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Preface

A gas is called rarefied gas when the mean free path of gas molecules is not negligibly small
compared with the typical length of a problem under concern. The Knudsen number, the ratio be-
tween the mean free path and the typical length, is a parameter that represents the degree of gaseous
rarefaction. Gas flows in micro-scale devices or in vacuum equipments are typical examples of rar-
efied gas flows. In both cases, the Knudsen number is not negligible, because the typical length is
small in the former case and the mean free path is large in the latter case. The state of a rarefied
gas deviates from the local equilibrium state, since a gas molecule undergoes few inter-molecular
collisions with other molecules during the characteristic time scale of the problem. Hence, the
behavior of the rarefied gas cannot be described by the ordinary gas dynamics, which is known
to be valid only when the gas is close to the local equilibrium. Instead, rarefied gas dynamics (or
molecular gas dynamics) based on kinetic theory of gases is the fundamental framework to treat it.

The basic equation in rarefied gas dynamics is the Boltzmann equation (or its model equation),
which describes the behavior of the velocity distribution function of gas molecules. The velocity
distribution function contains the mesoscopic (a scale in between macro and micro) information
of the gas, and thus the rarefied gas dynamics is capable of describing the gas in non-equilibrium.
The macroscopic quantities such as density, flow velocity, temperature etc. are expressed by the
suitable moments of the velocity distribution function. In the literature, various steady problems
for a rarefied gas have been studied extensively. When a gas is highly rarefied so that the collision
between gas molecules can be neglected (a free-molecular gas), the Boltzmann equation is reduced
to the free transport equation, which is more tractable at first glance. In fact, the steady behavior
of the free-molecular gas is well understood because of the simplicity of the equation. However,
detailed studies on the time-dependent behavior of the rarefied gas, as well as the free-molecular
gas, have rarely been treated so far, especially when a physical boundary is present.

Recently, time-dependent problems of a rarefied gas with a physical boundary draw much at-
tention due to their practical importance as well as theoretical (or mathematical) significance in
rarefied gas dynamics. In particular, the case when the physical boundary is moving, varying
its velocity depending on time, is a challenging subject. During the last decade, some progress
has been made on the mathematical structure of the solution of time-dependent problems with a
stationary or moving boundary. On the other hand, numerical studies, which are essential for en-
gineering applications and useful to understand the mechanism underlying them, are still far from
being matured. The present thesis aims to investigate in detail some fundamental time-dependent
problems of the rarefied gas with a stationary or moving boundary by the accurate numerical analy-
sis, and clarify the basic features of the problems such as the macroscopic profiles, the momentum
(or energy) flux across the boundary, the long-time behavior of the solution, and the singularities in
the velocity distribution function. As seen in the title of the thesis, our attention is mainly paid to
moving boundary problems, however, the stationary boundary problem is also treated in Chapter
2.

The thesis is organized as follows. In Chapters 1, 2, and 3, time-dependent problems of a
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free-molecular gas are considered. More specifically, moving boundary problems are treated in
Chapters 1 and 3, and a stationary boundary problem in Chapter 2. Unlike steady problems, time-
dependent problems of a free-molecular gas are not simple as they look. In fact, under certain
situations, which will be seen in Chapter 4, the free-molecular gas is more delicate than the model
Boltzmann equation. The difficulty arises from the long-memory due to the collisionless property
of the free-molecular gas. In Chapter 3, in addition, a collision model between gas molecules and
a background is introduced in order to investigate the effect of molecular collisions on the mov-
ing boundary problem. In Chapter 4, moving boundary problems of a rarefied gas, described by
the Bhatnagar-Gross-Krook (BGK) model of the Boltzmann equation, are studied in detail at the
level of the velocity distribution function. Throughout the thesis, the gas-surface interaction, i.e. a
reflection law of a gas molecule impinging on the boundary, is described by diffuse reflection. To
be more specific, a gas molecule that hits a boundary surface is assumed to be reflected according
to the Maxwellian distribution characterized by the velocity and temperature of the boundary, with
the density adjusted in such a way that there is no net mass flux across the boundary.

In Chapter 1, the rectilinear motion of a plate in its perpendicular direction in a free-molecular
gas under a constant external force is studied numerically. The external force acts only on the plate
in its perpendicular direction. This is a moving boundary problem of a free-molecular gas. As
time goes on, the plate motion approaches a terminal motion, at which the drag exerted by the gas
balances with the external force. It is shown by the accurate numerical analysis that the rate of
approach is algebraic in time, and it is attributed to the long-memory created by the unsteady plate
motion.

In Chapter 2, a stationary boundary is considered exceptionally. A free-molecular gas is con-
tained in a vessel with a uniform constant temperature. Since the gas molecules undergo diffuse
reflection on the vessel wall, the velocity distribution function is driven to the equilibrium distribu-
tion characterized by the vessel temperature as time goes on. This approach to the equilibrium is
investigated numerically, and it is shown that the rate of approach is algebraic in time. The long-
memory in this problem, the cause of the algebraic approach, manifests itself as the localization of
the velocity distribution function, which is treated carefully in the numerical analysis.

In Chapter 3, a simple model of a linear pendulum in a free-molecular gas is considered. To
be more specific, a plate is subject to an external restoring force obeying the Hooke’s law in its
perpendicular direction. The plate oscillates around its equilibrium position, attenuating its ampli-
tude as time goes on due to the drag force exerted by the gas. This is a variation of the problem in
Chapter 1, and thus a moving boundary problem. Decay rate of the pendulum motion is shown to
be algebraic in time by the accurate numerical analysis. In this case, unlike the problem in Chapter
1, the motion of the boundary is more complicated. Hence, the long-memory results in a lot of dis-
continuities in the velocity distribution function, which need a careful treatment in the numerical
analysis. Moreover, the special Lorentz gas, a model gas that interacts with a given background, is
introduced to destroy the long-memory to investigate its effect on the decay rate.

Finally, in Chapter 4, the detailed investigation of the velocity distribution function in moving
boundary problems in rarefied gas dynamics is carried out. This chapter consists of two parts. In
the first part, based on the knowledge established so far in Chapters 1, 2, and 3, the singularities
in the velocity distribution function induced by the unsteady motion of the boundary are clarified,
and the accurate numerical method that captures them is developed. The method is applied to
two moving boundary problems: the nonlinear acoustic wave in a rarefied gas generated by an
oscillating boundary and a linear pendulum in a rarefied gas. In the second part, as the application
of the above numerical method to a typical problem in micro engineering, the oscillatory flow in a
micro gap consisting of a perpendicularly oscillating plate and a stationary plate is studied.
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My research activity was very stimulating and enjoyable thanks to nice colleagues in the Aoki
laboratory and the department. Let me limit myself to the statement of some of the colleagues,
otherwise the list would be too long. I appreciate Doctor Hitoshi Funagane, Ko Kugimoto, Hiroki
Umetsu, Takuya Okamura, Doctor Shinya Okino, Kengo Deguchi, Masashi Kishimoto, Masahiro
Abe, and Masanari Hattori for making my PhD period fulfilling.

I also would like to express my gratitude to my girl friend Tomoko Maeda for her warm relation-
ship and cheer. Last but not the least, I would like to thank my parents Yoshinori Tsuji and Reiko
Tsuji for their support throughout my life and giving me a chance to chase my dream. Also, my
grand mother Michiko Saito took care of me for more than nine years. It is not too much to say
that I would not have finished the thesis without her cordial support.

The present thesis was partly supported by Grant-in-Aid for JSPS Fellows (No. 24·2418).





vii

Contents

Preface iii

Chapter 1 Approach to steady motion of a plate moving in a free-
molecular gas under a constant external force 1

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Problem, assumptions, and notations . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Basic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5 Results of numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.1 One-dimensional problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Two-dimensional problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Three-dimensional problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4 Remarks on numerical computation . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 2 Relaxation of a free-molecular gas to equilibrium caused
by interaction with vessel wall 25

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Problem, assumptions, and notations . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Basic equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Integral equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.1 Special choice of initial condition and simplification . . . . . . . . . . . 31
4.1.2 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.3 Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Macroscopic quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Results of numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1 Short- and intermediate-time behavior . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Long-time behavior and approach to equilibrium . . . . . . . . . . . . . . . . . 39



viii

5.2.1 ρw(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.2 Global quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.3 Local macroscopic quantities . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.4 Remarks on accuracy of computation . . . . . . . . . . . . . . . . . . . 42

6 Non-symmetric initial condition (one-dimensional case) . . . . . . . . . . . . . . . . 44
7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Chapter 3 Decay of a linear pendulum in a free-molecular gas and in
a special Lorentz gas 51

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2 Formulation of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2 Choice of the gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.2.1 Collisionless gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2.2 A kind of the Lorentz gas . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 Dimensionless variables and notations . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Basic equations in dimensionless form . . . . . . . . . . . . . . . . . . . . . . 55

4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1 Integral form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Axisymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1 Numerical scheme for equation of motion . . . . . . . . . . . . . . . . . . . . . 60
5.2 Numerical scheme for computation of the drag force . . . . . . . . . . . . . . . 61
5.3 Numerical scheme for computation of discontinuity . . . . . . . . . . . . . . . 61
5.4 Data for computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1 Collisionless gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Special Lorentz gas: Case of resting obstacles . . . . . . . . . . . . . . . . . . 65
6.3 Special Lorentz gas: Case of moving obstacles . . . . . . . . . . . . . . . . . . 67

7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A Special Lorentz gas: Derivation of Eqs. (3.5) and (3.12) . . . . . . . . . . . . . . . . 71

A.1 Physical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.2 Kinetic equations for the model . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.2.1 General Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.2.2 Mean free path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.2.3 Special choice of f∗s and f∗v . . . . . . . . . . . . . . . . . . . . . . . 75

Chapter 4 Part 1: Moving boundary problems in a rarefied gas 79
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.1 Problem, assumptions, and notations . . . . . . . . . . . . . . . . . . . . . . . 80
2.2 Basic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.1 Integral form of the BGK equation . . . . . . . . . . . . . . . . . . . . . . . . 84



ix

3.2 Singularities in the velocity distribution function . . . . . . . . . . . . . . . . . 85
3.2.1 Type-1 singularity: discontinuity . . . . . . . . . . . . . . . . . . . . . 85
3.2.2 Type-2 singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.2.3 Type-3 singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.2.4 Localization of discontinuities . . . . . . . . . . . . . . . . . . . . . . . 90

4 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.1 Grid points and interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Grid points in molecular velocity space . . . . . . . . . . . . . . . . . . . . . . 92
4.3 Outline of numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4 Calculation of velocity distribution function . . . . . . . . . . . . . . . . . . . 94

5 Results of numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.1 Problem I (forced motion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1.1 Velocity distribution function . . . . . . . . . . . . . . . . . . . . . . . 96
5.1.2 Macroscopic quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Problem II (free motion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.1 Case of K = ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.2 Case of finite K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A Details for grid systems and interpolation . . . . . . . . . . . . . . . . . . . . . . . . 106
B Basic equation for finite-difference method with ENO scheme . . . . . . . . . . . . . 107
C Accuracy checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

C.1 Accuracy of the results by the present method . . . . . . . . . . . . . . . . . . 108
C.2 Accuracy of the results by the finite-difference method . . . . . . . . . . . . . . 111

Chapter 4 Part 2: Gas motion in a micro gap between longitudinally
oscillating and stationary plates 115

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
2 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

2.1 Problem and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
2.2 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
2.3 Additional Physical Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . 119
2.4 Remarks on Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.1 Profiles of Macroscopic Quantities . . . . . . . . . . . . . . . . . . . . . . . . 120
3.2 Momentum and Energy Transfer . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.3 Accuracy of Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
A Approach to periodic state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Conclusion 129

List of publications 131





1

Chapter 1

Approach to steady motion of a plate
moving in a free-molecular gas
under a constant external force

Abstract A thin plate accelerated or decelerated in a free-molecular gas at
rest by a constant external force is considered. The force is in the direction
perpendicular to the plate. In this situation, the plate velocity approaches its
final constant velocity as time goes on. It is shown numerically that, under the
diffuse-reflection boundary condition, the difference between the plate velocity
and its final value decreases in proportion to an inverse power of time. This
agrees with the previous theoretical result obtained under the assumption that
the initial plate velocity is sufficiently close to the final one.

1 Introduction
In kinetic theory of gases, the two limiting cases, the continuum limit of vanishing Knudsen

number (the mean free path of gas molecules divided by the characteristic length of the system)
and the free-molecular limit of infinitely large Knudsen number, have been studied extensively.
The former limit clarifies the relation between kinetic theory and fluid dynamics [1, 2, 3, 4, 5,
6]. In the latter limit (free-molecular gas or Knudsen gas), the fact that the collision term of the
Boltzmann equation can be neglected simplifies the analysis dramatically, and the basic properties
and phenomena appear to have been understood completely [2, 3, 6, 7]. However, most of the
existing works are devoted to steady flows of a gas or steady motions of a body, and little is known
about problems containing unsteady motion of a body (motion with acceleration, deceleration, or
rotation of a non-symmetric body). The difficulty in this case arises from the fact that, because
of the absence of intermolecular collisions, the gas molecules impinging on the body may have
a long memory and be affected by the trajectory of the body in the far past, i.e., there exists the
effect of long memory. Indeed, this fact was mentioned already in Sec. H,9 in [7]. However,
to the best of the authors’ knowledge, there is no systematic study of the effect. The present
study, as well as the preceding studies [8, 9, 10, 11], aims at clarifying the memory effect in the
problems with an unsteady body motion by considering a simple problem of a body moving in a
free-molecular gas with acceleration or deceleration. This is a numerical study complementing the
previous mathematical works [8, 9, 10, 11].



2 Chapter 1 Approach to steady motion of a plate moving in a free-molecular gas

Let us consider a motion of a body in a uniform fluid (not a free-molecular gas) at rest caused by a
constant external force. We assume that the body starts its motion with an initial velocity parallel to
the external force and moves in the direction parallel to the external force without rotation because
of a constraint or the symmetry of the body. A drag by the fluid acts on the body, and its velocity
approaches a constant value (final velocity) for which the drag counterbalances the external force.
If we assume that the drag is proportional to the speed of the body, its velocity approaches the final
velocity exponentially fast. That is, if we let τ the time variable, vw(τ) the velocity of the body in
the direction of the external force, and vw∞ (> 0) its final value, then for sufficiently large τ ,

|vw∞ − vw(τ)| ≈ C1e
−C2τ (1.1)

holds, where C1 and C2 are positive constants.
However, if the fluid is a free-molecular gas in an equilibrium state at rest, the manner of ap-

proach to the final velocity is quite different from Eq. (1.1) [8, 9, 10, 11]. Let us assume that the
body is a circular disk (with or without thickness) of dimension d (d = 1, 2, 3) and moves in the
gas in the direction perpendicular to the disk. More specifically, the body is a real circular disk for
d = 3, an infinite plate with a finite width for d = 2, and an infinite plate for d = 1 (see Fig. 1.1; in
[8, 9, 11] the gas molecules are assumed to move on the plane for d = 2 and on the line for d = 1,
but there is no essential difference). In this case, the approach to the final velocity is slow and is
proportional to an inverse power of time. That is, for sufficiently large τ ,

|vw∞ − vw(τ)| ≈ C ′
1τ

−n (1.2)

holds, where C ′
1 is a positive constant, and n is an integer, which depends on the dimension d of

the disk and the model of gas-surface interaction. In [8, 9], it was proven that n = d + 2 when
the gas molecules undergo specular reflection (or elastic collision) on the surface of the disk. The
proof was extended to the case of a general convex body, and it was shown that the same is true in
this case [10]. Subsequently, it was shown in [11] that n = d+ 1 when the gas molecules undergo
diffuse reflection (or reflection with complete accommodation). Moreover, as proven in [9] for the
specular reflection, if the initial velocity vw0 (in the direction of the external force) is greater than
the final velocity (0 ≤ vw∞ < vw0), the disk velocity first decreases to a velocity smaller than the
final one and then approaches it from below.

The law (1.2) is not exponential, and this may appear somewhat surprising. The reason for this
behavior is attributed to the presence of recollisions between the gas molecules and the disk. In
fact, when it is accelerated, the disk can catch up with a gas molecule already hit by the disk and hit
it again. In other words, the disk can hit the same molecule successively, giving rise to a sequence
of recollisions whose time intervals can be arbitrarily large. This creates a long tail memory, which
is the cause of the power law (1.2). In particular, in the presence of recollisions, the assumption to
take a drag force proportional to the velocity of the disk is no more valid even when the velocity is
small. If we ignore recollisions, for example, assuming that the disk always hits new molecules at
a given thermal equilibrium, the behavior becomes that of Eq. (1.1). It is reasonable to expect that
the effect of recollisions can be destroyed if the background is not a free-molecular gas but a gas
with intermolecular collisions. In this case we can say that our result remains valid, not as a strict
asymptotic behavior, but as a transient behavior. From an experimental point of view, it is delicate
to observe such an effect, and the authors are not aware of experiments in this direction. However,
we should emphasize that the effect of recollision plays an important role when a body undergoes
unsteady motion in a highly rarefied gas. It is also worth mentioning that it was already known that
recollisions can produce a power law decay. In fact the velocity-velocity correlation of a tagged
particle of a one-dimensional free gas decays as τ−3 (see [12]).
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Fig. 1.1 A circular disk in a free-molecular gas. (a) Circular disk (d = 3), (b) infinite plate
with a rectangular cross section (d = 2), (c) infinite plate with a finite thickness (d = 1).

The results in [8, 9, 10, 11] described above have been proven under the condition that the initial
velocity of the disk is sufficiently close to the final velocity, i.e.,

|vw∞ − vw0|/(2kT0/m∗)
1/2 ≪ 1, (1.3)

where T0 is a reference temperature (e.g., the temperature of the ambient gas), k is the Boltzmann
constant, and m∗ is the mass of a molecule. Since this restriction is imposed by mathematical
technicalities rather than physical situations, one cannot know how small it should be. In addition,
the slow approach to the final steady motion is caused by the memory effect, so that it is not obvious
whether the same results hold or not for an arbitrary initial velocity that does not satisfy Eq. (1.3).
In the present study, therefore, we investigate this problem numerically and try to give a numerical
evidence for the case of diffuse reflection. The reason why we restrict ourselves to the case of the
diffuse reflection, rather than the specular reflection, will be explained in Sec. 5.4.

The origin of the problem of a specularly reflecting disk treated in Refs. [8, 9] is explained from
the point of view of particle dynamics in [8]. It should be remarked that the same problem has also
been considered in connection with the so-called piston problem, which is a fundamental problem
in statistical physics (see Refs. [13, 14] and the references therein). For other types of obstacle-
background interaction, the reader is referred to [15, 16] (see also the references in [8, 9, 10, 11]).

2 Formulation of the problem
2.1 Problem, assumptions, and notations

In the present study, we consider a rectangular plate of dimension dwithout thickness instead of a
circular disk for convenience of the numerical analysis. That is, the body is a real rectangular plate
for d = 3, an infinite plate with a finite width for d = 2, and an infinite plate for d = 1 (Fig. 1.2).
However, since the actual computation will be done mostly for d = 1 and 2, we formulate the
problem for the two-dimensional problem (d = 2).

Let us consider an infinite expanse of an ideal gas in an equilibrium state at rest at temperature
T0 and density ρ0. Suppose that an infinitely long plate with width L and without thickness, kept
at temperature T0, is fixed in the gas. Taking the X1 axis perpendicular to the plate, the X2 axis in
the width direction, and the X3 axis in the infinitely long spanwise direction, we assume that the
plate is located at X1 = 0, −L/2 ≤ X2 ≤ L/2, and −∞ < X3 < ∞ [Fig. 1.2(b)]. The plate is
subject to a constant external force F (≥ 0) per unit mass in the direction of the positive X1 axis.
At τ = 0, the plate is released and launched with an initial velocity vw0 in the X1 direction. Then,
it moves along the X1 axis and approaches the final steady motion with a constant velocity (final
velocity). We investigate the motion of the plate, with special interest in the rate of approach to the
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final steady motion, under the following assumptions:

(i) The behavior of the gas is described by the Boltzmann equation [2, 3, 6].
(ii) The gas is so rarefied that the collisions between the gas molecules can be neglected (free-

molecular gas or Knudsen gas) [2, 3, 6], and no external force acts on the gas molecules.
(iii) The gas molecules reflected on the plate are distributed according to the half-range

Maxwellian distribution characterized by the temperature and velocity of the plate, and
there is no net mass flux across the plate (diffuse reflection) [2, 3, 6].

Before presenting the basic equations, we summarize the notations used in the paper. We first in-
troduce (and repeat) dimensional quantities: The Xi is the Cartesian coordinate system in space, τ
is the time variable, ξi is the molecular velocity, Xw(τ) is the position (X1 coordinate) of the plate
at time τ , vw(τ) is the corresponding velocity (in the X1 direction) of the plate, vw0 is the initial
value of vw(τ) at τ = 0, vw∞ is the final steady velocity of the plate [vw∞ = limτ→∞ vw(τ)],
f̃(Xi, ξi, τ) is the velocity distribution function of the gas molecules, F is the external force acting
on the plate per unit mass in the positive X1 direction, G(τ) is the drag acting on the plate per
unit mass in the X1 direction, and M is the mass of the plate per unit area. Then, we introduce
the dimensionless counterparts xi, t, ζi, xw, uw, uw0, uw∞, f , F , G, and M by the following
equations:

xi = Xi/L, t = τ/τ0,
ζi = ξi/(2kT0/m∗)

1/2, xw(t) = Xw(τ)/L,
uw(t) = vw(τ)/(2kT0/m∗)

1/2, uw0 = vw0/(2kT0/m∗)
1/2,

uw∞ = vw∞/(2kT0/m∗)
1/2, f(xi, ζi, t) = f̃(Xi, ξi, τ)/ρ0(2kT0/m∗)

−3/2,
F = F/Lτ−2

0 , G(t) = G(τ)/Lτ−2
0 ,

M = M/ρ0L,

(1.4)

where τ0 = L(2kT0/m∗)
−1/2 is the reference time, k the Boltzmann constant, and m∗ the mass

of a gas molecule.

2.2 Basic equations

In the present spatially two-dimensional problem in which the physical quantities do not de-
pend on x3, we can eliminate the third component ζ3 of the molecular velocity by considering the
following marginal distribution function g:

g(x1, x2, ζ1, ζ2, t) =

∫ ∞

−∞
f(x1, x2, ζi, t) dζ3. (1.5)

Fig. 1.2 A rectangular plate without thickness in a free-molecular gas. (a) Rectangular plate
(d = 3), (b) infinite plate with a finite width (d = 2), (c) infinite plate (d = 1).
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Then, the Boltzmann equation for a free-molecular gas reads

∂g

∂t
+ ζ1

∂g

∂x1
+ ζ2

∂g

∂x2
= 0. (1.6)

The corresponding initial condition is

g = g0, g0 = π−1 exp(−ζ21 − ζ22 ), (t = 0), (1.7)

and the boundary condition (diffuse reflection) on the plate is written as

g(x1, x2, ζ1, ζ2, t) = gw±(x2, ζ1, ζ2, t),[
x1 = xw±(t), −1

2
≤ x2 ≤ 1

2
, ζ1 − uw(t) ≷ 0

]
, (1.8a)

gw±(x2, ζ1, ζ2, t) = π−1ρw±(x2, t) exp
(
− [ζ1 − uw(t)]

2 − ζ22

)
, (1.8b)

ρw±(x2, t) = ∓2
√
π

∫ ∞

−∞

∫
ζ1−uw(t)≶0

[ζ1 − uw(t)]

× g(xw±(t), x2, ζ1, ζ2, t) dζ1dζ2. (1.8c)

Here, x1 = xw±(t) indicates x1 = xw(t)± 0, so that { (x1, x2) |x1 = xw±, −1/2 ≤ x2 ≤ 1/2}
stands for the surface of the plate facing to the positive x1 axis (plus sign) or that facing to the
negative x1 axis (minus sign). In Eq. (1.8) and in what follows, the upper (or lower) signs go
together.

The equation of motion of the plate is given as

dxw(t)/dt = uw(t), duw(t)/dt = F −G(t), (1.9)

where the dimensionless drag G(t) is expressed in terms of the velocity distribution function on
the plate as follows:

G(t) = G+(t) +G−(t), (1.10a)

G±(t) = ± 1

M

∫ 1/2

−1/2

{∫ ∞

−∞

∫
ζ1−uw(t)≶0

[ζ1 − uw(t)]
2

× g(xw±, x2, ζ1, ζ2, t) dζ1dζ2

+

∫ ∞

−∞

∫
ζ1−uw(t)≷0

[ζ1 − uw(t)]
2

× gw±(x2, ζ1, ζ2, t) dζ1dζ2

}
dx2. (1.10b)

Here,G+(t) andG−(t) indicate, respectively, the drag acting on the surface at xw+(t) and xw−(t).
The initial condition for Eq. (1.9) is

xw(0) = 0, uw(0) = uw0. (1.11)

We are going to solve numerically the coupled systems, Eqs. (1.6)–(1.8) and Eqs. (1.9)–(1.11).
In the spatially one-dimensional problem (d = 1), in which the plate is an infinitely wide plate

in the x2x3 plane and the physical quantities depend only on x1, we can also eliminate the second
component ζ2 of the molecular velocity by introducing the marginal distribution function

g(x1, ζ1, t) =

∫ ∞

−∞

∫ ∞

−∞
f(x1, ζi, t)dζ2dζ3. (1.12)
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Fig. 1.3 Definitions of w(t; s) and q(t, x2; s, y2). (a) w(t; s), (b) q(t, x2; s, y2).

Therefore, the problem is much simpler. In this case, since there is no length scale related to
the plate, we need to introduce an appropriate length scale (see Sec. 5.1). In the spatially three-
dimensional problem (d = 3), we have to handle the full distribution function f(xi, ζi, t), so that
the problem is more involved.

3 Preliminaries
In this section, we transform Eqs. (1.6)–(1.8) into integral equations for ρw+ and ρw−, which

are more convenient for numerical analysis.
The Boltzmann equation (1.6) indicates that g is constant along the characteristic line xℓ−ζℓt =

const (ℓ = 1, 2), i.e., the projection of the molecular trajectory on the x1x2 plane. Let us consider
the molecules impinging on the plate at time t, i.e., the molecules at x1 = xw+ (or x1 = xw−) and
−1/2 ≤ x2 ≤ 1/2 with ζ1 − uw(t) < 0 [or ζ1 − uw(t) > 0]. If we trace back the trajectories of
such molecules reversing the time, we either (i) hit on the plate at a time in the past, or (ii) reach
the initial distribution g0 at t = 0 without hitting on the plate. The case (i) corresponds to the
recollision mentioned in Sec. 1. Taking this fact into account, we will express the right-hand side
of Eq. (1.8c) in terms of g0 and gw± (i.e., ρw±) in the past.

Let us suppose that a molecule that left the plate at point (x1, x2) = (xw(s), y2) at time s in the
past impinges on the plate again at point (xw(t), x2) at time t. Here, we do not specify the side of
the plate. Then, the x1 and x2 components of the velocity of the molecule, denoted by w(t; s) and
q(t, x2; s, y2) respectively, are given by

w(t; s) =
xw(t)− xw(s)

t− s
, q(t, x2; s, y2) =

x2 − y2
t− s

, (1.13)

where 0 ≤ s < t，−1/2 ≤ y2 ≤ 1/2 (Fig. 1.3). By definition, lims→t w(t; s) = dxw(t)/dt =

uw(t).
Let us assume that the trajectory of the plate xw(t′) and the quantity ρw±(x2, t

′) in the boundary
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condition (1.8) are known for all t′ ∈ [0, t). The trajectory is depicted schematically in Fig. 1.4,
where x1 = xw(t

′) is shown by the solid curve in the x1t plane. The trajectory in the figure is
exaggerated in order that the description of the solution method is facilitated. The projection on the
x1t plane of the trajectory of a molecule is a straight line, and the faster the molecule, the milder the
slope of the line. Let us consider the molecules impinging on the plate at point (xw(t), t), which
is denoted by the symbol “A”. An inclined straight line drawn downward from A indicates the
trajectory of a molecule impinging on the plate at time twith a velocity (x1 component) determined
by the gradient of the line. More specifically, a line, such as line 5 in Fig. 1.4, located on the right-
hand side of the tangential line at point A [line 3 in Fig. 1.4, the gradient of which corresponds
to uw(t)] stands for the trajectory of a molecule impinging on the right-hand face of the plate
(x1 = xw+, −1/2 ≤ x2 ≤ 1/2), and a line, such as line 1 in the figure, located on the left-hand
side of the tangential line stands for that of a molecule impinging on the left-hand face of the plate
(x1 = xw−, −1/2 ≤ x2 ≤ 1/2).

