties.

Several unit cell layouts have been proposed that achieve good performance at
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certain desired frequencies [182, 183]. However, the unit cell layout crucially affects
the performance of metamaterials, and it is usually difficult or time-consuming to
find appropriate unit cell designs by trial and error methods, even for expert engi-
neers. Thus, there is a need for systematic design methods that assist or simplify the
design of effective metamaterials. This chapter presents the level set-based topology
optimization for the design of unit cell of dielectric metamaterials that demonstrate
negative permeability value at desired frequencies.

5.2 Formulation

5.2.1 Governing equation

Two-dimensional electromagnetic wave propagation problem

The design domain for the two-dimensional dielectric metamaterial design problem is
illustrated in Fig. 5.1. Transverse magnetic (TM) waves propagate in x-y direction
where the magnetic field vector is polarized orthogonal to the wave direction, and the
direction of wave amplitude is in the z-direction. Incident waves enter the domain
from the left boundary Γ1 and output waves are observed at the right boundary Γ2.
The upper and lower boundaries ΓPEC are set as Perfect Electric Conductors (PEC)
under periodic conditions. In the two-dimensional case, the governing equation is
the following Helmholtz equation, derived from Maxwell’s equation, and the state
variable of the governing equation is the magnetic field Hz in the z direction. Here,
the relative permeability of both the background material and the dielectric material
is set to 1, with air used as the background material.

∇ ·
(
ϵ−1
r ∇Hz

)
+ k20Hz = 0, (5.1)

where ϵr is the relative permittivity and k0 is the wave number in a vacuum such that
k0 = ω

√
ϵ0µ0, where ω is the angular frequency and ϵ0 and µ0 are the permittivity

and permeability in a vacuum, respectively. The boundary conditions are described
as follows.

n ·
(
ϵ−1
r ∇Hz

)
+ jk0Hz = 2jk0H

i
z on Γ1 (5.2)

n ·
(
ϵ−1
r ∇Hz

)
+ jk0Hz = 0 on Γ2 (5.3)

n ·
(
ϵ−1
r ∇Hz

)
= 0 on ΓPEC (5.4)

where n is the normal vector, j is the imaginary unit and H i
z is an incident wave.

Note that the boundary condition in 5.3 is a first-order absorbing boundary condition
[184,185]. The derivation of the first-order absorbing boundary condition is provided
in Appendix A.

The weak formulation of Eqs.(5.1)-(5.4) is then derived as follows.

a1(Hz, H̃z) + a2(Hz, H̃z) = l(H̃z) for Hz ∈ U, H̃z ∈ U (5.5)
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Figure 5.1: (a) Design domain and boundary conditions; (b) periodic structure for
two-dimensional problem.

where

a1(Hz, H̃z) =

∫
D

∇H̃z ·
(
ϵ−1
r ∇Hz

)
dΩ− k20

∫
D

H̃zHzdΩ (5.6)

a2(Hz, H̃z) = jk0

∫
Γ1∪Γ2

H̃zHzdΓ (5.7)

l(H̃z) = 2jk0

∫
Γ1

H i
zH̃zdΓ (5.8)

U = {H̃z ∈ H1(Ω)}, (5.9)

where H̃z is a test function and H1 is Sobolev space. Note that during the derivation
of the weak formulation, the boundary integral for ΓPEC becomes 0 due to the applied
PEC condition. Additional details concerning the derivation of the weak formulation
for the two-dimensional case are provided in Appendix B.1.

Three-dimensional electromagnetic wave propagation problem

The design domain for the three-dimensional problem is illustrated in Fig.5.2. In-
cident waves enter the domain from the left boundary Γ1. The upper and lower
boundaries ΓPEC are set as Perfectly Electric Conductors (PEC) and the front and
rear boundaries ΓPMC are set as Perfectly Magnetic Conductors (PMC) under periodic
conditions. In the three-dimensional case, the following wave propagation equation
is derived from Maxwell’s equation and the state variable is the electric field E. The
relative permeability of both the background material and the dielectric material is
again set to 1.

∇× (∇×E)− k20ϵrE = 0 (5.10)
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The boundary conditions are described as follows.

n× (∇×E)− jk0n× (E × n) = −2jk0E
i on Γ1 (5.11)

n× (∇×E)− jk0n× (E × n) = 0 on Γ2 (5.12)

n×E = 0 on ΓPEC (5.13)

n×H = 0 on ΓPMC, (5.14)

where Ei is the incident field and H is the magnetic field. The weak formulation of
Eqs.(5.10)-(5.14) then derived as follows.

a1(E, Ẽ) + a2(E, Ẽ) = l(Ẽ) for E ∈ U, Ẽ ∈ U, (5.15)

where

a1(E, Ẽ) =

∫
D

(
∇× Ẽ

)
· (∇×E) dΩ− k20

∫
D

ϵrẼ ·EdΩ (5.16)

a2(E, Ẽ) = jk0

∫
Γ1∪Γ2

(
n× Ẽ

)
· (n×E) dΓ (5.17)

l(Ẽ) = 2jk0

∫
Γ1

Ẽ ·EidΓ (5.18)

U = {Ẽ ∈ H1(Ω)}, (5.19)

where Ẽ is a test function. Note that during the derivation of the weak form, the
boundary integral for ΓPMC becomes 0, because n × H = 0 and the relationship
∇×E = −jωµH holds, which is derived from Faraday’s law of Maxwell equations,
replacing ∂/∂t with jω for time-harmonic electromagnetic fields, and the same is true
for ΓPEC when the Galerkin finite element method is used [185]. Additional details
for the derivation of the weak formulation for the three-dimensional case are provided
in Appendix B.2.

5.2.2 Effective permeability

Several approaches can be used to compute an effective property, such as effective
permeability and effective permittivity, and these are typically categorized into three
types. One approach is to use a homogenization method, such as a method based
on the asymptotic expansion [67, 103, 104, 186] and the energy-based method [187],
another approach is to average the electric and magnetic fields in a unit cell [188], and
the third approach is to compute the effective properties based on the S-parameter,
namely, the complex transmission and reflection coefficients [189–192]. The first ap-
proach can only be applied when the periodic unit cell can be considered as infinitely
small compared to the wavelength. Since the unit cell size is relatively large in this
design problems, consisting of one unit cell in wave propagation direction, on the
order of 1/10 ∼ 1/4 of the wavelength, this approach is not appropriate. The second
approach obtains the effective properties based on the relation of electric field E and
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Figure 5.2: (a) Design domain and boundary conditions; (b) periodic structure for
three-dimensional problem.

electric flux density D, and also the magnetic field H and magnetic field density B,
using the integral form of Maxwell’s equations. However, it has been pointed out that
this approach becomes less effective with increasing complexity of metamaterial cell
structure [188].

The S-parameter-based approach was first proposed by Smith et al. [189]. Chen
et al. [190] proposed an improvement to this method, which can determine the sign
of the effective impedance and the correct branch of the real part of the refractive
index, but it includes an iterative process, so it is not appropriate as an optimiza-
tion process because the sensitivity may become exceedingly complicated. In the
method of Lubkowski et al. [191], the effective properties are retrieved using pa-
rameterized Drude and Lorentz models, but the Drude model does not capture the
effective permittivity appropriately for all-dielectric metamaterials. Smith et al. ex-
tended their original approach to deal with inhomogeneous cases [192]. Here, the
extended approach [192] is applied, with the effective parameters computed based on
S-parameters that can be obtained via the following equations:

S11 =

∫
Γ1
(E1 −Ei) ·Ei∗dΓ∫

Γ1
Ei ·Ei∗dΓ

(5.20)

S21 =

∫
Γ2
E1 ·Ei∗dΓ∫

Γ2
Ei ·Ei∗dΓ

(5.21)

S22 =

∫
Γ2
(E2 −Ei) ·Ei∗dΓ∫

Γ2
Ei ·Ei∗dΓ

(5.22)

where Ei∗ denotes the complex conjugate transpose of Ei, E1 is electric field when
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the incident field enter the domain from the left boundary Γ1 and E2 is electric field
when the incident field enter the domain from the right boundary Γ2. The effective
permeability µeff is then obtained by following equation.

µeff = Zn, (5.23)

where

Z =

√
(1 + S11)(1 + S22)− S2

21

(1− S11)(1− S22)− S2
21

, (5.24)

n = cos−1

(
β

2S21

)
λ

2πd
, (5.25)

where λ is the wavelength and d is the unit cell length, and

β = 1− S11S22 + S2
21. (5.26)

Note that in two-dimensional transverse magnetic (TM) wave propagation problems,
Ez = 0, Hx = 0, Hy = 0. In addition, Ex and Ey can be obtained using the following
relationship between E and H , derived from Ampere’s law of Maxwell equations,
∇×H = ∂(ϵE)/∂t, and replacing ∂/∂t with jω for time-harmonic electromagnetic
fields.

Ex =
1

jωϵ

∂Hz

∂y
(5.27)

Ey =
−1

jωϵ

∂Hz

∂x
(5.28)

Therefore, Sij can be computed using Hz in two-dimensional problems, and Sij(Hz)
is then a functional of Hz. Note that the above formulation [64, 192] is an extended
formulation of the one provided in an earlier paper [189], where S22 is used in addition
to S11 and S21, for inhomogeneous inclusions. By using the extended formulation,
symmetric configurations can be obtained because it is symmetric with respect to S11

and S22.

5.2.3 Optimization problem

One particularly interesting optimization problem aims to obtain metamaterial de-
signs that exhibit highly negative permeability values. In this case, the objective of
the optimization problem is to find a distribution of dielectric material within the
fixed design domain that minimizes the effective permeability, and it can be formu-
lated as a problem to minimize the effective permeability at a prescribed frequency.
On the other hand, to obtain an effective cloaking device, the metamaterial design
must exhibit a certain desirable value for the effective permeability, so the objective of
the optimization problem then is to find a distribution of dielectric material that pro-
vides the desired value of effective permeability, and the optimization problem can be
formulated to minimize the square of the difference between the effective permeability
and a prescribed value at a prescribed frequency.
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Effective permeability minimization problem

The purpose of the optimization here is to minimize the real part of the effective
permeability at a desired frequency. A typical effective permeability curve is shown
in Fig.5.3(a), where µ′ and µ′′ show the real and imaginary part of the effective per-
meability, respectively. The real part of the effective permeability has a positive peak
as well as an anti-resonance point, where the effective permeability has a desirable
negative value. However, if the positive peak lies between the initial anti-resonance
point in the optimization and the target frequency, that is, if the target frequency
is located in the hatched area for the case shown in Fig.5.3(a), configurations that
demonstrate negative effective permeability cannot be obtained directly because the
level set function must always return a lower value of the objective function after
updating.

For example, considering a case where the target value is set to 3.0THz as shown
in Fig.5.3(b), and the real part of the effective permeability is minimized directly,
an increase in the frequency of the resonance frequency results in a decrease of the
objectives. When the level set function is updated, the anti-resonance point moves
toward higher frequencies, which prevents obtaining a configuration that demonstrate
negative effective permeability. Thus, a two-stage optimization procedure [64] is
applied, where the imaginary part of permeability µ′′ is minimized during the first
stage, taking advantage of the fact that the imaginary part of the permeability does
not have positive peak (Fig.5.3(c)). The optimization problem for this first stage is
described as follows.

inf
ϕ

F = µ′′ (5.29)

subject to G 6 0 (5.30)

Governing equation (5.31)

Boundary conditions (5.32)

where F is the objective functional and G is the constraint functional of the optimiza-
tion problem. For the second stage of the optimization, the real part of the effective
permeability is minimized, using the configuration obtained in the first stage as the
initial configuration (Fig.5.3(d)). The optimization problem for the second stage is
described as follows.

inf
ϕ

F = µ′ (5.33)

subject to G 6 0 (5.34)

Governing equation (5.35)

Boundary conditions (5.36)
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Figure 5.3: (a) A typical effective permeability curve; (b) effective permeability curve
when real part of effective permeability is minimized directly; (c) 1st stage; (d) 2nd

stage of two-stage optimization procedure.

Effective permeability design problem

The purpose of the optimization here is to obtain a distribution of dielectric material
which achieves the target value of the effective permeability µ′

tar at a desired frequency.
The optimization problem can be formulated as a problem to minimize the square
of the difference between the effective permeability and a prescribed value. Again, if
the positive peak lies between the initial anti-resonance point in the optimization and
the target frequency, obtaining a configuration that demonstrate negative effective
permeability directly is problematic, so the two-stage optimization procedure is again
used. That is, the imaginary part of the permeability µ′′ is minimized during the
first stage, as described in the previous subsection, and the square of the difference
between the effective permeability and a prescribed value is then minimized during
the second stage. The optimization problem for the second stage is described as
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follows.

inf
ϕ

F = (µ′ − µ′
tar)

2
(5.37)

subject to G 6 0 (5.38)

Governing Equation (5.39)

Boundary conditions (5.40)

5.2.4 Sensitivity analysis

Two-dimensional case

Now, the sensitivity analysis is considered for a two-dimensional case, using the Ad-
joint Variable Method (AVM). The Lagrangian of the optimization problem is for-
mulated as follows.

F̂ = F −
∑

ij=11,21,22

(
a1(Hz, H̃z,ij) + a2(Hz, H̃z,ij)− l(H̃z,ij)

)
+ λG, (5.41)

where H̃z,ij denotes the adjoint variables with respect to Sij. The level set function is
updated based on the gradient of the Lagrangian using a reaction diffusion equation.
The sensitivity of the Lagrangian is obtained using the AVM, as follows.⟨
dF̂

dχϕ

, χ̃ϕ

⟩
=
∑

ij=11,21,22

⟨
∂F

∂Sij

, S̃ij

⟩⟨
∂Sij

∂Hz

, H̃z

⟩⟨
∂Hz

∂χϕ

, χ̃ϕ

⟩
−
∑

ij=11,21,22

(⟨
∂a1
∂Hz

, H̃z

⟩⟨
∂Hz

∂χϕ

, χ̃ϕ

⟩
+

⟨
∂a2
∂Hz

, H̃z

⟩⟨
∂Hz

∂χϕ

, χ̃ϕ

⟩
+

⟨
∂a1
∂χϕ

, χ̃ϕ

⟩
+

⟨
∂a2
∂χϕ

, χ̃ϕ

⟩
−
⟨
∂l

∂χϕ

, χ̃ϕ

⟩)
+ λ

⟨
∂G

∂χϕ

, χ̃ϕ

⟩
,

(5.42)

where
⟨

∂a2
∂χϕ

, χ̃ϕ

⟩
= 0 and

⟨
∂l
∂χϕ

, χ̃ϕ

⟩
= 0, since a2 and the incident field are indepen-

dent of the design variables. Arranging the above equation in order to cancel out the
⟨∂Hz/∂χϕ, χ̃ϕ⟩ term, the above equation is transformed as follows.⟨
dF̂

dχϕ

, χ̃ϕ

⟩
=

∑
ij=11,21,22

(⟨
∂F

∂Sij

, S̃ij

⟩⟨
∂Sij

∂Hz

, H̃z

⟩
−
⟨
∂a1
∂Hz

, H̃z

⟩
−
⟨
∂a2
∂Hz

, H̃z

⟩)⟨
∂Hz

∂χϕ

, χ̃ϕ

⟩
−

∑
ij=11,21,22

⟨
∂a1
∂χϕ

, χ̃ϕ

⟩
+ λ

⟨
∂G

∂χϕ

, χ̃ϕ

⟩
, (5.43)

60



where the adjoint variable H̃z,ij is obtained by solving the following equation.

a1(H̃z,ij, δHz) + a2(H̃z,ij, δHz) =

⟨
∂F

∂Sij

, S̃ij

⟩
(Sij(δHz) + δij)

for H̃z,ij ∈ U, ∀δHz ∈ U, (5.44)

where δHz is the variation ofHz, and δij is the Kronecker delta such that δ11 = δ22 = 1,
δ21 = 0. The sensitivities are finally obtained using the following equation.⟨

dF̂

dχϕ

, χ̃ϕ

⟩
= −

∑
ij=11,21,22

⟨
∂a1(Hz, H̃z,ij)

∂χϕ

, χ̃ϕ

⟩
+ λ

⟨
∂G

∂χϕ

, χ̃ϕ

⟩
(5.45)

Note that, although the objective function is separately formulated for the two stages
of the optimization, the sensitivities of the real and imaginary parts of the effective
permeability are obtained by sensitivity analysis of the complex function. Therefore,

the obtained sensitivity
⟨

dF̂
dχϕ

, χ̃ϕ

⟩
is a complex function where the sensitivities of

the real and imaginary parts of the objective function are respectively obtained by

the real and imaginary parts of the derived sensitivity, namely, Re
(⟨

dF̂
dχϕ

, χ̃ϕ

⟩)
and

Im
(⟨

dF̂
dχϕ

, χ̃ϕ

⟩)
. Additional details are provided in Appendix C.