We first consider the molecules impinging on the right-hand face of the plate. Let us consider
the part of the trajectory of the plate (the solid curve in Fig. 1.4) located on the right-hand side of
the tangential line at A. There are a finite number of segments of the trajectory that can be seen
from point A without being hidden by the trajectory itself, which are numbered from below as 1, 2,
..., n+ (n+ = 2 in the case of Fig. 1.4). If there is no such segment, we set n+ = 0. Let s+c be the
(dimensionless) time corresponding to the lower end of the cth segment, and s+′

c that corresponding
to its upper end (c = 1, 2, ..., n+). Then, the following relation holds when n+ ≥ 1.

w(t; s+c ) = uw(s
+
c ), (c = 1, 2, ..., n+), (1.14a)

w(t; s+c ) < w(t; s+′
c ) = w(t; s+c+1), (c = 1, 2, ..., n+ − 1). (1.14b)

Note that the relation (1.14a) does not hold if s+1 = 0 [i.e., w(t; 0) ̸= uw0].
We define the corresponding quantities also for the molecules impinging on the left-hand face

of the plate. We consider the part of the trajectory of the plate, located on the left-hand side of
the tangential line at A, and we number, as 1, 2, ..., n− from below (n− = 2 in the case of
Fig. 1.4), the segments of the trajectory that can be seen from point A without being hidden by the
trajectory itself. Let s−c be the time corresponding to the lower end of the cth segment, and s−′

c

that corresponding to its upper end (c = 1, 2, ..., n−). Then, the following relation holds when
n− ≥ 1.

w(t; s−c ) = uw(s
−
c ), (c = 1, 2, ..., n−), (1.15a)

w(t; s−c ) > w(t; s−′
c ) = w(t; s−c+1), (c = 1, 2, ..., n− − 1). (1.15b)

Note that the relation (1.15a) does not hold if s−1 = 0 [i.e., w(t; 0) ̸= uw0] (see Fig. 1.4).
With the help of s+c and s+′

c defined above, the ρw+ at point A, consisting of the contribution of
the initial equilibrium distribution g0 and that of gw+ in the boundary condition on the plate in the
past, can be expressed as

ρw+(x2, t) = −2
√
π
{∫ ∞

−∞

∫ uw(t)

−∞
[ζ1 − uw(t)] g0(ζ1, ζ2) dζ1dζ2

+

n+∑
c=1

∫ w(t;s+′
c )

w(t;s+c )

∫ q(t,x2; s,−1/2)

q(t,x2; s,1/2)

[ζ1 − uw(t)]

× [gw+(y2, ζ1, ζ2, s)− g0(ζ1, ζ2)]dζ2dζ1

}
, (1.16)
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Fig. 1.4 Trajectory of the plate and definitions of the symbols.

where
∑n+

c=1 = 0 if n+ = 0. In Eq. (1.16), s means s(ζ1, t) determined implicitly by the first
equation of Eq. (1.13) with w = ζ1, and y2 means y2(x2, ζ1, ζ2, t) determined by the second
equation of Eq. (1.13) with q = ζ2 and s = s(ζ1, t), i.e.,

xw(t)− xw(s(ζ1, t))

t− s(ζ1, t)
= ζ1,

x2 − y2(x2, ζ1, ζ2, t)

t− s(ζ1, t)
= ζ2. (1.17)

In Eq. (1.16), the first double integral on the right-hand side indicates the contribution if all the
impinging molecules at time t come from the initial velocity distribution g0. However, the imping-
ing molecules whose velocity (ζ1, ζ2) is contained in the ranges of integration in the terms under
summation

∑n+

c=1 departed from the plate in the past, not from the initial distribution. We call such
molecules recolliding molecules and their effect the effect of recollision. The correction caused by
the recolliding molecules is made by the terms contained in the summation

∑n+

c=1.
Similarly, ρw− is expressed in the form

ρw−(x2, t) = 2
√
π
{∫ ∞

−∞

∫ ∞

uw(t)

[ζ1 − uw(t)] g0(ζ1, ζ2) dζ1dζ2

+

n−∑
c=1

∫ w(t;s−c )

w(t;s−′
c )

∫ q(t,x2; s,−1/2)

q(t,x2; s,1/2)

[ζ1 − uw(t)]

× [gw−(y2, ζ1, ζ2, s)− g0(ζ1, ζ2)]dζ2dζ1

}
, (1.18)

where
∑n−

c=1 = 0 if n− = 0, and s and y2 mean s(ζ1, t) and y2(x2, ζ1, ζ2, t) determined by
Eq. (1.17).

On the other hand, G+(t) and G−(t) in Eq. (1.10b) are recast as

G+ =
1

M

∫ 1/2

−1/2

{∫ ∞

−∞

∫ uw(t)

−∞
[ζ1 − uw(t)]

2g0(ζ1, ζ2)dζ1dζ2
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+

n+∑
c=1

∫ w(t;s+′
c )

w(t;s+c )

∫ q(t,x2; s,−1/2)

q(t,x2; s,1/2)

[ζ1 − uw(t)]
2

× [gw+(y2, ζ1, ζ2, s)− g0(ζ1, ζ2)]dζ2dζ1

+

∫ ∞

−∞

∫ ∞

uw(t)

[ζ1 − uw(t)]
2gw+(x2, ζ1, ζ2, t)dζ1dζ2

}
dx2, (1.19)

G− =− 1

M

∫ 1/2

−1/2

{∫ ∞

−∞

∫ ∞

uw(t)

[ζ1 − uw(t)]
2g0(ζ1, ζ2)dζ1dζ2

+

n−∑
c=1

∫ w(t;s−c )

w(t;s−′
c )

∫ q(t,x2; s,−1/2)

q(t,x2; s,1/2)

[ζ1 − uw(t)]
2

× [gw−(y2, ζ1, ζ2, s)− g0(ζ1, ζ2)]dζ2dζ1

+

∫ ∞

−∞

∫ uw(t)

−∞
[ζ1 − uw(t)]

2gw−(x2, ζ1, ζ2, t)dζ1dζ2

}
dx2, (1.20)

where
∑n±

c=1 = 0 if n± = 0. The last integrals, containing [ζ1 − uw(t)]
2gw±(x2, ζ1, ζ2, t) on

the right-hand sides of Eqs. (1.19) and (1.20), indicate the contribution of the molecules leaving
the plate at time t, whereas the other terms the contribution of the impinging molecules. The
latter contribution consists, as in Eqs. (1.16) and (1.18), of the contribution of the initial velocity
distribution and that of the molecules reflected by the plate in the past (recolliding molecules).

Equations (1.16) and (1.18), with the explicit form of gw±(y2, ζ1, ζ2, s) in Eq. (1.8b), are the
integral equations for ρw+ and ρw−, respectively, to be solved together with Eqs. (1.9), (1.10a)
[with Eqs. (1.19) and (1.20)], and (1.11).

4 Numerical analysis
Let ∆t be a small interval in t, t(i) = i∆t be the ith time step (i = 0, 1, 2, ...), and xw(i), uw(i)

and G(i) be defined by

xw(i) = xw(t(i)), uw(i) = uw(t(i)), G(i) = G(t(i)). (1.21)

Then, we discretize Eq. (1.9) as follows:

xw(i+1) = xw(i) + uw(i)∆t, (1.22a)
uw(i+1) = uw(i) + (F −G(i+1))∆t, (1.22b)

where xw(0) = 0 and uw(0) = uw0.
Suppose that xw(j), uw(j), and gw± (or ρw±) at t = t(j) are known for j = 0, 1, 2, ..., i. Then,

xw(i+1) is obtained from Eq. (1.22a). In order to obtain uw(i+i) from Eq. (1.22b), we need to
compute G(i+1) = G+(t(i+1)) + G−(t(i+1)). This can be done by the use of Eqs. (1.19) and
(1.20) if we have gw± (or ρw±) at t = t(i+1). We obtain the latter quantity using the discretized
version of Eqs. (1.16) and (1.18), as explained below.

Let us consider Eq. (1.16) at t = t(i+1) and x2 = x2(l), where x2(l) = l∆x2 (l =

−N, ..., 0, ..., N ; ∆x2 = 1/2N ). Thus, (xw±(t(i+1)), x2(l)) is a discrete point on the plate
at t = t(i+1). We first replace uw(t) (= uw(i+1)), which is unknown, on the right-hand side
of Eq. (1.16) with uw(i) that is known. Then, the integrals containing g0 can be reduced to
expressions containing the error function, for which fast algorithms are available (see Sec. 5.4).
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The integrals containing gw+ are evaluated numerically using the discrete data in the past, i.e.,
xw(j), uw(j), and ρw+(x2(l), t(j)) (j = 0, 1, ..., i; l = −N, ..., 0, ..., N ). With the explicit form
of gw+ [Eq. (1.8b)], the integral containing gw+ under the summation in Eq. (1.16), after the
replacement uw(i+1) → uw(i), is written as

1

π

∫ w(t;s+′
c )

w(t;s+c )

∫ q(t,x2; s,−1/2)

q(t,x2; s,1/2)

[ζ1 − uw(i)]

× ρw+(y2, s) exp
(
− [ζ1 − uw(s)]

2 − ζ22

)
dζ2dζ1,

( at t = t(i+1), x2 = x2(l) ), (1.23)

where s = s(ζ1, t) and y2 = y2(x2, ζ1, ζ2, t) defined by Eq. (1.17). Let us suppose that t(j)
(j = α, α+ 1, ..., α′) ∈ [s+c , s

+′
c ] and s+′

c < t(α′+1). Since the trajectory xw(t) is approximated
by straight line segments [Eq. (1.22)], t(α) = s+c holds. Thus, Eq. (1.23) can be expressed as
follows.

1

π

( α′−1∑
j=α

∫ w(t; t(j+1))

w(t; t(j))

+

∫ w(t; s+′
c )

w(t; t(α′))

)
R(x2, ζ1, t)Q(ζ1, t)dζ1,

( at t = t(i+1), x2 = x2(l) ), (1.24)

where

R(x2, ζ1, t) =
N−1∑

m=−N

∫ q(t,x2; s(ζ1,t),−(m+1)∆x2)

q(t,x2; s(ζ1,t),−m∆x2)

P (x2, ζ1, ζ2, t) dζ2, (1.25a)

Q(ζ1, t) = [ζ1 − uw(i)] exp
(
− [ζ1 − uw(s(ζ1, t))]

2
)
, (1.25b)

P (x2, ζ1, ζ2, t) = ρw+

(
y2(x2, ζ1, ζ2, t), s(ζ1, t)

)
exp(−ζ22 ). (1.25c)

We first approximate R(x2, ζ1, t) and uw(s(ζ1, t)) in Q(ζ1, t) by linear functions of ζ1 in each
range of integration in Eq. (1.24). Noting that s(ζ1, t) = t(j) and thus uw(s(ζ1, t)) = uw(t(j)) =

uw(j) for ζ1 = w(t; t(j)), we let

R(x2, ζ1, t) = R(x2, w(t; t(j)), t)

+ [R(x2, w(t; t(j+1)), t)−R(x2, w(t; t(j)), t)]
ζ1 − w(t; t(j))

w(t; t(j+1))− w(t; t(j))
,

(1.26a)

uw(s(ζ1, t)) = uw(j) + [uw(j+1) − uw(j)]
ζ1 − w(t; t(j))

w(t; t(j+1))− w(t; t(j))
, (1.26b)

for w(t; t(j)) < ζ1 < w(t; t(j+1)), (j = α, α+ 1, ..., α′),

where

R(x2, w(t; t(j)), t) =
N−1∑

m=−N

∫ q(t,x2; t(j),−(m+1)∆x2)

q(t,x2; t(j),−m∆x2)

P (x2, w(t; t(j)), ζ2, t) dζ2, (1.27a)

P (x2, w(t; t(j)), ζ2, t) = ρw+

(
y2(x2, w(t; t(j)), ζ2, t), t(j)

)
exp(−ζ22 ). (1.27b)

Then, we approximate ρw+

(
y2(x2, w(t; t(j)), ζ2, t), t(j)

)
by a linear function of ζ2 in each range

of integration in Eq. (1.27a). That is, letting

q̂(j,m)(x2, t) = q(t, x2; t(j),−m∆x2), (1.28a)
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and noting that

y2(x2, w(t; t(j)), q̂(j,m)(x2, t), t) = −m∆x2, (1.29)

we put

ρw+

(
y2(x2, w(t; t(j)), ζ2, t), t(j)

)
= ρw+

(
−m∆x2, t(j)

)
+
[
ρw+

(
− (m+ 1)∆x2, t(j)

)
− ρw+

(
−m∆x2, t(j)

)] ζ2 − q̂(j,m)

q̂(j,m+1) − q̂(j,m)
, (1.30)

for q(t, x2; t(j),−m∆x2) < ζ2 < q(t, x2; t(j),−(m+ 1)∆x2),

(m = −N, ..., 0, ..., N − 1).

With these linear approximations in ζ1 and ζ2, the integral in Eq. (1.24) for each j can be expressed
in terms of the error function. By summing up the results for j, we can compute Eq. (1.24) or (1.23).
Thus, we can compute the integrals containing gw+ in Eq. (1.16) at t = t(i+1) and x2 = x2(l).

Here, we should note the following. If the trajectory x1 = xw(t
′) (t′ ∈ [0, t]) is convex

upward at t in the x1t plane as in Fig. 1.4, then t(α′) for c = n+ becomes t(α′) (= s+′
c ) = t(i+1)

(see Fig. (1.4), where n+ = 2). Thus, the integral from w(t; t(α′)) to w(t; s+′
c ) in Eq. (1.24)

vanishes, and the upper limit of the integral for j = α′ − 1 in the same equation be-
comes limϵ(>0)→0 w(t(i+1); t(i+1) − ϵ). But in consistency with the linear approximation in
Eq. (1.22a), we should assume xw(t(i+1) − ϵ) = xw(i) + uw(i)(∆t − ϵ), so that it follows from
Eqs. (1.13) and (1.22a) that limϵ(>0)→0 w(t(i+1); t(i+1) − ϵ)= uw(i) [we should interpret that
limϵ(>0)→0 w(t(i+1); t(i+1) + ϵ) = uw(i+1)]. On the other hand, the lower limit of the integral in
Eq. (1.24) for j = α′− 1 becomes w(t(i+1); t(i)), which reduces to uw(i) by the use of Eqs. (1.13)
and (1.22a). Therefore, the integral for j = α′ − 1 in Eq. (1.24) vanishes. In this way, we get rid
of ρw+( · , t(i+1)), which is unknown, from the numerical computation of the right-hand side of
Eq. (1.16) at t = t(i+1) and x2 = x2(l).

When the velocity of the plate uw approaches the final velocity uw∞, the trajectory x1 = xw(t)

becomes almost a straight line. Suppose that it approaches the straight line from below in the x1t
plane. For c = n+ and for large j, the w(t(i+1); t(j)), appearing as the limits of the range of
integrals in Eq. (1.24), becomes almost the same as the plate velocity uw(i). In this case, many
integrals under the summation in Eq. (1.24) can be replaced by a single integral over a much wider
integration range.

In this way, we obtain ρw+(x2(l), t(i+1)). Similarly, by the use of Eq. (1.18), we can obtain
ρw−(x2(l), t(i+1)). With these quantities, G±(t(i+1)) are obtained by the discretized versions of
Eqs. (1.19) and (1.20). In this process, the integrals under

∑n+

c=1 and
∑n−

c=1 in Eqs. (1.19) and
(1.20) are computed in the same way as in the case of Eq. (1.16) that have been explained above.
The only difference is that [ζ1 − uw(t)] in the integrand in Eq. (1.16) is replaced by [ζ1 − uw(t)]

2

in Eqs. (1.19) and (1.20). The additional integration with respect to x2 in Eqs. (1.19) and (1.20) is
carried out by the Simpson rule.

Starting from i = 0, we can determine the sequence {xw(n), uw(n)} (n = 1, 2, ...) by the use
of Eq. (1.22), until a necessary time is reached. We regard this sequence as the numerical solution
of our initial-boundary value problem given by Eqs. (1.6)–(1.11).

The reduction of the above solution procedure to the spatially one-dimensional problem (d = 1),
as well as its extension to the three-dimensional problem (d = 3), is straightforward.
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5 Results of numerical analysis
In the long time limit t→ ∞, the velocity of the plate uw(t) approaches the final velocity uw∞,

for which the drag G acting on the plate counterbalances the external force F . In this situation,
ρw± is obtained from Eqs. (1.16) and (1.18) by setting uw(t) = uw∞ and the summation terms
(the terms under

∑n+

c=1 and
∑n−

c=1) to be zero. We can calculate the drag G = G+ + G− from
Eqs. (1.19) and (1.20) by using the above ρw± and by setting uw(t) = uw∞ and the summation
terms to be zero. In this way, for given uw0 and M , the final velocity uw∞ is determined uniquely
by F . In what follows, we take uw∞ rather than F as a parameter, so that the dimensionless
parameters characterizing the problem are uw0, uw∞, and M [see Eq. (1.4)]. In addition, we set
M = 1 in this section, in consistency with Ref. [8, 9, 10, 11]. This might look unphysical because
M should be quite large for a standard solid. However, for the one-dimensional problem, the result
for a given M (and given uw0 and uw∞) can be obtained from that for M = 1 (and for the same
uw0 and uw∞) just by changing the scales of t and x1 by M (see Sec. 5.1). More specifically,
uw and ρw at t = t for M = M are given by uw and ρw at t = M t for M = 1. For the two-
and three-dimensional problem, since the change of the scale by M also applies to x2 and x3, the
result for M = 1 corresponds to that for M ̸= 1 for a plate with a size shrunk by M . In the
two-dimensional problem, for instance, uw and ρw at t = t for M = M for the plate with width
1 are given by uw and ρw at t = M t for M = 1 for the plate with width M . In any case, the
assumption M = 1 does not harm any essential feature of the problem.

In what follows, we will present the results of numerical analysis for the cases of d = 1, 2, and
3 separately. In addition, some remarks on the numerical computation, including the discussions
on the accuracy, will be given in Sec. 5.4. Our main concern is the time evolution of the velocity
uw(t) of the plate, or more specifically, the decay rate of uw∞ − uw(t), for long time t ≫ 1.
Moreover, one can infer from the analysis in [11] that the quantities rw+(t) = G+(t) − G0+(t)

and/or rw−(t) = G−(t)−G0−(t) have similar long-time behavior as uw∞−uw(t). Here, G0±(t)

is the drag acting on the left and right sides of the plate when the effect of recollision is neglected,
i.e.,

G0±(t) = ± 1

M

∫ 1/2

−1/2

{∫ ∞

−∞

∫
ζ1−uw(t)≶0

[ζ1 − uw(t)]
2 g0(ζ1, ζ2) dζ1dζ2

+

∫ ∞

−∞

∫
ζ1−uw(t)≷0

[ζ1 − uw(t)]
2

× π−1ρw0±(t) exp
(
− [ζ1 − uw(t)]

2 − ζ22
)
dζ1dζ2

}
dx2,

(1.31a)

ρw0±(t) = ∓2
√
π

∫ ∞

−∞

∫
ζ1−uw(t)≶0

[ζ1 − uw(t)] g0(ζ1, ζ2) dζ1dζ2, (1.31b)

with the correct solution uw(t) inserted. We will also show the behavior of these quantities. We
also introduce the following auxiliary quantities:

αu =
d log |uw∞ − uw(t)|

d log t
, αr± =

d log |rw±(t)|
d log t

, (1.32)

where log( · ) is the common logarithm [log( · ) = log10( · )]. Corresponding to the long-time
behavior (1.1) and (1.2), we have αu ≈ −Ct (C is a constant) and αu ≈ −n, respectively.
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Fig. 1.5 Long-time behavior for 0≤ uw0 < uw∞ (one-dimensional problem). (a) log |uw∞−
uw| vs log t, (b) log |rw+| vs log t, (c) αu vs log t, (d) αr+ vs log t.

For large t, |uw∞ − uw(t)| becomes very small and loses accuracy because of the cancellation
error. Even if it keeps the accuracy of, say three figures, it becomes very difficult to obtain accurate
values of the derivative αu by a finite difference applied to local values of log |uw∞ − uw|. To
avoid this difficulty, we calculate αu and αr± in the following manner. Let η = log t and let
us consider the interval m ≤ η < m + 1 (m: integer). We divide this interval into 100 small
sections with the grid points ηj = m + 0.01j (j = 0, 1, 2, ..., 99). Then, we associate each grid
point η = ηj with an interval Ij = [ηj − 0.005, ηj + 0.005]. On the basis of the data points of
log |uw∞−uw(t)| (or log |rw±(t)|) contained in Ij , we obtain a linear function of η using the least
square method and regard its gradient as αu (or αr±) at η = ηj . Since the standard time step in the
present computation is ∆t = 0.01, there are many data points in each Ij for large t.

5.1 One-dimensional problem

We start with the one-dimensional (1D) problem (d = 1), where the plate is an infinitely wide
plate in the x2x3 plane. In this case, the reference length L and the reference time τ0 should be
defined as arbitrary numbers satisfying the relation τ0 = L(2kT0/m∗)

−1/2. Therefore, we can
choose them in such a way that M = 1.

We first consider the case of 0 ≤ uw0 < uw∞. Figure 1.5 shows the results for various values of
the parameters (uw∞, uw0): More specifically, log |uw∞ −uw(t)| vs log t is shown in Fig. 1.5(a),
log |rw+(t)| vs log t in Fig. 1.5(b), αu vs log t in Fig. 1.5(c), and αr+ vs log t in Fig. 1.5(d) for the
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Table 1.1 Values of αu(t) at large times (one-dimensional problem).

−αu

t log t Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

31.62 1.5 2.036055 2.031885 2.025712 2.016124 2.016933 2.016124

100.00 2.0 2.011302 2.010035 2.008112 2.004999 2.005267 2.004999

316.23 2.5 2.003564 2.003168 2.002563 2.001571 2.001657 2.001571

1000.00 3.0 2.001126 2.001001 2.000810 2.000496 2.000523 2.000496

3162.28 3.5 2.000356 2.000316 2.000256 2.000157 2.000165 2.000157

10000.00 4.0 2.000113 2.000100 2.000081 2.000048 2.000052 2.000048

Table 1.2 Value of αr+(t) at large times (one-dimensional problem).

−αr+

t log t Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

31.62 1.5 2.018999 2.020111 2.017545 2.004910 2.000202 1.999407

100.00 2.0 2.006094 2.006417 2.005585 2.001617 2.000090 1.999824

316.23 2.5 2.001935 2.002034 2.001769 2.000518 2.000031 1.999945

1000.00 3.0 2.000613 2.000644 2.000560 2.000164 2.000010 1.999983

3162.28 3.5 2.000194 2.000204 2.000177 2.000052 2.000003 1.999995

10000.00 4.0 2.000061 2.000064 2.000056 2.000016 2.000001 1.999998

following values of the parameters:

Case 1: (uw∞, uw0) = (1.5, 0),
Case 2: (uw∞, uw0) = (2.35815, 0),
Case 3: (uw∞, uw0) = (3.55659, 0),
Case 4: (uw∞, uw0) = (1.5, 0.75),
Case 5: (uw∞, uw0) = (1.5, 1.125),
Case 6: (uw∞, uw0) = (1.5, 1.3125),
Case 7: (uw∞, uw0) = (1.5, 0) [no recollision].

Case 7 is the same as Case 1, but the effect of recollision is neglected. Some values of αu and αr+

at large times for Case 1 to Case 6 are shown in Tables 1.1 and 1.2. It is seen from Figs. 1.5(a)
and 1.5(b) that, in all cases except Case 7, log |uw∞ − uw(t)| and log |rw+(t)| seem to become
linearly decreasing functions of log t for t larger than 10. Figures 1.5(c) and 1.5(d), together with
Tables 1.1 and 1.2, demonstrate that the gradients, αu and αr+, approach −2, which is consistent
with Eq. (1.2) with n = d+1, obtained theoretically in [11] under the condition (1.3). On the other
hand, in Case 7, the approach of uw(t) to uw∞ is much faster. If log |uw∞−uw(t)| is plotted versus
t rather than log t, one can see that the approach is exponential as in Eq. (1.1). The computation
shows that in all the cases, uw∞ − uw(t) is always positive and decreases monotonically (i.e., the
velocity of the plate increases monotonically to the final velocity). In other words, the trajectory
x1 = xw(t) is always convex upward in the x1t plane, so that n+ = 1 and n− = 0. Incidentally,
rw+ is always positive (except Case 7 for which rw+ = 0), and rw− = 0.

We next show some results for the case of 0 ≤ uw∞ < uw0. Figure 1.6 contains the results of



5 Results of numerical analysis 15

Fig. 1.6 Time evolution for 0 ≤ uw0 < uw∞ (one-dimensional problem). (a) trajectory x1 =
xw(t), (b) magnified figure of (a), (c) uw∞ − uw(t) vs t, (d) αu and αr− vs log t.

the following three cases:

Case 8: (uw∞, uw0) = (0, 1),
Case 9: (uw∞, uw0) = (1.5, 6),
Case 10: (uw∞, uw0) = (0, 1) [no recollision].

Case 10 is the same as Case 8 except that the effect of recollision is neglected. Figure 1.6(a) shows
the trajectory x1 = xw(t) for Case 8 (solid line) and Case 10 (dashed line) in the x1t plane (cf.
Fig. 1.4). In these cases the plate stops in the limit t→ ∞, since there is no external force. As one
can see from the figure, xw(t) in Case 8 does not increase monotonically as time goes on. That
is, the plate once exceeds the final position xw(∞) slightly and then comes back to it. In contrast,
such an overshoot is not observed in Case 10. Figure 1.6(b) is a magnified figure of Fig. 1.6(a),
and Fig. 1.6(c) shows uw∞ − uw(t) vs t for the three cases. As seen from Fig. 1.6(c), the plate
velocity uw(t), which is larger than uw∞ initially, once becomes slightly smaller than uw∞ and
then approaches it from below. In Cases 8 and 9, the peak of uw∞ − uw(t) (uw∞ = 0 in Case 8)
is attained, respectively, at t = t∗ = 3.4775 and 2.6125, at which the curvature of the trajectory
x1 = xw(t) changes its sign [see Fig. 1.6(b)]. In contrast, the overshoot of uw∞ − uw(t) is not
observed in Case 10 where the effect of recollision is neglected. In Fig. 1.6(d), αu and αr− vs log t
are shown for Cases 8 and 9. Both of them approach −2. In these cases, n+ = 0 and n− = 1 for
0 < t ≤ t∗, whereas n+ = 1 and n− = 1 for t∗ < t. In Cases 8 and 9, |rw+| is negligibly small
compared with |rw−|. The overshoot of the position and the velocity difference uw∞−uw(t) have
been predicted theoretically in [9] in the case of specular reflection under the condition (1.3).
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Fig. 1.7 Long-time behavior for 0≤ uw0 < uw∞ (two-dimensional problem). (a) log |uw∞−
uw| vs log t, (b) log |rw+| vs log t, (c) αu vs log t, (d) αr+ vs log t.

5.2 Two-dimensional problem

Next we consider the two-dimensional (2D) problem (d = 2) that is described explicitly in
Secs. 2–4. Figure 1.7 shows the results for Case 1, ..., Case 6 (see Sec. 5.1) in the present 2D
problem. The figure corresponds to Fig. 1.5 for the 1D problem. Some values of αu and αr+ at
large times up to t = 103 for Case 1 to Case 6 are shown in Tables 1.3 and 1.4. In the figure,
“Case 1 (1D)” indicates the result for Case 1 in the 1D problem. As seen from Figs. 1.7(a)–1.7(d)
and Tables 1.3 and 1.4, both of log |uw∞ − uw(t)| and log |rw+(t)| seem to become linearly
decreasing functions, with gradient −3, of log t for large t. This is consistent with Eq. (1.2) with
n = d+1, obtained theoretically under the condition (1.3) in [11]. The results of αu in Fig. 1.7 (c),
in particular those for Cases 5 and 6, show oscillation for log t larger than about 3 (i.e., t ≳ 1000).
The reason for this phenomenon is the following. The decay of |uw∞ − uw(t)| is faster in the
2D problem, and its value becomes smaller than 10−11 for t larger than 103. This is smaller than
the same quantity in the 1D problem by three to four orders of magnitude, so that it suffers from
cancellation errors at earlier times. Because of this factor, the accuracy of the derivative αu seems
to be lost for t ≳ 1000 though |uw∞ −uw(t)| itself is still fairly accurate. The fact that we need to
handle the additional x2 variable in the 2D problem also increases the computational load. For αr+

in Fig. 1.7(d), the oscillation is not observed yet. As in the 1D problem, uw∞ − uw(t) is positive
and decreases monotonically, and we have n+ = 1, n− = 0, rw+ > 0, and rw− = 0.
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Table 1.3 Values of αu(t) at large times (two-dimensional problem).