Three-dimensional case

The Lagrangian of the optimization problem for a three-dimension case is formulated
as follows.

F̂ = F −
∑

ij=11,21,22

(
a1(E, Ẽij) + a2(E, Ẽij)− l(Ẽij)

)
+ λG, (5.46)

where Ẽij denotes the adjoint variables with respect to Sij. The sensitivity of the
Lagrangian is obtained as follows.⟨

dF̂

dχϕ

, χ̃ϕ

⟩
=

∑
ij=11,21,22

⟨
∂F

∂Sij

, S̃ij

⟩⟨
∂Sij

∂E
, Ẽ

⟩⟨
∂E

∂χϕ

, χ̃ϕ

⟩
−
∑

ij=11,21,22

(⟨
∂a1
∂E

, Ẽ

⟩⟨
∂E

∂χϕ

, χ̃ϕ

⟩
+

⟨
∂a2
∂E

, Ẽ

⟩⟨
∂E

∂χϕ

, χ̃ϕ

⟩
+

⟨
∂a1
∂χϕ

, χ̃ϕ

⟩)
+λ

⟨
∂G

∂χϕ

, χ̃ϕ

⟩
=

∑
ij=11,21,22

(⟨
∂F

∂Sij

, S̃ij

⟩⟨
∂Sij

∂E
, Ẽ

⟩
−
⟨
∂a1
∂E

, Ẽ

⟩
−
⟨
∂a2
∂E

, Ẽ

⟩)⟨
∂E

∂χϕ

, χ̃ϕ

⟩
−

∑
ij=11,21,22

⟨
∂a1
∂χϕ

, χ̃ϕ

⟩
+ λ

⟨
∂G

∂χϕ

, χ̃ϕ

⟩
, (5.47)

where the adjoint variable Ẽij is obtained by solving the following equation.

a1(Ẽij, δE) + a2(Ẽij, δE) =

⟨
∂F

∂Sij

, S̃ij

⟩
(Sij(δE) + δij)

for Ẽij ∈ U, ∀δE ∈ U, (5.48)
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where δE is the variation of E. The sensitivities are then obtained by the following
equation. ⟨

dF̂

dχϕ

, χ̃ϕ

⟩
= −

∑
ij=11,21,22

⟨
∂a1(Ẽij,E)

∂χϕ

, χ̃ϕ

⟩
+ λ

⟨
∂G

∂χϕ

, χ̃ϕ

⟩
(5.49)

Note that in the three-dimensional case, the adjoint equation, Eq.(5.48), can be solved
efficiently, as described below. The left-hand side is the same as that of the governing
equation, Eq.(5.15). Considering the right-hand side, the right-hand side of the ad-
joint equation is linearly proportional to that of the governing equation for ij = 11.
Therefore, the adjoint field is self-adjoint and its solution is linearly proportional to
that of the governing equation. For ij = 21 and ij = 22, the solutions of the adjoint
equation, Eq.(5.48), are obtained by switching the location of the input and output
boundaries. Further details concerning this approach are given in [97].

5.3 Numerical implementation

5.3.1 Design variables

Two-dimensional case

The distribution of dielectric material inside the fixed design domain is expressed
using the level set function. In this method, a reciprocal formulation is used of the
relative electric permittivity to stabilize the optimization calculations, so ϵr in the
fixed design domain is defined using the characteristic function χϕ as follows.

ϵ−1
r =

(
ϵ−1
1 − ϵ−1

0

)
χϕ (ϕ) + ϵ−1

0 , (5.50)

where ϵ1 is the relative permittivity of the dielectric material and ϵ0 is the relative
permittivity of the background material. For the numerical implementation, the
above characteristic function is approximated by the following smoothed Heaviside
function H (ϕ).

H (ϕ) =


0 (ϕ < −w)
1
2
+ ϕ

w

(
15
16

− ϕ2

w2

(
5
8
− 3

16
ϕ2

w2

))
(−w 6 ϕ < w)

1 (w 6 ϕ) ,

(5.51)

where w is the transition width of the Heaviside function, which is set to a sufficiently
small value.

In cases where the relative permittivity is represented using a linear formulation,
it is defined as follows.

ϵr = (ϵ1 − ϵ0)χϕ(ϕ) + ϵ0. (5.52)
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The
⟨

∂a
∂χϕ

, χ̃ϕ

⟩
term used in the sensitivity analysis is given by the following equation.⟨

∂a

∂χϕ

, χ̃ϕ

⟩
=

∫
D

−1

ϵ2r
(ϵ1 − ϵ0)∇Hz · ∇H̃zχ̃ϕdΩ (5.53)

In the above formulation, the −1/ϵ2r term is included in the equation. In level set-
based topology optimization methods, structural boundaries are clearly represented
by the level set function, so values of the relative permittivity ϵr change drastically
near these boundaries, assuming values between ϵ0 and ϵ1. Thus, the sensitivity also
changes drastically near the structural boundaries, and the sensitivity distribution
becomes discontinuous. On the other hand, by using the reciprocal formulation, the⟨

∂a
∂χϕ

, χ̃ϕ

⟩
term used in sensitivity analysis is given by following equation.⟨

∂a

∂χϕ

, χ̃ϕ

⟩
=

∫
D

(
ϵ−1
1 − ϵ−1

0

)
∇Hz · ∇H̃zχ̃ϕdΩ (5.54)

In this formulation, ϵr is not included in the equation, so the sensitivity distribution
remains continuous and optimization calculations are stable. Note that the recip-
rocal formulation and the linear formulation respectively represent lower and upper
theoretical bounds of the effective properties of the composite materials investigated
here [193], so the reciprocal formulation is physically reasonable.

Three-dimensional case

In the three-dimensional case, the relative electric permittivity ϵr is simply defined

using the linear formulation in Eq.(5.52). In this case, the
⟨

∂a
∂χϕ

, χ̃ϕ

⟩
term used in

the sensitivity analysis is given by the following equation.⟨
∂a

∂χϕ

, χ̃ϕ

⟩
= −k20

∫
D

(ϵ1 − ϵ0) Ẽ ·Eχ̃ϕdΩ (5.55)

In the above formulation, ϵr does not appear as a term in the sensitivity analysis,
so the sensitivity distribution remains continuous and optimization calculations are
stable.

5.3.2 Optimization algorithm

Effective permeability minimization problem

As described in the previous section, for the problem to minimize the effective perme-
ability, a two-stage optimization procedure is used in which the imaginary part of the
effective permeability is first minimized and the real part of the effective permeability
is minimized during the second stage.

1st stage: Minimize imaginary part of effective permeability.
2nd stage: Minimize real part of effective permeability, using configuration

obtained in first stage as initial configuration.
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Effective permeability design problem

A two-stage optimization procedure is also used in the effective permeability design
problem. Assuming that the target permeability is set to a negative value, such as
occurs at the anti-resonance point, a configuration that achieves the target value
cannot be obtained directly if the positive peak lies between the initial antiresonance
point and the target frequency. This behavior is the same as that encountered in
the permeability minimization problem. Moreover, in the same manner as in the case
when the target value is set to a negative value, when the target permeability is set to
a value much larger than 1, such as occurs near the resonance point, a configuration
that achieves the target value cannot be obtained directly if the anti-resonance point
lies between the initial resonance point and the target frequency. Therefore, a two-
stage optimization are also used. The imaginary part of the effective permeability
is minimized in the first stage of the optimization, and the square of the difference
between the real part of the effective permeability and the effective permeability
target value is minimized during the second stage.

1st stage: Minimize imaginary part of effective permeability.
2nd stage: Minimize square of difference between real part of effective per-

meability and target value, using configuration obtained in first
stage as initial configuration.

Flowchart for each stage

The optimization flowchart for the 1st and 2nd stages described above, are summarized
as follows.

1: Initialize level set function.
2: Solve equilibrium equation using the Finite Element Method (FEM) and

calculate the objective functional and constraint functional.
3: If objective functional has converged, terminate the optimization proce-

dure and if not, compute the sensitivities of the objective and constraint
functionals using the AVM.

4: Update the level set function using the reaction diffusion equation and
return to step 2 of the optimization procedure.

The volume constraint is handled using the augmented Lagrangian method [194,195]
by estimating the Lagrange multiplier λ at every iteration to satisfy G(ϕ(t+∆t)) = 0.
Further details are given in [90]. In the following numerical examples, the optimization
terminates if the objective function does not improve during 20 consecutive iterations.
The FEM is used for solving the equilibrium and adjoint equations for its ease of
implementation in the level set-based method, but other computational methods such
as the FDTD method could be applied. Note that the FEM is also stable and fast,
especially when applied to single frequency analysis such as in the metamaterial design
problems considered here.
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5.4 Numerical examples

In this section, several numerical examples are provided to confirm the utility and
validity of the presented method for two- and three-dimensional negative permeability
dielectric metamaterial design problems.

5.4.1 Two-dimensional problems: effect of positive peak po-
sition in the initial configuration

In the two-dimensional design problems, effective permeability minimization problems
are first addressed where the target frequencies are set either higher or lower than that
of the positive peak of the initial configuration, to examine whether the optimization
can successfully find configurations that demonstrates negative effective permeability,
independent of the location of the positive peak of the initial configuration. Figure 5.4
shows the design domain and boundary conditions. The size of the analysis domain
is set to 120µm × 120µm and the size of the fixed design domain is set to 80µm
× 80µm. The analysis domain is discretized using 120 × 120 square elements. The
relative permittivity ϵ1 of the dielectric material is set to 100 − 1i and the relative
permittivity ϵ0 of the background material is set to 1. The transition width w of the
Heaviside function is set to 0.001.

Effective permeability minimization problem targeting 0.30THz

For the effective permeability minimization problem, the target frequency is set to
0.30THz to examine a case where the target frequency is lower than where the anti-
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Figure 5.4: Design domain and boundary conditions for two-dimensional problem.
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(b) 

Example 1 Target frequency 0.3THz 1st

(a) 

Figure 5.5: Comparison of configurations from 1st optimization stage for two-
dimensional effective permeability minimization problem targeting 0.30THz: (a) ini-
tial; (b) obtained configuration

resonance point of the initial configuration occurs. A circular rod shape with a volume
fraction of 40% of the volume of the fixed design domain is used as the initial config-
uration and the upper limit of the volume fraction is set to 70% of the volume of the
fixed design domain.

The initial configuration and the distribution obtained in the first stage, i.e., the
distribution after minimizing the imaginary part of the effective permeability, are
shown in Fig. 5.5. The effective permeability curves for the initial configuration and
the distribution obtained in the first stage are shown in Fig. 5.6. The frequency of the
negative peak of the imaginary part of the effective permeability gradually decreases
during the optimization procedure and finally reaches the prescribed frequency. The
value of the imaginary part of the effective permeability of the initial configuration at
0.30THz is −0.01, and the frequency of the negative peak of the imaginary part of the
effective permeability is approximately 0.41THz. The value of the imaginary part of
the effective permeability of the obtained configuration at 0.30THz is −13.23. Figure
5.7 shows the convergence history of the objective function. The objective function
sharply decreased after iteration 170 because the negative peak of the imaginary
part of the effective permeability approached the target frequency, and the objective
function sharply decreases near this peak.

During the second stage of the optimization, the real part of the effective per-
meability is minimized using the configuration obtained in the first stage as the ini-
tial configuration. Figure 5.8 shows the initial configuration and the configuration
obtained in the second stage. The effective permeability curves of the initial and
optimized configurations obtained are shown in Fig. 5.9. The anti-resonance point of
the real part of the effective permeability gradually decreases during the optimization
procedure and finally reaches the prescribed frequency at the end of the optimization
procedure. The values of the real part of the effective permeability of the initial con-
figuration of the first stage and the optimized configuration obtained in the second
stage at 0.30THz are respectively 1.33 and −5.06, which shows that the optimization
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Figure 5.6: Effective permeability curves of 1st optimization stage for two-dimensional
effective permeability minimization problem targeting 0.30THz.
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Figure 5.7: Convergence history of objective function of 1st optimization stage for
two-dimensional effective permeability minimization problem targeting 0.30THz.
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(b) 

Example 1 Target frequency 0.3THz 2nd

(a) 

Figure 5.8: Comparison of configurations from 2nd optimization stage for two-
dimensional effective permeability minimization problem targeting 0.30THz: (a) ini-
tial; (b) obtained configuration.

successfully found an optimized solution that has negative effective permeability, The
values of the imaginary part of the effective permeability of the initial configuration
used in the first stage of the optimization and the optimized configuration obtained
in the second stage of the optimization at 0.30THz are respectively −0.01 and −3.22.
The volume fraction of the optimized configuration is 69.8% of the volume of the fixed
design domain. Figure 5.10 shows the convergence history of the objective function
during the second stage of the optimization.

Figure 5.11 shows the magnetic field of the initial configuration for the first stage
of the optimization, and that of the optimized configuration obtained after the second
stage of the optimization. Note that the ranges in the color bars of the two figures
are different. The black arrows in these illustrations indicate the electric field. It can
be seen that a circular electric field is generated in the center of the design domain
of the optimized configuration, which induces a significant opposing magnetic field
along the z-axis, whereas the electric field of the initial configuration lacks this feature.
Although a comparison of methods for obtaining effective permeabilities is beyond
the scope of this study, Note that the effective permeability can be also obtained as
follows, using the method described in [130,188].

µeff =
1

d

∫
D
Hz(x, y)dΩ

Hz(0, 0)
. (5.56)

Here, Hz(0, 0) is positive, so when
∫
D
Hz(x, y)dΩ is negative, the effective permeabil-

ity becomes negative. Thus, it is apparent that the strong opposing magnetic field
described above is responsible for the obtained negative permeability in the metama-
terial.
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Figure 5.9: Effective permeability curves for 2nd optimization stage for two-
dimensional effective permeability minimization problem targeting 0.30THz.
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Figure 5.10: Convergence history of objective function of 2nd stage for two-
dimensional effective permeability minimization problem targeting 0.30THz.
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Figure 5.11: Magnetic and electric field distributions for two-dimensional effective
permeability minimization problem targeting 0.30THz: (a) initial; (b) optimized.

Effective permeability minimization problem targeting 0.45THz

For the second two-dimensional problem, the target frequency is set to 0.45THz to
examine a case where the target frequency is higher than that of the anti-resonance
point of the initial configuration. A circular rod shape with a volume fraction of 50%
of the volume of the fixed design domain is used as the initial configuration, but a
volume constraint is not applied.

The initial configuration used in the first stage of the optimization and the opti-
mized configuration after the second stage of the optimization are shown in Fig. 5.12,
and the corresponding effective permeability curves for the initial and optimized con-
figurations are shown in Fig. 5.13. The anti-resonance point of the real part of the
effective permeability gradually increases during the optimization procedure and fi-
nally reaches the prescribed frequency. The real part of the effective permeability of
the initial configuration at 0.45THz is 0.64, and the frequency at the anti-resonance
point of the real part of the effective permeability is approximately 0.37THz. The
real part of the effective permeability of the optimized configuration at 0.45THz is
−2.45, which shows that the optimization successfully found an optimized solution
that exhibits negative effective permeability. The values of the imaginary part of
the effective permeability of the initial configuration used in the first stage of the
optimization and the optimized configuration obtained in the second stage of the
optimization at 0.45THz are respectively −0.01 and −2.26. Figure 5.14 shows the
convergence histories of the objective function during the first and second stages of
the optimization, respectively. Figure 5.15 shows the magnetic field of the initial
configuration used in the first stage of the optimization, and that of the optimized
configuration obtained after the second stage of the optimization. The black arrows
in Fig.5.15 show the electric field, and the figure shows again that a circular electric
field is generated in the center of the design domain of the optimized configuration. A
strong opposing magnetic field is also induced in the optimized configuration, which
generates the negative permeability.
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Example 2 Target frequency 0.45THz

(b) (a) 

Figure 5.12: Comparison of configurations for two-dimensional effective permeability
minimization problem targeting 0.45THz: (a) initial; (b) optimized.
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Figure 5.13: Effective permeability curves for two-dimensional effective permeability
minimization problem targeting 0.45THz.
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Figure 5.14: Convergence histories of objective function for two-dimensional effective
permeability minimization problem targeting 0.45THz: (a) 1st optimization stage; (b)
2nd optimization stage.
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Figure 5.15: Magnetic and electric field distributions for two-dimensional effective
permeability minimization problem targeting 0.45THz: (a) initial; (b) optimized.
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5.4.2 Two-dimensional problem: effective permeability de-
sign problem

Next, an effective permeability design problem is considered to find an optimized
dielectric distribution that exhibits a prescribed value of the effective permeability.
The numerical settings of the optimization problem are the same as those used in the
previous subsection. The target frequency is set to 0.30THz and the target value for
the effective permeability is set to −3.0. A circular rod shape with a volume fraction
of 40% of the volume of the fixed design domain is used as the initial configuration.
The upper limit of the volume fraction is set to 70% of the volume of the fixed
design domain . During the first stage of the optimization, the imaginary part of
the effective permeability is minimized, as described in subsection5.4.1. The square
of the difference between the effective permeability and a prescribed value is then
minimized during the second stage of the optimization.