−αu

t log t Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

31.62 1.5 3.063329 3.056900 3.048011 3.042502 3.033773 3.030717

100.00 2.0 3.019708 3.017834 3.015121 3.013234 3.010493 3.009530

316.23 2.5 3.006203 3.005624 3.004769 3.004169 3.003297 3.003054

1000.00 3.0 3.001961 3.001778 3.001516 3.001286 3.000979 3.000809

Table 1.4 Values of αr+(t) at large times (two-dimensional problem).

−αr+

t log t Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

31.62 1.5 3.037372 3.039033 3.035636 3.016899 3.008318 3.005314

100.00 2.0 3.011864 3.012389 3.011320 3.005424 3.002697 3.001738

316.23 2.5 3.003757 3.003922 3.003585 3.001723 3.000859 3.000555

1000.00 3.0 3.001188 3.001241 3.001134 3.000546 3.000272 3.000176

5.3 Three-dimensional problem

Finally we show some results for the three-dimensional (3D) problem (d = 3), where the plate
(without thickness) is a rectangle with sides L and H , located initially at X1 = 0, −L/2 ≤ X2 ≤
L/2, and −H/2 ≤ X3 ≤ H/2 (or x1 = 0, −1/2 ≤ x2 ≤ 1/2, and −H/2L ≤ x3 ≤ H/2L).
Figure 1.8 shows some preliminary results, based on rather coarse grids in x2 and x3 (see Sec. 5.4),
for Case 1 in Sec. 5.1 for different aspect ratios: H/L = 1, 2, 4, 8, and 16. As in Figs. 1.5 and
1.7, the panels (a), (b), (c), and (d) show log |uw∞ − uw(t)|, log |rw(t)|, αu, and αr+ vs log t,
respectively. The 2D problem (H/L → ∞) is also shown by the dashed line in Figs. 1.8(a) and
1.8(b). It is seen from the figure that αu and αr+ have a tendency to approach −4, which is
consistent with the theoretical result, Eq. (1.2) with n = d+1, obtained in [11] under the condition
(1.3). However, to see it more clearly, we have to obtain a more accurate numerical solution until
much larger t, which requires a very heavy computation. Therefore, we carry out such computation
only for H/L = 1. Figure 1.9 shows αu and αr+ vs log t obtained by this computation, and Table
1.5 gives the corresponding numerical values at long times. It is seen from Fig. 1.9 and Table 1.5
that αu and αr+ tends to approach −4. In Fig. 1.9(a), an oscillation, similar to that in Fig. 1.7(c),
is observed before log t = 2.5 (t = 316). As in the 1D and 2D problems, uw∞ − uw(t) is always
positive and decreases monotonically, and we have n+ = 1, n− = 0, rw+ > 0, and rw− = 0 for
all the cases in Figs. 1.8 and 1.9

5.4 Remarks on numerical computation

In the present computation, we have restricted ourselves to the case of the diffuse reflection,
rather than the specular reflection. The first reason is that the case of the specular reflection is more
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Fig. 1.8 Long-time behavior for Case 1 with various aspect ratios (three-dimensional problem).
(a) log |uw∞ − uw| vs log t, (b) log |rw+| vs log t, (c) αu vs log t, (d) αr+ vs log t.

Fig. 1.9 Long-time behavior for Case 1 with H/L = 1 (square plate) (three-dimensional
problem). (a) αu vs log t, (b) αr+ vs log t.
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Table 1.5 Values of αu(t) and αr+(t) at large times for Case 1 with H/L = 1 (square plate)
(three-dimensional problem).

t log t −αu −αr+

15.85 1.2 4.169216 4.094073

31.62 1.5 4.082090 4.047232

100.00 2.0 4.025448 4.014949

316.23 2.5 4.008078 4.004729

1000.00 3.0 · · · 4.001496

tractable mathematically, so that more rigorous results are available [8, 9, 10]. Therefore, studying
the case of the diffuse reflection is more complementary. The second and main reason is that the
computation is more difficult for the specular reflection. For the diffuse reflection, we need to store
only xw(t(j)), uw(t(j)), and ρw±(x2(l), t(j)) at all t(j), from which we can compute the velocity
distribution function of the molecules leaving the plate. In contrast, for the specular reflection,
we have to either store the velocity distribution function of the leaving molecules at all t(j) or
trace back, at each t(i), the trajectories of the recolliding molecules until the initial distribution is
reached. These processes, which are memory-consuming or time-consuming, make a long-time
computation formidable.

In the computation for Fig. 1.5 and Fig. 1.6(d) in the 1D problem, we have set ∆t = 0.01.

Table 1.6 Values of u∞ − uw(t) for Case 1 with different ∆t (one-dimensional problem).

u∞ − uw(t)

t log t ∆t = 0.1 ∆t = 0.05 ∆t = 0.02 ∆t = 0.01

1 0.0 4.9198× 10−2 5.8070× 10−2 6.2945× 10−2 6.4500× 10−2

5 0.7 5.9364× 10−4 7.2347× 10−4 8.0840× 10−4 8.3765× 10−4

10 1.0 1.3178× 10−4 1.6031× 10−4 1.7893× 10−4 1.8533× 10−4

50 1.7 4.8105× 10−6 5.8464× 10−6 6.5211× 10−6 6.7529× 10−6

100 2.0 1.1892× 10−6 1.4451× 10−6 1.6118× 10−6 1.6690× 10−6

500 2.7 4.7144× 10−8 5.7286× 10−8 6.3889× 10−8 6.6157× 10−8

1000 3.0 1.1773× 10−8 1.4305× 10−8 1.5954× 10−8 1.6520× 10−8

t log t ∆t = 0.005 ∆t = 0.002 ∆t = 0.001

1 0.0 6.5265× 10−2 6.5720× 10−2 6.5871× 10−2

5 0.7 8.5243× 10−4 8.6135× 10−4 8.6433× 10−4

10 1.0 1.8856× 10−4 1.9051× 10−4 1.9116× 10−4

50 1.7 6.8699× 10−6 6.9404× 10−6 6.9639× 10−6

100 2.0 1.6979× 10−6 1.7153× 10−6 1.7212× 10−6

500 2.7 6.7301× 10−8 6.7996× 10−8 6.8221× 10−8

1000 3.0 1.6806× 10−8 1.6978× 10−8 1.7036× 10−8
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Table 1.7 Values of αu(t) for Case 1 with different ∆t (one-dimensional problem).

−αu

t log t ∆t = 0.1 ∆t = 0.05 ∆t = 0.02 ∆t = 0.01

31.62 1.5 2.032576 2.034489 2.035645 2.036055

100.00 2.0 2.010204 2.010803 2.011176 2.011302

316.23 2.5 2.003216 2.003407 2.003523 2.003564

1000.00 3.0 2.001017 2.001076 2.001113 2.001126

t log t ∆t = 0.005 ∆t = 0.002 ∆t = 0.001

31.62 1.5 2.036443 2.036470 2.036479

100.00 2.0 2.011416 2.011424 2.011427

316.23 2.5 2.003599 2.003602 2.003603

1000.00 3.0 2.001137 2.001138 2.001138

However, for Figs. 1.6(a)–1.6(c), which require very accurate computation at short times, we used
a smaller time step ∆t = 0.005. We have also examined the effect of the time step ∆t on the
solution for Case 1. Some results are shown in Tables 1.6 and 1.7. Table 1.6 shows the values
of u∞ − uw(t) at different times for ∆t = 0.1, 0.05, 0.02, 0.01, 0.005, 0.002, and 0.001, and
Table 1.7 the values of αu at large times for the same ∆t’s. Table 1.6 clearly shows the fact that
our finite-difference scheme (1.22) is of first order in ∆t. According to the same table, we need
∆t = 0.01 to obtain the accuracy of 3%-relative error and ∆t = 0.005 the accuracy of 1.5%-
relative error. However, Table 1.7 shows that the decay exponent αu is much less sensitive to ∆t

and that ∆t = 0.01 is sufficient to obtain accurate values of αu.
The 2D computation for the data in Fig. 1.7 was performed with ∆t = 0.01 and ∆x2 = 1/14.

Here, we have checked the effect of ∆x2 on the solution with finer grid points, ∆x2 = 1/30 and
1/62, for Case 1. Some results are shown in Tables 1.8 and 1.9. To be more specific, Table
1.8 shows u∞ − uw(t) at different times for ∆x2 = 1/14, 1/30 and 1/62, and Table 1.9 the
corresponding values of αu at some large times. As seen from these tables, ∆x2 = 1/14 gives a
sufficiently accurate result.

Table 1.8 Values of u∞ − uw(t) for Case 1 with different ∆x2 (two-dimensional problem).

u∞ − uw(t)

t log t ∆x2 = 1/14 ∆x2 = 1/30 ∆x2 = 1/62

1 0.0 5.901367× 10−2 5.901460× 10−2 5.901480× 10−2

5 0.7 9.972841× 10−5 9.973847× 10−5 9.974059× 10−5

10 1.0 9.949553× 10−6 9.950565× 10−6 9.950777× 10−6

50 1.7 6.747572× 10−8 6.748259× 10−8 6.748403× 10−8

100 2.0 8.268005× 10−9 8.268846× 10−9 8.269023× 10−9

500 2.7 6.510437× 10−11 6.511103× 10−11 6.511236× 10−11

1000 3.0 8.121948× 10−12 8.122836× 10−12 8.123058× 10−12
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Table 1.9 Values of αu(t) for Case 1 with different ∆x2 (two-dimensional problem).

−αu

t log t ∆x2 = 1/14 ∆x2 = 1/30 ∆x2 = 1/62

31.62 1.5 3.063329 3.0633287 3.0633287

100.00 2.0 3.019708 3.0197084 3.0197083

316.23 2.5 3.006202 3.0062039 3.0062040

1000.00 3.0 3.001961 3.0019547 3.0019512

The 3D computation, which is much heavier than 2D computation, prevents from using fine grid
points in x2 and x3. Therefore, we have used ∆t = 0.01 and ∆x2 = ∆x3 = 1/6 [i.e., 7×7(H/L)

points on the plate] for the preliminary result shown in Fig. 1.8, where ∆x3 is the grid size in
the x3 direction. However, in order to establish the reliable long time behavior, we carried out a
computation with finer grid points in x2 and x3 for the square plate (H/L = 1, Case 1), i.e., a
computation with ∆t = 0.01 and ∆x2 = ∆x3 = 1/14. Figure 1.9 demonstrates such a result. In
this connection, we have carried out the same computation with larger time steps, ∆t = 0.1, 0.05,
and 0.02, to see the effect of the time step. The results are shown in Tables 1.10 and 1.11.

The computation was carried out with quadruple precision. If we perform the 2D computation
with double precision, the strong oscillation exhibited in Fig. 1.7(c) appears at much earlier times.

Table 1.10 Values of u∞ − uw(t) for Case 1 (H/L = 1) with different ∆t (three-dimensional problem).

u∞ − uw(t)

t log t ∆t = 0.1 ∆t = 0.05 ∆t = 0.02 ∆t = 0.01

1 0.0 4.1660× 10−2 4.9610× 10−2 5.3867× 10−2 5.5210× 10−2

5 0.7 8.7286× 10−6 1.0632× 10−5 1.1883× 10−5 1.2317× 10−5

10 1.0 4.1238× 10−7 4.9498× 10−7 5.4796× 10−7 5.6604× 10−7

50 1.7 5.3709× 10−10 6.4109× 10−10 7.0732× 10−10 7.2982× 10−10

100 2.0 3.2744× 10−11 3.9065× 10−11 4.3088× 10−11 4.4454× 10−11

500 2.7 5.1292× 10−14 6.1284× 10−14 6.7502× 10−14 6.9722× 10−14

1000 3.0 3.1086× 10−15 3.7748× 10−15 4.2188× 10−15 4.4409× 10−15

Table 1.11 Values of αu(t) for Case 1 (H/L = 1) with different ∆t (three-dimensional problem).

−αu

t log t ∆t = 0.1 ∆t = 0.05 ∆t = 0.02 ∆t = 0.01

15.85 1.2 4.149665 4.160207 4.166830 4.169216

31.62 1.5 4.073104 4.077973 4.081020 4.082090

100.00 2.0 4.022755 4.024270 4.025114 4.025448

158.49 2.2 4.013993 4.015431 4.015819 4.015973
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It should be mentioned that we have employed a fast algorithm for the error function provided by
T. Ooura, available from his home page (http://www.kurims.kyoto-u.ac.jp/˜ooura/index.html). The
algorithm is for double precision, but we have confirmed that it gives an accuracy of 19 significant
figures if it is used in a quadruple-precision computation.

The computation has been carried out on a Personal Computer with CPU: Intel(R) Xeon(R)
X5355 2.66GHz× 8.

6 Concluding remarks
In this paper we have investigated numerically an unsteady motion of a plate in a free-molecular

gas at rest caused by a uniform external force and by a drag exerted by the gas molecules, with
special interest in the rate of approach to the final steady motion. The study complements the
preceding mathematical results [8, 9, 10, 11] on a similar problem (a circular disk or general convex
body, rather than a plate, was considered in these works) that showed a slow approach in proportion
to some inverse power of time. In these works it was also revealed that the slow approach is caused
by the fact that some of the molecules that have been reflected by the body in the past are hit by
the body again (recollision). The theoretical results, however, are based on the assumption that the
initial velocity of the body is very close to its final velocity. In the present study we were able to
provide some numerical evidences, in the case of diffuse reflection studied in [11], that the same
result holds when the initial velocity of the body is quite different from the final velocity.

The motion of a body in a free-molecular gas is encountered in connection with the motion
of nanoscale aerosol particles, that of satellites or spacecrafts, etc. When the motion is unsteady
and undergoes acceleration, deceleration, rotation, etc., one expect that the gas molecules keep a
memory from the initial stage because of the absence of intermolecular collisions that destroy the
memory, and this fact may affect the motion of the body at later times. The present study, as well
as the previous studies [8, 9, 10, 11], clarifies the basic properties of the effect of long memory,
which manifests itself in the form of recollision of the molecules. There are some interesting
studies of migrations of a convex body in a free-molecular gas caused by various kinds of forces
(thermophoresis, shearing phoresis, etc.) [17, 18, 19]. However, in spite of the fact that these
migrations contain unsteady motions of the body, the effect of recollision is not taken into account
in these works. That is, the distribution function of the gas molecules impinging on the body is
assumed to be given by that at infinity at any instant. If the effect of recollision is taken into
account, it may change the trajectory of the body significantly. The present study provides a first
step to tackle such problems.
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Chapter 2

Relaxation of a free-molecular gas to
equilibrium caused by interaction
with vessel wall

Abstract A free-molecular gas contained in a static vessel with a uniform
temperature is considered. The approach of the velocity distribution function
of the gas molecules from a given initial distribution to the uniform equilibrium
state at rest is investigated numerically under the diffuse reflection boundary
condition. This relaxation is caused by the interaction of gas molecules with
the vessel wall. It is shown that, for a spherical vessel, the velocity distribution
function approaches the final uniform equilibrium distribution in such a way
that their difference decreases in proportion to an inverse power of time. This
is slower than the known result for a rarefied gas with molecular collisions.

1 Introduction
Let us consider an ideal rarefied gas contained in a vessel kept at a uniform temperature. In

the absence of the gravity, the steady state of the gas is the uniform equilibrium at rest at the
same temperature as the vessel. If the equilibrium is perturbed, the state of the gas approaches the
equilibrium as time goes on. In the present paper, we are concerned with this approach.

When the mean free path of the gas molecules is not negligibly small compared with the size
of the vessel, the continuum fluid dynamics is not valid, and we need to use kinetic theory to de-
scribe the above-mentioned approach to the equilibrium. That is, it is described by the Boltzmann
equation with its initial and boundary conditions. It is intuitively clear that the velocity distribu-
tion function of the gas molecules, starting from a given initial distribution, approaches the global
stationary Maxwellian distribution with a density given by the average density of the initial dis-
tribution and with the same temperature as the vessel, which we call the final equilibrium state.
However, the mathematical proof of the statement is relatively recent [1, 2].

In recent years, the rate of approach to the final equilibrium state has been an important subject
of mathematical study of the Boltzmann equation [3, 4, 5, 6, 7]. In [6], the following result is
reported. Let t∗ be the time variable, f∗ the velocity distribution function of the gas molecules, and
Mw∗ the final equilibrium distribution. If the boundary condition on the vessel wall is the diffuse
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reflection, then, it holds that

∥f∗ −Mw∗∥ = O(t−δ
∗ ), as t∗ → ∞, (2.1)

with any positive number δ, where ∥ · ∥ is a suitably defined norm. The almost exponential decay
estimate (2.1) is also true for some different types of boundary condition on the vessel wall, such
as the specular reflection [3, 4] and the periodic condition [3, 4]. However, for these boundary
conditions, the temperature of the final equilibrium state is determined by the initial condition.
It should be mentioned that the exponential decay has been proven recently [7] for the above-
mentioned boundary conditions with stronger mathematical results in the case where the solution
is close to the final equilibrium state.

The approach to the equilibrium is caused by the two factors:

(i) The collisions between gas molecules.
(ii) The interaction between the gas molecules and the vessel wall.

The effect of factor (ii) is absent for the specular reflection and the periodic boundary condition.
Now let us consider the case where the gas is so rarefied that the interaction between the gas

molecules is neglected. Such a gas is called the free-molecular gas or the Knudsen gas, character-
ized by infinitely large Knudsen number (the mean free path of the gas molecules divided by the
characteristic length of the vessel). In this case, the approach to the final equilibrium state is caused
only by the factor (ii). Therefore, the manner of approach may depend on the type of interaction
between the gas molecules and the vessel wall, i.e., the boundary condition of the Boltzmann equa-
tion, as well as the shape and space dimension of the vessel. In fact, if the initial distribution is not
an equilibrium state, the gas never approaches the final equilibrium state for the specular reflection
and for the periodic condition, since these conditions have no thermalizing effect. Furthermore,
even for the boundary conditions with thermalizing effect, the thermalization takes place nonuni-
formly in the molecular velocity space. That is, fast molecules hit the boundary and are thermalized
quickly, whereas it takes long time for slow molecules to interact with the boundary. The nonuni-
form convergence of the velocity distribution function in the molecular velocity space may cause
a slow approach of the velocity-averaged (or macroscopic) quantities to their equilibrium values.

The approach to the final equilibrium state for a free-molecular gas is a special case of the
approach to the stationary solution when the wall temperature is not uniform. The latter problem
has been studied by several authors: for instance, [2] for the diffuse reflection condition in the three-
dimensional (3D) setting, [8, 9] for a more general boundary condition in the one-dimensional
(1D) setting, and [10] for a discrete-velocity model in the 1D setting. In these works, however,
the rate of the approach has not been discussed. To the best of the authors’ knowledge, the only
exception is the recent work by Yu [11], in which an interesting probabilistic method has been
developed for the approach to the stationary solution in the 1D setting (in a slab) for the diffuse
reflection. He was able to give detailed estimates for the rate of the non-uniform convergence of
the velocity distribution function mentioned above. However, the optimal rate of approach to the
final equilibrium state, which is comparable to Eq. (2.1), has not been found yet.

In the present study, we investigate this problem (the approach of a free-molecular gas to the final
equilibrium state) numerically. We consider a free-molecular gas in a vessel, on the wall of which
the gas molecules make the diffuse reflection. We restrict ourselves to a vessel of spherical shape
of dimension d, i.e., a sphere for the 3D case (d = 3), a circular cylinder for the 2D case (d = 2),
and a gap between two parallel plates for 1D case (d = 1). In addition, we are mainly concerned
with the spherically symmetric case with a spatially uniform initial condition. These restrictions
make the computation for the 2D and 3D cases feasible. We will investigate the decay rate to the
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final equilibrium state of the velocity distribution function as well as the macroscopic quantities.
As the result, we will give numerical evidence that the decay is in proportion to an inverse power
of time, for instance,

∥f∗ −Mw∗∥ ≈ C(d)/td∗, (d = 1, 2, 3), (2.2)

as t∗ → ∞, where ∥ · ∥ is a kind of L1 norm in the position and molecular velocity, and C(d)

positive constants.

2 Formulation of the problem
2.1 Problem, assumptions, and notations

Consider a rarefied monatomic gas in a vessel kept at a uniform and constant temperature Tw∗.
If the state of the gas is given at the initial time t∗ = 0, then it evolves in time and approaches the
final equilibrium state, i.e., the uniform equilibrium state at rest with temperature Tw∗ and density
the average density of the initial state. We investigate the process of approach numerically, with
special interest in the asymptotic behavior of the gas, under the following assumptions:

(i) The behavior of the gas is described by the Boltzmann equation.
(ii) The gas is so rarefied that the effect of the collision between the gas molecules is negligible

(free-molecular or Knudsen gas).
(iii) The interaction between the gas molecules and the vessel wall is described by the diffuse

reflection. That is, the gas molecules leaving the wall are distributed according to the sta-
tionary Maxwellian distribution with temperature Tw∗, and the condition of no net mass flux
across the wall is satisfied.

(iv) The vessel is of spherical shape of dimension d with diameter L. To be more specific, the
vessel is a sphere of diameter L for d = 3, a circular cylinder of diameter L for d = 2, and
a gap of width L between two parallel plates for d = 1.

Let ρ0∗ be the average density of the gas associated with the initial velocity distribution function.
Then, the final equilibrium distribution Mw∗ is given by

Mw∗ =
ρ0∗

(2πRTw∗)3/2
exp

(
− ξ2i
2RTw∗

)
, (2.3)

where ξi is the molecular velocity, and R is the gas constant per unit mass (R = k/m with k the
Boltzmann constant and m the mass of a molecule). We take

L, Tw∗, ρ0∗, cw∗ = (2RTw∗)
1/2, tw∗ = L/cw∗, (2.4)

as the reference length, temperature, density, velocity, and time, respectively. Let Xi be the Carte-
sian coordinates in space, t∗ the time variable (as already appeared), f∗(Xi, ξi, t∗) the velocity
distribution function of the gas molecules, ρ∗(Xi, t∗) the density of the gas, ui∗(Xi, t∗) the flow
velocity, and T∗(Xi, t∗) the temperature. Then, we introduce the dimensionless counterparts [xi,
t, ζi, f , Mw, ρ, ui, T ] of [Xi, t∗, ξi, f∗(Xi, ξi, t∗), Mw∗, ρ∗(Xi, t∗), ui∗(Xi, t∗), T∗(Xi, t∗)]
by the following relations:

Xi = Lxi, t∗ = tw∗t, ξi = cw∗ζi,

f∗ = (ρ0∗/c
3
w∗) f, Mw∗ = (ρ0∗/c

3
w∗)Mw,

ρ∗ = ρ0∗ρ, ui∗ = cw∗ui, T∗ = Tw∗T.

(2.5)
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We suppose that the spherical vessel (of dimension d) is given by Sd(xi) = 0 (d = 1, 2, 3) in the
dimensionless xi space and its inside (the region of the gas) is described by D = {xi |Sd(xi) <

0 }. That is,

S1(x1) =x
2
1 −

1

4
, (2.6a)

S2(x1, x2) =x
2
1 + x22 −

1

4
, (2.6b)

S3(x1, x2, x3) =x
2
1 + x22 + x23 −

1

4
. (2.6c)

In addition, ni(xi) = −∇Sd/|∇Sd| denotes the unit normal vector to the surface of the vessel
pointed to the gas.

2.2 Basic equation

The (dimensionless) Boltzmann equation for a free-molecular gas reads

∂f

∂t
+ ζi

∂f

∂xi
= 0. (2.7)

The corresponding initial condition is given by

f(xi, ζi, 0) = f0(xi, ζi), (2.8)

and the boundary condition (diffuse reflection) on the vessel wall by

f(xi, ζi, t) = fw(xi, ζi, t), for Sd(xi) = 0, ζini > 0, (2.9a)
fw(xi, ζi, t) = ρw(xi, t)Mw(ζi), (2.9b)

ρw(xi, t) = −2π1/2

∫
ζjnj<0

ζjnjf(xi, ζi, t)dζ, (2.9c)

where dζ = dζ1dζ2dζ3, and Mw is the dimensionless reference Maxwellian (i.e., the dimension-
less final equilibrium distribution), i.e.,

Mw(ζi) = π−3/2 exp(−ζ2i ). (2.10)

Here, we exclude the initial condition f0 containing the Dirac delta centered at ζi = 0.
The density ρ, flow velocity ui, and temperature T are defined as the following moments of f :

ρ(xi, t) =

∫
all ζi

fdζ, (2.11a)

ui(xi, t) =
1

ρ

∫
all ζi

ζifdζ, (2.11b)

T (xi, t) =
2

3ρ

∫
all ζi

(ζi − ui)
2fdζ. (2.11c)

In addition, we introduce the following quantity W (f |Mw):

W (f |Mw) =

∫
all ζi

f ln(f/Mw)dζ, (2.12)
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the dimensional counterpart of which is given as

W∗(f∗|Mw∗) = ρ0∗W (f |Mw) =

∫
all ξi

f∗ ln(f∗/Mw∗)dξ. (2.13)

As time goes on, f approaches the final equilibrium state Mw except at ζi = 0. Thus, we have

lim
t→∞

ρw(xi, t) = 1, (2.14)

and

lim
t→∞

ρ(xi, t) = 1, lim
t→∞

ui(xi, t) = 0,

lim
t→∞

T (xi, t) = 1, lim
t→∞

W (f |Mw) = 0.
(2.15)

The fact that f approaches the unique limit Mw is intuitively obvious for a vessel of arbitrary
shape. However, its mathematical proof is relatively recent [1, 2].

When f∗ is a local Maxwellian distribution,W∗/ρ∗ reduces to ln(ρ∗/ρ0∗)−(3/2) ln(T∗/Tw∗)+

(3/2)(T∗/Tw∗) + const, which can be expressed as (e∗ − Tw∗s∗)/RTw∗ + const, where e∗ and
s∗ are the internal energy and entropy per unit mass, respectively. Since F∗ = e∗ − T∗s∗ is the
Helmholtz free energy per unit mass, W∗ is similar to it. In particular, F∗ for ρ∗ = ρ0∗ and
T∗ = Tw∗ corresponds to W∗ = 0. Let us denote by ⟨W ⟩ the integral of W over the vessel, i.e.,

⟨W ⟩ =
∫
D
Wdx, (2.16)

with dx = dx1dx2dx3 and with the obvious interpretation in the 1D and 2D cases. Then, we
can show, from Eqs. (2.7) and (2.9), that d⟨W ⟩/dt ≤ 0 and the equality sign holds if and only if
f = Mw (i.e., W = 0). This fact is consistent with the Helmholtz potential minimum principle
in thermodynamics [12]. Since ⟨W ⟩ has been used as a measure of deviation of f from Mw (e.g.,
[3, 4, 5, 6, 8]), we also use it for the same purpose.

3 Preliminaries
In this section, we carry out some preliminary analyses for the numerical analysis. The solution

of the Boltzmann equation (2.7) for a free-molecular gas is expressed as

f(xi, ζi, t) = f(xi − ζi(t− s), ζi, s), (0 ≤ s ≤ t). (2.17)

That is, the velocity distribution function is constant along the trajectory of a molecule in the (xi, t)
space. Therefore, one can obtain information on the velocity distribution function by tracing back
the trajectory of the molecules. If we trace back, from a given point (xi, t) in the (xi, t) space,
the trajectory of a molecule with a given velocity ζi, we either reach the initial time t = 0 without
hitting the vessel wall or hit the wall at time s in the past. The time s, which is a function of xi, ζi,
and t, is obtained as follows.

Since the molecule with velocity ζi that left the vessel wall at time s reaches the position xi at
time t, the following relation holds (see Fig. 2.1).

x′i = xi − (t− s)ζi, Sd(x
′
i) = 0. (2.18)

Solving these equations for s, we obtain the departure time s(xi, ζi, t) together with the departure
point x′i. If s(xi, ζi, t) is negative, this means that the trajectory can be traced back to the initial
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Fig. 2.1 Configuration. The relation between xi in the gas and x′
i on the vessel wall in terms

of the present time t, the time in the past s, and the molecular velocity ζi.

time without hitting the vessel wall. In such a case, the value of f(xi, ζi, t) is given by the initial
condition f0(xi, ζi).

From these facts, we can write the solution of the initial and boundary value problem (2.7)–(2.9)
formally in the following form:

f(xi, ζi, t) = f0(xi − ζit, ζi), for ζi ∈ Ω0(xi, t), (2.19a)

f(xi, ζi, t) = fw(xi − ζi(t− s), ζi, s)

= ρw(xi − ζi(t− s), s)Mw(ζi), for ζi ∈ Ωw(xi, t), (2.19b)

where Ω0 is the set of ζi for which Eq. (2.18) gives a negative solution s (s < 0), and Ωw the
set of ζi for which Eq. (2.18) gives a non-negative solution (0 ≤ s ≤ t); s in Eq. (2.19b) is the
non-negative solution s(xi, ζi, t) of Eq. (2.18), i.e.,

Sd

(
xi − ζi[t− s(xi, ζi, t)]

)
= 0, 0 ≤ s(xi, ζi, t) ≤ t. (2.20)

[See the next paragraph for the explicit form of s(xi, ζi, t).] Since f0 is given, we have the solution
if ρw is found. Substitution of Eq. (2.19) into Eq. (2.9c) yields the following integral equation for
ρw:

ρw(xi, t)

2
√
π

= −
∫

ζjnj < 0
ζi ∈ Ω0(xi, t)

ζjnjf0(xi − ζit, ζi) dζ

−
∫

ζjnj < 0
ζi ∈ Ωw(xi, t)

ζjnjMw(ζi) ρw(xi − ζi(t− s), s) dζ,

for Sd(xi) = 0, (2.21)

where s is given by Eq. (2.20). Once ρw is obtained from Eq. (2.21), one obtains f from Eq. (2.19)
and then the macroscopic quantities from Eqs. (2.11) and (2.12).

Equation (2.18) yields the following explicit expressions for s(xi, ζi, t), Ω0(xi, t), and
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Ωw(xi, t) for the three-dimensional case (d = 3).

s(xi, ζi, t) =t−
ζjxj
ζ2k

− 1

ζ2k

[
(ζjxj)

2 − ζ2k

(
x2l −

1

4

)]1/2
, (2.22a)

Ω0(xi, t) =
{
(ζ1, ζ2, ζ3)

∣∣∣ (ζj − xj
t

)2
<

1

4t2

}
, (2.22b)

Ωw(xi, t) =
{
(ζ1, ζ2, ζ3)

∣∣∣ (ζj − xj
t

)2
≥ 1

4t2

}
. (2.22c)

The corresponding results for the two- and one-dimensional cases (d = 2 and 1) are omitted here.

4 Numerical analysis
This section is devoted to the description of the numerical solution method. We first describe the

solution method for the integral equation (2.21) for ρw and then comment on the computation of
the macroscopic quantities.

4.1 Integral equation

4.1.1 Special choice of initial condition and simplification
At this point, we consider, as the initial condition, the stationary Maxwellian distribution with

temperature T0∗ and density ρ0∗, namely, a uniform equilibrium state at rest with a temperature
different from that of the vessel. Thus, its dimensionless form is given by

f0(ζi) = T
−3/2
0 Mw(ζi/T

1/2
0 ), (2.23a)

T0 = T0∗/Tw∗, (2.23b)

where Mw(ζi) is given in Eq. (2.10). Since the vessel is spherically symmetric, the initial condi-
tion (2.23), which is uniform in xi and isotropic in ζi, yields a solution ρw of Eq. (2.21) that is
independent of the position on the vessel wall:

ρw = ρw(t). (2.24)

This fact can be seen from Eq. (2.21) with the explicit form of s(xi, ζi, t), Ω0(xi, t), and
Ωw(xi, t). It should be noted that the same is true for any spherically symmetric initial conditions.
The case of a non-symmetric initial condition will be investigated for the one-dimensional problem
(d = 1) in Sec. 6.

In these circumstances, Eq. (2.21) is simplified drastically and is reduced to the following integral
equation:

ρw(t) =Md(t) +

∫ t

0

kd(t− s)ρw(s)ds, (d = 1, 2, 3). (2.25)

Here

M1(t) =
√
T0

[
1− exp

(
− 1

T0t2

)]
,

k1(t) =
2

t3
exp

(
− 1

t2

)
,

(2.26)
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Fig. 2.2 The kernel functions kd(t) versus t for d = 1, 2, 3. The solid line indicates k1(t), the
dotted line k2(t), and the dot-dashed line k3(t).

for d = 1,

M2(t) =−
√
π

t
Ī1

(
− 1

2T0t2

)
,

k2(t) =

√
π

t4

[
Ī0

(
− 1

2t2

)
+ (1 + t2)Ī1

(
− 1

2t2

)]
,

(2.27)

for d = 2, and

M3(t) =
√
T0

[
1− 2T0t

2 + (1 + 2T0t
2) exp

(
− 1

T0t2

)]
,

k3(t) =4t−
(
4t+

4

t
+

2

t3

)
exp

(
− 1

t2

)
,

(2.28)

for d = 3; Īn(y) in Eq. (2.27) is defined as

Īn(y) = exp(y)In(y), (2.29a)

In(y) =
1

π

∫ π

0

cos(nθ) exp(y cos θ)dθ, (2.29b)

where In(y) is the modified Bessel function of the first kind of order n. The kernel functions kd(t)
are shown in Fig. 2.2. As is seen easily, Md(t) and kd(t) decay as

Md(t) ≈ C
(d)
M /td+1, kd(t) ≈ C

(d)
k /td+2, (2.30)

as t→ ∞, where C(d)
M and C(d)

k are positive constants. In addition, the following relation holds:∫ ∞

0

kd(t)dt = 1. (2.31)

With the initial condition (2.23) and thus with Eq. (2.24), Eq. (2.19) reduces to a spherically
symmetric solution. More specifically, for d = 1, f = f(x1, ζ1, ζt, t) with ζt = (ζ22 + ζ23 )

1/2,
satisfying the condition f(x1, ζ1, ζt, t) = f(−x1, −ζ1, ζt, t) (symmetric with respect to the
plane x1 = 0 and without a flow parallel to the vessel wall); for d = 2, f = f(r̄, ζr̄, |ζθ̄|, |ζ3|, t),
where (r̄, θ̄, x3) is the cylindrical coordinate system with r̄ = (x21 + x22)

1/2, and ζr̄ and ζθ̄ are the
r̄ and θ̄ components of ζi (cylindrically symmetric and without axial or circumferential flow); for



4 Numerical analysis 33

d = 3, f = f(r, ζr, ζ⊥, t) with ζ⊥ = (ζ2θ + ζ2φ)
1/2, where (r, θ, φ) is the spherical coordinate

system with r = (x2i )
1/2, and ζr, ζθ, and ζφ are, respectively, the r, θ, and φ components of ζi.

In the practical computation, in order to reduce the cancellation error, we analyze the following
equation for U(t) = ρw(t)− 1, which vanishes as t→ ∞ [see Eq. (2.14)], rather than Eq. (2.25):

U(t) =Md(t)−Md(t)
∣∣∣
T0=1

+

∫ t

0

kd(t− s)U(s)ds. (2.32)

The main purpose of the present study is to clarify the asymptotic behavior of the solution as
t→ ∞. This means that we have to obtain very small values ofU = ρw−1 with extremely high ac-
curacy for a very long time. In general, such a computation is formidable for the three-dimensional
case and is very hard even for the two-dimensional case. Thanks to the initial condition (2.23),
the integral equation for ρw has been reduced to the one-dimensional equation (2.25) or (2.32)
irrespective of the dimension of the spherical vessel. This makes the two- and three-dimensional
problems tractable, without harming the two and three dimensionality inherent to the problems.

4.1.2 Numerical method
Numerical analysis of the integral equation (2.32) is straightforward and simple. Let ∆t be the

time step, tn = n∆t (n = 0, 1, 2, ...) the discritized time variable, and Un = U(tn). If the
integral in Eq. (2.32) at t = tn is approximated in terms of Um as

n∑
m=0

AmUm, (2.33)

where Am depends on the quadrature for the numerical integration, then Eq. (2.32) at t = tn gives

Un =

[
Md(tn)−Md(tn)

∣∣∣
T0=1

+

n−1∑
m=0

AmUm

]
(1−An)

−1. (2.34)

The sequence {Un} (n = 0, 1, 2, ...) is determined by Eq. (2.34), and we suppose that Un thus
obtained is an approximate solution of U(t) at t = tn.

For the 1D case (d = 1), we use the simple trapezoidal rule to determine Am in Eq. (2.33). For
the 2D and 3D cases (d = 2, 3), we approximate U(t) for t ∈ [tm−1, tm] by the linear function,
i.e., U(t) ≈ (Um −Um−1)(t− tm−1)/∆t+Um−1, and carry out the integration for each interval
[tm−1, tm] (m = 1, 2, ..., n) analytically to obtain Am in Eq. (2.33). The explicit form of Am is
omitted here.

4.1.3 Remark
The integral equation (2.25) is the classical renewal equation (see, e.g., [13, 14]), and the asymp-

totic behavior of the solution as t → ∞ is studied in [13]. If we apply Theorem 4 in [13] to
Eq. (2.25), we obtain the following estimate

|ρw(t)− 1| = o(t2−d), as t→ ∞, (2.35)

for d = 2 and 3. The 1D case does not satisfy the condition of the Theorem (the boundedness of the
first-order moment of the kernel). In Sec. 5.2.1, our numerical result will show a decay rate (2.46).
Although the estimate (2.35) is not sharp at all, the decay rate (2.46) falls in the range expressed
by Eq. (2.35). As for the 1D case, Theorem 2 of [11] gives the estimate

|ρw(t)− 1| = O(t−1/10), as t→ ∞. (2.36)
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Our numerical result (2.46) (with d = 1) is contained in this range, though it is not sharp enough,
too.

4.2 Macroscopic quantities

4.2.1 Preliminaries
Before presenting the method of computation of the macroscopic quantities, we introduce some

additional quantities whose numerical results will also be presented in Sec. 5.
We first define the following marginals of f and Mw for the 1D and 2D cases:

f̃(x1, ζ1, t) =

∫ ∞

−∞

∫ ∞

−∞
fdζ2dζ3, (2.37a)

M̃w =

∫ ∞

−∞

∫ ∞

−∞
Mwdζ2dζ3 =

1√
π
exp(−ζ21 ), (2.37b)

for d = 1, and

f̃ (2)(r̄, ζr̄, |ζθ̄|, t) =
∫ ∞

−∞
fdζ3, (2.38a)

M̃ (2)
w =

∫ ∞

−∞
Mwdζ3 =

1

π
exp(−ζ2r̄ − ζ2θ̄ ), (2.38b)

for d = 2. In addition, we introduce the following L1 norm of f̃ − M̃w (d = 1) in ζ1, that of
f̃ (2) − M̃

(2)
w (d = 2) in (ζr̄, ζθ̄), and that of f −Mw (d = 3) in ζi, respectively:

∥∆f∥(1)(|x1|, t) =
∫ ∞

−∞
|f̃ − M̃w|dζ1, (2.39a)

∥∆f∥(2)(r̄, t) =
∫ ∞

−∞

∫ ∞

−∞
|f̃ (2) − M̃ (2)

w |dζr̄dζθ̄, (2.39b)

∥∆f∥(3)(r, t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
|f −Mw|dζrdζθdζφ. (2.39c)

We further introduce the average of the above L1 norms in the vessel, i.e.,

∥∆f∥(d)(t) = 2dd

∫ 1/2

0

∥∆f∥(d)dµ(d), (d = 1, 2, 3), (2.40)

where dµ(1) = dx1, dµ(2) = r̄dr̄, and dµ(3) = r2dr.

4.2.2 Numerical method
Once ρw(t) is known, the macroscopic quantities ρ, ui, T , and W are obtained by using

Eq. (2.19) in Eqs. (2.11) and (2.12). In the present spherically symmetric case, we can calculate
the macroscopic quantities at the point (x1, 0, 0) (0 ≤ x1 ≤ 1/2). For instance, in the 3D case,
h(r, t) for r = x1, any θ, and any φ (h = ρ, ur, T , etc., where ur is the r component of ui) is
given by h(x1, 0, 0, t) (h = ρ, u1, T , etc.).
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The macroscopic variables at (x1, 0, 0) (0 ≤ x1 ≤ 1/2) are expressed as

ρ = F(0,0,0) + P(0,0,0), u1 =
1

ρ

(
F(1,0,0) + P(1,0,0)

)
, (2.41a)

T =
2

3ρ

(
F(2,0,0) + F(0,2,0) + F(0,0,2)

+P(2,0,0) + P(0,2,0) + P(0,0,2) − ρu21
)
, (2.41b)

W = Q(0,0,0) −
3

2
lnT0 F(0,0,0)

+
(
1− 1

T0

) (
F(2,0,0) + F(0,2,0) + F(0,0,2)

)
, (2.41c)

where

F(n1,n2,n3) =

∫
ζi∈Ω0

ζn1
1 ζn2

2 ζn3
3 f0(ζi)dζ, (2.42a)

P(n1,n2,n3) =

∫
ζi∈Ωw

ζn1
1 ζn2

2 ζn3
3 Mw(ζi) ρw(s)dζ, (2.42b)

Q(n1,n2,n3) =

∫
ζi∈Ωw

ζn1
1 ζn2

2 ζn3
3 Mw(ζi) ρw(s) ln ρw(s) dζ, (2.42c)

Ω0, Ωw, and s, which have occurred in Eq. (2.21), are evaluated at (x1, 0, 0), and ur̄ (the r̄
component of ui) and ur at (x1, 0, 0) are represented by u1.

The F(n1,n2,n3) contained in Eq. (2.41) can be obtained analytically in the form including the
error and exponential functions for d = 1 and can be reduced to single integrals including the
sinusoidal, error, and exponential functions for d = 2 and 3. On the other hand, the P(n1,n2,n3)

and Q(n1,n2,n3) can be expressed in the form of convolution:

P(n1,n2,n3) =

∫ t

0

Kd(x1, t− s)ρw(s)ds, (2.43a)

Q(n1,n2,n3) =

∫ t

0

Kd(x1, t− s)ρw(s) ln ρw(s) ds, (2.43b)

where s is the integration variable. The kernel Kd is expressed analytically in terms of the expo-
nential function for d = 1 and is expressed in the form of a single integral of a function containing
the sinusoidal and exponential functions for d = 2 and 3. The explicit form of F(n1,n2,n3) and Kd

are omitted for conciseness.
The single integrals in F(n1,n2,n3) and Kd for d = 2 and 3 are evaluated numerically using

the Gaussian quadrature, and the accuracy with an error less than 10−16 is attained. As for the
convolutions (2.43), we use the values of ρw at t = tn [ρw(tn) = Un + 1] obtained in Sec. 4.1.2.
More specifically, the integral with respect to s is divided into the integrals over small intervals
[sm−1, sm] (sm = m∆t), in each of which ρw(s) is approximated by the linear function, and the
integration over each interval is performed numerically using the Gaussian quadrature. The linear
approximation of ρw is legitimate because the change of ρw(s) is moderate and the behavior of the
integrandsKd(x1, t−s)ρw(s) andKd(x1, t−s)ρw(s) ln ρw(s) is dominated by that ofKd(x1, t−
s). In fact, as the point (x1, 0, 0) approaches the vessel wall (x1 ≈ 1/2), the change of Kd

becomes steeper. In such a case, we ought to decrease the size of the small intervals [sm−1, sm],
i.e., the time step ∆t. That is, the smallness of the time step ∆t in solving Eq. (2.32) is determined
not only by the behavior of the solution itself but also by the requirement that the integrals (2.43) be
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Fig. 2.3 Short-time behavior of ρ, u1 and T for T0 = 2 in the 1D case (d = 1): ρ, u1,
and T vs x1 for 0 ≤ x1 ≤ 0.5. (a) t = 0.01, 0.0158, 0.0251, 0.0398, 0.0631, 0.1, (b) t =
0.1, 0.125, 0.158, 0.199, 0.251, 0.398, (c) t = 0.398, 0.501, 0.631, 0.794, 1.

obtained accurately even near the vessel wall. Incidentally, the values of the macroscopic quantities
at the vessel wall (x1 = 1/2) are obtained differently.

The computation of the L1 norms (2.39) is similar to that of ρ. In fact, we can show that there is
a time tc (depending on d and T0) such that, for t > tc, the f −Mw, f̃ − M̃w, or f̃ (2) − M̃

(2)
w in

Eq. (2.39) does not change the sign. Therefore, if we restrict ourselves to the long-time behavior,
the computation is essentially the same as that for ρ.

5 Results of numerical analysis
In this section, we summarize the results obtained by the numerical analysis.

5.1 Short- and intermediate-time behavior

First, we show some results for relatively short time. Figure 2.3 shows the time evolution of
the profiles of the density, flow velocity, and temperature for T0 = 2 in the 1D case (d = 1):
Figs. 2.3(a), 2.3(b), and 2.3(c) are, respectively, for 0.01 ≤ t ≤ 0.1, 0.1 ≤ t ≤ 0.398, and
0.398 ≤ t ≤ 1. Disturbances are created at the boundary and propagate in the interior domain.
At t = 1, ρ and u1 are already close to their final values (ρ = 1 and u1 = 0), whereas T is still
far from it (T = 1) though T is almost uniform. In the 2D and 3D cases, the result for which are
omitted here, the disturbances are larger, but decay faster.

Figures 2.4 and 2.5 show the time evolution of the marginal velocity distribution function f̃
defined by Eq. (2.37a) for the 1D case as the function of ζ1 at the center of the gap x1 = 0 and
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Fig. 2.4 Time evolution of the marginal velocity distribution function f̃(x1, ζ1, t) for T0 = 2

in the 1D case (d = 1). f̃ vs ζ1 is shown at different times. (a) t = 0.01, (b) t = 0.06, (c)
t = 0.39, (d) t = 1.00, (e) t = 2.51, (f) t = 4.64, (g) t = 11.65, (h) t = 100.00. Here, the
upper figures show the results at x1 = 0, and the lower at x1 = 0.4; the dashed line indicates
M̃w.

at x1 = 0.4; the upper figures show f̃ at x1 = 0, and the lower at x1 = 0.4; Figs. 2.5(a)–(d)
are enlarged figures of Figs. 2.4(e)–(h) near ζ1 = 0; the dashed line indicates the marginal M̃w

corresponding to the final steady state Mw [Eq. (2.37b)].
In the 1D case with the initial condition (2.23), the marginal f̃ is expressed as [cf. Eq. (2.19)]

f̃(x1, ζ1, t) =



1√
πT0

exp
(
− ζ21
T0

)
,
(x1 − 1/2

t
< ζ1 <

x1 + 1/2

t

)
,

1√
π
ρw

(
t− x1 − 1/2

ζ1

)
exp(−ζ21 ),

(
ζ1 <

x1 − 1/2

t

)
,

1√
π
ρw

(
t− x1 + 1/2

ζ1

)
exp(−ζ21 ),

(x1 + 1/2

t
< ζ1

)
.

(2.44)

Let us consider the evolution of f̃ at x1 = 0 (upper figures of Figs. 2.4 and 2.5), referring to
Eq. (2.44). The molecules in the range −1/2t < ζ1 < 1/2t, which shrinks as time goes on, come
directly from the initial distribution without interaction with the walls (see Figs. 2.4 and 2.5). At
the initial stages, the molecules distributed according to the initial distribution impinge on the walls
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Fig. 2.5 Time evolution of the marginal velocity distribution function f̃(x1, ζ1, t) for T0 = 2
in the 1D case (d = 1). (a) t = 2.51, (b) t = 4.64, (c) t = 11.65, (d) t = 100.00. Figures (a),
(b), (c) and (d) are enlarged figure of Fig. 2.4 (e), (f), (g) and (h), respectively. See the caption
of Fig. 2.4.

and reflected. Since T0 > 1 in Figs. 2.4 and 2.5, the reflected molecules are cooled down. In other
words, less fast molecules (the molecules with large |ζ1|) and more slow molecules (the molecules
with small |ζ1|) are produced by the reflection. At an early time [Fig. 2.4(c)], only the less-crowded
fast molecules among the reflected molecules can reach the point x1 = 0. Therefore, the high-
speed tail of the distribution is lowered compared with the initial distribution. At a later time
[Fig. 2.4(d)], the more-crowded slow molecules with speed |ζ1| ≈ 1/2t (1/2t < |ζ1| < 1/2t + δ

with δ a small number) reflected at the initial stages reach the point x1 = 0. This results in the
significant increase of f̃ for this speed range. At large times [Figs. 2.4(e)–(h) and Figs. 2.5(a)–
(d)], the range of the more-crowded slow molecules with speed |ζ1| ≈ 1/2t reflected at the initial
stages is more and more localized because slightly faster molecules have already experienced many
reflections, so that they are well accommodated with the walls (or they have approached the final
equilibrium distribution). At x1 = 0.4, the more-crowded slow molecules reflected on the right
wall (x1 = 1/2) at the initial stages reach much earlier than the corresponding molecules from the
left wall. However, except the non-symmetry, the manner of the deformation of f̃ is the same.

The localized deviation in f̃ in the neighborhood of ζ1 = (x1 ± 1/2)/t exists forever though
the range shrinks as time goes on. This is a sort of long-memory effect originating from the very
initial stages, which leads to the slow decay of the velocity-averaged quantities, as we will see in
Sec. 5.2.

A mathematical description (estimate) corresponding to the deformation of the velocity distri-
bution function explained in the preceding paragraphs is given in [11]. The effect of the slow
molecules (or molecules moving parallel to the boundary) also manifests itself in the diffusion
limit where the thickness of the channel containing a free-molecular gas is led to zero [15, 16, 17].
It should also be mentioned that a different type of long-memory effect, arising in the unsteady
motion of a body in a free-molecular gas, has been investigated in [18, 19, 20, 21].
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Fig. 2.6 Long-time behavior of ρw for different dimension d = 1, 2, and 3 for T0 = 2. (a)
log |ρw − 1| vs log t, (b) α(ρw) vs log t.

5.2 Long-time behavior and approach to equilibrium

Next, we investigate the long-time behavior and the approach to the final equilibrium state,
which is the main purpose of the present study. In what follows, the logarithm log (·) indicates the
common logarithm with base 10.

5.2.1 ρw(t)

The crucial quantity is ρw(t), from which the velocity distribution function and thus all the
macroscopic quantities can be obtained. The long-time behavior of ρw is shown in Fig. 2.6 and
Table 2.1 for the 1D, 2D, and 3D cases. Figure 2.6(a) shows log |ρw − 1| versus log t for T0 = 2,
and Fig. 2.6(b) the gradients of the curves in Fig. 2.6(a) versus log t. Here, α(h) for a function h(t)
is defined by

α(h) = d log |h(t)− h∞|/d log t, (2.45)

where h∞ indicates the equilibrium value of h(t), e.g., ρw∞ = 1. Table 2.1 contains the values of
α(ρw) at large times for different T0. From these results, it is highly probable that ρw − 1 decays
as

|ρw − 1| ≈ C(d)
w /td, (d = 1, 2, 3), (2.46)

with positive constants C(d)
w .

5.2.2 Global quantities
Next, we show the long time behavior of the global quantities, ∥∆f∥(d)(t) [Eq. (2.40)] and

W (t), where W (t) is defined by Eq. (2.40) with ∥∆f∥(d) replaced by W [Eq. (2.12)] [note that
W = W (|x1|, t) for d = 1, W = W (r̄, t) for d = 2, and W = W (r, t) for d = 3 in the present
case]. It should be noted that

W = ⟨W ⟩/vol(D), (2.47)

where ⟨W ⟩ is defined in Eq. (2.16), vol(D) is the volume of the vessel (with the obvious interpre-
tation in the 1D and 2D cases) in the dimensionless xi space. Figure 2.7(a) shows log |W | versus
log t for −2 ≤ log t ≤ 3, and Fig. 2.7(b) the gradients α(W ) [cf. Eq. (2.45)] of the curves in
Fig. 2.7(a) versus log t; Fig. 2.7(c) shows log ∥∆f∥(d) versus log t for 1 ≤ log t ≤ 3, and Fig.
2.7(d) the gradients α(∥∆f∥(d)) of the curves in Fig. 2.7(c) versus log t. Table 2.2 shows the
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Table 2.1 Values of α(ρw) at large times for different T0.

−α(ρw) (d = 1)

t log t T0 = 0.5 T0 = 0.8 T0 = 1.5 T0 = 2.0

316 2.5 0.984778 0.984559 0.984292 0.984178

1000 3.0 0.993830 0.993760 0.993673 0.993637

3162 3.5 0.997626 0.997604 0.997576 0.997565

10000 4.0 0.999117 0.999110 0.999101 0.999098

−α(ρw) (d = 2)

t log t T0 = 0.5 T0 = 0.8 T0 = 1.5 T0 = 2.0

316 2.5 1.993056 1.992784 1.992415 1.992248

1000 3.0 1.997843 1.997756 1.997638 1.997585

3162 3.5 1.999323 1.999295 1.999258 1.999241

10000 4.0 · · · · · · · · · 1.999760

−α(ρw) (d = 3)

t log t T0 = 0.5 T0 = 0.8 T0 = 1.5 T0 = 2.0

316 2.5 2.995022 2.994742 2.994320 2.994118

1000 3.0 2.998437 2.998348 2.998214 2.998150

3162 3.5 · · · · · · · · · 2.999415

5011 3.7 · · · · · · · · · 2.999626

Table 2.2 Values of α(W ) and α(∥∆f∥(d)) at t = 10000 for d = 1 and t = 1000 for d = 2 and 3.

−α(W )

d t log t T0 = 0.5 T0 = 0.8 T0 = 1.5 T0 = 2.0

1 104 4 1.000028 1.000027 1.000025 1.000025

2 103 3 · · · · · · · · · 2.000194

3 103 3 · · · · · · · · · 3.000163

−α(∥∆f∥(d))
d t log t T0 = 0.5 T0 = 0.8 T0 = 1.5 T0 = 2.0

1 104 4 0.999999 0.999999 0.999999 0.999999

2 103 3 · · · · · · · · · 1.999997

3 103 3 · · · · · · · · · 2.999998

values of the gradients α(W ) and α(∥∆f∥(d)) at t = 10000 for T0 = 0.5, 0.8, 1.5, and 2 in the
1D case and those at t = 1000 for T0 = 2 in the 2D and 3D cases. As mentioned in the last para-
graph in Sec. 2.2, ⟨W ⟩ and thus W decrease monotonically. In order to demonstrate this property,
the curves in Fig. 2.7(a) are plotted from a very short time (t = 0.01). Figure 2.7 and Table 2.2
provide numerical evidence that W and ∥∆f∥(d) decay as

|W | ≈ C
(d)

W /td, ∥∆f∥(d) ≈ C
(d)

∆ /td, (d = 1, 2, 3), (2.48)
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Fig. 2.7 Long-time behavior of W and ∥∆f∥(d) for different dimension d = 1, 2, and 3 for
T0 = 2. (a) log |W | vs log t, (b) α(W ) vs log t, (c) log ∥∆f∥(d) vs log t, (d) α(∥∆f∥(d)) vs
log t.

where C
(d)

W and C
(d)

∆ are positive constants, that is, the evidence that Eq. (2.2) is true.

5.2.3 Local macroscopic quantities
Finally, we show the long-time behavior of the local macroscopic quantities. Figure 2.8(a) shows

log |W | versus log t, Fig. 2.8(b) the gradients α(W ) [cf. Eq. (2.45)] of the curves in Fig. 2.8(a)
versus log t, Fig. 2.8(c) log ∥∆f∥(1) versus log t, and Fig. 2.8(d) the gradients α(∥∆f∥(1)) [cf.
Eq. (2.45)] of the curves in Fig. 2.8(c) versus log t, at several x1 for T0 = 2 in the 1D case (d = 1).
In Fig. 2.9, we show the behavior of the density ρ, flow velocity u1, and temperature T at some
points for T0 = 2 in the 1D case (d = 1); Fig. 2.9(a) is the plot of log |h − h∞| versus log t,
where h = ρ, u1, and T (ρ∞ = T∞ = 1, u1∞ = 0), and Figs. 2.9(b), 2.9(c), and 2.9(d) show
the gradients of the curves in 2.9(a) for ρ, u1, and T , respectively. Figures 2.10(a), 2.10(b), and
2.10(c) are the figures in the 2D case (d = 2) and Figs. 2.11(a), 2.11(b), and 2.11(c) those in the
3D case (d = 3) corresponding to Figs. 2.8(a), 2.8(c), and 2.9(a) [the curves at less points are
shown in Figs. 2.10(a), 2.10(b), 2.11(a), and 2.11(b)]. The curves for the evolution of the gradients
corresponding to Figs. 2.8(b), 2.8(d), 2.9(b), 2.9(c), and 2.9(d) are omitted for the 2D and 3D
cases. Table 2.3 contains the values of the gradients α(h) with h = W , ∥∆f∥(d), ρ, u1 (d = 1),
ur̄ (d = 2), ur (d = 3), and T at a point (x1 = 0.2 for d = 1, r̄ = 0.2 for d = 2, and r = 0.2 for
d = 3) for various T0 at a long time (t = 10000 for d = 1, t = 3162 for d = 2, and t = 1000 for
d = 3). From these results, we observe that α(W ), α(∥∆f∥(d)), and α(T ) tend to approach −d,
whereas α(ρ) tends to approach −(d+ 1). In addition, α(u1), α(ur̄), and α(ur) tend to approach
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Fig. 2.8 Long-time behavior of W and ∥∆f∥(1) at x1 = 0, 0.1, 0.2, 0.3, 0.4, 0.45, 0.49
for T0 = 2 (d = 1). (a) log |W | vs log t, (b) α(W ) vs log t, (c) log ∥∆f∥(d) vs log t, (d)
α(∥∆f∥(1)) vs log t.