The initial configuration used in the first stage of the optimization and the opti-
mized configuration after the second stage of the optimization are shown in Fig. 5.16,
and the corresponding effective permeability curves for the initial and optimized con-
figurations are shown in Fig. 5.17. The real part of the effective permeability of
the optimized configuration at 0.30THz is −3.00, which indicates that the optimiza-
tion successfully found an optimized configuration that has a desirable value for the
effective permeability at the target frequency. The values of the imaginary part of
the effective permeability of the initial configuration used in the first stage of the
optimization and the optimized configuration obtained in the second stage of the
optimization at 0.30THz are respectively −0.01 and −7.44. Figure 5.18 shows the
convergence history of the objective function during the second stage of the optimiza-
tion. Figure 5.19 shows the magnetic field of the initial configuration used in the first
stage of the optimization, and that of the optimized configuration obtained after the
second stage of the optimization. The black arrows in Fig.5.19 show the electric field,
and the figure shows that a strong opposing magnetic field is induced in the center
of the design domain of the optimized configuration, which generates the negative
permeability.

5.4.3 Two-dimensional problems: material with a high di-
electric constant

To further verify the usefulness of the present method, a effective permeability min-
imization problems is provided for materials with a high dielectric constant. The
numerical settings of the optimization problems are the same as those used in subsec-
tion 5.4.1. The relative permittivity ϵ1 of the dielectric material is set to 200−5i and
the relative permittivity ϵ0 of the background material is set to 1. A configuration
filled with dielectric material is used as the initial configuration, since the effect of
the positive peak position is not considered, here. A volume constraint is not applied
in the following examples.
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Example 2 Target frequency 0.45THz

(b) (a) 

Figure 5.16: Comparison of configurations for two-dimensional effective permeability
design problem: (a) initial; (b) optimized.
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Figure 5.17: Effective permeability curves for two-dimensional effective permeability
design problem.
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Figure 5.18: Convergence history of objective function of 2nd optimization stage for
two-dimensional effective permeability design problem.
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Figure 5.19: Magnetic and electric field distributions for two-dimensional effective
permeability minimization problem targeting 0.30THz: (a) initial; (b) optimized.
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(b) (a) 

Figure 5.20: Comparison of configurations for two-dimensional effective permeability
minimization problem targeting 0.30THz: (a) initial; (b) optimized.

Effective permeability minimization problem targeting 0.30THz

Here, the target frequency is set to 0.30THz. The initial configuration used in the first
stage of the optimization and the optimized configuration after the second stage of
the optimization are shown in Fig. 5.20, and the corresponding effective permeability
curves for the initial and optimized configurations are shown in Fig. 5.21. The anti-
resonance point of the real part of the effective permeability gradually increases during
the optimization procedure and finally reaches the prescribed frequency. The real part
of the effective permeability of the initial configuration at 0.30THz is 0.70, and the
frequency at the anti-resonance point of the real part of the effective permeability is
approximately 0.19THz. The real part of the effective permeability of the optimized
configuration at 0.30THz is −2.89, which shows that the optimization successfully
found an optimized solution that exhibits negative effective permeability. The values
of the imaginary part of the effective permeability of the initial configuration used in
the first stage of the optimization and the optimized configuration obtained in the
second stage of the optimization at 0.30THz are respectively 0.00 and −2.26. Figure
5.22 shows the convergence histories of the objective function during the first and
second stages of the optimization. Figure 5.23 shows the magnetic field of the initial
configuration used in the first stage of the optimization, and that of the optimized
configuration obtained after the second stage of the optimization. Once more, a strong
opposing magnetic field is induced in the left and right-center areas of the optimized
configuration, which generates the negative permeability.

Effective permeability minimization problem targeting 0.45THz

Next, the target frequency is set to 0.45THz. The initial configuration used in the first
stage of the optimization and the optimized configuration after the second stage of
the optimization are shown in Fig. 5.24, and the corresponding effective permeability
curves for the initial and optimized configurations are shown in Fig. 5.25. Again, the
anti-resonance point of the real part of the effective permeability gradually increases
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Figure 5.21: Effective permeability curves for two-dimensional effective permeability
minimization problem targeting 0.30THz.
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Figure 5.22: Convergence histories of objective function for two-dimensional effective
permeability minimization problem targeting 0.30THz: (a) 1st optimization stage; (b)
2nd optimization stage.
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Figure 5.23: Magnetic and electric field distributions for two-dimensional effective
permeability minimization problem targeting 0.30THz: (a) initial; (b) optimized.

during the optimization procedure and finally reaches the prescribed frequency. The
real part of the effective permeability of the initial configuration at 0.45THz is 0.22,
and the frequency at the anti-resonance point of the real part of the effective per-
meability is approximately 0.43THz. The real part of the effective permeability of
the optimized configuration at 0.45THz is −0.58, which shows that the optimization
successfully found an optimized solution that exhibits negative effective permeability.
The values of the imaginary part of the effective permeability of the initial config-
uration used in the first stage of the optimization and the optimized configuration
obtained in the second stage of the optimization at 0.45THz are respectively −0.08
and −1.18. Figure 5.26 shows the convergence histories of the objective function dur-
ing the first and second stages of the optimization. Figure 5.27 shows the magnetic
field of the initial configuration used in the first stage of the optimization, and the op-
timized configuration obtained after the second stage of the optimization. Although a
strong magnetic field is induced in the center of the optimized configuration, a strong
opposing magnetic field is induced in areas around the center, generating a negative
permeability overall.

5.4.4 Three-dimensional problems

Now two three-dimensional effective permeability minimization problems are consid-
ered where the target frequencies are either higher or lower than that of the positive
peak of the initial configuration, to show that the optimization can successfully find
optimized configurations that demonstrates negative effective permeability, regardless
of the location of the positive peak of the initial configuration. Figure 5.28 shows the
design domain and boundary conditions. The size of the analysis domain is set to
120µm × 120µm × 150µm and the size of the fixed design domain is set to 80µm
× 80µm × 110µm. The analysis domain is discretized using 48 × 48 × 60 square
elements. The relative permittivity ϵ1 of the dielectric material is set to 100− 1i and
the relative permittivity ϵ0 of the background material is set to 1. The transition
width w of the Heaviside function is set to 0.001.
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(b) (a) 

Figure 5.24: Comparison of configurations for two-dimensional effective permeability
minimization problem targeting 0.45THz: (a) initial; (b) optimized.
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Figure 5.25: Effective permeability curves for two-dimensional effective permeability
minimization problem targeting 0.45THz.
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Figure 5.26: Convergence histories of objective function for two-dimensional effective
permeability minimization problem targeting 0.45THz: (a) 1st optimization stage; (b)
2nd optimization stage.
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Figure 5.27: Magnetic and electric field distributions for two-dimensional effective
permeability minimization problem targeting 0.45THz: (a) initial; (b) optimized.
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Effective permeability minimization problem targeting 0.30THz

The effective permeability minimization problem where the target frequency is set to
0.30THz examines a case where the target frequency is lower than that of the anti-
resonance point of the initial configuration. A spherical shape with a volume fraction
of 25% of the volume of the fixed design domain is used as the initial configuration.
The upper limit of the volume fraction is set to 90% of the volume of the fixed design
domain. The initial configuration used in the first stage of the optimization and the
optimized configuration after the second stage of the optimization are shown in Fig.
5.29, and the corresponding effective permeability curves are shown in Fig. 5.30. The
anti-resonance point of the real part of the effective permeability gradually decreases
during the optimization procedure and finally reaches the prescribed frequency. The
real part of the effective permeability of the initial and optimized configurations at
0.30THz are respectively 1.06 and −3.48, which shows that the optimization can suc-
cessfully find an optimized solution that demonstrates negative effective permeability.
The values of the imaginary part of the effective permeability used in the initial con-
figuration of the first stage and the optimized configuration obtained in the second
stage at 0.30THz are respectively 0.00 and −2.68. The volume fraction of the opti-
mized configuration is 90.0% of the volume of the fixed design domain. Figure 5.31
shows the convergence histories of the objective function during the first and second
stages of the optimization.
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Figure 5.29: Comparison of configurations for three-dimensional effective permeability
minimization problem targeting 0.30THz: (a) initial; (b) optimized.
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Figure 5.30: Effective permeability curves for three-dimensional effective permeability
minimization problem targeting 0.30THz.
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Figure 5.31: Convergence histories of objective function for three-dimensional effective
permeability minimization problem targeting 0.30THz: (a) 1st optimization stage; (b)
2nd optimization stage of the optimization.

Effective permeability minimization problem targeting 0.45THz

The effective permeability minimization problem where the target frequency is set
to 0.45THz now examines a case where the target frequency is higher than that
of the anti-resonance point of the initial configuration. A spherical shape with a
volume fraction of 40% of the volume of the fixed design domain is used as the
initial configuration, and a volume constraint is not applied. The initial configuration
used in the first stage of the optimization and the optimized configuration after the
second stage of the optimization are shown in Fig. 5.32, and the corresponding
effective permeability curves are shown in Fig. 5.33. The anti-resonance point of
the real part of the effective permeability gradually increases during the optimization
procedure and finally reaches the prescribed frequency. The real part of the effective
permeability of the initial and optimized configuration at 0.45THz are respectively
0.64 and −1.61, which shows that the optimization can successfully find an optimized
solution that has negative effective permeability. The values of the imaginary part
of the effective permeability of the initial configuration used in the first stage of the
optimization and the optimized configuration obtained in the second stage of the
optimization at 0.45THz are respectively −0.01 and −1.99. Figure 5.34 shows the
convergence histories of the objective function during the first and second stages.

5.5 Conclusions

This chapter presented a level set-based topology optimization method for the design
of negative permeability dielectric metamaterials. The following is a achievement
through this study:

(1) The optimization problems for both two- and three-dimensional problems were
formulated to minimize the effective permeability, and to obtain a prescribed effec-
tive permeability at a target frequency. A level set-based boundary expression was
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Figure 5.32: Comparison of configurations for three-dimensional effective permeability
minimization problem targeting 0.45THz: (a) initial; (b) optimized.
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Figure 5.33: Effective permeability curves for three-dimensional effective permeability
minimization problem targeting 0.45THz.
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Figure 5.34: Convergence histories of objective function for three-dimensional effective
permeability minimization problem targeting 0.45THz: (a) 1st optimization stage; (b)
2nd optimization stage.

applied to obtain clear boundaries, and an S-parameter-based approach was applied
to compute the effective permeability of the metamaterials.

(2) Based on the formulation of the optimization problem, an optimization al-
gorithm was constructed. The FEM was used to solve the electromagnetic wave
problems and update the level set function, and the Adjoint Variable Method was
used when computing sensitivity analyses.

(3) Several numerical examples for both two- and three-dimensional problems were
provided to examine the validity of the presented method. It was confirmed that the
presented method successfully finds optimized configurations that minimize the effec-
tive permeability, and also finds optimized configurations that achieve a prescribed
degree of effective permeability. Finally, it was also confirmed that the presented
method obtains smooth and clear optimized configurations for all the presented cases.
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Chapter 6

Inverse design of dielectric
materials

6.1 Introduction

Artificial dielectric materials that are engineered to have an extreme dielectric con-
stant are of great interest for improving electromagnetic devices such as electrostatic
actuators, waveguides, antennas and so on. In this chapter, a systematic design
methodology for the microstructure design of composites made from two dielectric
materials with different dielectric constants, or a single dielectric material and air.
Topology optimization is applied to find the shape and distribution of dielectric ele-
ments that exhibits a prescribed desirable dielectric constant.

Topology optimization has been successfully applied to various microstructure
design problems aiming to develop materials that have extreme properties such as
a negative thermal expansion coefficient [167], a negative Poisson’s ratio [168], and
materials with a prescribed value of a constitutive tensor such as Young’s modulus
[66], magnetic permeability [65], a dielectric constant [68], and so on. These problems
are called inverse homogenization problems [66].

There are various methods for obtaining an effective permittivity value for dielec-
tric composites. Analytic methods such as the Clausius-Mossotti, Maxwell-Garnett,
and Bruggman formulas, which are also called mixing formulas, compute the effec-
tive permittivity of composites based on the volume of the inclusions [196], however
the accuracy is valid only for certain inclusion shapes such as spheres, cylinders, and
ellipsoids. A homogenization method such as a method based on asymptotic expan-
sion [103, 104], and also an energy-based method [187], can be used when dealing
with more complicated shapes where the effective properties are obtained based on
the results of finite element analysis. In this study, an energy-based method is used
to obtain the effective permittivity of the dielectric materials.

There is considerable literature on the investigation of the theoretical bounds for
the effective properties of composites (e.g., [197]). The primal bounds for two-phase
dielectric materials are given by arithmetic and harmonic means of each dielectric
constant. Tighter bounds can be obtained based on certain available information
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about the composites, such as their volume fractions and/or isotropy. In this work,
to evaluate the permittivity values obtained in optimization, the theoretical bounds
of the two- three-dimensional anisotropic effective property in the principal direction
when that of the other principal direction is set to a prescribed value are derived.
Permittivity values obtained in optimizations are compared with these derived theo-
retical bounds.

In a previous study on the microstructure design of dielectric materials [68], a ge-
netic algorithm (GA) was used in the optimization method. However, meta-heuristic
approaches such as GAs, Particle Swarm Optimization (PSO), and Simulated An-
nealing (SA) are generally not suitable for topology optimization since the number of
design variables is usually so large that the optimization becomes too computationally
costly [198]. Hence in [68] design resolution was limited to extremely coarse discretiza-
tions. In this work, a gradient-based topology optimization method is used to find the
distribution of dielectric material for the unit cell of a periodic microstructure, where
densities are updated based on the sensitivities. The computation of sensitivities is
significantly streamlined by using the adjoint variable method (AVM). In this way, it
is available to solve problems with very fine discretizations and hence obtain accurate
results and detailed boundary descriptions. The objective of the optimization is to
design dielectric materials that exhibit a prescribed effective permittivity. Therefore,
the optimization problem is formulated as a problem to minimize the square of the
difference between the effective permittivity and a prescribed value. The optimiza-
tion algorithm uses the finite element method (FEM) for solving the equilibrium and
adjoint equations, respectively. A Heaviside projection filter [24] is used to obtain
clear optimized configurations. In this study, several design problems are considered
including the design of an isotropic material, an anisotropic material, an anisotropic
material with nonzero off-diagonal terms, and an anisotropic material with loss. More-
over, the obtained results are compared with derived theoretical bounds to confirm
the validity of the results.

6.2 Formulation

6.2.1 Effective permittivity

In this study, the electrostatic effective permittivity is obtained on the basis of the
energy-based approach that employ conductivity average theorems [187] (see also
[66]), where the effective permittivities are expressed in terms of mutual energies as
follows. This method assume that the mutual energies accumulated in the original
unit cell and in the homogenized cell are equivalent. The mutual energy accumulated
in the original unit cell is given as

Qij =
1

2

∫
Ω

ϵr∇ϕ̄i · ∇ϕjdΩ, (6.1)

where ϵr represents the element of electric permittivity tensor and ϕi and ϕj are
the electric potentials obtained when an electric voltage is applied in the xi and xj
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directions, respectively (Fig.6.1), where ij=11, 12, 21, 22, and ϕ̄i denotes the conjugate
complex number of ϕi. On the other hand, the mutual energy accumulated in the
homogenized cell is given as

QH
ij =

1

2
ϵeff,ijV

0
i V

0
j V, (6.2)

where V is the volume and V 0
i is the applied voltage defined in a boundary condition

that produce homogeneous fields. By assumingQij = QH
ij , the elements of the effective

permittivity tensor, ϵeff,ij in Eq.(6.2), are determined as follows.

ϵeff =

[
ϵeff,11 ϵeff,12
ϵeff,21 ϵeff,22

]
, (6.3)

where

ϵeff,11 =
1

V 0
1
2
V

∫
Ω

ϵr (x)∇ϕ̄1 (x) · ∇ϕ1 (x) dΩ (6.4)

ϵeff,22 =
1

V 0
2
2
V

∫
Ω

ϵr (x)∇ϕ̄2 (x) · ∇ϕ2 (x) dΩ (6.5)

ϵeff,12 =
1

V 0
1 V

0
2 V

∫
Ω

ϵr (x)∇ϕ̄2 (x) · ∇ϕ1 (x) dΩ (6.6)

ϵeff,21 =
1

V 0
1 V

0
2 V

∫
Ω

ϵr (x)∇ϕ̄1 (x) · ∇ϕ2 (x) dΩ, (6.7)

The electric potential ϕi are obtained by solving the following governing equation
using the FEM.