−3, −4, and −5, respectively. This gives numerical evidence of the following decay rates:

|W | ≈ C
(d)
W /td, ∥∆f∥(d) ≈ C

(d)
∆ /td,

|T − 1| ≈ C
(d)
T /td, |ρ− 1| ≈ C(d)

ρ /td+1,

|u1| ≈ C
(1)
1 /t3, |ur̄| ≈ C

(2)
r̄ /t4, |ur| ≈ C(3)

r /t5,

(2.49)

where C(d)
W , C(d)

∆ , etc. are positive constants, depending on the position in space. As we can see
from Figs. 2.8–2.11, it is likely that C(d)

W , C(d)
∆ , and C(d)

T are independent of the position. It should
be noted that the density and flow velocity decay faster than the temperature, W , and ∥∆f∥(d).

5.2.4 Remarks on accuracy of computation
The accuracy of the numerical solution of Eq. (2.32) depends on the quadrature for numerical

integration (2.33) and the time step ∆t. The results in Table 2.1 are obtained with ∆t = 0.002. In
the case of T0 = 2, we have also carried out the computation with different time steps, ∆t = 0.01,
0.005, and 0.001, until log t = 4 (d = 1) and 3 (d = 2, 3). The results for α(ρw) based on
different time steps agree until the seventh decimal place. Therefore, it is highly probable that all
the values in Table 2.1 are accurate until the last decimal place. In the 3D case, the decay of
|ρw − 1| is faster, and it becomes less than 10−13 at log t = 4. Therefore, it becomes very difficult
to obtain the gradient of the curve accurately by the method described in the last paragraph in this
subsection. In fact, the curve for d = 3 in Fig. 2.6(b) exhibits small oscillation for log t close to 4.
This is the reason why α(ρw) for d = 3 and T0 = 2 is shown only up to log t = 3.7 in Table 2.1.
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Fig. 2.9 Long-time behavior of ρ, u1 and T at x1 = 0.1, 0.2, 0.3, 0.4 for T0 = 2 (d = 1). (a)
log |h − h∞| vs log t, where h = ρ, u1 and T , (b) α(ρ) vs log t, (c) α(u1) vs log t, (d) α(T )
vs log t. Here, the solid line indicates the quantities at x1 = 0.1, the dashed line at x1 = 0.2,
the long-dashed line at x1 = 0.3, and the dot-dashed line at x1 = 0.4.

As explained in the second from last paragraph in Sec. 4.2.2, if we want to obtain the macro-
scopic quantities accurately near the vessel wall, we need a time step smaller than required by
Eq. (2.32) itself. The time step ∆t = 0.002, which might appear unnecessarily small, is chosen in
such a way that the macroscopic variables at (0.49, 0, 0) are obtained accurately.

The results in Table 2.3 are also based on ∆t = 0.002. At log t = 3 and at x1 = 0, 0.2, and 0.4

(x2 = x3 = 0), the gradients α(W ), α(∥∆f∥(d)), and α(T ) with ∆t = 0.002 agree with those
with ∆t = 0.001 up to the fifth decimal place for d = 1, 2, and 3. But, the agreement is one or
two less decimal places for α(ρ) and α(u) (u = u1, ur̄, or ur).

The values of α(W ) and α(∥∆f∥(d)) in Table 2.2 are also based on the data obtained with
∆t = 0.002. Here, the integration with respect to the space variable [cf. (2.40)] is carried out
analytically for d = 1 and numerically for d = 2 and 3. In the latter, Simpson’s rule with a
uniform interval ∆x (x = r̄ or r) is used. The data for d = 2 and 3 in Table 2.2 are obtained with
∆x = 0.005. However, the results obtained with ∆x = 0.025 and 0.01 do not show any difference
from the values in Table 2.2.

The gradients α(ρw) [cf. Eq. (2.45)] shown in Fig. 2.6(b) and Table 2.1 are evaluated by the
simple linear approximation, i.e., α(ρw)(tn) = (log |Un| − log |Un−1|)/(log tn − log tn−1). On
the other hand, once ρw(t) is obtained, we can obtain the macroscopic quantities at any point in
space and at any t. We evaluate the macroscopic quantities at discrete t’s, say t = t̄m, which are
distributed uniformly in log t (50 points in the interval n < log t ≤ n + 1 with n being integer).
Then, the gradient α(h) is obtained by the simple linear approximation.

The computation was carried out with quadruple precision. If we perform the computation
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Fig. 2.10 Long-time behavior of W , ∥∆f∥(2), ρ, ur̄ , and T at r̄ = 0.1, 0.2, 0.3, 0.4 for
T0 = 2 (d = 2). (a) log |W | vs log t. (b) log ∥∆f∥(2) vs log t. (c) log |h−h∞| vs log t, where
h = ρ, ur̄ , and T . Here, the solid line indicates the quantities at r̄ = 0.1, the dashed line at
r̄ = 0.2, the long-dashed line at r̄ = 0.3, and the dot-dashed line at r̄ = 0.4.

with double precision, we are not able to show the convergence of the gradients α(ρw), α(W ),
α(ρ), etc. It should be mentioned that we have employed fast algorithms for the error and
Bessel functions provided by T. Ooura, available from his home page (http://www.kurims.kyoto-
u.ac.jp/˜ooura/index.html). The algorithms are for double precision, but we have confirmed
that they give an accuracy of 19 significant figures if they are used in a quadruple-precision
computation.

The computation has been carried out on a PC cluster with CPU: Intel(R) Core 2 Extreme
QX9650 3.0GHz(4CPU)×8.

6 Non-symmetric initial condition (one-dimensional case)
In Secs. 4 and 5, we investigated the time evolution of the solution with the initial condition

(2.23), i.e., a uniform equilibrium state at rest with a temperature different from the temperature of
the vessel wall. In this section, restricting ourselves to the 1D case, we repeat the same computation
with a non-symmetric initial condition. Our initial condition is

f0(x1, ζi) =
ρin(x1)

[πT in(x1)]3/2
exp

(
− [ζ1 − uin1 (x1)]

2 + ζ22 + ζ23
T in(x1)

)
, (2.50)

where

ρin(x1) =1 + aρ cos(2πmρx1 + bρ), (2.51a)

uin1 (x1) =au cos(2πmux1 + bu), (2.51b)
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Fig. 2.11 Long-time behavior of W , ∥∆f∥(3), ρ, ur , and T at r = 0.1, 0.2, 0.3, 0.4 for
T0 = 2 (d = 3). (a) log |W | vs log t. (b) log ∥∆f∥(3) vs log t. (c) log |h−h∞| vs log t, where
h = ρ, ur , and T . Here, the solid line indicates the quantities at r = 0.1, the dashed line at
r = 0.2, the long-dashed line at r = 0.3, and the dot-dashed line at r = 0.4.

Fig. 2.12 Long-time behavior of ρw−(t) and ρw+(t) for the non-symmetric initial condition
(d = 1). (a) log |ρw± − 1| vs log t. (b) α(ρw±) vs log t.

T in(x1) =1 + aT cos(2πmTx1 + bT ). (2.51c)

Equation (2.50) is the local Maxwellian distribution with density ρin(x1)ρ0∗, flow velocity
(uin1 (x1) cw∗, 0, 0), and temperature T in(x1)Tw∗. In this case, Eq. (2.21) yields a coupled integral
equation of renewal type for ρw−(t) ≡ ρw(at x1 = −1/2) and ρw+(t) ≡ ρw(at x1 = 1/2)

in place of Eq. (2.25) with Eq. (2.26). We have carried out computations for different values of
the parameters aρ, mρ, etc. Here, we give only the result for the long-time behavior of one case:
(aρ, bρ, mρ) = (0.5, 1, 1), (au, bu, mu) = (0.5, 1, 1), (aT , bT , mT ) = (0.5, 2, 1.5).
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Table 2.3 Values of α(h) at large t for different T0 (d = 1, 2, 3).

−α(h) (d = 1, x1 = 0.2, t = 10000)

h T0 = 0.5 T0 = 0.8 T0 = 1.5 T0 = 2.0

W 1.000040 1.000064 1.000006 1.000014

∥∆f∥(1) 0.999994 0.999994 0.999994 0.999994

ρ 1.998055 1.997862 1.998454 1.998414

u1 2.997527 2.998085 2.996390 2.996803

T 0.999811 0.999824 0.999844 0.999854

−α(h) (d = 2, r̄ = 0.2, t = 3162)

h T0 = 0.5 T0 = 0.8 T0 = 1.5 T0 = 2.0

W 1.999919 1.999677 2.000857 2.000198

∥∆f∥(2) 2.000031 2.000031 2.000030 2.000030

ρ 2.998974 2.999090 2.998970 2.998987

ur̄ 3.998626 3.998776 3.998653 3.998672

T 1.999657 1.999657 1.999638 1.999626

−α(h) (d = 3, r = 0.2, t = 1000)

h T0 = 0.5 T0 = 0.8 T0 = 1.5 T0 = 2.0

W 2.999493 2.998174 3.001350 3.000942

∥∆f∥(3) 3.000166 3.000166 3.000166 3.000167

ρ 3.998371 3.998527 3.998369 3.998338

ur 4.997977 4.998174 4.998001 4.997962

T 2.999152 2.999049 2.998942 2.998874

We show the long-time behavior of ρw±(t) in Fig. 2.12: Fig. 2.12(a) shows log |ρw± − 1| ver-
sus log t, and Fig. 2.12(b) the gradients α(ρw±) [cf. Eq. (2.45)] versus log t. The values of the
gradients α(ρw±) at some large times are shown in Table 2.4. It is seen from these results that
ρw±(t) − 1 tend to decay as Eq. (2.46) with d = 1. Figure 2.13(a) is the plots of log |W | and
log ∥∆f∥(1) versus log t, and Fig. 2.13(b) the gradients α(W ) and α(∥∆f∥(1)) versus log t. Fig-
ures 2.14(a), 2.14(b), and 2.14(c) are the figures corresponding to Figs. 2.8(a), 2.8(c), and 2.9(a)
[the curves at less points are shown in Figs. 2.14(a) and 2.14(b)]. The curves for the evolution
of the gradients corresponding to Figs. 2.8(b), 2.8(d), 2.9(b), 2.9(c), and 2.9(d) are omitted in the
present case. Table 2.5 shows the values of the gradients α(h) with h = W , ∥∆f∥(1), ρ, u1, and
T at a point (x1 = 0.2) at a long time (t = 2000). It is seen from these results that the manner
of approach to the final equilibrium state expressed by Eqs. (2.48) and (2.49) is also true in the
present case.

It should be noted that, with the non-symmetric initial condition (2.50), the computation becomes
more difficult than that in Secs. 4 and 5 to obtain an accurate solution [even with Eq. (2.50), if
ρin(x1), uin1 (x1), and T in(x1) are chosen in such a way that ρw−(0) = ρw+(0) holds at t = 0,
it becomes easier to get an accurate result]. Therefore, a smaller time step and a more accurate
interpolation formula have been used to obtain the results shown in this section. For instance, ∆t =
0.001 is used, and the quartic approximation, rather than the linear approximation, is used for ρw±
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Fig. 2.13 Long-time behavior of W and ∥∆f∥(1) for the non-symmetric initial condition (d =

1). (a) log |W | and log ∥∆f∥(1) vs log t. (b) α(W ) and α(∥∆f∥(1)) vs log t. Here, solid line
indicates the quantities of W , and the dashed line those of ∥∆f∥(1).

Table 2.4 Values of α(ρw±) at large t for the non-symmetric initial condition (d = 1).

t log t −α(ρw−) −α(ρw+)

50 1.698 0.921745 0.974493

100 2.000 0.952926 0.979931

500 2.698 0.986831 0.992228

1000 3.000 0.992608 0.995298

2000 3.301 0.995904 0.997245

Table 2.5 Values of α(h) at x1 = 0.2 at a large t (t = 2000) for the non-symmetric initial condition.

−α(h) (d = 1, x1 = 0.2, t = 2000)

h =W h = ∥∆f∥(1) h = ρ h = u1 h = T

1.000148 1.000487 2.014651 3.035255 0.997015

when performing the numerical integration in the integral equations corresponding to Eq. (2.32). In
this step, we have used a fast argorithm for the exponential integral E1(x) =

∫∞
x

(1/t) exp(−t)dt
provided by J. Jin (see http://jin.ece.uiuc.edu/routines/routines.html).

7 Concluding remarks
In the present study, we have investigated numerically the unsteady behavior of a free-molecular

(or Knudsen) gas contained in a vessel with a uniform and constant temperature with special inter-
est in the rate of approach to the final equilibrium state at rest. We assumed the diffuse reflection as
the boundary condition on the vessel wall and restricted ourselves to a vessel of spherical shape of
dimension d, i.e., a sphere for the 3D case, a circular cylinder for the 2D case, and a gap between
two parallel plates for the 1D case. Then, we mainly considered the spherically symmetric case
assuming the initial condition to be the uniform equilibrium state at rest with a different temper-
ature from the vessel wall. Such restrictions have made the computation for the 2D and 3D cases
tractable. We have investigated the rate of approach to the final equilibrium state for the velocity
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Fig. 2.14 Long-time behavior of macroscopic quantities W , ∥∆f∥(1), ρ, u1 and T at x1 =
−0.4, −0.2, 0.2, and 0.4 for the non-symmetric initial condition (d = 1). (a) log |W | vs log t.
(b) log ∥∆f∥(1) vs log t. (c) log |h − h∞| vs log t, where h = ρ, u1 and T . Here, the solid
line indicates the quantities at x1 = −0.4, the dashed line at x1 = −0.2, the long-dashed line
at x1 = 0.2, and the dot-dashed line at x1 = 0.4.

distribution function as well as for the macroscopic quantities. The numerical results give evidence
that the approach is slow and in proportion to an inverse power of time as given by Eq. (2.2). This
conclusion is also supported by additional computations using a nonuniform initial condition in the
1D case.
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Chapter 3

Decay of a linear pendulum in a
free-molecular gas and in a special
Lorentz gas

Abstract A circular disk without thickness is placed in a gas, and an external
force, obeying Hooke’s law, is acting perpendicularly on the disk. If the disk
is displaced perpendicularly from its equilibrium position and released, then
it starts an oscillatory or non-oscillatory unsteady motion, which decays as
time goes on because of the drag exerted by the gas molecules. This unsteady
motion, i.e., the decay of this linear pendulum, is investigated numerically,
under the diffuse reflection condition on the surface of the disk, with special
interest in the manner of its decay, for two kinds of gases: one is a collisionless
gas (or Knudsen gas) and the other is a special Lorentz gas interacting with
a background. It is shown that the decay of the displacement of the disk is
slow and is in proportion to an inverse power of time for the collisionless gas.
The result complements the existing mathematical study of a similar problem
[S. Caprino, et al., Math. Models. Meth. Appl. Sci. 17, 1369–1403 (2007)] in
the case of non-oscillatory decay. It is also shown that the manner of the decay
changes significantly for the special Lorentz gas.

1 Introduction
Let us consider a body in an infinite expanse of a gas. The body is supposed to be subject to

an external force that obeys Hooke’s law (i.e., a restoring force in proportion to the displacement
from the equilibrium position) and be movable only in the direction parallel to the force (linear
pendulum). If the body is displaced and released with an initial velocity, then it starts an unsteady
motion, e.g., an oscillation around the equilibrium position, but the motion attenuates as time goes
on because of the drag force exerted on the body by the surrounding gas. We are concerned with
the rate of decay of the motion of the body.

If the drag force is proportional to the speed of the body, the motion of the body (e.g., the
amplitude of the oscillation) decays exponentially in time. However, the drag exerted by the gas
is not so simple, and we may expect a different decay rate. This problem, together with the case
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in which the body is subject to a constant external force and approaches a final steady motion,
has been studied extensively [1, 2, 3, 4, 5, 6] when the surrounding gas is a collisionless gas (a
free-molecular gas or the Knudsen gas), i.e., a gas that is so rarefied that collisions between gas
molecules can be neglected.

For instance, the case where the body is a circular disk and the external force, obeying Hooke’s
law, acts perpendicularly on the disk was studied mathematically in [2]. To be more specific, let
us denote by t∗ the time variable and by Xw(t∗) the displacement (with sign) of the disk from the
equilibrium position. Then, the force is expressed as −κXw(t∗) with a positive constant κ. The
gas molecules are assumed to undergo specular reflection on the disk. Initially, the disk is fixed
with displacement Xw0, and the gas is in a uniform equilibrium state at rest. At time t∗ = 0, it is
released with an initial velocity (parallel to the external force). Then, the disk starts an unsteady
motion, and as time goes on, the motion decays, i.e., Xw(t∗) → 0. In [2], it is proved that there
exist cases where Xw(t∗) decays monotonically (without oscillation) and that the decay is slow
and algebraic in such cases, i.e., it is described as

|Xw(t∗)| ≈ Cs/t
d+2
∗ , (3.1)

for sufficiently large t∗, where d is the dimension of the problem and Cs is a positive constant.
A subsequent numerical study [6] confirmed an algebraic decay even in the case with many os-
cillations for the one-dimensional problem (d = 1). Here, it should be mentioned that, since the
diffuse-reflection condition, rather than the specular-reflection condition, was employed in [6], the
decay rate was different and was proportional to 1/t2∗, which is slower than Eq. (3.1) with d = 1.
These algebraically slow decays are attributed to a long-memory effect peculiar to a collisionless
gas. In such a gas, the molecules that are reflected by the disk at early times may hit the disk again
at later times. In contrast to a gas with intermolecular collisions, such molecules transfer informa-
tion about the disk at an early stage directly to the disk at a later stage and may affect the motion
of the disk long time later. In other words, they give rise to a long-memory effect.

The aim of the present study is twofold. One is to extend the numerical study in [6] to two- and
three-dimensional problems and provide numerical evidence of the decay rate described by

|Xw(t∗)| ≈ Cf/t
d+1
∗ , (3.2)

with a positive constant Cf , under the diffuse-reflection boundary condition. The other is to see
the change of the decay rate when the long-memory effect is destroyed by introducing a sort of
interaction of gas molecules with a background. For this purpose, we consider a special Lorentz
gas explained in the main text and consider the resulting kinetic equation (a toy model). We study
the decay of the unsteady motion of the disk numerically and show that the decay rate changes
significantly.

2 Formulation of the Problem
2.1 Problem

Let us consider an infinite expanse of a rarefied gas in an equilibrium state at rest at temperature
T∗0 and density ρ∗0. What kind of gas (i.e., what kind of kinetic equation) we are considering will
be specified in Sec. 2.2. A circular disk with diameterL∗ and without thickness, kept at temperature
T∗0, is placed in the gas, and an external force, obeying Hooke’s law (elastic force), is acting on
the disk perpendicularly to its surface. In the present study, we consider d-dimensional problems
with d = 1, 2, and 3: The disk is a circular disk with diameter L∗ when d = 3 [Fig. 3.1(a)], an
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Fig. 3.1 A circular disk of d dimension (d = 1, 2, 3) without thickness in a gas. (a) Circular
disk with diameter L∗ (d = 3), (b) infinite plate with finite width L∗ (d = 2), and (c) infinite
plate (d = 1).

infinite plate with finite width L∗ when d = 2 [Fig. 3.1(b)], and an infinitely wide plate when
d = 1 [Fig. 3.1(c)]. Let t∗ be the time variable and Xi be the Cartesian coordinates in space with
the Xi axes taken as in Fig. 3.1. That is, X1 axis is taken parallel to the elastic force, and X1 = 0

indicates the equilibrium position of the disk. Therefore, the elastic force F1 per unit area of the
disk is expressed as

F1 = −M∗ω
2
∗Xw(t∗), (3.3)

where Xw(t∗) is the position (X1 coordinate) of the disk at time t∗, M∗ is the mass density of the
disk (the mass of the disk per unit surface), and ω∗ is the proper frequency of the elastic force.

At time t∗ = 0, the disk is released from a positionX1 = Xw0 with an initial velocity Vw0 in the
X1 direction. Then, it starts an unsteady motion (e.g., an oscillatory motion), but the motion decays
as time goes on because of the drag exerted on the disk by the surrounding gas. We investigate this
unsteady motion of the disk numerically, with special interest in the long-time behavior and the
manner of the decay, assuming that the disk moves only along the X1 axis and does not change its
attitude.

2.2 Choice of the gas

In the present study, we consider the following two types of gas as the gas surrounding the disk.
We denote by ξi the molecular velocity and by f∗(Xi, ξi, t∗) the velocity distribution function of
the gas molecules.

2.2.1 Collisionless gas
The collisionless gas is a gas that is so rarefied that collisions between gas molecules can be

neglected. It is also called the free-molecular gas or the Knudsen gas. In this case, the basic
equation is the Boltzmann equation without the collision term, i.e., the free-transport equation:

∂f∗
∂t∗

+ ξj
∂f∗
∂Xj

= 0. (3.4)

That is, f∗ is constant along the molecular trajectory.

2.2.2 A kind of the Lorentz gas
In addition to the collisionless gas, we consider a gas that is described by the following equation.

∂f∗
∂t∗

+ ξi
∂f∗
∂Xi

= ν(ξi)(f∗∞ − f∗), (3.5)
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where

ν(ξi) =
π(r + rs)

2

ms

∫
R3

|ξ − ξs|f∗s(ξsi)dξs, (3.6a)

f∗∞(ξi) =
π(r + rs)

2

msν(ξi)

∫
R3

|ξ − ξs|f∗s(ξsi)f∗v(ξi − ξsi)dξs, (3.6b)

with dξs = dξs1dξs2dξs3. Here, f∗v(ξi) and f∗s(ξi) are given functions of ξi, and r, rs, and ms

are given constants. A physical model that leads to this equation is the following.
Let us suppose that the gas is a vapor of a substance and its molecule is a hard sphere with mass

m and radius r. In the gas, there are randomly distributed spherical obstacles (droplets) of mass
ms and radius rs, which are made of the condensed phase of the same substance as the vapor.
The obstacles are moving with velocity ξsi, and their velocity is distributed according to a given
distribution f∗s(ξsi) that is uniform in Xi and constant in t∗. We assume that the vapor molecules
hitting an obstacle are absorbed and reemitted with a velocity distribution f∗v(ξi − ξsi), which is
a given function of ξi − ξsi, uniform in Xi, and constant in t∗. We neglect the collisions between
vapor molecules and consider their interaction with the obstacles only. Then, we arrive at Eq. (3.5).
See Appendix for more details.

In the actual analysis, we use an equation that is a further simplification of Eq. (3.5), derived
under the assumption that f∗v and f∗s are Maxwellians and the average speed of motion of the
obstacles are much smaller than that of the gas molecules (see Appendix).

2.3 Assumptions

We investigate the problem stated in Sec. 2.1 under the following assumptions:

(i) The behavior of the gas is described by Eq. (3.4) or the model equation Eq. (3.12) shown
later, which is a simplified version of Eq. (3.5).

(ii) The gas molecules undergo diffuse reflection on the surface of the disk. That is. the
molecules reflected by the disk are distributed according to the Maxwellian distribution
characterized by the temperature and velocity of the disk, and there is no net mass flux
across the disk surface.

In the two-dimensional (2D) problem (d = 2), f∗ is independent of X3; in the one-dimensional
(1D) problem (d = 1), f∗ is independent of X2 and X3.

3 Basic Equations
In this section, we summarize the basic equations in dimensionless form. We restrict ourselves to

the three-dimensional problem, since the two- and one-dimensional cases are essentially the same.

3.1 Dimensionless variables and notations

In the preceding sections, we have introduced dimensional variables t∗, Xi, ξi, f∗, Xw, and Vw
and dimensional quantities T∗0, ρ∗0, L∗, M∗, ω∗, Xw0, and Vw0. In addition, let us denote by
G∗[f∗] the drag acting on the disk divided by its area and by f∗0 the Maxwellian distribution at rest
at density ρ∗0 and temperature T∗0.

Then we introduce the dimensionless quantities t, xi, ζi, f , xw, vw, L, M , xw0, vw0, G[f ], and
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f0 by the following relations:

t∗ = (1/ω∗) t, Xi = (
√
2R∗T∗0/ω∗)xi, ξi =

√
2R∗T∗0 ζi,

f∗(Xi, ξi, t∗) = [ρ∗0/(2R∗T∗0)
3/2] f(xi, ζi, t),

Xw(t∗) = (
√
2R∗T∗0/ω∗)xw(t), Vw(t∗) =

√
2R∗T∗0 vw(t),

L∗ = (
√
2R∗T∗0/ω∗)L, M∗ = (ρ∗0

√
2R∗T∗0/ω∗)M,

Xw0 = (
√
2R∗T∗0/ω∗)xw0, Vw0 =

√
2R∗T∗0 vw0,

G∗[f∗] = ρ0∗(2R∗T∗0)G[f ],

f∗0(|ξ|) = [ρ∗0/(2R∗T∗0)
3/2] f0(|ζ|),

(3.7)

where R∗ is the gas constant per unit mass (R∗ = kB/m with kB the Boltzmann constant and m
the mass of a gas molecule), and thus f0 is given by

f0(|ζ|) = π−3/2 exp(−|ζ|2). (3.8)

We further introduce some additional notations for later convenience: c1 is the molecular veloc-
ity relative to the velocity of the disk in the x1 direction, i.e.,

c1 = ζ1 − vw(t), (3.9)

∂S±(t) is the surface of the disk, i.e.,

∂S±(t) = {xi ∈ R3 |x1 = xw(t)± 0, x22 + x23 < L2/4 }, (3.10)

and Ω±(t) is the range of molecular velocity defined by

Ω±(t) = { ζi ∈ R3 | c1 ≷ 0 }. (3.11)

In Eqs. (3.10) and (3.11) and in what follows, the upper (or lower) signs go together.

3.2 Basic equations in dimensionless form

Our basic equation is Eq. (3.82) in Appendix, which is a toy model and is a simplified version
of Eq. (3.5), i.e.,

∂f

∂t
+ ζi

∂f

∂xi
=
νϵ(|ζ|)
Kn

(f0 − f). (3.12)

The case of a collisionless gas [Eq. (3.4)] is included in this equation as a special case (Kn → ∞).
In Eq. (3.12), the dimensionless collision frequency νϵ(|ζ|) is defined by the following function
νϵ(x):

νϵ(x) =
ϵ√
π

[
exp

(
−x

2

ϵ2

)
+
√
π
(x
ϵ
+

ϵ

2x

)
erf
(x
ϵ

) ]
, for x > 0, (3.13)

with erf(x) the error function given by

erf(x) =
2√
π

∫ x

0

exp(−y2)dy, (3.14)

and the Knudsen number Kn is defined as

Kn = [πn∗s(r + rs)
2]−1(

√
2R∗T∗0/ω∗)

−1, (3.15)
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with n∗s a positive constant [the number density of the obstacles; cf. Eq. (3.62)]. Here, ϵ is a small
parameter, and the Kn is the ratio between the mean free path of a gas molecule for the collisions
against obstacles [see Eqs. (3.81) and (3.82c)] and the characteristic length (

√
2R∗T∗0/ω∗). See

Appendix for the details of the derivation of Eq. (3.12) and the physical meaning of the parameters
and conditions.