∇ · [ϵr (x)∇ϕi (x)] = 0, (6.8)

The left and right boundaries, and the upper and lower boundaries are, respectively,
set to a periodic boundary condition as follows, in the case when an electric voltage
is applied in the horizontal direction (Fig.6.1(a)).

ϕ1(x1, x2) = ϕ1(x1 − L1, x2) + V 0
1 on Γ3 (6.9)

ϕ1(x1, x2) = ϕ1(x1, x2 − L2) on Γ4, (6.10)

where V 0
1 is an applied voltage in the horizontal direction and, L1 and L2 are the unit

cell lengths in the x1 and x2 directions, respectively.
The left and right boundaries, and the upper and lower boundaries are, respec-

tively, set to a periodic boundary condition as follows, in the case when an electric
voltage is applied in the vertical direction (Fig.6.1(b)).

ϕ2(x1, x2) = ϕ2(x1 − L1, x2) on Γ3 (6.11)

ϕ2(x1, x2) = ϕ2(x1, x2 − L2) + V 0
2 on Γ4, (6.12)

where V 0
2 is an applied voltage in the vertical direction. The effective permittivities

are obtained by substituting obtained electric potentials into Eq.(6.4)-(6.7).
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6.2.2 Design variables

In this work, the distribution of dielectric material inside the fixed design domain
is expressed using relative element densities ρ̃e ∈ [0, 1]. That is, the relative electric
permittivity ϵr inside the fixed design domain is defined using ρ̃e following the concept
of the SIMP method.

ϵr = (ϵ1 − ϵ0) ρ̃
p
e + ϵ0, (6.13)

where ϵ1 is the relative permittivity of the dielectric material, ϵ0 is the relative permit-
tivity of the background material, and p is a penalization parameter. For problems
that have an active volume constraint, a large value of p > 1 penalizes intermediate
element densities, since the volume is proportional to ρ̃e but the permittivity val-
ues fall below the line of proportionality. The parameter p > 3 is typically used in
structural optimization problems, since the bulk modulus and shear modulus of inter-
polated stiffness tensor are required to satisfy the Hashin-Shtrikman bounds, which
isotropic materials should satisfy [102]. Here, p = 3 is used in the following numeri-
cal examples. It is because the profile of interpolated permittivity by p = 3 respect
to the element density is similar to, even though it is not the same as, that of the
Hashin-Strikman bounds when the loss of dielectric materials is small.

To ensure that the optimal design is independent of the mesh, and to obtain a clear
optimal configuration, the Heaviside projection filter is used in this work [24]. Using
this filter, the relative element densities ρ̃e can be computed as shown in the following
procedures. First, intermediate variables µe are computed using design variables ρe
that are typically located in nodes or the center of the finite elements, as follows.

µe =
∑
j∈Ne

ρew/
∑
j∈Ne

w, (6.14)

where N e is the neighborhood of elements specified by a circle with the given filter
radius, and w is a weighting function that imposes higher weights for closer design

(a) (b)

Figure 6.1: Analysis model and boundary conditions for the case of an electric voltage
applied in (a) the horizontal direction, and (b) the vertical direction.
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variables. The relative element densities are then obtained using the Heaviside func-
tion as follows.

ρ̃e = Hs(µe) = 1− e−βµe + µee
−β, (6.15)

where β is a parameter that adjusts the curvature of the Heaviside function. To
ensure stable convergence of the optimization, the magnitude of parameter β is grad-
ually increased from 1 to sufficiently large value (e.g. 500) during the optimization
procedure. Published references provide more details concerning the use of density
filters [12,24].

6.2.3 Optimization problem

Here, the formulation of the optimization problem is discussed that will be applied
to the dielectric material design problems. The purpose of the optimization is to
obtain layouts of dielectric material that achieve the desired dielectric permittivity.
Thus, the objective of the optimization problem can be formulated as to minimize
the square of the difference between the target permittivity and obtained effective
permittivity. The optimization problem is described as follows.

inf
ρe

F (ρe) = log
∑
ij

|ϵ∗eff,ij/ϵ∗tar,ij − 1|2 (6.16)

subject to G =
1

VD

∫
D

ρ̃edΩ− Vmax 6 0 (6.17)

Poisson equation: Eq.(6.8) (6.18)

Boundary conditions: Eqs.(6.9)–(6.12) (6.19)

where ϵeff and ϵtar respectively represent the effective permittivity and the target
permittivity. The ∗ denotes the use of either ′ or ′′ that apply to the real or imagi-
nary part of the effective permittivity, respectively. The subscript ij = 11, 12, 21, 22
denotes the elements of the dielectric tensor. VD is the volume of the fixed design
domain and Vmax is the upper limit of volume fraction. Note that the logarithm of the
sum of the differences is used as an objective functional to obtain better numerical
scaling. When the differences become smaller during optimization, the magnitude of
the sensitivities also diminish, which slows convergence.

6.2.4 Sensitivity analysis

The sensitivities of the objective functional for the gradient-based topology optimiza-
tion are obtained using the adjoint variable method (AVM). The governing equation
is discretized and solved using the FEM. The discretized governing equation can be
described as follows.

Sϕi = f , (6.20)
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where S is the stiffness matrix and f is the load vector. The sensitivity of the objective
functional F is then given as

dF

dρ
=
∂F

∂ρ
+ 2Re

(
λT
(
∂S

∂ρ
ϕi −

∂f

∂ρ

))
, (6.21)

where λ is an adjoint variable. The adjoint variable λ is obtained by solving following
adjoint problem.

STλ = −∂F

∂ϕi

. (6.22)

With A as the integrand of the objective functional, the derivative of the objective
functional with respect to the state variable ∂F

∂ϕi
can be computed directly as follows.

∂F

∂ϕi

=
1

V 2

∫
D

(
∂A

∂ϕi

+
∂A

∂∇ϕi

· ∇
)
dD, (6.23)

where,

∂A

∂ϕi

= 0 (6.24)

∂A

∂∇ϕi

= ϵr∇ϕ̄i. (6.25)

In Eq.(6.21), ∂f
∂ρ

= 0 since the applied voltage is independent with respect to the

design variables. Computation of the derivative using Eq.(6.21) can be simplified by
following Olesen et al.’s implementation technique [43].

6.3 Theoretical bounds

In this section, the theoretical bounds of the effective permittivity for two-phase
dielectric composites are discussed.

6.3.1 Review of theoretical bounds of effective permittivity
for two-phase composite material

Bounds of complex value effective permittivity

Let ϵeff be the effective permittivity of a two-phase composite with complex dielectric
constants ϵ1 and ϵ2. The analytical bounds of ϵeff can be illustrated as shown in
Fig.6.2. Here, as an example, the dielectric constants for phases 1 and 2 are set to
ϵ1 = −2 + 3i and ϵ2 = 1 + 1i, respectively, and the volume fraction for phase 1 is set
to 0.6 for bounds Ω

′
, Ω

′′
, (the same example as chap.27 in [197]). These bounds are

obtained as follows. Note that for composites made from a single dielectric material
and air, the bounds are obtained by setting ϵ2 = 1.
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210-1-2

1

2

Isotropic

Anisotropic

Anisotropic

Figure 6.2: Bounds of effective permittivity for two constituent materials with prop-
erties ϵ1 = −2+ 3i and ϵ2 = 1+ 1i. In the absence of specific information concerning
the dielectric materials, the effective permittivity is confined to the region Ω. If the
volume fraction of phase 1 is f1 = 0.6, the effective permittivity is confined to the
region Ω′. Furthermore, if the composite is a two-dimensional isotropic material, the
effective permittivity is confined to the region Ω′′.

In the absence of specific information concerning the topological distribution of
the constituent, the corresponding bounds are the Wiener harmonic and arithmetic
mean bounds expressed by following equations.

ϵU0
eff (v) =

(
v

ϵ1
+

1− v

ϵ2

)−1

(6.26)

ϵL0
eff (w) = wϵ1 + (1− w)ϵ2, (6.27)

as parameters v and w are varied from 0 to 1.
The boundary ϵU0

eff (v) represents the composite as a laminate material oriented so
that the applied field V 0 is parallel to the direction of lamination (see Fig.6.3(a)).
On the other hand, boundary ϵL0

eff (w) represents the composite as a laminate material
oriented so that the applied field V 0 is orthogonal to the direction of lamination (see
Fig.6.3(b)).

In addition, if the volume fraction of phase 1, f1, is known, the effective permittiv-
ities at points A and B on the above boundaries ϵU0

eff and ϵL0
eff in Fig.6.2 are determined
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(a) (b)

Figure 6.3: Laminate model.

(a) (b)

Figure 6.4: Cross section of the coated elliptic assemblage.

as follows.

ϵAeff =

(
f1
ϵ1

+
f2
ϵ2

)−1

(6.28)

ϵBeff = f1ϵ1 + f2ϵ2, (6.29)

where f2 = 1−f1 is the volume fraction of phase 2. Tighter boundaries are expressed
by an arc joining the point A and B that when extended passes through ϵ2 and an
arc that passes through ϵ1, that can be expressed by the following equations as the
parameters v and w are varied from 0 to 1.

ϵU1
eff = ϵ2 +

f1ϵ2 (ϵ1 − ϵ2)

ϵ2 + vf2 (ϵ1 − ϵ2)
(6.30)

ϵL1
eff = ϵ1 +

f2ϵ1 (ϵ2 − ϵ1)

ϵ1 + wf1 (ϵ2 − ϵ1)
. (6.31)

The boundary ϵU1
eff (v) represents an elliptic assemblage with a core of component 1

surrounded by component 2 (see Fig.6.4(a)). On the other hand, the boundary ϵL1
eff (w)

represents an elliptic assemblage with a core of component 2 surrounded by component
1 (see Fig.6.4(b)). The major and minor diameters of the phase 1 structure, D1a, D1b,
and of the phase 2 structure, D2a, D2b, have following relationship since the inner and
outer ellipses are confocal [199] .

D2
2a −D2

2b = D2
1a −D2

1b. (6.32)
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(a) (b)

Figure 6.5: Cross section of the coated cylindrical assemblage.

Therefore, volume fraction f1 and parameter v are described as follows.

f1 =
D1aD1b

D2aD2b

(6.33)

v =
D1aD2a

D1aD2a +D1bD2b

. (6.34)

Moreover, if it is known that the composite is a two-dimensional isotropic material,
then the effective permittivities at points X and Y on the above boundaries, ϵU1

eff and
ϵL1
eff , respectively, can be defined using the following equation.

ϵXeff = ϵ1 +
2f2ϵ1(ϵ2 − ϵ1)

2ϵ1 + f1(ϵ2 − ϵ1)
(6.35)

ϵYeff = ϵ2 +
2f1ϵ2(ϵ1 − ϵ2)

2ϵ2 + f2(ϵ1 − ϵ2)
. (6.36)

The tighter boundaries are expressed by an arc joining the point X and Y that when
extended passes through ϵ2 and an arc that passes through ϵ1. These bounds are
expressed by following equations as the parameters v and w are varied from 0 to 1.

ϵU2
eff = ϵXeff +

1− v

1/(ϵYeff − ϵXeff) + v/(ϵXeff − ϵ2)
(6.37)

ϵL2
eff = ϵXeff +

1− w

1/(ϵYeff − ϵXeff) + w/(ϵXeff − ϵ1)
. (6.38)

The boundary ϵU2
eff (v) represents the composite as a cylindrical assemblage with phase

1 as core material and phase 2 as the material surrounding the core (see Fig.6.5(a)).
Similarly, the boundary ϵL2

eff (w) represents the composite as a cylindrical assemblage
with phase 2 as core material and phase 1 as the material surrounding the core (see
Fig.6.5(b)).

Apart from the elliptic and cylindrical assemblages [106] there exist a number
of other microgeometries that can be shown to realize any material properties on
(and within) the bounds. These include so-called rank-n laminates [200–203] and
hybrid structures [204]. Excluding multiple microstructural length-scales, so-called
Vigdergauz structures have also been shown to attain the bounds in certain cases
[205–207]. Here this work is limited to one length-scale and easily manufacturable
microstructures and show that Vigdergauz-like structures are solutions to a variety
of different inverse design problems with real and complex effective properties.
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Bounds of real value effective permittivity

The bounds of real value effective permittivity versus the volume fraction f1 is ob-
tained as follows. In the absence of specific information, ϵAeff(f1) in Eq.(6.28) is the
lower bound and ϵBeff(f1) in Eq.(6.29) is the upper bound of the effective permittiv-
ity of the composite materials versus volume fraction f1. In addition, if it is known
that the composite is isotropic material, the point ϵXeff(f1) in Eq.(6.35) and ϵYeff(f1) in
Eq.(6.36) are the upper and lower bounds of the effective permittivity of the composite
materials versus volume fraction f1.

6.3.2 Bounds of real value effective permittivity in principal
direction

Based on the description in previous subsection, the bounds of the real value anisotropic
effective permittivity in princi-pal direction when that of the other(s) principal direc-
tion is/are known can be derived as follows.

Two-dimensional case

From Eqs.(6.34),

1− v =
D1bD2b

D1aD2a +D1bD2b

(6.39)

Eq.(6.34) and Eq.(6.39) are symmetric with respect to the principal directions, a and
b, so ϵ(v) and ϵ(1−v) show the effective permittivities of the two principal directions.
If it is known that the permittivity value of one of the principal directions and let it
be ϵ∗, the parameter v and w in Eqs.(6.30) and (6.31) is obtained as,

v∗ =
f1ϵ2(ϵ1 − ϵ2)− ϵ2(ϵ

∗ − ϵ2)

f2(ϵ1 − ϵ2)(ϵ∗ − ϵ2)
(6.40)

w∗ =
f2ϵ1(ϵ2 − ϵ1)− ϵ1(ϵ

∗ − ϵ1)

f1(ϵ2 − ϵ1)(ϵ∗ − ϵ1)
. (6.41)

The following bounds are then derived, substituting 1−v∗ and 1−w∗ into Eqs.(6.30)
and (6.31).

ϵLeff = ϵ2 +
f1ϵ2 (ϵ1 − ϵ2)

ϵ2 + (1− v∗)f2 (ϵ1 − ϵ2)
(6.42)

ϵUeff = ϵ1 +
f2ϵ1 (ϵ2 − ϵ1)

ϵ1 + (1− w∗)f1 (ϵ2 − ϵ1)
. (6.43)

Three-dimensional case

By similar argument, the bounds of the anisotropic effective permittivity in the prin-
cipal direction for three-dimensional case can be derived, when those of the other
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principal directions are known. for the ellipsoid with a core of component 1 and sur-
rounded by component 2, three principal permittivities are ϵXeff (u), ϵ

X
eff (v) and ϵ

X
eff (w),

where u+ v+w = 1 [199]. If the permittivity values of the other principal directions,
ϵ∗22, ϵ

∗
33, are known, the parameter v and w can be obtained as,

v∗ =
f1ϵ2(ϵ1 − ϵ2)− ϵ2(ϵ

∗
22 − ϵ2)

f2(ϵ1 − ϵ2)(ϵ∗22 − ϵ2)
(6.44)

w∗ =
f1ϵ2(ϵ1 − ϵ2)− ϵ2(ϵ

∗
33 − ϵ2)

f2(ϵ1 − ϵ2)(ϵ∗33 − ϵ2)
(6.45)

Then the following bounds are derived, substituting 1− v∗ − w∗ into Eqs.(6.30) and
(6.31).

ϵLeff = ϵ2 +
f1ϵ2 (ϵ1 − ϵ2)

ϵ2 + (1− v∗ − w∗)f2 (ϵ1 − ϵ2)

ϵUeff = ϵ1 +
f2ϵ1 (ϵ2 − ϵ1)

ϵ1 + (1− v∗ − w∗)f1 (ϵ2 − ϵ1)
.

6.4 Numerical implementation

6.4.1 Optimization algorithm

The optimization flowchart is shown in Fig.6.6. First, the design variables are initial-
ized. Next, the filtered design variable ρ̃e is computed using the projection function
and the Heaviside function. Objective and constraint functionals are then computed
using the FEM. If the objective functional has converged, the optimization procedure
is terminated. If not, the sensitivities of the objective and constraint functionals are
computed using the AVM. The design variables are then updated using the method
of moving asymptotes (MMA) [111] and the process returns to the second step.

6.5 Numerical examples

Numerical examples are now presented to demonstrate the validity and capability of
our method for the design of microstructures based on dielectric materials. First,
the asymptotic expansion-based approach and energy-based approach used to obtain
effective permittivity values for the dielectric composites considered here, are com-
pared. The following design examples include the design of an isotropic material,
an anisotropic material, an anisotropic material with a nonzero off-diagonal terms,
and an anisotropic material with loss. The optimization target in all examples is to
minimize the square of the difference between the effective permittivity and a target
value. The design domain is discretized using 200 × 200 square elements. A circular
rod shape with a volume fraction of 50% is used as the initial configuration unless
otherwise specified in the following examples.
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Figure 6.6: Flowchart of optimization algorithm.

6.5.1 Comparison of methods to obtain effective permittivity
values

Here, the asymptotic expansion-based approach and the energy-based approach are
compared to show the validity of the energy-based approach used in this paper to
obtain effective permittivity values for the dielectric materials. Figure 6.7 shows a
comparison of the effective permittivity values obtained using both approaches for
composites made from a single dielectric material with ϵ1=100 and air, (ϵ0=1). Four
inclusion shapes with volume fractions of 50% are considered for the comparison. That
is, inclusions with a cylindrical hole (Fig.6.7(a)), cylindrical inclusions (Fig.6.7(b)),
vertically oriented laminates (Fig.6.7(c)), and vertically oriented laminates rotated
26.57 degrees in the counterclockwise direction (Fig.6.7(d)) are considered. The ef-
fective permeability values obtained using analytic methods are also compared for
reference. For a square lattice with cylindrical holes and a lattice with cylindrical
inclusions, the Rayleigh formula, defined as follows [208, 209], provides sufficient ac-
curacy.

ϵeff = ϵe +
2pϵe

ϵi + ϵe
ϵi − ϵe

− p− ϵi − ϵe
ϵi + ϵe

(0.3058p4 + 0.0134p8)
, (6.46)

where ϵi is the permittivity of the cylindrical component, p is its volume fraction,
and ϵe is the permittivity of the background material. For laminate inclusions, the
effective permittivity can be obtained using the Wiener harmonic and arithmetic
means (Eqs.(6.26)(6.27)).

ϵeff =

[
50.5 0.0
0.0 1.980

]
. (6.47)
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The effective permittivity values for vertically oriented laminates rotated 26.57 de-
grees in the counterclockwise direction are obtained by rotating the effective permit-
tivity tensor of the vertically oriented laminates as follows.

ϵeff =

[
cosθ sinθ
−sinθ cosθ

]T [
50.5 0.0
0.0 1.980

] [
cosθ sinθ
−sinθ cosθ

]
=

[
40.796 19.408
19.408 11.684

]
, (6.48)

where θ is set to 26.57 degrees. Note that analytic methods are valid only for certain
inclusion shapes.

For both the asymptotic expansion-based and energy-based approaches, the ef-
fective permittivity values are obtained using the FEM. Here, the analysis domain is
discretized using 200 × 200 square elements. The effective permittivity values using
the asymptotic expansion-based approach are obtained via following equation.

ϵAS
eff,ij =

1

Y

∫
Ω

ϵr(x)

(
δij +

∂χj

∂xi

)
dΩ, (6.49)

where Y is the unit cell length and χj is obtained by solving following equation with
periodic boundary conditions imposed.

−∇ · (ϵr∇χj) =
∂ϵr
∂xj

. (6.50)

As shown in Fig.6.7, the effective permittivity values obtained using the analytic
methods and the asymptotic expansion-based and energy-based approaches are very
close for the above four inclusion shapes, demonstrating the validity of the energy-
based approach used in this paper.

6.5.2 Two-dimensional problems: isotropic material design

Here, the design of an isotropic material are discussed. The target value is set to
ϵtar,11 = ϵtar,22 = 70. The relative permittivity of the dielectric material is set to 100
and the relative permittivity of the background material is set to 1. The maximum
volume fraction is set to 82.5%, a value chosen from theoretical bounds that will be
discussed below.

The optimization results are shown in Fig.6.8. The obtained effective permittivity
is

ϵeff =

[
70.00 0.00
0.00 70.00

]
. (6.51)

The permittivity values and optimal configuration show that the optimization suc-
cessfully obtained a clear structure that provides the target permittivity.

Figure 6.10 shows the theoretical bounds for the effective permittivity of compos-
ite materials composed of the above-mentioned dielectric and background materials,
where the horizontal axis shows the volume fraction of the dielectric material and the
vertical axis shows the effective permittivity of the composite material. The theo-
retical bounds for anisotropic and isotropic materials are shown by solid and dashed
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Energy-based approach
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Rayleigh formula

Rayleigh formula
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arithmetic means 

Wiener harmonic and

arithmetic means 

Figure 6.7: Comparison of effective permittivity values obtained using asymptotic
expansion-based and energy-based approaches for composites made from a single di-
electric material (black: ϵ1=100) and air (white: ϵ0=1): (a) inclusions with a cylindri-
cal hole, (b) cylindrical inclusions, (c) vertically oriented laminates and (d) vertically
oriented laminates rotated 26.57 degrees in the counterclockwise direction.

Figure 6.8: Optimized configuration of isotropic material design problem for volume
fraction Vmax = 0.825 of ϵ1 = 100(black), and ϵ0 = 1 (white). The targets are
ϵtar,11 = ϵtar,22 = 70 and the achieved properties are ϵeff,11 = ϵeff,22 = 70.
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lines, respectively. The effective permittivity of the optimized configuration is shown
as the black square in Fig.6.10 for comparison with the theoretical bound curve, and
demonstrates that the obtained result is in good agreement with theoretical bounds.

6.5.3 Two-dimensional problems: anisotropic material de-
sign

Next, the design of an anisotropic material is considered. The target value is set to
ϵtar,11 = 45, and ϵtar,22 = 70. The relative permittivity of the dielectric material is
set to 100 and the relative permittivity of the background material is set to 1. The
maximum volume fraction is set to 76%, a value chosen from theoretical bounds.

The optimization results are shown in Fig.6.9. The obtained effective permittivity
is

ϵeff =

[
45.00 0.00
0.00 70.00

]
. (6.52)

The permittivity values and optimal configuration show that the optimization ob-
tained the target permittivity for the anisotropic material to a highly practical extent.
Figure 6.10 shows the theoretical bounds for the effective permittivity. The effective
permittivity of the optimized configuration is shown as the black dot in Fig.6.10 for
comparison with the theoretical bound curve. The highly sloped dot-dashed line plots
the upper limit of the permittivity of the anisotropic material versus the volume frac-
tion when ϵ22 is 70. Similarly, the dot-dashed line that is partially obscured by solid
line in the lower right corner of the graph shows the lower limit of the permittivity of
the anisotropic material versus the volume fraction when ϵ22 is 70. The black dot indi-
cates the effective permittivity value of obtained dielectric materials as optimization
results and that the obtained result is in good agreement with theoretical bounds.

Figure 6.9: Optimized configuration of the anisotropic material design problem for
volume fraction Vmax = 0.76 of ϵ1 = 100(black), and ϵ0 = 1 (white). The targets
are ϵtar,11 = 45 and ϵtar,22 = 70 and the achieved properties are ϵeff,11 = 45.00 and
ϵeff,22 = 70.00.
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Figure 6.10: Theoretical bounds for isotropic and anisotropic material design prob-
lems with properties ϵ1 = 100 and ϵ0 = 1. The solid and dashed lines show the the-
oretical bounds for isotropic and anisotropic material, respectively. The dot-dashed
line plots the upper and lower limit of the permittivity of the anisotropic material
versus the volume fraction when ϵ22 = 70. The effective permittivity of the opti-
mized configuration, ϵeff,11 = ϵeff,22 = 70.00, of Subsection 6.5.2 is shown as the black
square, and the effective permittivity of the optimized configuration, ϵeff,11 = 45.00
and ϵeff,22 = 70.00, of Subsection 6.5.3 is shown as the black dot, for comparison with
the theoretical bound curve.
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6.5.4 Two-dimensional problems: anisotropic material de-
sign with nonzero off-diagonal terms

Here, the design of an anisotropic material with nonzero off-diagonal terms is consid-
ered. The target dielectric permittivity is set to

ϵtar =

[
ϵa + δcos2ϕ δsin2ϕ
δsin2ϕ ϵa − δcos2ϕ

]
, (6.53)

where ϕ is set to 15 degrees and ϵa and δ are respectively set to 125 and 40. That is,

ϵtar =

[
159.64 −20
−20 90.36

]
. (6.54)

The relative permittivity of the dielectric material is set to 240 and the relative
permittivity of the background material is set to 20. The maximum volume fraction
is set to 69%, a value chosen from theoretical bounds.

The optimization results are shown in Fig.6.11. The obtained effective permittiv-
ity is

ϵeff =

[
159.63 −20
−20 90.36

]
. (6.55)

The results show the optimization successfully obtained an optimal configuration
that provides the desired permittivity for an anisotropic material that has nonzero
off-diagonal terms.

Figure 6.12 shows the theoretical bounds for the effective permittivity. Here, the
obtained effective permittivities in the principal direction are considered, namely,

ϵeff =

[
164.99 0.00
0.00 85.00

]
. (6.56)

The effective permittivity of the optimized configuration is shown as the black
dot for comparison with the theoretical bound curve. The dot-dashed lines plot the

Figure 6.11: The optimized configuration of the anisotropic material design problem
with nonzero off-diagonal terms for volume fraction Vmax = 0.69 of ϵ1 = 240 (black),
and ϵ0 = 20 (white). The targets are ϵtar,11 = 159.64, ϵtar,22 = 90.36 and ϵtar,12 =
ϵtar,21 = −20.00 and the achieved properties are ϵeff,11 = 159.63, ϵeff,22 = 90.36 and
ϵeff,12 = ϵeff,21 = −20.00 .
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Figure 6.12: Theoretical bounds for anisotropic material designs with properties ϵ1 =
240 and ϵ0 = 20. The solid and dashed lines show the theoretical bounds for isotropic
and anisotropic material, respectively. The dot-dashed line plots the upper limit of
the permittivity of the anisotropic material versus the volume fraction when ϵ22 =
85. The effective permittivity of the optimized configuration, ϵeff,11 = 164.99 and
ϵeff,22 = 85.00, in the principal direction is shown as the black dot for comparison
with the theoretical bound curve.

upper and lower limit of the permittivity of the anisotropic material versus the volume
fraction when ϵ22 is 85.

6.5.5 Two-dimensional problems: material with loss target-
ing extreme values

Finally, this design example considers materials with loss. To consider the design of
a lossy material, design problems where target values are known from a theoretical
point of view are considered. In these examples, the relative permittivity of the
dielectric material is set to 2 + 1i and the relative permittivity of the background
material is set to 1. The maximum volume fraction is set to 50%. Figure 6.13 shows
the upper and lower bounds for the effective permittivity of composite materials
composed of dielectric and background materials. The theoretical bounds for an
anisotropic material, an anisotropic material with a volume fraction of 50%, and an
isotropic material with a volume fraction of 50% are respectively shown by the solid
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Figure 6.13: Theoretical bounds for lossy materials with properties ϵ1 = 2 + 1i and
ϵ0 = 1. The solid line shows the theoretical bounds for two constituent materials,
and the dashed-dot line and dashed line show the theoretical bounds for anisotropic
and isotropic material with a volume fraction of 50%, respectively. The black dots
indicate the target values used in the optimization in Section 6.5.5.

line, the dot-dashed line, and the dashed line.
Based on these theoretical bounds, three target values were used to validate the

present method. As shown in Fig.6.13, the target values for the three examples were
as follows:

For Example1, the anisotropic material design problem, ϵtar,11 = 1.5 + 0.5i. For
Example2, the isotropic material design problem with maximum loss, ϵtar,11 = ϵtar,22 =
1.4483 + 0.3793i. And, for Example3, the isotropic material design problem with
minimum loss, ϵtar,11 = ϵtar,22 = 1.4615 + 0.3077i.

Figure 6.14, 6.15 and 6.16 show the respective optimization results for each ex-
ample. The obtained effective permittivity in Example1 is

ϵeff =

[
1.500 + 0.500i 0.0

0.0 1.400 + 0.200i

]
. (6.57)

Although only ϵ11 was considered as the target value in the optimization, the obtained
value of ϵ22 is in good agreement with the theoretical value of ϵ22, that is, ϵ22 =
1.4 + 0.2i.

The obtained effective permittivity for Example2 is

ϵeff =

[
1.446 + 0.377i 0.0

0.0 1.446 + 0.377i

]
, (6.58)
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Figure 6.14: The optimized configuration of a lossy material design problem: target1,
for volume fraction Vmax = 0.5 of ϵ1 = 2+1i (black - lossy material) and ϵ0 = 1 (white).
The target is ϵtar,11 = 1.5+0.5i and the obtained properties are ϵeff,11 = 1.500+0.500i,
ϵeff,22 = 1.400 + 0.200i, and ϵeff,12 = ϵeff,21 = 0.0.

Figure 6.15: The optimized configuration of a maximum loss material design problem:
target2, for volume fraction Vmax = 0.5 of ϵ1 = 2 + 1i (black - lossy material) and
ϵ0 = 1 (white). The target is ϵtar,11 = ϵtar,22 = 1.448 + 0.379i and the obtained
properties are ϵeff,11 = ϵeff,22 = 1.446 + 0.377i and ϵeff,12 = ϵeff,21 = 0.0.

Figure 6.16: The optimized configuration of a minimum loss material design problem:
target3, for volume fraction Vmax = 0.5 of ϵ1 = 2 + 1i (black - lossy material) and
ϵ0 = 1 (white). The target is ϵtar,11 = ϵtar,22 = 1.462 + 0.308i and the obtained
properties are ϵeff,11 = ϵeff,22 = 1.459 + 0.308i and ϵeff,12 = ϵeff,21 = 0.0.
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and the obtained effective permittivity for Example3 is

ϵeff =

[
1.459 + 0.308i 0.0

0.0 1.459 + 0.308i

]
. (6.59)

These results show that the optimization can successfully find an optimal configura-
tion that has a desired permittivity even for the design of a lossy material.

Observing the optimized structures for maximum damping (Example2) and min-
imum damping (Example3) it is worth to mention that the results match intuition.
For the lossy design, the lossy constituent provides the matrix and the non-lossy is
an isolated inclusion – and vise versa.

6.5.6 Two-dimensional problems: anisotropic material de-
sign with loss: effect of initial configurations

Here, the design of anisotropic materials with loss is considered. The relative permit-
tivity of the dielectric materials is set to 140− 0.196i and the relative permittivity of
the background material is set to 20 − 0.012i. Three different initial configurations
are used in this design problem. The target values are set to ϵtar,11 = 60− 0.06i and
ϵtar,22 = 70− 0.08i.

Figures 6.17, 6.18 and 6.19 show the optimization results based on different ini-
tial configurations. Figure 6.17(a) shows the rod-shaped initial configuration and
Fig.6.17(b) shows its optimized configuration. The volume fraction of the optimized
configuration is 60.13%. The obtained effective permittivity is

ϵeff =

[
59.80− 0.060i 0.0

0.0 69.64− 0.080i

]
. (6.60)

Figure 6.18(a) shows the cross-shaped initial configuration and Fig.6.18(b) shows
its optimized configuration. The volume fraction of the optimized configuration is
61.50%. The obtained effective permittivity is

ϵeff =

[
59.97− 0.060i 0.0

0.0 70.00− 0.080i

]
. (6.61)

Fig.6.19(a) shows the initial configuration in which the density gradually changes over
the design domain, from a maximum value at the center (ρ = 1) to zero density at
the boundaries (ρ = 0). Fig.6.19(b) show the optimized configuration based on this
initial configuration. The volume fraction of the optimized configuration is 61.56%.
The obtained effective permittivity is

ϵeff =

[
60.00− 0.060i 0.0

0.0 69.82− 0.080i

]
. (6.62)

The different optimized structures obtained from the three different initial configu-
rations indicate that this problem has several local optima. Although the obtained
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(a) (b)

Figure 6.17: (a) The rod-shaped initial configuration, and (b) the optimized con-
figuration of an anisotropic lossy material design problem, for ϵ1 = 140 − 0.196i
(black) and ϵ0 = 20 − 0.012i (white). The target is ϵtar,11 = 60.00 − 0.060i and
ϵtar,22 = 70.00 − 0.080i, and the obtained properties are ϵeff,11 = 59.80 − 0.060i,
ϵeff,22 = 69.64− 0.080i and ϵeff,12 = ϵeff,21 = 0.0.

(a) (b)

Figure 6.18: (a) The cross-shaped initial configuration, and (b) the optimized con-
figuration of an anisotropic lossy material design problem for ϵ1 = 140 − 0.196i
(black) and ϵ0 = 20 − 0.012i (white). The target is ϵtar,11 = 60.00 − 0.060i and
ϵtar,22 = 70.00 − 0.080i, and the obtained properties are ϵeff,11 = 59.97 − 0.060i,
ϵeff,22 = 70.00− 0.080i and ϵeff,12 = ϵeff,21 = 0.0.