The corresponding initial condition is given by

f(xi, ζi, 0) = f0(ζi), (3.16)

and the boundary condition (diffuse reflection) on the surface of the disk ∂S±(t) is given by

f(xi, ζi, t) = fw±(x2, x3, ζi, t), for xi ∈ ∂S±(t), ζi ∈ Ω±(t). (3.17)

where

fw±(x2, x3, ζi, t) = π−3/2ρw±(x2, x3, t) exp(−c21 − ζ22 − ζ23 ), (3.18a)

ρw±(x2, x3, t) = ∓2
√
π

∫
Ω∓(t)

c1f(xi, ζi, t)dζ, for xi ∈ ∂S±(t), (3.18b)

with the notation dζ = dζ1dζ2dζ3.
The equation of motion of the disk is given as

dxw(t)

dt
= vw(t),

dvw
dt

= −xw − 1

M
G[f ], (3.19)

with the initial condition

xw(0) = xw0, vw(0) = vw0. (3.20)

The dimensionless average dragG[f ] per unit area is expressed in terms of the velocity distribution
function on the disk:

G[f ] = G+[f ] +G−[f ], (3.21)

where

G±[f ] = ± 1

π(L/2)2

∫
x2
2+x2

3<L2/4

(∫
Ω∓(t)

c21f(xw(t)± 0, x2, x3, ζi, t)dζ

+

∫
Ω±(t)

c21fw±(x2, x3, ζi, t)dζ

)
dx2dx3. (3.22)

We solve the coupled system Eqs. (3.12)–(1.8) and Eqs. (3.19)–(1.10) numerically with special
interest in the manner of decay of the motion of the disk, i.e., the decay of |xw|. The parameters
contained in the present problem are

L, M, xw0, vw0, Kn, ϵ. (3.23)

Recall that Kn = ∞ recovers the collisionless gas Eq. (3.4).
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4 Preliminaries
4.1 Integral form

In the numerical analysis, we solve Eqs. (3.12)–(1.8) and Eqs. (3.19)–(1.10) in a time-marching
manner. For this purpose, it is more convenient to use the expression of ρw±(x2, x2, t) in terms
of the integrals containing information about ρw±, xw, and vw in the past. In order to derive the
integral form of ρw±, let us fix the time t and assume that ρw±, xw, and vw are known for the time
s in the past (0 ≤ s < t). In addition, we consider xi on the disk [xi ∈ ∂S±(t)].

For each velocity ζi for the molecules incident on the disk [ζi ∈ Ω∓(t) for xi ∈ ∂S±(t)],
we trace back the corresponding molecular trajectory. Then, we either (i) reach the initial time
without hitting the disk, or (ii) encounter the disk at a time tb in the past (0 < tb < t) at a point
(xw(t

b)± 0, xb2, x
b
3) on the disk. To be more specific, tb(ζ1, t) is given by

tb = max{s ∈ (0, t) |x1 − ζ1(t− s) = xw(s)}, (3.24)

and xb2(x2, ζ2, t, t
b) and xb3(x3, ζ3, t, t

b) by

xb2 = x2 − ζ2(t− tb), xb3 = x3 − ζ3(t− tb), (3.25)

under the condition that (xb2)
2 + (xb3)

2 < (L/2)2. The latter condition restricts the range of ζi and
is stated more precisely that

ζi ∈ Γ±(x2, x3, t), (3.26a)

Γ± =
{
ζi ∈ R3

∣∣ ∃tb > 0, (xb2)
2 + (xb3)

2 < (L/2)2, xi ∈ ∂S±(t)
}
. (3.26b)

Now let us define τ b±(xi, ζi, t) by

τ b± =

{
tb, for ζi ∈ Γ±,

0, for ζi /∈ Γ±.
(3.27)

This quantity is similar to the backward exit time for free-transport particles in a closed domain.
Then, integrating Eq. (3.12) along the characteristic line, one can write

f(xi, ζi, t) = f0 +
[
f(xi − ζi(t− τ b±), ζi, τ

b
±)− f0

]
× exp

(
−νϵ(|ζ|)

Kn
(t− τ b±)

)
. (3.28)

Here, the term f(xi − ζi(t− τ b±), ζi, τ
b
±) is expressed more explicitly as

f(xi − ζi(t− τ b±), ζi, τ
b
±) =

{
fw±(x

b
2, x

b
3, ζi, t

b), for ζi ∈ Γ±,

f0, for ζi /∈ Γ±.
(3.29)

If we substitute Eq. (3.28) into Eq. (3.18b), then we have

∓ρw±(x2, x3, t)

2
√
π

=

∫
Ω∓

c1f0dζ +

∫
Γ±∩Ω∓

c1f0 exp

(
−νϵ(|ζ|)

Kn
(t− tb)

)
×
[
ρbw± exp

(
ζ21 − [ζ1 − vbw]

2
)
− 1
]
dζ,

for xi ∈ ∂S±(t), (3.30)
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where

ρbw± = ρw±(x
b
2, x

b
3, t

b), vbw = vw(t
b). (3.31)

Equation (3.30) yields the expression of ρw±(x2, x3, t) in terms of ρw±, xw, and vw in the past.
It could be interpreted as the integral equation for ρw± if we suppose that xw and vw are known.
Equation (3.30) is the key equation for our time-marching solution of the original system.

4.2 Axisymmetry

In the three-dimensional case (d = 3), we assume that the problem is axisymmetric with respect
to the x1 axis and reduce the number of the independent variables. Let us introduce the cylindrical
coordinate system (x1, r, θ) for xi as

x1 = x1, x2 = r cos θ, x3 = r sin θ, (3.32)

with r ∈ [0, ∞) and θ ∈ [0, 2π), and assume that ρw± is independent of θ in the cylindrical
coordinate system, i.e.,

ρ̃w±(r, t) = ρw±(x2, x3, t). (3.33)

We further introduce some additional notations:

∂S̃±(t) = { (x1, r, θ) ∈ R× R+ × [0, 2π) |x1 = xw(t)± 0, r < L/2 } , (3.34a)

Γ⊥
± =

{
ζ1 ∈ R

∣∣ ∃tb > 0, (x1, r, θ) ∈ ∂S̃±(t)
}
, (3.34b)

Ω⊥
± =

{
ζ1 ∈ R

∣∣ ζ1 ≷ vw(t)
}
. (3.34c)

If we express xb2 and xb3 as

xb2 = rb cos(θ + θb), xb3 = rb sin(θ + θb), (3.35)

using the polar coordinates in the x2x3 plane, then Eq. (3.25) is recast as

rb cos(θ + θb) = r cos θ − ζ2(t− tb), (3.36a)

rb sin(θ + θb) = r sin θ − ζ3(t− tb). (3.36b)

Let us transform the integration variables from (ζ1, ζ2, ζ3) to (ζ1, r
b, θb) in Eq. (3.30) by the use

of Eq. (3.36), noting that tb = tb(ζ1, t). Then, we have

∓ ρ̃w±(r, t)

2
√
π

= H1±(t) + P1±[ρ̃w±](r, t), for (x1, r, θ) ∈ ∂S̃±, (3.37)

where H1±(t) and P1±[ρ̃w±](r, t) are the function and the operator, which are defined in a more
general form in the following.

The function Hn±(t) is defined by

Hn±(t) =

∫
Ω∓

cn1f0dζ, (3.38a)

or, more explicitly,

H1±(t) =∓ 1

2
√
π
exp(−v2w(t))−

1

2
vw(t)erfc(∓vw(t)), (3.38b)

H2±(t) =± vw(t)

2
√
π

exp(−v2w(t)) +
1

2

[
vw(t) +

1

2

]
erfc(∓vw(t)), (3.38c)
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where erfc(x) is the complementary error function:

erfc(x) =
2√
π

∫ ∞

x

exp(−y2)dy = 1− erf(x). (3.39)

The operator Pn±[ρ̃w±](r, t) is defined as

Pn±[ρ̃w±](r, t) =

∫
Ω⊥

∓∩Γ⊥
±

cn1F [ρ̃w±](r, ζ1, t; t
b) dζ1, (3.40)

where

F [ρ̃w±](r, ζ1, t; t
b) =

∫ L/2

0

K(|ζ1|, rb, r, t− tb; Kn, ϵ)

×
[
ρ̃w±(r

b, tb) exp(ζ21 − [ζ1 − vbw]
2)− 1

]
drb, (3.41a)

K(|ζ1|, rb, r, t− tb; Kn, ϵ)

=
2rb

π3/2(t− tb)2

∫ π

0

exp

(
−ζ2(θb)− νϵ(ζ(θ

b))

Kn
(t− tb)

)
dθb, (3.41b)

ζ(θb) =

√
ζ21 +

(r − rb)2 + 2rbr(1− cos θb)

(t− tb)2
. (3.41c)

With these notations, the average drag acting on the disk per unit area (3.22) is recast as

±G±(t) =
8

L2

∫ L/2

0

[
H2±(t) + P2±[ρ̃w±](r, t) +

1

4
ρ̃w±(r, t)

]
rdr,

for (x1, r, θ) ∈ ∂S̃±. (3.42)

For a collisionless gas [Eq. (3.4)], which is given by the limit as Kn→ ∞ in the special Lorentz
gas [Eq. (3.12)], we have the analytic expression of K [Eq. (3.41b)], i.e.,

K∞ ≡ K(|ζ1|, rb, r, t− tb; ∞, ϵ)

=
2rb

(t− tb)2
√
π
exp

(
−ζ21 −

(
r − rb

t− tb

)2
)
Ī0

(
2rbr

(t− tb)2

)
, (3.43)

where Ī0(x) is defined by

Ī0(x) = exp(−|x|)I0(x), (3.44a)

I0(x) =
1

π

∫ π

0

exp(x cos θ)dθ. (3.44b)

Here, I0(x) is the modified Bessel function of the first kind of order zero.

5 Numerical Analysis
In this section, we explain the numerical solution method for the three-dimensional (axisymmet-

ric) case.
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5.1 Numerical scheme for equation of motion

We first consider the equation of motion of the disk (3.19). Let us introduce the following
discrete variables:

t(n) = n∆t, x(n)w = xw(t
(n)), v(n)w = vw(t

(n)), G(n) = G[f(· , t(n))], (3.45)

where ∆t is a constant (time interval). Suppose that all the quantities have been obtained up to
t = t(n). Then, we compute the position x(n+1)

w and velocity v(n+1)
w of the disk as well as the drag

G(n+1) at t = t(n+1) by the predictor-corrector method explained below.
For brevity, we introduce the notation

X =
[
xw
vw

]
, F =

[
vw

−xw −M−1G[f ]

]
, (3.46a)

X(n) =

[
x
(n)
w

v
(n)
w

]
, F(n) =

[
v
(n)
w

−x(n)w −M−1G(n)

]
, (3.46b)

and write the equation of motion (3.19) as

dX

dt
= F, (3.47)

which leads to

X(n+1) = X(n) +

∫ t(n+1)

t(n)

F dt. (3.48)

We first obtain the predicted value X̂(n+1) of X(n+1) by approximating F in Eq. (1.23) by the
lP -degree polynomial of t based on the values F(n), F(n−1), ..., F(n−lP ), i.e.,

X̂(n+1) = X(n) +∆t

lP∑
l=0

w
(n−l)
P F(n−l), (3.49)

where the weights w(n)
P , ..., w(n−lP )

P are determined according to the polynomial approximation
mentioned above. We set lP = 3 in this paper (lp = n for n ≤ 2). With this X̂(n+1), we compute
the predicted value F̂(n+1) (or Ĝ(n+1)) by the procedure that will be described in Sec. 5.2. Then,
we compute X(n+1) by approximating F in Eq. (1.23) by the lC-degree polynomial of t based on
the values F̂(n+1), F(n), ..., F(n+1−lC), i.e.,

X(n+1) = X(n) +∆t

(
w

(n+1)
C F̂(n+1) +

lC−1∑
l=0

w
(n−l)
C F(n−l)

)
, (3.50)

where the weights w(n+1)
C , ..., w(n+1−lC)

C are determined similarly. We set lC = 4 in the present
paper (lC = n for n ≤ 3). Finally, with the new value X(n+1), we compute G(n+1) (see Sec. 5.2)
to prepare for the next step.

Once x(n+1)
w and v(n+1)

w are obtained, we approximate the trajectory xw(t) in the time interval
t ∈ [t(n), t(n+1)] by the cubic polynomial ψn(t) determined by the following conditions:

ψn(t
(n)) = x

(n)
w , ψn(t

(n+1)) = x
(n+1)
w ,

dψn

dt

∣∣∣∣
t=t(n)

= v
(n)
w ,

dψn

dt

∣∣∣∣
t=t(n+1)

= v
(n+1)
w .

(3.51)
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The approximated trajectory xw(t) = ψn(t) in the interval t ∈ [t(n), t(n+1)] (n = 0, 1, 2, ...)
will be used in Sec. 5.3.

5.2 Numerical scheme for computation of the drag force

In this subsection, we describe the method of computation of the drag forceG(n+1) at t = t(n+1),
supposing that the quantities at previous time steps (t = t(k), k = 0, 1, ..., n) are all known and
that x(n+1)

w and v(n+1)
w are also known [cf. Sec. 5.1]. We first introduce grid points in the r and θ

coordinates in the cylindrical coordinate system (3.32), i.e.,

r(i) = (L/2) (i/Nr), (i = 0, ..., Nr), (3.52)

θ(j) = π (j/Nθ), (j = 0, ..., Nθ), (3.53)

and denote

ρ̃
(i,k)
w± = ρ̃w±(r

(i), t(k)). (3.54)

In addition, we choose the grid points ζ(k)1 for ζ1 in such a way that tb(ζ(k)1 , t(n+1)) [Eq. (3.24)]
falls on the discrete time t(k).

The first step is to obtain ρ̃
(i,n+1)
w± by the use of Eq. (3.37) at r = r(i) and t = t(n+1).

Since H1±(t
(n+1)) can be obtained from the explicit expression (3.38b), our major con-

cern is to compute P1±[ρ̃w±](r
(i), t(n+1)) [Eq. (3.40)], for which we need to compute

F [ρ̃w±](r
(i), ζ

(k)
1 , t(n+1); tb(ζ

(k)
1 , t(n+1))). This can be computed for k = 0, 1, ..., n from

Eq. (3.41) because ρ(i,k)w± and vw(t(k)) are known for i = 0, ..., Nr and k = 0, ..., n [Note that
vbw = vw(t

b(ζ
(k)
1 , t(n+1))) in Eq. (3.41)]. The integration with respect to θb in Eq. (3.41b) and that

with respect to rb in Eq. (3.41a) are carried out by the Simpson rule. Then P1±[ρ̃w±](r
(i), t(n+1))

is computed from Eq. (3.40), where the integration with respect to ζ1 is performed by the
trapezoidal rule. In this integration, F [ρ̃w±](r

(i), ζ
(k)
1 , t(n+1); tb(ζ

(k)
1 , t(n+1))) at k =n + 1,

which corresponds to the end point of the range of integration with respect to ζ1, is not required,
since the integrand vanishes there because of the factor c1. It should be noted that tb(ζ1, t(n+1)),
as a function of ζ1, exhibits discontinuities depending on the shape of the trajectory in the past,
xw(s) for s ∈ [0, t). Therefore, for accurate numerical integration, we need the precise locations
of the discontinuities as well as the values of the integrand at both sides of the discontinuities. The
detailed description how to handle the discontinuities will be given in the next subsection.

Once we obtain ρ̃(i,n+1)
w± by the procedure mentioned above, we can compute G±(t

(n+1)) from
Eq. (3.42). Here, H2±(t

n+1)) is obtained from Eq. (3.38c), and P2±[ρ̃w±](r
(i), t(n+1)) is com-

puted from Eq. (3.40), in the same way as P1±[ρ̃w±] (r
(i), t(n+1)) in the preceding paragraph.

Then, the integration with respect to r in Eq. (3.42) is carried out by the Simpson rule. Then,
the average drag G(n+1) at t = t(n+1) is obtained as the sum of G+(t

(n+1)) and G−(t
(n+1))

[Eq. (3.21)].
The predicted value Ĝ(n+1) of G(n+1), which appeared in Sec. 5.1, can be obtained in the same

way as G(n+1), using the predicted values X̂(n+1) (i.e., the predicted values of x(n+1)
w and v(n+1)

w )
instead of x(n+1)

w and v(n+1)
w .

5.3 Numerical scheme for computation of discontinuity

As we mentioned in Sec. 5.2, tb(ζ1, t(n+1)) may be a piecewise continuous function of ζ1 with
(a finite number of) discontinuities. In this subsection, we will give a brief sketch how to obtain the
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Fig. 3.2 The discontinuities of the function tb(ζ1, t) at a given t. (a) The tb(ζ1, t) at t = 25
as the function of ζ1. (b) The trajectory xw(t) of the disk for 0 ≤ t ≤ 25. The parameters are
set as d = 3, M = 4, L = 1, xw0 = 1, vw0 = 0, and Kn = ∞ (collisionless gas).

positions of discontinuities and the values of tb at both sides of the discontinuities. For simplicity,
we discuss only the “+” side, i.e., for xi ∈ ∂S̃+(t

(n+1)). The situation is shown in Fig. 3.2, i.e.,
the actual trajectory xw(t) [0 ≤ t ≤ t(n+1) = 25] is shown for d = 1, M = 4, L = 1, xw0 = 1,
vw0 = 0, and Kn = ∞ (collisionless gas) in Fig. 3.2(b), and the corresponding tb at t = 25 is
shown as the function of ζ1 in Fig. 3.2(a). Then, it is obvious that the positions of the discontinuities
and the values of tb there are obtained by inspecting the tangential lines of the trajectory. To be
more specific, we first solve the following equation to obtain τ :

x(n+1)
w − t(n+1) dψk

dt

∣∣∣∣
t=τ

= ψk(τ)− τ
dψk

dt

∣∣∣∣
t=τ

, for k = 0, ..., n, (3.55)

recalling that the trajectory xw(t) for t ∈ [0, t(n+1)] has been approximated piecewisely by cubic
polynomials ψk (k = 0, ..., n) [cf. the last paragraph of Sec. 5.1]. If τ satisfies the condition for
tb [Eq. (3.24) with t = t(n+1)] and τ ∈ [t(k), t(k+1)], then tb is discontinuous at ζ1 = η such that
tb(η, t(n+1)) = τ . By definition, τ is the value of tb(ζ1, t(n+1)) at ζ1 = η + 0. If we denote by τ ′

the value of tb(ζ1, t(n+1)) at ζ1 = η − 0, then it is obtained as

τ ′ =max

{
ψk(τ)− τ

dψk

dt

∣∣∣∣
t=τ

= ψk′(τ ′)− τ ′
dψk

dt

∣∣∣∣
t=τ

}
,(

τ ∈ [t(k), t(k+1)], τ ′ ∈ [t(k
′), t(k

′+1)], k ≥ k′
)
. (3.56)

If there is no k′ satisfying Eq. (3.56), then τ ′ = 0. In Fig. 3.2(a), τ ’s and τ ′’s are numbered as
t(n+1) = τ0 > τ ′0 > τ1 > τ ′1 > τ2 > τ ′2 > · · · . Equations (3.55) and (3.56) are solved by the
Newton method.
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Fig. 3.3 The decay of the displacement xw(t) for d = 1, 2, and 3 in the case of M = 4, L = 1
(d = 2 and 3), xw0 = 1, and vw0 = 0 (collisionless gas: Kn = ∞). (a) log10 |xw| vs log10 t.
(b) The gradient α(xw) of the curve in panel (a) vs log10 t.

5.4 Data for computation

The numerical results that will be shown in Sec. 6 are based on ∆t = 0.02 and Nr = 16 and
Nθ = 32 for d = 3. We have confirmed, with computations using different grid systems, that this
sytem is enough for necessary accuracy. The computation was carried out with quadruple precision.
We have used fast algorithms for the error and Bessel functions provided by T. Ooura, available
from his home page (http://www.kurims.kyoto-u.ac.jp/˜ooura/index.html). The algorithms are for
double precision, but we have confirmed that they give an accuracy of 19 significant figures if they
are used in a quadruple-precision computation.

The computation has been carried out on a PC cluster with CPU: Intel(R) Core 2 Extreme
QX9650 3.0GHz(4CPU)×8.

6 Results
In this section, we present some numerical results, focusing our attention on the manner of decay

of the displacement xw(t) of the disk at long times.

6.1 Collisionless gas

First, we show the results for the collisionless gas (cf. Sec. 2.2.1), which can also be regarded as
the special case Kn = ∞ of Eq. (3.12). Figure 3.3 contains the decay properties of the displace-
ment xw(t) of the disk at long times for the d-dimensional problems (d = 1, 2, and 3; see Fig. 3.1)
in the case of M = 4, L = 1 (d = 2 and 3), xw0 = 1, and vw0 = 0: Fig. 3.3(a) shows the plot
log10 |xw(t)| versus log10 t, and Fig. 3.3(b) shows the gradient α(xw) of the curve in Fig. 3.3(a),
i.e.,

α(xw) = d log10 |xw(t)|/d log10 t. (3.57)
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Fig. 3.4 The decay of the displacement xw(t) for d = 1, 2, and 3 in the case of M = 4, L = 1
(d = 2 and 3), xw0 = 0, and vw0 = 1 (collisionless gas: Kn = ∞). (a) log10 |xw| vs log10 t.
(b) The gradient α(xw) of the curve in panel (a) vs log10 t.

Table 3.1 The values of the gradient α(xw) of the curve log10 |xw| vs log10 t for d = 1, 2,
and 3 and for M = 1, 4, and 10 in the case of L = 1 (d = 2 and 3), xw0 = 1, and vw0 = 0
(collisionless gas: Kn = ∞). See Fig. 3.3 for M = 4.

−α(xw)
d = 1 d = 2 d = 3

t log t M = 10M = 4M = 1M = 10M = 4M = 1M = 10M = 4M = 1

10.00 1.0 —∗ —∗ 3.6368 —∗ —∗ 7.5391 —∗ —∗ 8.5635

31.62 1.5 —∗ —∗ 2.1620 —∗ —∗ 3.3034 —∗ —∗ 4.4575

100.00 2.0 —∗ 2.0074 2.0463 —∗ 3.0476 3.0813 —∗ —∗ 4.1167

316.23 2.5 1.9821 2.0029 2.0143 2.9941 3.0066 3.0246 —∗ 4.0100 4.0351

398.11 2.6 1.9860 2.0024 2.0113 2.9863 3.0053 3.0195 3.9896 4.0081 4.0277

630.96 2.8 1.9914 2.0015 2.0071 2.9916 3.0034 3.0122 3.9916 4.0052 4.0174

1000.00 3.0 1.9946 2.0010 2.0045 2.9948 3.0022 3.0077 3.9952 4.0036 4.0113

1995.26 3.3 1.9974 · · · 2.0022 2.9974 · · · 3.0038 · · · · · · · · ·
3162.28 3.5 1.9983 · · · 2.0014 · · · · · · · · · · · · · · · · · ·

10000.00 4.0 1.9995 · · · 2.0004 · · · · · · · · · · · · · · · · · ·
∗Values are omitted because of the strong oscillation of α(xw) [see e.g. Fig. 3.3(b)].

Table 3.1 shows the values of α(xw) corresponding to Fig. 3.3(b) as well as its values for M = 1

and 10. Figure 3.4 is the counterpart of Fig. 3.3 with different initial conditions of the disk, xw0 = 0

and vw0 = 1, and Table 3.2 shows the numerical values of α(xw) corresponding to Fig. 3.4(b).
These figures and tables supplement our earlier work [6], in which only the case of d = 1 is
investigated.

The results contained in Figs. 3.3 and 3.4 and Tables 3.1 and 3.2, together with those of other
cases that are not shown in this paper, provide some pieces of numerical evidence for the decay
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Table 3.2 The values of the gradient α(xw) of the curve log10 |xw| vs log10 t for d = 1, 2,
and 3 in the case of M = 4, L = 1 (d = 2 and 3), xw0 = 0, and vw0 = 1 (collisionless gas:
Kn = ∞). See Fig. 3.4.

−α(xw)
t log t d = 1 d = 2 d = 3

100.00 2.0 2.0309 3.1730 —∗

158.49 2.2 2.0197 3.0364 4.0521

251.19 2.4 2.0127 3.0233 4.0333

398.11 2.6 2.0081 3.0148 4.0212

630.96 2.8 2.0052 3.0094 4.0135

1000.00 3.0 2.0033 3.0059 4.0092
∗Values are omitted because of the strong oscillation of α(xw) [see e.g. Fig. 3.4(b)].

rate (3.2), i.e.,

|xw(t)| ≈ C/td+1, (3.58)

for large t, where and hereafterC symbolically denotes a constant with respect to t that may depend
on other parameters.

As was proven mathematically in [1, 2, 3, 4] and then confirmed numerically in [5, 6], the
slow algebraic decay is attributed to the long-memory effect caused by multiple collisions of a gas
molecule with the disk. In general, when a body is moving freely in a collisionless gas under the
action of an external force, the body is accelerated or decelerated by the force. In this situation,
the molecules that are reflected by the body at early times may hit the body again and again at later
times. Such molecules transfer information about the body at early stages directly to the body at
later times and may affect the motion of the body long time later. That is, they give rise to a long-
memory effect. In fact, if the effect of the multiple collisions is neglected, the decay is exponential
in time [1, 2]. Our next interest is how the decay rate is modified if the long-memory effect is
destroyed by some means. This is the reason why we consider the toy model Eq. (3.12) based on
the special Lorentz gas.

6.2 Special Lorentz gas: Case of resting obstacles

We first consider Eq. (3.12) with ϵ = 0, which corresponds to the case where the obstacles are
at rest in the special Lorentz gas. We show some results in this case in Figs. 3.5 and 3.6 as well
as Tables 3.3 and 3.4. Figure 3.5(a) shows the curves log10 |xw(t)| versus log10 t in the one-
dimensional problem (d = 1) with initial condition xw0 = 1 and vw0 = 0 for M = 1 (monotonic
decay) and 10 (oscillatory decay) and for Kn = 10 and 102 together with the collisionless case
(Kn = ∞), and the gradient α(xw) of each curve is plotted versus log10 t in Fig. 3.5(b). Some
values of α(xw) at large times are shown in Table 3.3. Figure 3.6 is the corresponding figure in
the three-dimensional problem (d = 3) with initial condition xw0 = 1 and vw0 = 0 for M = 1

and L = 1 and for Kn = 1, 10, 102 and ∞ (collisionless gas). Table 3.4 shows some values of the
gradient α(xw) in Fig. 3.6 at large times.

From these results, it is likely that the displacement xw(t) of the disk decays as

|xw(t)| ≈ C/t4, (3.59)
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Fig. 3.5 The decay of the displacement xw(t) for d = 1, xw0 = 1, and vw0 = 0 [special
Lorentz gas with resting obstacle: Eq. (3.12) with ϵ = 0]. (a) log10 |xw| vs log10 t. (b) The
gradient α(xw) of the curve in panel (a) vs log10 t. The solid line is for M = 10 (oscillatory
decay), and the dashed line is for M = 1 (monotonic decay). The results for Kn = 10, 102,
and ∞ (collisionless gas) are shown in the figures.

Fig. 3.6 The decay of the displacement xw(t) for d = 3, M = 1, L = 1, xw0 = 1, and
vw0 = 0 [special Lorentz gas with resting obstacle: Eq. (3.12) with ϵ = 0]. (a) log10 |xw| vs
log10 t. (b) The gradient α(xw) of the curve in panel (a) vs log10 t. The results for Kn = 1, 10,
102, and ∞ (collisionless gas) are shown in the figures.

for large t, independent of the dimension d of the problem. This is different from Eq. (3.58) for
a collisionless gas, but the rate is still algebraic. Unlike the collisionless case, the gas molecules
reflected by the disk generally hit the obstacles before hitting the disk again. Therefore, the long-
memory effect in the collisionless gas is destroyed in the present case. However, since the obstacles
are at rest, slow molecules among the reflected molecules may not interact with the obstacles before
they are hit again by the disk. In this sense, the long-memory effect is not completely destroyed.
This may be the reason why we still have an algebraic decay. In the present setting, the obstacles
are three dimensional (spheres of uniform size) and randomly distributed in the three-dimensional
space, irrespective of the dimension d of the problem shown in Fig. 3.1. Therefore, it is natural
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Table 3.3 The values of the gradient α(xw) of the curve log10 |xw| vs log10 t for d = 1,
xw0 = 1, and vw0 = 0 [special Lorentz gas with resting obstacle: Eq. (3.12) with ϵ = 0]. See
Fig. 3.5.

−α(xw)
Kn → ∞ Kn = 102 Kn = 10

t log t M = 10 M = 1 M = 10 M = 1 M = 10 M = 1

316.23 2.5 1.9821 2.0143 3.4116 3.4517 3.9827 4.0229

1000.00 3.0 1.9946 2.0045 3.8891 3.9041 3.9938 4.0097

1995.26 3.3 1.9974 2.0022 3.9684 3.9762 3.9972 4.0052

10000.00 4.0 1.9995 2.0004 · · · · · · · · · · · ·

Table 3.4 The values of the gradient α(xw) of the curve log10 |xw| vs log10 t for d = 3,
M = 1, L = 1, xw0 = 1, and vw0 = 0 [special Lorentz gas with resting obstacle: Eq. (3.12)
with ϵ = 0]. See Fig. 3.6.