(a) (b)

Figure 6.19: (a) The initial configuration in which the density gradually changes
over the design domain, and (b) the optimized configuration of an anisotropic lossy
material design problem, for ϵ1 = 140− 0.196i (black) and ϵ0 = 20− 0.012i (white).
The target is ϵeff,11 = 60.00 − 0.060i and ϵeff,22 = 70.00 − 0.080i, and the obtained
properties are ϵeff,11 = 60.00− 0.060i, ϵeff,22 = 69.82− 0.080i and ϵeff,12 = ϵeff,21 = 0.0.
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Figure 6.20: Theoretical bounds of anisotropic lossy material with properties ϵ1 =
140 − 0.196i and ϵ0 = 20 − 0.012i. The solid line shows the theoretical bounds
for two constituent materials, and the dashed-dot line shows the theoretical bounds
for an anisotropic material with a volume fraction of 61.5%. Two black dots show
the effective permittivity of the optimized configuration when using the cross-shaped
initial configuration.

optimal values differ slightly from the target value, clear optimized configurations
that achieve the prescribed permittivity value are obtained.
Figure 6.20 shows the upper and lower bounds of the effective permittivity of com-

posite materials composed of the two different lossy dielectric materials. The solid
line shows the theoretical bounds for two constituent materials, and the dashed-dot
line shows the theoretical bounds for the anisotropic material with loss that has a
volume fraction of 61.5%. The two black dots represent the effective permittivity
values of the optimized configuration based on the cross-shaped initial configuration.
Here, only the effective permittivity values obtained in the optimization using the
cross-shaped initial configuration are evaluated, but the evaluations are very similar
to those for the other two cases.

6.5.7 Three-dimensional problems: isotropic material design

Here, the design of an isotropic material is considered for the first three-dimensional
problem. The objective of the optimization is to maximize the effective permittivity,
F = −(ϵeff,11 + ϵeff,22 + ϵeff,33), under a volume fraction setting of 75%. The optimized
configuration is shown in Fig.6.21(a) and the effective permittivities of the optimized
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configuration are

ϵeff =

 66.5 0.00 0.00
0.00 66.5 0.00
0.00 0.00 66.5

 . (6.63)

Figure 6.22 shows the theoretical bounds for the effective permittivity of compos-
ite materials composed of the above-mentioned dielectric and background materials,
where the horizontal axis shows the volume fraction of the dielectric material and
the vertical axis shows the effective permittivity of the composite material. The the-
oretical bounds for anisotropic and isotropic materials are shown by the solid and
dashed lines, respectively. The effective permittivity of the optimized configuration
is represented by the black square in Fig.6.22 for comparison with the theoretical
bound curve, and demonstrates that the obtained result is in good agreement with
theoretical bounds.

6.5.8 Three-dimensional problems: anisotropic material de-
sign

Here, the design of an anisotropic material is considered for the second three-dimensional
problem. The objective of the optimization is to maximize the effective permittiv-
ity, F = ϵeff,11, under the constraint G1 = (1− 3ϵeff,22/2ϵeff,11)

2 − ϵ2 < 0, G2 =
(1− 3ϵeff,11/2ϵeff,22)

2 − ϵ2 < 0, which constrain the ratio of the three permittivities
in the principal directions so that ϵeff,22/ϵeff,11 = ϵeff,33/ϵeff,11 = 2/3, with a volume
fraction of 75%. The relative permittivity of the dielectric material is set to 100
and the relative permittivity of the background material is set to 1. The optimized
configuration is shown in Fig.6.21(b) and the effective permittivities of the optimized
configuration are

ϵeff =

 75.15 0.00 0.00
0.00 50.15 0.00
0.00 0.00 50.15

 . (6.64)

Figure 6.22 shows the theoretical bounds for the effective permittivity. The effective
permittivity of the optimized configuration is represented by the black dot in Fig.6.22
for comparison with the theoretical bound curve. The highly sloped dot-dashed line
plots the upper limit of the permittivity of the anisotropic material versus the volume
fraction when ϵ22 and ϵ33 are set to 50.15. Similarly, the dot-dashed line that is
partially obscured by the solid line in the lower right corner of the graph shows
the lower limit of the permittivity of the anisotropic material versus the volume
fraction when ϵ22 and ϵ33 are set to 50.15. The black dot represents the effective
permittivity value of the dielectric material obtained by the optimization, which is in
good agreement with theoretical bounds.
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(a) (b)

Figure 6.21: Optimized configuration of the three-dimensional permeability maxi-
mization problem: (a) isotropic case, (b) anisotropic case.
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Figure 6.22: Theoretical bounds for isotropic and anisotropic material design prob-
lems with properties ϵ1 = 100 and ϵ0 = 1. The solid and dashed lines show the the-
oretical bounds for isotropic and anisotropic material, respectively. The dot-dashed
line plots the upper and lower limit of the permittivity of the anisotropic material
versus the volume fraction.

111



6.6 Conclusions

In this chapter, a gradient-based topology optimization method that can be applied
to the design of microstructures based on a periodic array of dielectric materials
to achieve desired electric permittivities were presented. A simple homogenization
method was used to obtain the effective permittivity and the validity of the proposed
method was demonstrated through several design problems, namely, those dealing
with an isotropic material, an anisotropic material, an anisotropic material with a
nonzero off-diagonal term, and an anisotropic material with loss. Clear optimized
configurations with prescribed electric permittivities were obtained for all the pre-
sented cases. Moreover, the theoretical bounds of the two- and three-dimensional
anisotropic effective property in the principal direction when the effective property in
the other principal direction was set to a prescribed value were derived, to evaluate
the effective permittivity values obtained by the optimization. Our results showed
that the optimized values are in good agreement with theoretical bounds, confirming
that our method yields appropriate and useful solutions. The Vigdergauz-like opti-
mized structures obtained in this paper provide a directly manufacturable alternative
to the multi-length scale microstructures from the literature.
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Chapter 7

Design of electromagnetic devices
using ferrite material

7.1 Introduction

This chapter discusses the macrostructure design of electromagnetic devices, electro-
magnetic cloaking, and metallic waveguide devices using a ferrite material. A level
set-based topology optimization method is used to design the ferrite material config-
urations.

Electromagnetic cloaks are devices that render an object, illuminated by electro-
magnetic waves of certain wavelengths, undetectable by an observer. Andkjær et
al. [210] presented a gradient-based topology optimization method for the design of
optical cloaks made of dielectric materials. In this work, a level set-based topology
optimization method is applied for the design of an electromagnetic cloak using a
ferrite material. Ferrite materials exhibit a frequency-dependent degree of permeabil-
ity, due to magnetic resonance phenomenon that can be influenced by changing the
magnitude of an externally applied DC magnetic field. Thus, such ferrite cloaks have
the potential to provide novel functions, such as on-off operation in response to on-off
application of an external magnetic field, or a tunable frequency range under which
the cloak operates.

A waveguide is an electromagnetic device which guides the transmission of electro-
magnetic waves. They are widely used in electromagnetic devices such as antennas,
cell phone base stations, and the like. Rectangular waveguides with periodic ferrite
inserts have been recently proposed that demonstrate left-handed behavior such as
backward wave propagation [157]. Waveguides with ferrite inclusions are expected
to have advantages in that they can function under a tunable range of operating fre-
quencies and be made compact, because electromagnetic waves can propagate at a
frequency lower than the cut-off frequency that typically limits the minimum size of
a waveguide.

For the structural optimization method applied to the design of a metallic waveg-
uide, Hirayama et al. [58] proposed a density-based topology optimization method
for the design of dielectric materials in a metallic waveguide. Nishiwawki et al. [59]
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proposed a density-based method for the cross-section design of dielectric waveguides.
Subsequently, Hirayama et al. [94] proposed a level set-based structural optimization
method for the design of dielectric inclusions and Yamasaki et al. [93] proposed a
level set-based structural optimization method for the design of metallic inclusions
of a waveguide. For the structural optimization method applied to the design of a
metallic waveguide, Hirayama et al. [58] proposed a density-based topology optimiza-
tion method for the design of dielectric materials in a metallic waveguide. Nishiwawki
et al. [59] proposed a density-based method for the cross-section design of dielectric
waveguides. Subsequently, Hirayama et al. [94] proposed a level set-based structural
optimization method for the design of dielectric inclusions and Yamasaki et al. [93]
proposed a level set-based structural optimization method for the design of metallic
inclusions of a waveguide.

In this chapter, a level set-based topology optimization [90] is applied to find the
configuration of ferrite materials that minimizes the norm of the difference between
the obtained electric field and a reference electric field, for the design of an electro-
magnetic cloaking device, and that maximizes the transmission power of electromag-
netic waves at prescribed frequencies for the design of a metallic waveguide. The
Landau-Lifshitz model is used to model the permeability of the ferrite material [211].
Numerical examples for a cylindrical cloak, a carpet cloak, a waveguide filter, and
a T-junction design problem are provided to examine the validity and utility of the
presented method.

7.2 Formulation

7.2.1 Relative permeability of a ferrite material

Ferrite materials exhibit a frequency-dependent permeability due to a magnetic reso-
nance phenomenon, and the permeability can be altered by changing the magnitude
of an externally applied DC magnetic field. The relative magnetic permeability of a
ferrite material can be described using the Landau-Lifshitz model [211], as follows.

µ̄f =

 µ κj 0
−κj µ 0
0 0 1


where

µ =
ω2 − ω2

0

ω2 − ω2
h

κ =
ωωm

ω2 − ω2
h
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In the above equations, ω is the angular frequency and ω0 is the precession frequency.
ω0, ωh and ωm are defined as follows.

ω0 =
√
ωh(ωh + ωm)

ωh = γµ0

(
H0 + j

∆H

2

)
ωm = γµ0Ms

where γ and µ0 are the gyromagnetic ratio of ferrite and the magnetic permeability of
a vacuum, respectively. H0, ∆H and Ms are the magnitude of an externally applied
DC magnetic field, the resonance line width of the ferrite material, and the degree of
magnetization saturation, respectively.

7.2.2 Governing equation for wave propagation problem us-
ing ferrite

Using permeability tensor discussed above, the governing equation for wave propaga-
tion problem can be described by following wave propagation equation that is derived
from Maxwell’s equations.

∇× (µ̄−1
f ∇×E)− k20ϵfE = 0 (7.1)

where ϵf is the relative permittivity of ferrite material, E is electric field. k0 is the
wave number in a vacuum such that k0 = ω

√
ϵ0µ0, where ϵ0 and µ0 are the relative

permittivity and permeability in a vacuum.
Here two-dimensional wave propagation problems are considered, where trans-

verse electric waves propagate in x-y direction and where the electric field vector is
polarized orthogonal to the direction of wave propagation. The governing equation
can be derived as the following two-dimensional Helmholtz equation from the wave
propagation equation assuming that the wave is time harmonic and ∂

∂z
= 0,

∇ ·
(
µ−1
f ∇Ez

)
+ k20ϵfEz = 0, (7.2)

where µf is the relative permeability of ferrite material for two dimensional problem,
namely,

µf =

[
µ κj

−κj µ

]
. (7.3)

Cloak design problem

For cloak design problem, the outer boundaries Γout are set to a first order absorbing
boundary condition [185], the approximation of the Sommerfeld radiation condition
[184], to truncate the infinite domain. The scattering object located inside the design
domain is modeled using a perfect electrically conducting (PEC) boundary condition
ΓPEC.
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Based on the discussion above, the governing equation for cloak design problem
is provided as follows.

∇ ·
(
µ−1
r ∇Ez

)
+ k20ϵrEz = 0, (7.4)

where µr is the relative permeability that µr = µf where the ferrite material is
distributed, and µr = µdδij in background material. δij is the Kronecker’s delta.

The boundary conditions are described as follows:

n ·
(
µ−1
r ∇Ez

)
+ jk0

√
µ−1
r Ez = (1− k · n)j√µrk0E

i on Γout (7.5)

Ez = 0 on ΓPEC, (7.6)

where n is the normal vector and Ei is an incident wave.
The weak formulation of Eqs.(7.4)-(7.6) is then derived as follows.

a1(Ez, Ẽz) + a2(Ez, Ẽz) = l(Ẽz) for Ez ∈ U, Ẽz ∈ U (7.7)

where

a1(Ez, Ẽz) =

∫
D

∇Ẽz ·
(
µ−1
r ∇Ez

)
dΩ− k20

∫
D

ẼzEzdΩ (7.8)

a2(Ez, Ẽz) = jk0

∫
Γout

√
ϵrẼzEzdΓ (7.9)

l(Ẽz) = 2jk0

∫
Γout

√
ϵrE

i
zẼzdΓ (7.10)

U = {Ẽz ∈ H1(Ω)}, (7.11)

where Ẽz is a test function and H1 is Sobolev space.

Waveguide design problem

For waveguide design problem, incident waves enter the domain from the boundary
Γ1 and output waves are observed at the boundaries Γi. The boundaries ΓPEC are
set as perfect electric conductors (PEC) to describe the metallic waveguide walls.
Similarly, the governing equation for metallic waveguide design problem is provided
as follows.

∇ ·
(
µ−1
r ∇Ez

)
+ k20ϵrEz = 0, (7.12)

The boundary conditions are described as follows:

n ·
(
µ−1
r ∇Ez

)
+ jk0

√
µ−1
r Ez = 2j

√
µrk0E

i on Γ1 (7.13)

n ·
(
µ−1
r ∇Ez

)
+ jk0

√
µ−1
r Ez = 0 on Γ2 · · ·Γn (7.14)

Ez = 0 on ΓPEC, (7.15)

The weak formulation of Eqs.(7.12)-(7.15) is then derived as follows.

a1(Ez, Ẽz) + a2(Ez, Ẽz) = l(Ẽz) for Ez ∈ U, Ẽz ∈ U (7.16)
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where

a1(Ez, Ẽz) =

∫
D

∇Ẽz ·
(
µ−1
r ∇Ez

)
dΩ− k20

∫
D

ẼzEzdΩ (7.17)

a2(Ez, Ẽz) = jk0

∫
n
∪

i=1
Γi

√
ϵrẼzEzdΓ (7.18)

l(Ẽz) = 2jk0

∫
Γ1

√
ϵrE

i
zẼzdΓ (7.19)

U = {Ẽz ∈ H1(Ω)}, (7.20)

7.2.3 Design variables

The distribution of ferrite material inside the fixed design domain is expressed using
the level set function. In the presented method, the relative magnetic permeability µr

in the fixed design domain is defined using the reciprocal of the relative permeability
and the relative electric permittivity ϵr is defined using linear form of the relative
permittivity as follows.

µ−1
r =

(
µ−1
f − µ̂−1

d

)
χϕ (ϕ) + µ̂−1

d , (7.21)

ϵr = (ϵf − ϵd)χϕ (ϕ) + ϵd, (7.22)

where

µ−1
f =

1

µ2 − κ2

[
µ −κj
κj µ

]
, µ̂−1

d = µ−1
d

[
1 0
0 1

]
, (7.23)

where µd is the relative permeability of the dielectric material, ϵf and ϵd are the
relative permittivity of ferrite and dielectric. H (ϕ) is the Heaviside function.

7.2.4 Optimization problem

Electromagnetic cloaking design problem

Incident waves enter the scattering domain from the left, and the outer boundary of
this domain is set to function under an absorbing boundary condition. The inner
boundary is set as a perfect electric conductor (PEC). The optimization objective is
to minimize the norm of the scattering field and is described as follows.

inf
ϕ

F =

∫
Ωout

(
Ez − Eref

z

)∗ (
Ez − Eref

z

)
dΩ, (7.24)

subject to G =
1

VD

∫
D

χϕdΩ− Vmax 6 0 (7.25)

Helmholtz equation (7.26)

Boundary conditions (7.27)

where Eref is the reference field that is obtained when there is no scattering object
located inside the domain, and ∗ denotes a complex conjugate. The optimization
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algorithm uses the adjoint variable method for the sensitivity analysis and the finite
element method for solving the electromagnetic propagation and adjoint problems.
The level set function is updated by solving a reaction diffusion equation.

Waveguide filter design problem

Here, the purpose of the optimization problem is set as to design a waveguide filter.
The objective function is formulated to maximize the transmission power at frequency
ωi as follows:

inf
ϕ

F = −
∑
i

αi|S21|2ω=ωi
, (7.28)

subject to G =
1

VD

∫
D

χϕdΩ− Vmax 6 0 (7.29)

Helmholtz equation (7.30)

Boundary conditions (7.31)

where αi is a weighting coefficient, and S21 is a transmission coefficient of scattering
parameters that represents the electromagnetic power ratio between the transmission
power through Γ2 and the input power at Γ1. The transmission coefficient for Γi can
be generally defined as the following equation.