−α(xw)
t log t Kn→ ∞ Kn= 102 Kn= 10 Kn= 1

10.00 1.0 8.5635 8.5641 8.5698 8.6089

25.12 1.4 4.8025 4.8041 4.8192 5.0253

63.10 1.8 4.1942 4.1943 4.1952 4.2043

158.49 2.2 4.0716 4.0716 4.0719 4.0752

398.11 2.6 4.0277 4.0277 4.0279 4.0291

that the decay rate (3.59) is independent of d. For instance, the rate may change if the obstacles are
two-dimensional cylinders distributed randomly in the x1x2 space in the two dimensional problem
(d = 2).

6.3 Special Lorentz gas: Case of moving obstacles

Finally we consider Eq. (3.12) with non-zero ϵ, which corresponds to the case where the ob-
stacles are moving with low speed (cf. Appendix). Some results for the decay property of the
displacement are shown in Figs. 3.7–3.9 as well as Tables 3.5– 3.7. Figure 3.7(a) shows the curves
log10 |xw(t)| versus log10 t in the one-dimensional problem (d = 1) with initial condition xw0 = 1

and vw0 = 0 for M = 1 (monotonic decay), Kn = 10 and ∞ (collisionless case), and various val-
ues of ϵ including ϵ = 0 (case of resting obstacles). The gradient α(xw) of each curve in Fig. 3.7(a)
is plotted versus log10 t in Fig. 3.7(b), and some values of α(xw) at large times are shown in Ta-
ble 3.5. Figure 3.8 and Table 3.6 are the corresponding figure and table for oscillatory decay,
that is, for d = 1, M = 10, Kn = 10 and ∞, and various ϵ with initial condition xw0 = 1 and
vw0 = 0. Then, Fig. 3.9 and Table 3.7 show the corresponding results in the three-dimensional
problem (d = 3) for M = 1 (monotonic decay), L = 1, Kn = 10 and ∞, and various ϵ with initial
condition xw0 = 1 and vw0 = 0.

It is seen from these results that, when ϵ ̸= 0, the gradient α(xw) decreases faster and faster as
time t increases for large t. This suggests that the decay rate is exponential in t. To see it more
clearly, we plot, in Fig. 3.10(a), log10 |t4xw(t)| versus t in the same case as in Fig. 3.9 and, in
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Fig. 3.7 The decay of the displacement xw(t) for d = 1, M = 1, xw0 = 1, and vw0 = 0
[special Lorentz gas with moving obstacle: Eq. (3.12)]. (a) log10 |xw| vs log10 t. (b) The
gradient α(xw) of the curve in panel (a) vs log10 t.

Fig. 3.8 The decay of the displacement xw(t) for d = 1, M = 10, xw0 = 1, and vw0 = 0
[special Lorentz gas with moving obstacle: Eq. (3.12)]. (a) log10 |xw| vs log10 t. (b) The
gradient α(xw) of the curve in panel (a) vs log10 t.

Fig. 3.10(b), the gradient of the curve in Fig. 3.10(a), i.e.,

β(xw) = d log10 |t4xw(t)|/dt. (3.60)

Figure 3.10(b) indicates that the gradient β(xw) tends to approach a non-zero constant value, de-
pending on ϵ, when ϵ ̸= 0. For ϵ = 0.16, the curve deviates from the constant value for t larger
than about 400. This may be due to the numerical error, since |xw(t)| is too small for accurate
computation in this case [see Fig. 3.9(a)]. Some values of β(xw) are shown for large t in Table
3.8. From these results, the decay of xw(t) for large t is likely to be

|xw(t)| ≈ Ct−4 exp(−β t), (3.61)

with constant β (depending on the parameters) for d = 3. However, for d = 1 and 2, the numerical
result does not show clear decay property as in the case of d = 3.
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Fig. 3.9 The decay of the displacement xw(t) for d = 3, M = 1, L = 1, xw0 = 1, and
vw0 = 0 [special Lorentz gas with moving obstacle: Eq. (3.12)]. (a) log10 |xw| vs log10 t. (b)
The gradient α(xw) of the curve in panel (a) vs log10 t.

Fig. 3.10 The decay of t4xw(t) in the case of Fig. 3.9 and Table 3.7. (a) log10 |t4xw| vs t. (b)
The gradient β(xw) of the curve in panel (a) vs t.

Contrary to the case of resting obstacles, even slow molecules among the reflected molecules are
hit by the moving obstacles in the present case of ϵ ̸= 0. Therefore, almost no information about the
motion of the disk is transmitted directly to the later time. In other words, the long-memory effect
caused by multiple collisions of a gas molecule with the disk is eliminated. As the consequence,
we have a faster decay, such as given by Eq. (3.61). The decay is faster for larger ϵ because the
obstacles moving with higher speed have more chances to collide with the gas molecules.

7 Concluding remarks
In the present study, we have investigated unsteady motion of a disk in a gas under the action

of an external force obeying Hooke’s law, with special interest in the manner of decay of the
motion caused by the drag force exerted by the gas. We first considered the case where the gas is a
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highly rarefied collisionless gas (free-molecular gas or the Knudsen gas) and provided some pieces
of numerical evidence for the decay of the displacement described by Eq. (3.2) or (3.58). These
results complement our previous numerical results for the one-dimensional case (d = 1) [6] as well
as the rigorous mathematical results for the case of non-oscillatory decay [2] [specular reflection
rather than diffuse reflection is employed in [2], so that the decay rate is given by Eq. (3.1)]. The
slow algebraic decay is attributed to the long-memory effect caused by multiple collisions of a
gas molecules with the disk, as proven mathematically in [1, 2, 3, 4] and confirmed numerically
in [5, 6]. In fact, the decay becomes exponentially fast if the multiple collisions are neglected by
assuming that all the molecules incident on the disk come from the initial velocity distribution.

Our next interest was to see how the decay rate is modified when the long-memory effect is
destroyed by some means. For this purpose, we have introduced a toy model, Eq. (3.12), whose
physical basis is a type of the Lorentz gas consisting of free-streaming gas (vapor) molecules and
randomly distributed spherical obstacles (droplets of the liquid or solid phase of the vapor) with
which the gas molecules interact. Our numerical results show the following: The decay rate is still
algebraic when ϵ = 0 in Eq. (3.12), which corresponds to the case of resting obstacles, but we
have a faster decay rate that is likely to be exponential in time when ϵ ̸= 0, which corresponds to
the case of moving obstacles. This result seems to be natural, since the moving obstacles destroy
the memory of the gas molecules almost completely. However, if we consider a real gas with
collisions between gas molecules, the manner of decay of the motion of the disk may be different
from the case of the present toy model. In this connection, it should be mentioned that the decay
rate of translational and rotational motion (monotonic and oscillatory decay) of a spherical body

Table 3.5 The values of the gradient α(xw) of the curve log10 |xw| vs log10 t for d = 1,
M = 1, xw0 = 1, and vw0 = 0 [special Lorentz gas with moving obstacle: Eq. (3.12)]. See
Fig. 3.7.

−α(xw)
Kn→ ∞ Kn= 10

t log t — ϵ = 0 ϵ = 0.01 ϵ = 0.02 ϵ = 0.04 ϵ = 0.08 ϵ = 0.16

316.23 2.5 2.0143 4.0229 4.1044 4.2963 4.8191 6.0808 8.8256

630.96 2.8 2.0071 4.0143 4.2839 4.8181 6.0871 8.8150 14.4522

1000.00 3.0 2.0045 4.0097 4.5708 5.5291 7.6797 12.1092 · · ·
1995.26 3.3 2.0022 4.0052 5.5526 7.6319 12.0896 · · · · · ·

Table 3.6 The values of the gradient α(xw) of the curve log10 |xw| vs log10 t for d = 1,
M = 10, xw0 = 1, and vw0 = 0 [special Lorentz gas with moving obstacle: Eq. (3.12)]. See
Fig. 3.8.

−α(xw)
Kn→ ∞ Kn= 10

t log t — ϵ = 0 ϵ = 0.02 ϵ = 0.04 ϵ = 0.08 ϵ = 0.16

316.23 2.5 1.9821 3.9827 4.2596 4.7898 6.0830 9.2442

630.96 2.8 1.9914 3.9888 4.7939 6.0642 8.7931 14.4310

1000.00 3.0 1.9946 3.9938 5.5144 7.6655 12.0959 · · ·
1995.26 3.3 1.9974 3.9972 7.6254 12.0866 · · · · · ·
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Table 3.7 The values of the gradient α(xw) of the curve log10 |xw| vs log10 t for d = 3,
M = 1, L = 1, xw0 = 1, and vw0 = 0 [special Lorentz gas with moving obstacle: Eq. (3.12)].
See Fig. 3.9.

−α(xw)
Kn→ ∞ Kn= 10

t log t — ϵ = 0 ϵ = 0.04 ϵ = 0.08 ϵ = 0.16

100.00 2.0 4.1167 4.1173 4.5613 5.0168 5.9224

158.49 2.2 4.0716 4.0719 4.7827 5.5006 6.9332

251.19 2.4 4.0444 4.0446 5.1755 6.3109 8.5797

398.11 2.6 4.0277 4.0279 5.8230 7.6214 11.2453

Table 3.8 The values of the gradient β(xw) of the curve log10 |t4xw| vs t in the case of
Fig. 3.9 and Table 3.7.

−β(xw)
t log t ϵ = 0 ϵ = 0.04 ϵ = 0.08 ϵ = 0.16

100.00 2.000 5.0957×10−4 2.4379×10−3 4.4162×10−3 8.3495×10−3

149.97 2.176 2.2075×10−4 2.1668×10−3 4.1350×10−3 8.0610×10−3

199.99 2.301 1.2260×10−4 2.0749×10−3 4.0396×10−3 7.9631×10−3

250.03 2.398 7.7865×10−5 2.0330×10−3 3.9961×10−3 7.9188×10−3

299.92 2.477 5.3861×10−5 2.0106×10−3 3.9728×10−3 7.8965×10−3

349.95 2.544 3.9427×10−5 1.9971×10−3 3.9590×10−3 —∗

399.94 2.602 3.0113×10−5 1.9884×10−3 3.9503×10−3 —∗

449.78 2.653 2.3771×10−5 1.9825×10−3 3.9450×10−3 —∗

498.88 2.698 1.9299×10−5 1.9785×10−3 3.9426×10−3 —∗

∗Values are omitted because of the loss of accuracy [see Fig. 3.10(b)].

was investigated mathematically when the surrounding fluid is the viscous Stokes fluid [8, 9]. In
this case, the decay rate was proven to be algebraic in time. This fact also provides a motivation to
study the present problem for the gas with intermolecular collisions. This will be a subject of the
next stage of our study.

Finally, it should be remarked that the present problem has some similarity to the so-called piston
problem, which is a fundamental problem in statistical physics (see [14, 15, 16] and the references
therein). In [17, 18], for instance, an unsteady motion of a piston has been investigated numeri-
cally, using particle methods, when the movable piston is placed in a closed container, the gas is
collisionless, and the boundary condition is specular reflection. In this case, the oscillating motion
of the piston is caused by instability of a mechanical equilibrium [19], rather than an external force
as considered in the present paper.

A Special Lorentz gas: Derivation of Eqs. (3.5) and (3.12)
In this section, we consider a physical model that can be said to be a special version of the

Lorentz gas [10, 11] and give a physical derivation of the corresponding equations, Eqs. (3.5) and
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(3.12), along the same line as the original derivation of the Boltzmann equation [12]. In particular,
we follow the argument in [13].

A.1 Physical model

We consider, as in the main text, a gas composed of hard-sphere molecules of massm and radius
r, whose velocity distribution function is denoted by f∗(Xi, ξi, t∗). In the gas, spherical obstacles
of uniform size (mass ms and radius rs) are distributed randomly. We suppose that the gas is the
vapor of a substance and the obstacles are made of the condensed phase of the same substance,
so that evaporation and condensation of the gas may take place on the surface of the obstacles. A
physical image may be given by a system composed of a dilute water vapor and tiny water droplets
suspended in it, though only a monatomic gas is considered in the present paper. As described
in Sec. 2.2.2, the obstacles are moving with velocity ξsi. Our assumptions on the model are as
follows:

1. Gas molecules hitting an obstacle are absorbed in it.
2. The obstacles emit the gas molecules according to a given velocity distributionf∗v(ξi−ξsi),

which is uniform in space and constant in time.
3. The motion of the obstacles are not affected by the interaction with the gas molecules or

other obstacles, and their velocities ξsi are distributed according to a given velocity distri-
bution f∗s(ξsi), which is uniform in space and constant in time.

4. Collisions between gas molecules can be neglected.
5. No external force acts on the gas molecules.

The first and second assumptions correspond to the usual boundary condition for the Boltzmann
equation on the interface on which evaporation or condensation is taking place (for instance, the
complete condensation condition [7]). The fourth assumption is realized when the number density
of the gas molecules n∗ and that of the obstacles n∗s, defined by

n∗ =
1

m

∫
R3

f∗dξ, n∗s =
1

ms

∫
R3

f∗sdξs, (3.62)

satisfy the condition

max
Xi∈R3, t∈R+

n∗r
2 ≪ n∗sr

2
s , (3.63)

as will be discussed in Sec. A.2.2.

A.2 Kinetic equations for the model

We first derive the general form of the kinetic equation for the physical model introduced in
Sec. A.1 (Sec. A.2.1). Then we simplify the kinetic equation with the help of special choices of
f∗s and f∗v (Sec. A.2.3). In the mean time, the discussion about the mean free path will be given
in Sec. A.2.2.

A.2.1 General Form

Proposition 1 For the physical model described in Sec. A.1 (the special Lorentz gas), the velocity
distribution function of the gas molecules f∗(Xi, ξi, t∗) satisfies Eqs. (3.5) and (3.6).
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Proof Let dXdξ denote a small neighborhood of (Xi, ξi) in the six-dimensional phase space.
Then, (f∗/m)dXdξ represents the number of gas molecules in dXdξ. Suppose that the volume
dXdξ is moving according to the equation of motion:

dXi

dt∗
= ξi,

dξi
dt∗

= 0. (3.64)

Therefore, the volume dXdξ at time t∗ moves to the volume dXdξ at time t∗ = t∗ + dt∗, which
is a small neighborhood of the point

Xi = Xi + ξidt∗, ξi = ξi, (3.65)

where dt∗ is a small increment of time. Since dXdξ = dXdξ holds, the difference between the
number of molecules in dXdξ and that in dXdξ is given by

1

m
f∗(Xi, ξi, t∗)dXdξ − 1

m
f∗(Xi, ξi, t∗)dXdξ

=
1

m

[
∂f∗
∂t∗

+ ξi
∂f∗
∂Xi

+O(dt∗)

]
dXdξdt∗. (3.66)

This is equal to the increase of the number of molecules in the volume dXdξ minus its decrease
during the time interval dt∗ because of collisions with the obstacles, which can be expressed as

1

m
Jgain(Xi, ξi, t∗)dXdξdt∗ −

1

m
Jloss(Xi, ξi, t∗)dXdξdt∗. (3.67)

More precisely, the first term in Eq. (3.67) (the gain term) indicates the number of molecules that
are contained in the volume dXdξ at time t∗ and have emitted from the obstacles during dt∗. The
second term in Eq. (3.67) (the loss term) indicates the number of molecules that were contained in
the volume dXdξ at time t∗ and have hit the obstacles during dt∗. We recall here that we have
neglected the collision between gas molecules (see Sec. A.2.2).

Now we try to derive the explicit form of Jloss and Jgain.

Loss Term : Jloss Consider an obstacle moving with a velocity ξs contained in the volume dX .
We denote a unit vector at the center of the obstacle by α and the solid-angle element around α

by dΩ(α). The number of the molecules with velocity in the small neighborhood dξ around ξ and
hitting the obstacle during dt∗ is given by the number of the molecules contained in the cylinder
with height |(ξ − ξs) ·α|dt∗ and the base area d2sΩ(α) (ds = r + rs) in Fig. 3.11(a), i.e.,

1

m
f∗(Xi, ξi, t∗)dξ × |(ξ − ξs) ·α|dt∗ × d2sdΩ(α)× 1{(ξ−ξs)·α<0}, (3.68)

where 1A is the characteristic function of a set A. By integrating Eq. (3.68) for all α, we obtain
the total number of the gas molecules with velocity in dξ hitting the obstacle during dt∗, i.e.,(∫

allα

1

m
f∗|(ξ − ξs) ·α|1{(ξ−ξs)·α<0}d

2
sdΩ(α)

)
dξdt∗ =

1

m
πd2s|ξ − ξs|f∗dξdt∗. (3.69)

Since the number of the obstacles contained in the small neighborhood dXdξs around (Xi, ξsi)

is given by (1/ms)f∗s(ξs)dXdξs, the total number of the gas molecules contained in dXdξ and
hitting the obstacles during dt∗, i.e., (1/m)JlossdXdξdt∗, is obtained as

1

m
JlossdXdξdt∗ =

∫
ξsi∈R3

(
1

m
πd2s|ξ − ξs|f∗dξdt∗

)
1

ms
f∗s(ξsi)dXdξs

=
1

m

πd2s
ms

(∫
ξsi∈R3

|ξ − ξs|f∗s(ξsi)dξs
)
f∗dXdξdt∗. (3.70)
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Fig. 3.11 Configuration of the collision between gas molecules and an obstacle with velocity
ξsi. (a) The loss term. (b) The gain term.

Gain Term : Jgain We count the number of gas molecules with velocity in a small neighborhood dξ
around ξ, emitted from an obstacle during dt∗. Since the distribution function for the emitted vapor
molecules is a given function, the same discussion as the loss term holds. The only difference is that
f∗ is replaced by f∗v(ξi−ξsi) and 1{(ξ−ξs)·α<0} by 1{(ξ−ξs)·α>0} in Eq. (3.68) [see Fig. 3.11(b)].
Noting that ξi = ξi [Eq. (3.65)] and dXdξ = dXdξ, we obtain

1

m
JgaindXdξdt∗ =

∫
ξsi∈R3

(
1

m
πd2s|ξ − ξs|f∗v(ξi − ξsi)dξdt∗

)
1

ms
f∗s(ξs)dXdξs

=
1

m

πd2s
ms

(∫
ξsi∈R3

|ξ − ξs|f∗s(ξsi)f∗v(ξi − ξsi)dξs

)
dXdξdt∗. (3.71)

Equating Eq. (3.66) and Eq. (3.67) with Eqs. (3.70) and (3.71) and neglecting higher-order terms
of dt∗, we obtain Eqs. (3.5) and (3.6). 2

A.2.2 Mean free path
In order to discuss the mean free paths of the gas molecules, we consider the case where the gas

is in the equilibrium state at rest at temperature T∗0 and density ρ∗0 (or molecular number density
n∗0), i.e.,

f∗ =
mn∗0

(2πR∗T∗0)3/2
exp

(
− |ξ|2

2R∗T∗0

)
. (3.72)

Then, the mean free path l∗ of a gas molecule for the collisions against gas molecules is given by
[7]

l∗ = 1/
√
2π(2r)2n∗0. (3.73)

On the other hand, from the consideration in Sec. A.2.1, the mean free path l∗s of a gas molecules
for the collisions against the obstacles is obtained as follows:

l∗s =

[
πd2s
ms

∫
R3

f∗s(ξsi)Φ

(
|ξs|√
2R∗T∗0

)
dξs

]−1

, (3.74a)

Φ(x) =
1

2

[
exp(−x2) +

√
π

(
x+

1

2x

)
erf(x)

]
. (3.74b)
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Let us consider the ratio l∗s/l∗ under the condition (3.63). Then it can be estimated as

l∗s
l∗

=
√
2π(2r)2n∗0

[
πd2s
ms

∫
R3

f∗s(ξsi)Φ

(
|ξs|√
2R∗T∗0

)
dξs

]−1

≤ 4
√
2

n∗0r
2

n∗s(r + rs)2
≪ 1, (3.75)

where the first inequality is due to the property Φ(x) ≥ 1, and the second one due to Eq. (3.63).
If we choose the characteristic length (

√
2R∗T∗0/ω∗) (cf. Sec 3.1) much shorter than l∗ but com-

parable to or longer than l∗s, we can neglect the effect of collisions between gas molecules. This
legitimates the assumption 4 in Sec. A.1.

A.2.3 Special choice of f∗s and f∗v
Finally, we derive the simplified version (3.12) of the kinetic equation (3.5) with the help of

special choices of f∗v and f∗s and a further assumption.
Let us choose the following Maxwellians as f∗v and f∗s:

f∗v(ξi − ξsi) =
mn∗0

(2πR∗T∗0)3/2
exp

(
−|ξ − ξs|2

2R∗T∗0

)
, (3.76a)

f∗s(ξsi) =
msn∗s

(2πΘs)3/2
exp

(
−|ξs|2

2Θs

)
, (3.76b)

where Θs is a positive constant, and introduce the following ϵ:

ϵ =

√
Θs

R∗T∗0
. (3.77)

Then, Eqs. (3.6a) and (3.6b) are reduced to

ν(ξi) = 2
√
π n∗s(r + rs)

2
√
2Θs ϕ(0, |ξ|/

√
2Θs), (3.78a)

f∗∞(ξi) =
ϕ(ϵ, |ξ|/

√
2Θs)

ϕ(0, |ξ|/
√
2Θs)

mn∗0
(2πR∗T∗0)3/2

exp

(
− ϵ2

1 + ϵ2
|ξ|2

2Θs

)
, (3.78b)

where ϕ(a, x) is a dimensionless function defined by

ϕ(a, x) =
1

2
(1 + a2)−2

[
exp

(
−x̄2

)
+
√
π

(
x̄+

1

2x̄

)
erf (x̄)

] ∣∣∣∣∣
x̄=x/

√
1+a2

. (3.79)

By the use of the dimensionless variables in Eq. (3.7), Eq. (3.5) is recast as

∂f

∂t
+ ζi

∂f

∂Xi
=

1

Knϵ

(
2√
π

ϵ√
1 + ϵ2

)
ϕ(0, ϵ−1|ζ|)

×
[
ϕ(ϵ, ϵ−1|ζ|)
ϕ(0, ϵ−1|ζ|)

1

π3/2
exp

(
− |ζ|2

1 + ϵ2

)
− f

]
, (3.80)

where Knϵ is defined as [see Eq. (3.74a)]

Knϵ = l∗s/(
√
2R∗T∗0/ω∗) = [πn∗s(r + rs)

2
√
1 + ϵ2]−1(

√
2R∗T∗0/ω∗)

−1. (3.81)



76 Chapter 3 Decay of a linear pendulum

We now assume ϵ≪ 1, which means that the speed of motion of the obstacles is much lower than
that of the thermal motion of the gas molecules, and neglect the terms of O(ϵ2). Then, we finally
obtain the equation that is studied in the main text, i.e.,

∂f

∂t
+ ζi

∂f

∂xi
=
νϵ(|ζ|)
Kn

[
1

π3/2
exp

(
−|ζ|2

)
− f

]
, (3.82a)

where

νϵ(x) =
2√
π
ϵϕ(0, ϵ−1x) =

ϵ√
π

[
exp

(
−x

2

ϵ2

)
+

√
π
(x
ϵ
+

ϵ

2x

)
erf
(x
ϵ

)]
, (3.82b)

Kn = l∗s(ϵ = 0)/(
√

2R∗T∗0/ω∗) = [πn∗s(r + rs)
2]−1(

√
2R∗T∗0/ω∗)

−1. (3.82c)
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Chapter 4

Part 1: Moving boundary problems
in a rarefied gas

Abstract Unsteady flows of a rarefied gas in a full space caused by a lon-
gitudinal oscillation of an infinitely wide plate is investigated numerically on
the basis of the Bhatnagar-Gross-Krook (BGK) model of the Boltzmann equa-
tion. The paper aims at showing properties and difficulties inherent to moving
boundary problems in kinetic theory of gases using a simple one-dimensional
setting. More specifically, the following two problems are considered: (Prob-
lem I) the plate starts a forced harmonic oscillation (forced motion); (Problem
II) the plate, which is subject to an external restoring force obeying Hooke’s
law, is displaced from its equilibrium position and released (free motion). The
physical interest in Problem I lies in the propagation of nonlinear acoustic
waves in a rarefied gas, whereas that in Problem II in the decay rate of the
oscillation of the plate. An accurate numerical method, which is capable of de-
scribing singularities caused by the oscillating plate, is developed on the basis
of the method of characteristics and is applied to the two problems mentioned
above. As a result, the unsteady behavior of the solution, such as the propaga-
tion of discontinuities and some weaker singularities in the molecular velocity
distribution function, are clarified. Some results are also compared with those
based on the existing method.

1 Introduction
Moving boundary problems are one of the hot subjects in kinetic theory of gases and have

been investigated extensively, in particular, in connection with micro electro mechanical sys-
tems (MEMS) [1]. The examples include the force on vibrating micro components exerted by
the surrounding gas, the propagation of a sound wave generated by high-frequency oscillation of
the boundary, the motion of vanes of the Crookes radiometer, etc. For moving boundary prob-
lems, which are essentially time-dependent, the prevailing direct simulation Monte Carlo (DSMC)
method [2, 3] is not an optimal method because one has to take the ensemble average over many in-
dependent runs in order to reduce the fluctuation inherent to the method (see, for instance, [4, 5, 6]
for the application of DSMC method to moving boundary problems). Therefore, deterministic
methods based on the model Boltzmann equations are usually employed with the help of known
techniques in computational fluid dynamics (CFD), such as the moving mesh technique and the
immersed boundary method [7, 8].
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In time-independent problems where the boundary is not moving in the normal direction, the
molecular velocity distribution function on the plane or convex boundary (convex toward the do-
main of gas) is discontinuous at the molecular velocities tangent to the boundary (here, we are
considering the case in which no external force acts on the gas molecules). For the convex bound-
ary, this discontinuity propagates into the gas along the characteristics of the Boltzmann equation
[9, 10, 11]. In contrast, for the plane boundary, the discontinuity stays on the boundary without
propagating into the gas. The same is true when the plane boundary is moving in any direction with
a constant velocity. However, if the boundary is accelerated in the direction opposite to the domain
of the gas, the discontinuity is left in the gas even for the plane boundary, since the characteristics
tangent to the boundary at a time go into the gas domain subsequently. If the boundary oscillates
in the normal direction, therefore, the velocity distribution function may exhibit highly complex
shape with many discontinuities as well as steep changes even for the plane boundary. To the best
of the authors’ knowledge, no attention has been paid to this point in the literature.

In the present study, we consider this problem. Restricting ourselves to spatially one-dimensional
problems, we try to develop an accurate numerical method that is capable of describing the discon-
tinuities in the molecular velocity distribution function generated by a moving plane boundary, on
the basis of the Bhatnagar-Gross-Krook (BGK) model [12, 13] of the Boltzmann equation. More
specifically, we consider two problems: One is the unsteady gas motion in a half space produced
by a forced harmonic oscillation of the plane wall, and the other is the decay of a one-dimensional
oscillator (linear pendulum) caused by the drag force exerted by the gas. The former is nothing but
the problem of nonlinear acoustic wave propagation [5, 14]. In the latter problem, which is a sort
of free-boundary problem and has been investigated extensively for a free-molecular (or Knudsen)
gas [15, 16], our final purpose is to find the correct decay rate of the amplitude of the oscillator.

The aim of the present paper is not to develop an efficient numerical scheme but to solve the
above basic problems faithfully and establish reliable numerical solutions that may serve as refer-
ence solutions when efficient numerical methods are devised.

The paper is organized as follows. We first formulate the two problems in Sec. 2. Section 3 is de-
voted to some preliminary discussions for numerical analysis. In Sec. 4, we develop the numerical
method, and the results of numerical analysis are summarized in Sec. 5. Some concluding remarks
are given in Sec. 6.

2 Formulation of the problem
2.1 Problem, assumptions, and notations

Let us consider an infinitely wide plate without thickness, kept at temperature T0∗ and immersed
in an infinite expanse of a rarefied ideal monatomic gas in an equilibrium state at rest with temper-
ature T0∗ and density ρ0∗. We take X1 axis of the Cartesian coordinate system Xi perpendicular
to the plate. At time t∗ = 0, where t∗ is the time variable, the plate is set into motion in the X1 di-
rection in a manner described below. We investigate the subsequent motion of the gas numerically
under the following assumptions:

(i) The behavior of the gas is described by the BGK model [12, 13] of the Boltzmann equation.
(ii) The gas molecules undergo diffuse reflection on the plate. More specifically, the velocity

of the reflected molecules on the boundary are distributed according to the (half-range)
Maxwellian distribution being characterized by the velocity and temperature of the plate
and having the density determined in such a way that there is no instantaneous net mass
flow across the plate (see e.g., [10, 11]).
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Fig. 4.1 Configuration of the problem. (a) Forced motion (Problem I), (b) free motion (Problem II).