Sj1 =

∫
Γj
EzE

i
z
∗
dΓ∫

Γj
Ei

zE
i
z
∗dΓ

(7.32)

T-junction design problem

For T-junction design problem, The optimization purpose is set to equally maximize
the transmission power at all the output ports. The objective function is formulated
to maximize the reciprocal value of the sum of the reciprocal value of all the S-
parameters, so as to maximize the least transmission power at the output port. The
similar formulation is used in eigen-frequency design problem [212], as follows:

inf
ϕ

F (ϕ) = −

(
n∑

j=2

1

|Sj1|2

)−1

(7.33)

subject to G =
1

VD

∫
D

χϕdΩ− Vmax 6 0 (7.34)

Helmholtz equation (7.35)

Boundary conditions (7.36)

7.2.5 Sensitivity analysis

The sensitivity analysis is now considered. The Lagrangian of the optimization prob-
lem is formulated as follows:

F̂ = F −
(
a1(Ez, Ẽz) + a2(Ez, Ẽz)− l(Ẽz)

)
+ λG, (7.37)
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where Ẽz denotes the adjoint variables. The sensitivity of the Lagrangian is obtained
using the AVM, as follows.⟨

dF̂

dχϕ

, χ̃ϕ

⟩
=

(⟨
∂F

∂Ez

, Ẽz

⟩
−
⟨
∂a1
∂Ez

, Ẽz

⟩
−
⟨
∂a2
∂Ez

, Ẽz

⟩)⟨
∂Ez

∂χϕ

, χ̃ϕ

⟩
−
⟨
∂a1
∂χϕ

, χ̃ϕ

⟩
+ λ

⟨
∂G

∂χϕ

, χ̃ϕ

⟩
, (7.38)

where the adjoint variable Ẽz is obtained by solving the following equation.

a1(Ẽz, δEz) + a2(Ẽz, δEz) =

⟨
∂F

∂Ez

, Ẽz

⟩
for Ẽz ∈ U, ∀δEz ∈ U, (7.39)

where δEz is the variation of Ez. The sensitivities are finally obtained using the
following equation.⟨

dF̂

dχϕ

, χ̃ϕ

⟩
= −

⟨
∂a1(Ez, Ẽz)

∂χϕ

, χ̃ϕ

⟩
+ λ

⟨
∂G

∂χϕ

, χ̃ϕ

⟩
(7.40)

Note that the adjoint equation, Eq.(7.39), can be solved efficiently as described below.
Considering the the fact that a1(µr, Ez, Ẽz) = a1(µ

T
r , Ẽz, Ez), the solutions of the

adjoint equation, Eq.(7.39), are obtained by solving the state problem using the
permeability tensor µT

r instead of µr used in the state problem, and changing the
location of the incident field.

7.3 Numerical examples

Here the presented method is applied to a cylindrical cloak, a carpet cloak [213–215],
waveguide filter and T-junction design problems. The conceptual ferrite material
used in the following numerical examples has the following parameter values: γ=
1.759T−1s−1, ∆H= 1mT, and µ0M0 = 173mT, assuming that the ferrite material
resembles a Yttrium-iron garnet (YIG). The relative permittivity of the ferrite is
set as ϵf = 10. A configuration filled with ferrite material is used as the initial
configuration for both cases.

7.3.1 Cylindrical cloaking design

The design domain and boundary conditions are shown in Fig.7.1(a). The radii of the
inner, middle, and outer domains are set to 0.2, 1.0, and 2.5m, respectively, and the
operating frequency is set as 0.2GHz. The magnitude of externally applied magnetic
field is set µ0H0= 300mT, the relative permittivity in air is set to 1. The magnitude
of the regularization parameter τ is set to 1.0× 10−4.

Fig. 7.1(b) shows the optimized configuration of ferrite material. Fig. 7.2(a)
shows the electric field without the cloak and Fig. 7.2(b) shows the electric field
of the optimized cloak during operation. As Fig. 7.2(a) shows, the electromagnetic
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Fig. 1. Cylindrical cloak model

(a) (b)

Figure 7.1: (a) Cylindrical cloak model and (b) optimized configuration of ferrite
material.

Fig. 3. Total electric field: (a) no cloak, namely no 

external magnetic field; (b) optimized cloak

F=1.88 F=0.04
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-1.5

0

(a) (b)

Figure 7.2: Total electric field of carpet cloak design problem: (a) no cloak, namely
no external magnetic field; (b) optimized cloak.

waves are scattered by the cylindrical object without the cloak, but scattering is much
reduced with the cloak operating, as shown in Fig. 7.2(b). The values of the objective
function without and with the cloak are 1.18 and 0.04, respectively. Fig.7.3 shows
the norm of the difference between electric field and reference electric field with no
cloak, namely no external magnetic field, and optimized cloak. These results indicate
that the optimization successfully found an appropriate ferrite configuration for a
cylindrical electromagnetic cloak.

7.3.2 Carpet cloaking design

The design domain and boundary conditions of the carpet cloaking model are shown
in Fig.7.4(a). Here, the inner semi-ellipse located at the bottom center represents
the scattering object that is to be hidden by the cloak. The major axis radius of the
inner semi-ellipse is set 0.3m and the minor axis radius is set to 0.2m. The major axis
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Fig. 3. Total electric field: (a) no cloak, namely no 

external magnetic field; (b) optimized cloak

F=1.88 F=0.04

(a) (b)

0.1

0

0.2

0.3

Figure 7.3: Norm of the difference between electric field and reference electric field
of carpet cloak design problem: (a) no cloak, namely no external magnetic field; (b)
optimized cloak.

radius of the outer semi-ellipse of the cloaking domain is set to 1.0m and the minor
axis radius is set to 0.5m. The radius of the outer hemispheres is set to 5.0m,and
the operating frequency is set as 0.5GHz. Here, incident waves enter the scattering
domain from the left top, and the electromagnetic waves are reflected at the bottom
boundary. The objective of the optimization is to make the electromagnetic waves
reflect as if no scattering object is present at the bottom of the design domain. Here
the objective function is set to minimize the norm of the difference between the electric
field and the reference electric field that is obtained when there is no scattering object
located inside the domain. Fig.7.5 shows the reference electric field. The same values
for the optimization parameters are used as the one used in previous example.

Fig. 7.4(b) shows the optimized configuration of ferrite material. Fig. 7.6(a)
shows the electric field when the cloak is not operating, namely, in the absence of an
externally applied magnetic field. Fig 7.6(b) shows the electric field of the optimized
cloak during operation. As Fig.7.6(a) shows, the electromagnetic waves are scattered
by the semi-elliptical object without the cloak and they propagate in two directions.
However, the scattering is much reduced when the cloak is operating, as shown in
Fig.7.6(b), where the waves propagate in one direction only. The values of the objec-
tive function without and with cloak are 4.46 and 0.24, respectively. Fig.7.7 shows
the norm of the difference between electric field and reference electric field with no
cloak, namely no external magnetic field, and optimized cloak. These results demon-
strate that the optimization successfully found an appropriate ferrite configuration
for a carpet cloak.

7.3.3 Waveguide filter design

Fig.7.8 shows the design domain and boundary conditions for the waveguide design
example. The height and width of the waveguide are set to 10 mm and 30 mm, respec-
tively. Incident waves enter the domain from the left boundary, and the upper and
lower boundaries are set as having the condition of a perfect electric conductor (PEC).
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Fig. 1. Cylindrical cloak model
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Figure 7.4: (a) Carpet cloak model and (b) optimized configuration of ferrite material.

Fig. 3. Total electric field: (a) no cloak, namely no external 

magnetic field; (b) optimized cloak
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Figure 7.5: Reference electric field for carpet cloak design problem.
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Figure 7.6: Total electric field of carpet cloak design problem: (a) no cloak, namely
no external magnetic field; (b) optimized cloak.

122



Fig. 3. Total electric field: (a) no cloak, namely no external 

magnetic field; (b) optimized cloak

(a) (b)

1.25

0

F=4.46 F=0.24

Figure 7.7: Norm of the difference between electric field and reference electric field
of carpet cloak design problem: (a) no cloak, namely no external magnetic field; (b)
optimized cloak.

The input and output port are located in the left and right side of the waveguide to
numerically support the wave propagation, where the relative permittivity constant is
set to ϵside = 25. The entire domain is discretized using 14, 400 rectangular elements.
The relative permittivity constant of the dielectric material ϵr is set to 5. The target
frequency of the optimization is set to 2.0GHz. The magnitude of externally applied
magnetic field is set µ0H0= 30mT. The magnitude of the regularization parameter τ
is set to 1.0× 10−3.

Fig.7.9 shows the optimized configuration in the design domain. The asymmetry
in the optimized configuration is caused by the anisotropy of the ferrite permeability.
Fig.7.10 shows the frequency characteristics of the scattering parameters S11 and S21,
as the transmission coefficients S21 of initial and optimized configuration at 2.0GHz
are -24.7dB and -3.3dB, respectively. Fig.7.11 shows the frequency characteristics of
the scattering parameters S21 for the optimized configuration when different magni-
tudes of an external magnetic field are applied, with µ0H0= 30mT, 60mT, and 90mT,
respectively. These illustrate the tunability of the operating frequency by the appli-
cation of externally magnetic fields. Fig.7.12(a)-(d) show the electric field at 2.0GHz
at different phases of incident waves, namely, (a) 0 ° , (b) 60 ° , (c) 120 ° , and (d)
180 ° , that show forward wave propagations in the waveguide. As the optimization

Design Domain

1
0
m

m

30mm

Figure 7.8: Design domain and boundary conditions for waveguide filter design prob-
lem.
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results show, the optimized configuration consists of two bars located in the upper
and lower areas of the design domain. Electromagnetic waves propagate in the dielec-
tric material between the upper and lower ferrite bars that guide the transmission of
electromagnetic waves.

Dielectric

Ferrite

Figure 7.9: Obtained optimized configuration of waveguide filter design problem,
maximizing S21.
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Figure 7.10: Frequency characteristic of S11 and S21, obtained using the initial and
optimized configurations.

7.3.4 T-junction design

Fig.7.13 shows the design domain and boundary conditions for the T-junction design
problem. Incident waves enter the domain from the upper boundary. The optimiza-
tion purpose is set to equally maximize the transmission power S21 and S31. The
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Figure 7.11: Frequency characteristic of S21, obtained using the optimized configura-
tion, with applied magnetic field µ0H0 = 30, 60, 90mT.

target frequency of the optimization is set to 2.0 GHz. The magnitude of exter-
nally applied magnetic field is set µ0H0= 30mT. The magnitude of the regularization
parameter τ is set to 1.0× 10−3.

Fig.7.14 shows the optimized configuration in the design domain. Fig.7.15 shows
the frequency characteristics of the scattering parameters S11，S21 and S31, as the
transmission coefficients S21 of initial and optimized configurations at 2.0GHz are
−43.29dB and −7.48dB respectively, and S31 are −57.48dB and −7.49dB, respec-
tively. Fig.7.16(a)-(d) show the electric field at 2.0GHz at different phases of incident
waves, namely, (a) 0 ° , (b) 60 ° , (c) 120 ° , and (d) 180 ° .

7.4 Conclusions

In this chapter, a level set-based topology optimization [90] is applied for the design
of electromagnetic devices, including electromagnetic cloaks and metallic waveguides.
The governing equation of wave propagation problems using a ferrite material was
derived and the optimization problems were formulated to minimize the norm of
the difference between the obtained electric field and a reference electric field, for
the design of an electromagnetic cloaking device, and to maximizes the transmission
power of electromagnetic waves at prescribed frequencies for the design of a metallic
waveguide. The results in numerical examples of a cylindrical cloaking device, a
carpet cloaking device, a waveguide filter, and a T-junction design problem showed
that the optimization method successfully found appropriate ferrite configurations
that provide the desired performance.
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(i) (iii)

(ii) (iv)

Figure 7.12: Electric field of optimized configuration at 2.0 GHz for various phases
of incident waves: (a) 0 ° ; (b) 60 ° ; (c) 120 ° ; (d) 180 ° .
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Figure 7.13: The model for T-junction design problem.
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Figure 7.14: Optimized configuration of T-junction design problem.
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Figure 7.15: Frequency response of S-parameter for the T-junction design problem.

(i) (iii)
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Figure 7.16: Electric field of obtained configuration with phase (i)0, (ii)60, (iii)120
and (iv)180 degree.
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Chapter 8

Thesis Conclusions

This thesis focused on topology optimization for the microstructure design of dielectric-
based electromagnetic materials that were artificially designed to exhibit desired elec-
tromagnetic properties, and for the macrostructure design of electromagnetic devices
using a ferrite material. In addition, topology optimization methods that integrate
the consideration of various design requirements were also presented. The following
is a summary of my achievements.

In Chapter 3, a new formulation that reduces the number of design variables
needed in a multiple phase projection method (MPPM) was discussed. This new
MPPM formulation requires only a single design variable at each node, rather than the
usual two, which advantageously reduces computation time. The proposed method
was applied to two minimum mean compliance problems and a compliant mechanism
design problem, and appropriate optimized configurations were effectively obtained.
Furthermore, the proposed method can successfully control the complexity of opti-
mized configurations by varying the value of the minimum length scale applied in the
optimization.

In Chapter 4, a level set-based topology optimization using mathematical pro-
gramming was offered. The proposed method updates the level set function using
mathematical programming, the MMA, to facilitate the treatment of the constraint
functionals and applied to minimum mean compliance problems and compliant mech-
anism design problems, using multiple constraint functionals. These include a mean
compliance constraint, so that sufficient stiffness is obtained even when a load is ap-
plied in a direction slightly different from its prescribed direction, a mutual mean
compliance constraints, so that the structure deforms in a designed direction, and a
stress constraint. The optimization results with a mean compliance constraint showed
that physically reasonable configurations were obtained, and the reduced mean com-
pliance values when the load was applied in the horizontal direction indicated that the
optimal configuration has increased stiffness in the horizontal direction. The deformed
shape obtained when a mutual mean compliance constraint was applied showed that
the presented method can successfully impose a displacement constraint for the de-
sign of a compliant mechanism using a mutual mean compliance constraint. A global
stress constraint was applied but because this does not require the satisfaction of the
stress constraint at every point in design domain, the optimal configuration does not

129



strictly satisfy all local stress constraints, even though the global stress constraint is
satisfied. However, the maximum stress was effectively reduced in the obtained op-
timal configuration. Although the optimal configurations contained grayscale areas
to some extent, useful optimal configurations can be qualitatively obtained using the
proposed method.

In Chapter 5, optimization problems for negative permeability dielectric metama-
terials for both two- and three-dimensional problems were formulated to minimize
the effective permeability, and to obtain a prescribed effective permeability at a tar-
get frequency. A level set-based boundary expression was applied to obtain clear
boundaries, and an S-parameter-based approach was applied to compute the effec-
tive permeability of the metamaterials. Based on the formulation of the optimization
problem, an optimization algorithm was constructed. Several numerical examples
for both two- and three-dimensional problems were provided to examine the validity
of the presented method. This method successfully found optimized configurations
that minimize the effective permeability, and also found optimized configurations that
achieve a prescribed degree of effective permeability.

In Chapter 6, a gradient-based topology optimization method was presented and
applied to the design of microstructures based on a periodic array of dielectric materi-
als, to achieve desired electric permittivities. A energy-based homogenization method
was used to obtain the effective permittivity and the validity of the proposed method
was demonstrated through several design problems that dealt with an isotropic ma-
terial, an anisotropic material, an anisotropic material with a non-zero off-diagonal
term, and an anisotropic material with loss. Clear optimized configurations with pre-
scribed electric permittivities were obtained for all the presented cases. Moreover, the
theoretical bounds of the two- and three-dimensional anisotropic effective property in
the principal direction when the effective property in the other principal direction was
set to a prescribed value were derived, to evaluate the effective permittivity values
obtained by the optimization. The results showed that the optimized values are in
good agreement with theoretical bounds, confirming that this method yields appropri-
ate and useful solutions. Moreover, the Vigdergauz-like optimized structures provide
a directly manufacturable alternative to the multi-length scale microstructures de-
scribed in the literature. This scheme should be directly extendible to designs with
more than two constituents, and to metamaterial design.

In Chapter 7, a level set-based topology optimization method was constructed for
the layout design of a ferrite material and applied to the design of a cloaking device
and a waveguide. Optimization problems were formulated to minimize the norm of
the difference between the electric field and a reference field for the cloaking design
problem, and to maximize the transmission power for waveguide design problem.
Numerical results showed that the presented method successfully found optimized
ferrite configurations for the cloaking and waveguide designs.

It is my hope that the research I was able to carry out during my doctoral studies
will be useful to other researchers in the field. I look forward to applying what I have
learned to the development of more fully optimized devices that provide enhanced
performance in a variety of practical applications.
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Appendix

A Derivation of first order absorbing boundary

condition

Here, the derivation of the first order absorbing boundary condition used in Chapter 5
and 7 is discussed. Although the wave propagate to infinity in most wave propagation
problems, the infinite domain must be truncated in the framework of the finite element
method. The boundary condition applied to outer boundaries to truncate the infinite
domain are called as a radiation condition. Sommerfeld radiation condition are the
radiation condition exactly valid at infinity and the first order absorbing boundary
condition is the approximiation of Sommerfeld radiation condition.

Let medium 1 be a domain inside the design domain, and medium 2 be outside the
design domain that is truncated by the absorbing boundary condition. At a source
free interface between two media, the following boundary condition for electric and
magnetic field must be satisfied [216].

n×
(
E(2) −E(1)

)
= 0, (A.1)

n×
(
H(2) −H(1)

)
= 0. (A.2)

where n is the unit vector normal to the interface. E(1) and E(2) are the electric
field, and H(1) and H(2) are the magnetic field in medium 1 and 2, respectively.

From Faraday’s law of Maxwell equations for time-harmonic field, the following
relationship between electric and magnetic fields holds.

H(i) = j/(ωµ(i))
(
∇×E(i)

)
. (A.3)

Substituting Eq.(A.3) into Eq. (A.2),

n×
(
j/(ωµ(2))

(
∇×E(2)

)
− j/(ωµ(1))

(
∇×E(1)

))
= 0. (A.4)

Considering the waves vertical to the interface in medium 2, and describing it as
E(2) = E0e

j(ωt−kn·r). Taking the divergence of both sides,

∇×E(2) = −jkn×E0e
j(ωt−kn·r) = −jkn×E(2) (A.5)

Substituting Eq.(A.5) into Eq.(A.4), and multiplying it by jω,

jn×
(
kµ(2)−1 (

n×E(2)
))

+ n×
(
µ(1)−1 (∇×E(1)

))
= 0. (A.6)
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From Eq.(A.1), n × E(2) = n × E(1). Substituting this relationship into Eq.(A.6),
and let µ(2) = µ(1) = µ since the truncated domain has the same material properties.

jn×
(
kµ−1

(
n×E(1)

))
+ n× µ−1

(
∇×E(1)

)
= 0. (A.7)

Let Ei and Esc be the incident and scattered field. The total electric field E is
simply obtained as E = Ei + Esc. The scattered field Esc is the field that is to be
let propagate to infinity as if there is no interface. Therefore, applying the derived
condition Eq.(A.7) for the scattered field Esc,

jn×
(
kµ−1 (n×Esc)

)
+ n× µ−1 (∇×Esc) = 0. (A.8)

That is,

jn×
(
kµ−1 (n×E)

)
+ n×µ−1 (∇×E) = jn×

(
kµ−1

(
n×Ei

))
+ n×µ−1

(
∇×Ei

)
(A.9)

Let Ei be the plane wave in the k direction, then ∇×Ei = −jkk×Ei . Substituting
this relationship to Eq.(A.9), the first order absorbing boundary is obtained as follows.

n×µ−1 (∇×E)− jk0n×
(√

ϵrµ−1
r (E×n)

)
= −n×

(
Ei × jk0(n− k)

)
(A.10)
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B Derivation of weak formulation

B.1 Two-dimensional case

Here, the weak formulation of the governing equation is derived for the two-dimensional
case. Multiplying Eq.(5.1) by a test function H̃z, and integrating over domain D, we
have, ∫

D

H̃z

[
∇ ·
(
ϵ−1
r ∇Hz

)]
dΩ +

∫
D

H̃z

(
k20Hz

)
dΩ = 0. (B.1)

The first term on the left-hand side of above equation can be transformed as follows,
applying the method of integration by parts.∫

D

H̃z

[
∇ ·
(
ϵ−1
r ∇Hz

)]
dΩ =

∫
D

∇·
(
H̃zϵ

−1
r ∇Hz

)
dΩ−

∫
D

∇H̃z ·
(
ϵ−1
r ∇Hz

)
dΩ. (B.2)

Moreover, the first term on the right-hand side of the above equation can be expressed
by a boundary integral, using Gauss’s theorem, as follows.∫

D

∇ ·
(
H̃zϵ

−1
r ∇Hz

)
dΩ =

∫
Γ

H̃z

[
n ·
(
ϵ−1
r ∇Hz

)]
dΓ. (B.3)

Substituting the above two equations into Eq.(B.1), we obtain,∫
Γ

H̃z

[
n ·
(
ϵ−1
r ∇Hz

)]
dΓ−

∫
D

∇H̃z ·
(
ϵ−1
r ∇Hz

)
dΩ + k20

∫
D

H̃zHzdΩ = 0. (B.4)

Substituting the boundary conditions expressed in Eqs.(B.2)-(B.4) into the boundary
integral of the above equation, we obtain the following weak formulation.∫

D

∇H̃z ·
(
ϵ−1
r ∇Hz

)
dΩ− k20

∫
D

H̃zHzdΩ + jk0

∫
Γ1∪Γ2

H̃zHzdΓ = 2jk0

∫
Γ1

H i
zH̃zdΓ,

(B.5)
where the boundary integral for ΓPEC in Eq.(B.4) assumes a value of 0 due to the
PEC condition, n · (ϵ−1

r ∇Hz) = 0.

B.2 Three-dimensional case

Next, the weak formulation of the governing equation is derived for the three-dimensional
case. Multiplying Eq.(5.10) by a test function Ẽ, and integrating over domain D, we
have, ∫

D

Ẽ · [∇× (∇× E)] dΩ−
∫
D

Ẽ ·
(
k20ϵrE

)
dΩ = 0. (B.6)

Invoking the following vector identity,

Ẽ · [∇× (∇× E)] =
(
∇× Ẽ

)
· (∇× E)−∇ ·

[
Ẽ× (∇× E)

]
, (B.7)
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and using Gauss’s theorem, we obtain,∫
D

∇ ·
[
Ẽ× (∇× E)

]
dΩ =

∫
Γ

n ·
[
Ẽ× (∇× E)

]
dΓ (B.8)

= −
∫
Γ

Ẽ · [n× (∇× E)] dΓ, (B.9)

where the vector identity a · (b× c) = b · (c× a) is applied in the second line of the
above equation. Substituting the above two equations into Eq.(B.6), we obtain,∫

D

(
∇× Ẽ

)
· (∇× E) dΩ+

∫
Γ

Ẽ · [n× (∇× E)] dΓ−
∫
D

Ẽ ·
(
k20ϵrE

)
dΩ = 0. (B.10)

Substituting the boundary conditions described in Eqs.(5.11)-(5.14) into the boundary
integral of the above equation,∫

D

(
∇× Ẽ

)
· (∇× E) dΩ− k20

∫
D

ϵrẼ · EdΩ + jk0

∫
Γ1∪Γ2

Ẽ · [n× (E× n)] dΓ

= 2jk0

∫
Γ1

Ẽ · EidΓ. (B.11)

Applying the vector identities a · (b× c) = b · (c× a) and (a× b) = − (b× a) for
the third term on the left-hand side of the above equation, we obtain the following
weak formulation.∫

D

(
∇× Ẽ

)
· (∇× E) dΩ− k20

∫
D

ϵrẼ · EdΩ + jk0

∫
Γ1∪Γ2

(
n× Ẽ

)
· (n× E) dΓ

= 2jk0

∫
Γ1

Ẽ · EidΓ (B.12)

We note that the boundary integral in Eq.(B.10) for ΓPMC assumes a value of 0 because
n ×H = 0. That is, n × (∇× E) = 0, based on the relationship ∇× E = −jωµH,
which is derived from Faraday’s law of Maxwell equations, ∇ × E = −∂(µH)/∂t,
replacing ∂/∂t with jω for time-harmonic electromagnetic fields. We also note that
the same is true for ΓPEC when the Galerkin finite element method is used, where
n×Ẽ = 0 holds on ΓPEC. The integrand of the boundary integral in Eq.(A.10) can be

transformed as Ẽ · [n× (∇× E)] =
(
n× Ẽ

)
· (∇× E), applying the vector identity.

Thus, the boundary integral for ΓPEC assumes a value of 0 [185,216].
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C Sensitivity analysis of a complex function using

the Adjoint Variable Method

In subsection 5.2.4, the sensitivities for the real and the imaginary parts of the objec-
tive function are derived simultaneously using the AVM. In this appendix, we show
that these sensitivities are equivalent to the sensitivities of the real and imaginary
parts obtained individually using the AVM. Although we use the strong form here
to clarify the derivation, the equivalence of the sensitivities would be the same for a
derivation using the weak form.

Let Ψ be the objective function that has complex values, namely, Ψ = Ψ′ + iΨ′′. The
sensitivities for the real and imaginary parts can be simultaneously obtained following
the standard AVM in the following procedure. First, an additional term is added to
the original objective function Ψ, as follows.

Ψ̂ = Ψ(ϕ,u) + λT (Su− f) , (C.1)

where ϕ is the design variables, λ is the adjoint variables, S is the stiffness matrix,
and f is the load vector. The sensitivity of the objective function is then given as,

dΨ̂

dϕ
=
∂Ψ

∂ϕ
+
∂Ψ

∂u

∂u

∂ϕ
+ λT

(
∂S

∂ϕ
u+ S

∂u

∂ϕ
− ∂f

∂ϕ

)
=
∂Ψ

∂ϕ
+ λT

(
∂S

∂ϕ
u− ∂f

∂ϕ

)
+

(
∂Ψ

∂u
+ λTS

)
∂u

∂ϕ
. (C.2)

The sensitivity can then be written as,

dΨ̂

dϕ
=
∂Ψ

∂ϕ
+ λT

(
∂S

∂ϕ
u− ∂f

∂ϕ

)
, (C.3)

where the adjoint variable λ satisfies the following adjoint equation.

Sλ = −
(
∂Ψ

∂u

)T

. (C.4)

The sensitivities of the real and imaginary parts of the objective function can be
obtained by the real and imaginary parts of the obtained sensitivity, respectively.

Next, we consider the sensitivities for the real and imaginary parts of the objective
function Ψ individually, and show that the obtained sensitivities are the same as the
real and imaginary parts of the sensitivity obtained by Eq.(C.3). First, we derive the
sensitivity for the real part of the objective function Ψ′. Following the AVM, two
extra terms are added to the original objective function in order to cancel out the
imaginary part, as follows [55, 60], in the case where the response of the governing
equation u is a complex function, namely u = u′ + iu′′.

Ψ̂′ = Ψ′(ϕ,u′,u′′) + λTR (Su− f) + λ̄TR
(
S̄ū− f̄

)
, (C.5)
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where λR is the adjoint variable and subscript R indicates the correspondence to
the real part of objective function. λ̄R denotes the complex conjugate of λR. The
sensitivity of the objective function is then given as,

dΨ̂′

dϕ
=
∂Ψ′

∂ϕ
+
∂Ψ′

∂u′
∂u′

∂ϕ
+
∂Ψ′

∂u′′
∂u′′

∂ϕ

+ λTR

(
∂S

∂ϕ
u′ + S

∂u′

∂ϕ
+ i

∂S

∂ϕ
u′′ + iS

∂u′′

∂ϕ
− ∂f

∂ϕ

)
+ λ̄TR

(
∂S̄

∂ϕ
u′ + S̄

∂u′

∂ϕ
− i

∂S̄

∂ϕ
u′′ − iS̄

∂u′′

∂ϕ
− ∂ f̄

∂ϕ

)
. (C.6)

Rearranging the above equation, we obtain following.

dΨ̂′

dϕ
=
∂Ψ′

∂ϕ
+ λTR

(
∂S

∂ϕ
u′ + i

∂S

∂ϕ
u′′ − ∂f

∂ϕ

)
+ λ̄TR

(
∂S̄

∂ϕ
u′ − i

∂S̄

∂ϕ
u′′ − ∂ f̄

∂ϕ

)
+

(
∂Ψ′

∂u′ + λTRS+ λ̄TRS̄

)
∂u′

∂ϕ
+

(
∂Ψ′

∂u′′ + iλTRS− iλ̄TRS̄

)
∂u′′

∂ϕ
(C.7)

To delete the ∂u′

∂ϕ
and ∂u′′

∂ϕ
terms, the following two equations must be satisfied.

λTRS+ λ̄TRS̄ = −∂Ψ
′

∂u′ (C.8)

iλTRS− iλ̄TRS̄ = −∂Ψ
′

∂u′′ (C.9)

From the above equations, the following two adjoint equations are obtained.

SλR = −1

2

(
∂Ψ′

∂u′ − i
∂Ψ′

∂u′′

)T

(C.10)

S̄λ̄R = −1

2

(
∂Ψ′

∂u′ + i
∂Ψ′

∂u′′

)T

(C.11)

The above two adjoint equations are equivalent, so λR can be obtained by solving
Eq.(C.10). Finally, the sensitivity for the real part is obtained as follows.

dΨ̂′

dϕ
=
∂Ψ′

∂ϕ
+ λTR

(
∂S

∂ϕ
u− ∂f

∂ϕ

)
+ λ̄TR

(
∂S̄

∂ϕ
ū− ∂ f̄

∂ϕ

)
, (C.12)

where

SλR = −1

2

(
∂Ψ′

∂u′ − i
∂Ψ′

∂u′′

)T

. (C.13)

Following the same procedure, the sensitivity for the imaginary part of the objective
function is obtained as follows.

dΨ̂′′

dϕ
=
∂Ψ′′

∂ϕ
+ λTI

(
∂S

∂ϕ
u− ∂f

∂ϕ

)
+ λ̄TI

(
∂S̄

∂ϕ
ū− ∂ f̄

∂ϕ

)
, (C.14)
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where λI is the adjoint variable that corresponds to the imaginary part of the objective
function, and

SλI = −1

2

(
∂Ψ′′

∂u′ − i
∂Ψ′′

∂u′′

)T

. (C.15)

Multiplying Eq.(C.14) by i and adding the result to Eq.(C.12), we obtain

dΨ̂′

dϕ
+ i

dΨ̂′′

dϕ
=
∂Ψ′

∂ϕ
+ i

∂Ψ′′

∂ϕ

+ (λR + iλI)
T

(
∂S

∂ϕ
u− ∂f

∂ϕ

)
+
(
λ̄R + iλ̄I

)T (∂S̄
∂ϕ

ū− ∂ f̄

∂ϕ

)
. (C.16)

Considering the conjugate form of Eq.(C.13) and Eq.(C.15),

S̄λ̄R = −1

2

(
∂Ψ′

∂u′ + i
∂Ψ′

∂u′′

)T

(C.17)

S̄λ̄I = −1

2

(
∂Ψ′′

∂u′ + i
∂Ψ′′

∂u′′

)T

. (C.18)

Multiplying Eq.(C.18) by i and adding the result to Eq.(C.17), we obtain the follow-
ing.

S̄
(
λ̄R + iλ̄I

)
= −1

2

((
∂Ψ′

∂u′ + i
∂Ψ′

∂u′′

)
+ i

(
∂Ψ′′

∂u′ + i
∂Ψ′′

∂u′′

))T

= −1

2

((
∂Ψ′

∂u′ + i
∂Ψ′′

∂u′

)
+ i

(
∂Ψ′

∂u′′ + i
∂Ψ′′

∂u′′

))T

= −1

2

(
∂Ψ

∂u′ + i
∂Ψ

∂u′′

)T

(C.19)

When Ψ can be expressed explicitly using u (without using u′ and/or u′′), the fol-
lowing relationships hold.

∂Ψ

∂u′ =
∂Ψ

∂u

∂u

∂u′ =
∂Ψ

∂u
(C.20)

∂Ψ

∂u′′ =
∂Ψ

∂u

∂u

∂u′′ = i
∂Ψ

∂u
(C.21)

Substituting the above equations into Eq.(C.19),

S̄
(
λ̄R + iλ̄I

)
= −1

2

(
∂Ψ

∂u
− ∂Ψ

∂u

)T

= 0. (C.22)

Therefore, λ̄R + iλ̄I = 0, because the stiffness matrix S is a full-rank matrix. Substi-
tuting this into Eq.(C.16), we obtain,

dΨ̂

dϕ
=
∂Ψ

∂ϕ
+ λT

(
∂S

∂ϕ
u− ∂f

∂ϕ

)
, (C.23)

137



where λ = λR + iλI . Eq.(C.23) is equivalent to Eq.(C.3). In addition, the adjoint
variable λ is obtained as follows. Multiplying Eq.(C.13) by i and adding the result
to Eq.(C.15), we have,

S (λR + iλI) = −1

2

((
∂Ψ′

∂u′ − i
∂Ψ′

∂u′′

)
+ i

(
∂Ψ′′

∂u′ − i
∂Ψ′′

∂u′′

))T

= −1

2

(
∂Ψ

∂u′ − i
∂Ψ

∂u′′

)T

. (C.24)

Using the same relationships for Eqs.(C.20) and (C.21),

Sλ = −
(
∂Ψ

∂u

)T

. (C.25)

Thus, Eq.(C.25) is equivalent to Eq.(C.4).
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