Let us denote by Xw(t∗) the position (X1 coordinate) of the plate and by Vw(t∗) its velocity,
i.e., Vw(t∗) = Ẋw(t∗) where ˙ indicates the time derivative. In the present study, we consider the
following two types of motion of the plate:

[Problem I] (forced motion): The plate starts a forced harmonic oscillation given by

Xw(t∗) = a∗ cosω∗t∗, (4.1)

at t∗ = 0 [see Fig. 4.1(a)], where a∗ and ω∗ are the amplitude and angular frequency of the
oscillation. In this problem, we practically consider the half space X1 ≥ Xw(t∗).

[Problem II] (free motion): The plate is subject to an external restoring force obeying Hooke’s law.
The plate is originally displaced from its equilibrium position X1 = 0 and released at t∗ = 0.
Then, it undergoes, in general, an oscillatory motion, which decays as time proceeds because of
the drag exerted by the surrounding gas [see Fig. 4.1(b)]. In this problem, the motion of the plate,
which is determined together with the motion of the gas, is described by the following equation of
motion and initial condition:

Ẋw(t∗) = Vw(t∗), V̇w(t∗) = −ω2
∗Xw(t∗)−G∗/M∗, (4.2a)

Xw(0) = a∗, Vw(0) = 0, (4.2b)

where ω∗ is a constant (characteristic frequency of the motion), a∗ is the initial position of the
plate, M∗ is the mass of the plate per unit area, and G∗ is the drag force per unit area exerted
by the surrounding gas. The term −ω2

∗Xw(t∗) in Eq. (4.2) indicates the restoring force obeying
Hooke’s law, and G∗ depends on the motion of the plate as well as the behavior of the gas [see
Eq. (4.15) below].

Before presenting the basic equations, let us summarize the notations that will be used in the
paper.

First, we introduce (and repeat) dimensional variables: t∗ is the time variable, Xi the Cartesian
coordinate system in space, ξi the molecular velocity,Xw the position of the plate (X1 coordinate),
and Vw the velocity of the plate (X1 direction); ρ∗ is the density of the gas, u1∗ the flow velocity
of the gas in the X1 direction (the other two components u2∗ and u3∗ are assumed to be zero), T∗
the temperature of the gas, and p∗ = Rρ∗T∗ the pressure of the gas, where R is the gas constant
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per unit mass (R = kB/mg with the Boltzmann constant kB and the mass of a gas molecule mg);
G∗ is the drag force acting on the plate per unit area, M∗ the mass of the plate per unit area, a∗
the amplitude of the harmonic oscillation of the plate (Problem I) or the initial position of the plate
(Problem II), and f∗ the velocity distribution function of gas molecules. Then, adopting the time
and length scales given respectively by

1/ω∗, c0∗/ω∗, (4.3)

where c0∗ = (2RT0∗)
1/2, we introduce the dimensionless counterparts, t, xi, ζi, xw, vw, ρ, u1, T ,

p, G, M, a, and f as follows:

t = t∗/(1/ω∗), xi = Xi/(c0∗/ω∗), ζi = ξi/c0∗,

xw = Xw/(c0∗/ω∗), vw = Vw/c0∗,

ρ = ρ∗/ρ0∗, u1 = u1∗/c0∗, T = T∗/T0∗, p = p∗/p0∗,

G = G∗/(ρ0∗c
2
0∗), M = M∗/(ρ0∗c0∗/ω∗), a = a∗/(c0∗/ω∗),

f = f∗/(ρ0∗c
3
0∗),

(4.4)

where p0∗ = Rρ0∗T0∗.
We further introduce some additional notations. We denote by l0∗ and ν0∗, respectively, the

mean free path and the mean collision frequency of gas molecules at the equilibrium state at rest at
temperature T0∗ and density ρ0∗. For the standard BGK model, they are expressed as

l0∗ = (2/
√
π) (c0∗/ν0∗), ν0∗ = Acρ0∗. (4.5)

where Ac is a constant. Then, we define the Knudsen number Kn as

Kn = l0∗/(c0∗/ω∗). (4.6)

2.2 Basic equations

The present problem is a spatially one-dimensional problem, in which the independent variables
are (x1, ζ1, ζ2, ζ3, t) in dimensionless variables. It is well known that in such a problem, one can
eliminate the molecular velocity components ζ2 and ζ3 parallel to the plate [17]. More specifically,
in the present problem, if we multiply the original BGK equation and the initial and boundary
conditions by 1 and ζ22 + ζ23 and integrate the resulting equations over the whole space of ζ2 and
ζ3, we obtain the initial- and boundary-value problem of the coupled integro-differential equations
of BGK type for the following marginal velocity distribution functions g and h:

g(x1, ζ1, t) =

∫
R2

f(x1, ζ1, ζ2, ζ3, t) dζ2dζ3, (4.7a)

h(x1, ζ1, t) =

∫
R2

(ζ22 + ζ23 )f(x1, ζ1, ζ2, ζ3, t) dζ2dζ3. (4.7b)

That is, with the notations

Φ =
[
g
h

]
, λ =

[
1
T

]
, δ =

[
1
1

]
, (4.8)



2 Formulation of the problem 83

the equations are written as

(∂t + ζ1∂x1)Φ =
2√
π

1

Kn
ρ (λM − Φ) , (4.9a)

M =
ρ

(πT )1/2
exp

(
− (ζ1 − u1)

2

T

)
, (4.9b)

ρ =

∫
R
gdζ1, u1 =

1

ρ

∫
R
ζ1gdζ1, T =

2

3ρ

∫
R
[(ζ1 − u1)

2g + h]dζ1, (4.9c)

the initial condition is

Φ(x1, ζ1, 0) = π−1/2 exp(−ζ21 ) δ, (4.10)

and the boundary condition on the plate is given by

Φ(x1, ζ1, t) =Mw±(ζ1, t) δ,

at x1 = xw(t)± 0, for ζ1 − vw(t) ≷ 0, (4.11)

where

Mw±(ζ1, t) = π−1/2σw±(t) exp
(
−[ζ1 − vw(t)]

2
)
, (4.12a)

σw±(t) = ∓2
√
π

∫
ζ1−vw(t)≶0

[ζ1 − vw(t)]g(xw(t)± 0, ζ1, t)dζ1. (4.12b)

In Eqs. (4.11) and (4.12), the upper signs indicate the condition on the right surface of the plate,
and the lower signs that on its left surface. Here and in what follows, the upper (or lower) signs go
together.

In Problem I (forced motion), the position of the plate xw(t) is given by

xw(t) = a cos t. (4.13)

In Problem II (free motion), xw(t) is unknown and described by

ẋw(t) = vw(t), v̇w(t) = −xw(t)−G/M, (4.14a)
xw(0) = a, vw(0) = 0, (4.14b)

where ˙ indicates the derivative with respect to t, and the drag in Eq. (4.14a) is expressed in terms
of g as

G =G+ +G−, (4.15a)

G± =±
∫
ζ1−vw(t)≶0

[ζ1 − vw(t)]
2g(xw(t)± 0, ζ1, t)dζ1

±
∫
ζ1−vw(t)≷0

[ζ1 − vw(t)]
2Mw±(ζ1, t)dζ1. (4.15b)

We numerically solve Eqs. (4.9)–(4.12) with Eq. (4.13) for Problem I (forced motion) and the
coupled system, Eqs. (4.9)–(4.12) and Eqs. (4.14) and (4.15), for Problem II (free motion). In
Problem I, we only consider the half space x1 ∈ [xw, ∞).

The dimensionless parameters are a and Kn in Problem I and a, M, and Kn in Problem II. In
the present study, we focus our attention mainly on the effect of Kn on the solution.
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Fig. 4.2 (x′
1, t

′) plane and the backward exit time tb(x1, ζ1, t). (a) Case of tb ̸= 0, (b) case
of tb = 0. See Eq. (4.18).

3 Preliminaries
3.1 Integral form of the BGK equation

In this and following sections, it is convenient to consider the situation in the (x1, t) plane. For
further convenience, we call this plane the (x′1, t

′) plane using the current coordinates x′1 and t′

and express a fixed point in the plane by (x1, t) (e.g., see Fig. 4.2).
Let us define the operator Tq

p on a function F (x1, t) with variables x1 and t by

Tq
p[F (x1, t)] = F (x1 − p(t− q), q). (4.16)

where other variables such as ζ1 in Φ(x1, ζ1, t) [see Eqs. (4.7) and (4.8)], if any, are unchanged
and thus omitted.

Then, by integrating both sides of Eq. (4.9a) along the characteristic line x′1 = x1 − ζ1(t − t′)

under conditions (4.10) and (4.11), we obtain

Φ = Ttb

ζ1 [Φ] +
2√
π

1

Kn

∫ t

tb
Tτ
ζ1 [ρ (λM − Φ)]dτ, (4.17)

where tb is the backward exit time defined by

tb(x1, ζ1, t) =

{
max{t′ ∈ (0, t) |x1 − ζ1(t− t′) = xw(t

′)},

0, if x1 − ζ1(t− t′) ̸= xw(t
′), for ∀t′ ∈ (0, t),

(4.18)

(see Fig. 4.2). Thus, Ttb

ζ1
[Φ] is the value of Φ at the “foot” of the characteristic line, i.e.,

Ttb

ζ1 [Φ] =


Mw±(ζ1, t

b) δ, for tb ∈ (0, t), x1 ≷ xw(t),

π−1/2 exp(−ζ21 ) δ, for tb = 0,

(4.19)

where δ is defined in Eq. (4.8). We are going to discuss the singularities caused by the motion of
the plate using Eq. (4.17) with Eqs. (4.18) and (4.19) in the following subsection.
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3.2 Singularities in the velocity distribution function

In time-independent boundary-value problems of the Boltzmann equation, the molecular veloc-
ity distribution function is, in general, discontinuous in the space and molecular velocity variables
around convex boundary (here, convex means convex toward the region of the gas). That is, the
velocity distribution function on the boundary is discontinuous at the molecular velocities tan-
gential to the boundary, and this discontinuity propagates into the gas along the characteristics
corresponding to the tangential velocity. This fact has been well understood physically as well
as in the level of formal analysis [9, 10, 11]. Mention should also be made of recent progress in
rigorous mathematical theory [18].

In the present problem, when the trajectory of the plate x′1 = xw(t
′) in the (x′1, t

′) plane is
convex toward the side of the gas, the same mechanism works. That is, the characteristic line
tangent to the trajectory in the (x′1, t

′) plane carries the discontinuity in the gas. We classify this
type of singularity as Type-1 singularity in the following. In addition to this, we also need to
pay attention to different types of (weaker) singularities, which we will call Type-2 and Type-3
singularities. In this section, we only consider the half space x′1 ∈ [xw(t

′),∞). We also note that
our discussion is based on formal analysis and physical intuition.

3.2.1 Type-1 singularity: discontinuity
Let us consider the case where there exists a positive backward exit time tb ∈ (0, t) [Eq. (4.18)].

Then, its derivatives with respect to x1, ζ1, and t, i.e.,

∂tb

∂x1
=

1

vw(tb)− ζ1
,

∂tb

∂ζ1
= − t− tb

vw(tb)− ζ1
,

∂tb

∂t
= − ζ1

vw(tb)− ζ1
, (4.20)

suggest that tb is singular for x1, ζ1, and t satisfying ζ1 = vw(t
b(x1, ζ1, t)). Let us assume

that there exists a ζ1 satisfying ζ1 = vw(t
b(x1, ζ1, t)) for given x1 and t and denote it by ζd,

i.e., ζd = vw(t
b(x1, ζd, t)). We further assume that v̇w(tb(x1, ζd, t)) ̸= 0. In other words, the

characteristic line x′1 = x1 − ζd(t− t′) passing the point (x1, t) is tangent to the trajectory of the
plate x′1 = xw(t

′) at (xw(tb), tb), which is not an inflexion point of the trajectory. Then, we define
the following s± (see Fig. 4.3):

s+ = lim
ζ1→ζd+0

tb(x1, ζ1, t)

=max{t′ ∈ (0, t) |x1 − ζ1(t− t′) = xw(t
′), ζ1 = vw(t

′)}, (4.21a)

s− = lim
ζ1→ζd−0

tb(x1, ζ1, t)

=

{
max{t′ ∈ (0, s+) |x1 − ζ1(t− t′) = xw(t

′)},
0, if x1 − ζ1(t− t′) ̸= xw(t

′) for ∀t′ ∈ (0, s+).
(4.21b)

Since tb jumps from s+ to s−, it is likely from Eq. (4.17) that Φ(x1, ζ1, t) exhibits a jump at
ζ1 = ζd. To see this, we take the limits ζ1 → ζd ± 0 in Eq. (4.17). Then, using Eq. (4.21), we
obtain the following relations:

Φ+ ≡ lim
ζ1→ζd+0

Φ(x1, ζ1, t)

=T
s+
ζd+0[Φ] +

2√
π

1

Kn

∫ t

s+

Tτ
ζd+0[ρ(λM − Φ)]dτ, (4.22a)

Φ− ≡ lim
ζ1→ζd−0

Φ(x1, ζ1, t)
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Fig. 4.3 Definition of s+ and s− in the (x′
1, t

′) plane. (a) Case of s− ̸= 0, (b) case of s− = 0.
See Eq. (4.21).

=T
s−
ζd−0[Φ] +

2√
π

1

Kn

(∫ s+

s−

+

∫ t

s+

)
Tτ
ζd−0[ρ(λM − Φ)]dτ. (4.22b)

Here, we assume that the macroscopic quantities ρ(x′1, t
′), u1(x′1, t

′), T (x′1, t
′), etc., which are

the moments of Φ [Eq. (4.9c)], are continuous in x′1 and t′ for all x′1 [> xw(t
′)] and t′ (> 0) even

if Φ is discontinuous. This is a physical realization of the celebrated averaging lemma [19]. Thus,
we have

Tτ
ζd+0[ρ]− Tτ

ζd−0[ρ] = 0, Tτ
ζd+0[ρλM ]− Tτ

ζd−0[ρλM ] = 0. (4.23)

Therefore, we have, from Eq. (4.22), the following expressions for the jump:

Φ+ − Φ− =T
s+
ζd+0[Φ]− T

s+
ζd−0[Φ]

− 2√
π

1

Kn

∫ t

s+

Tτ
ζd
[ρ](Tτ

ζd+0[Φ]− Tτ
ζd−0[Φ])dτ, (4.24)

where use has been made of the relationship

T
s+
ζd+0[Φ]−

(
T
s−
ζd−0[Φ] +

2√
π

1

Kn

∫ s+

s−

Tτ
ζd−0[ρ(λM − Φ)]

)
dτ

= T
s+
ζd+0[Φ]− T

s+
ζd−0[Φ]. (4.25)

Equation (4.24) is equivalent to

Φ+ − Φ− = (T
s+
ζd+0[Φ]− T

s+
ζd−0[Φ]) exp

(
− 2√

π

1

Kn

∫ t

s+

Tτ
ζd
[ρ]dτ

)
. (4.26)

The Ts+
ζd+0[Φ] is given by the boundary condition on the plate at (xw(s+), s+) in the (x′1, t

′) plane,
whereas Ts+

ζd−0[Φ] is the velocity distribution function in the gas at the same point, which consists
of information at (xw(s−), s−) and the effect of molecular collisions along the characteristic line
for t′ ∈ (s−, s+). Thus, they are in general different (Ts+

ζd+0[Φ] ̸= T
s+
ζd−0[Φ]). This means that Φ

exhibits a discontinuity at ζ1 = ζd for the fixed (x1, t), i.e., Φ+ ̸= Φ−.
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Fig. 4.4 Schematic view of Type-1 singularity (discontinuity). Φ at (x1, t) exhibits a disconti-
nuity at ζ1 = ζd. The limit of the derivative ∂ζ1Φ as ζ1 → ζd + 0 diverges for a free-molecular
gas (Kn → ∞).

If we assume that ρ > ρc = O(1) along the characteristic line, we have∫ t

s+

Tτ
ζd
[ρ]dτ > ρc(t− s+), (4.27)

and thus

|Φ+ − Φ−| <
∣∣Ts+

ζd+0[Φ]− T
s+
ζd−0[Φ]

∣∣ exp(− 2√
π

1

Kn
ρc(t− s+)

)
. (4.28)

Therefore, the discontinuity in Φ decays exponentially as t/Kn becomes large.
Next, we consider the derivative of Φ with respect to ζ1 for a free-molecular gas (Kn = ∞)

when there exists a positive tb. Then, we have, from Eq. (4.17),

∂Φ

∂ζ1
=

∂

∂ζ1
Mw+(ζ1, t

b(x1, ζ1, t)) δ

=Mw+(ζ1, t
b)

{
σ̇w(t

b)

σw(tb)

∂tb

∂ζ1
− 2[ζ1 − vw(t

b)] + 2v̇w(t
b)(t− tb)

}
δ, (4.29)

which is unbounded when ζ1 → ζd + 0 [see Eq. (4.20)], i.e.,

lim
ζ1→ζd+0

∂Φ

∂ζ1
= sgn(σ̇w+(s+)) δ ×∞. (4.30)

This divergence has been observed in [15]. On the other hand, when there are collisions between
gas molecules (Kn < ∞), we are not able to obtain explicit information about the behavior of
∂Φ/∂ζ1. Nevertheless, we expect that the derivative ∂Φ/∂ζ1 may become very large in the limit
ζ1 → ζd + 0, at least for large Kn. This situation is schematically shown in Fig. 4.4.

It is needless to say that we should deal with the discontinuity in Φ correctly in the actual nu-
merical computation to obtain necessary accuracy. In addition, we should also pay attention to
the steep change in Φ near the limit ζ1 → ζd + 0 in order to obtain the correct behavior of the
macroscopic quantities.

In the above discussion, we investigated the behavior of Φ as a function of ζ1 for fixed x1 and t. If
we change x1 for fixed ζ1 and t or change t for fixed x1 and ζ1, we can observe a similar singularity
in x1 or in t. In other words, the singularity of Φ (the discontinuity in Φ and the divergence of its
derivative) is present in the three-dimensional space (x1, ζ1, t). The same comment applies to
Secs. 3.2.2 and 3.2.3.
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Fig. 4.5 Schematic view of Type-2 singularity. (a) Definition of sf in the (x′
1, t

′) plane, (b)
Φ at (x1, t) as a function of ζ1. The derivative ∂ζ1Φ becomes infinity at ζ1 = ζf for a free-
molecular gas (Kn → ∞).

3.2.2 Type-2 singularity
As in Sec. 3.2.1, we consider the case where there exists a positive backward exit time tb ∈

(0, t) [Eq. (4.18)]. As mentioned just after Eq. (4.20), tb is singular for x1, ζ1, and t satisfy-
ing ζ1 = vw(t

b(x1, ζ1, t)). Here, we assume that there exists a ζ1 satisfying not only ζ1 =

vw(t
b(x1, ζ1, t)) but also v̇w(tb(x1, ζ1, t)) = 0 and denote it by ζf ; that is, ζf = vw(t

b(x1, ζf , t))

and v̇w(tb(x1, ζf , t)) = 0. In other words, the characteristic line x′1 = x1 − ζf (t− t′) passing the
point (x1, t) is tangent to the trajectory of the plate x′1 = xw(t

′) at (xw(tb), tb), which is also an
inflexion point of the trajectory. Then, we define the following sf [see Fig. 4.5(a)]:

sf = tb(x1, ζf , t)

= max{t′ ∈ (0, t) |x1 − ζ1(t− t′) = xw(t
′), ζ1 = vw(t

′), v̇w(t
′) = 0}. (4.31)

At the point (xw(sf ), sf ) in the (x′1, t
′) plane, tb is continuous in ζ1, but its derivative ∂tb/∂ζ1

diverges. Therefore, for a free-molecular gas (Kn = ∞), it is seen from Eq. (4.29) that the
derivative ∂Φ/∂ζ1 diverges at ζ1 = ζf , i.e.,

lim
ζ1→ζf

∂Φ

∂ζ1
= sgn(σ̇w+(sf )) δ ×∞, (4.32)

though Φ itself is continuous there. Therefore, as is the case of the limit as ζ1 → ζd + 0 in
Sec. 3.2.1, we should expect a steep change in Φ in the vicinity of ζ1 = ζf even when there are
collisions between gas molecules (Kn <∞). This situation is schematically shown in Fig. 4.5(b).

We also need to handle this steep change in Φ in the vicinity of ζ1 = ζf in order to describe the
behavior of the macroscopic quantities correctly.

3.2.3 Type-3 singularity
As pointed out in [20, 21] (see also [22]), if the limit of the boundary condition on the plate

as t → 0+ is different from the corresponding part of the initial condition at the location of the
plate, this difference propagates into the gas as a discontinuity in the molecular velocity distribution
function. In the present problem, since the velocity distribution function on the plate as t→ 0+ is
the same as the initial condition, we are free from the discontinuity mentioned above, as we will
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Fig. 4.6 Schematic view of Type-3 singularity. (a) Definition of ζo in the (x′
1, t

′) plane, (b)
Φ at (x1, t) as a function of ζ1. The derivative ∂ζ1Φ is discontinuous at ζ1 = ζo for a free-
molecular gas (Kn → ∞).

see below. However, there appears a weaker singularity of which care should be exercised in the
practical computation.

In both Problems I and II, xw(0) = a and vw(0) = 0 [see Eqs. (4.13) and (4.14)], so that the
trajectory of the plate x′1 = xw(t

′) starts perpendicularly to the x′1 axis in the (x′1, t
′) plane [see

Fig. 4.6(a)]. Let us suppose that, for a fixed x1 and t, there is a ζ1 such that the characteristic line
x′1 = x1− ζ1(t− t′) passing the point (x1, t) intersects with the trajectory of the plate xw(t′) only
at the initial point (xw(0), 0) [see Fig. 4.6(a)], and let us denote it by ζo, i.e., x1 − ζot = xw(0)

and x1 − ζo(t− t′) ̸= xw(t
′) for ∀t′ ∈ (0, t).

From Eq. (4.17), we have

lim
ζ1→ζo+0

Φ =Mw+(ζo, 0) δ +
2√
π

1

Kn

∫ to

0

Tτ
ζo+0[ρ (λM − Φ)]dτ

= π−1/2 exp(−ζ2o ) δ +
2√
π

1

Kn

∫ to

0

Tτ
ζo+0[ρ (λM − Φ)]dτ, (4.33)

and

lim
ζ1→ζo−0

Φ = Φ(xw(0), ζo, 0) +
2√
π

1

Kn

∫ to

0

Tτ
ζo−0[ρ (λM − Φ)]dτ

= π−1/2 exp(−ζ2o ) δ +
2√
π

1

Kn

∫ to

0

Tτ
ζo−0[ρ (λM − Φ)]dτ. (4.34)

Thus, Φ is continuous at ζ1 = ζo because of Eq. (4.23). However, if we consider the free-molecular
gas (Kn = ∞), we obtain the following limiting values of the derivative ∂Φ/∂ζ1:

lim
ζ1→ζo+0

∂Φ

∂ζ1
=

{
π−1/2 exp(−ζ2o )

[
σ̇w(0)

t

ζo
− 2at

]
− 2π−1/2ζo exp(−ζ2o )

}
δ, (4.35a)

lim
ζ1→ζo−0

∂Φ

∂ζ1
= lim

ζ1→ζo−0

∂

∂ζ1
π−1/2 exp(−ζ21 ) δ = −2π−1/2ζo exp(−ζ2o ) δ, (4.35b)

where the first equation is obtained by taking the limit tb → 0 in Eq. (4.29). Therefore, these
two limits are generally different, and thus the velocity distribution function behaves as shown
schematically in Fig. 4.6(b). When there are collisions between gas molecules (Kn < ∞), the
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Fig. 4.7 Illustrative figure showing the localization of discontinuities in Φ. (a) t′ = t(1) <

t(2) < t(3) and a fixed x′
1, (b) x′

1 = x
(1)
1 < x

(2)
1 < x

(3)
1 and a fixed (large) t′. The interval

between two neighboring velocities at which Φ is discontinuous shrinks as time goes on [(a)],
or at positions in a zone close to the plate [(b)].

discontinuity in the derivative at ζ1 = ζo is likely to decay as t becomes large. However, in
order to obtain accurate solution at the initial stage, we should pay attention to this behavior in the
numerical computation.

3.2.4 Localization of discontinuities
The trajectory of the plate x′1 = xw(t

′) is a sinusoidal curve in the (x′1, t
′) plane in Problem

I and can be a decaying oscillatory curve in Problem II. In these cases, when t is large, multiple
discontinuities (Type-1 singularities) may accumulate in a localized interval in ζ1. Figure 4.7 is
an illustrative figure showing this localization of discontinuities. It is clear from Fig. 4.7(a) that,
for a fixed x′1, the interval between two velocities at which the velocity distribution function is
discontinuous shrinks as t′ becomes large. Figure 4.7(b) shows that, for a fixed t′ large enough,
the interval is also small at x′1 in a zone close to the plate. For the free-molecular gas (Kn = ∞),
more and more discontinuities accumulate in a shrinking interval in ζ1 as time goes on. When
there are inter-molecular collisions, aged discontinuities die out. Therefore, the structure of the
velocity distribution function is less complex than in the free-molecular case. However, since
young discontinuities are always present in a localized interval, the structure is complex enough
except in the case of small Kn. This accumulation of discontinuities is problematic, since any
discontinuity-capturing numerical method does not work unless extremely fine mesh is used. To
avoid this difficulty, we will propose an adaptive grid system that resolves the localized structure
of the velocity distribution function in Sec. 4. The result will be compared with that obtained by a
standard discontinuity-capturing scheme, such as the ENO scheme [23], in Sec. 5.

4 Numerical analysis
In this section, we describe the numerical method used in the present paper. It is designed in

such a way that no interpolation (or extrapolation) is needed for the velocity distribution function,
since it has discontinuities and some weaker singularities as shown in Sec. 3.2. For brevity, we
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Basic grid points (non-uniform)Sub grid points

Velocity space discretization
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Calculation of velocity distribution function
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Use linear interpolation 
with values at A and B

AA

B

Fig. 4.8 Expository figure for the numerical method in the case of Problem I (forced oscillation).

only consider the region x1 ∈ [xw(t),∞) and omit the plus sign that indicates the right side of
the plate, e.g., Mw+ and σw+ in Eq. (4.12) are denoted by Mw and σw, respectively. Figure 4.8,
which will be referred frequently in the following, is an expository figure prepared for the help of
explanation in this section.

4.1 Grid points and interpolation

Let us introduce the discretized time valuable t(n) and corresponding discrete values of xw, vw,
and σw as

t(n) = n∆t, x(n)w = xw(t
(n)), v(n)w = vw(t

(n)), σ(n)
w = σw(t

(n)),

(n = 0, 1, 2, ...). (4.36)

Then, for each t(n), we introduce the basic grid points x(n,i) in x1 that are more concentrated near
the plate and uniformly distributed in the far field by the following relation:

x(n,i) = x(n)w + Lη(n, i), (i = 0, 1, 2, ..., Nx), (4.37)

where the grid function Lη(n, i) is defined by Eq. (4.56) in A, and x(n,0) = x
(n)
w holds because

Lη(n, 0) = 0. Note that the basic grid points x(n,i) depends on the time t(n). In addition, we
introduce sub grid points z(k,n,i) (k = 0, 1, ..., Nch) on each interval I(n,i) = [x(n,i), x(n,i+1)]

for the Chebyshev interpolation by the following formula:

z(k,n,i) =
1

2
[1− cos(kπ/Nch)](x

(n,i+1) − x(n,i)) + x(n,i),

(k = 0, 1, 2, ..., Nch), (4.38)
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Fig. 4.9 Schematic shape of the grid function ζ1 = Lζ(j) vs (continuous) j [see Eqs. (4.60)
and (4.61)]. The figure shows an example with l = 4, ζ̃(1) = −2.5, ζ̃(2) = −1.25, ζ̃(3) =

−0.8, ζ̃(4) = 1.2, ζ̃(5) = 2.4, and Zmax = 5.

where z(0,n,i) = x(n,i) and z(Nch,n,i) = z(0,n,i+1) = x(n,i+1) hold (see Fig. 4.8). In our computa-
tion, the velocity distribution function Φ and thus the macroscopic quantities will be computed at
the grid points (z(k,n,i), t(n)) (i = 0, 1, 2, ..., Nx− 1; k = 0, 1, ..., Nch− 1) and (x(n,Nx), t(n))

for n = 0, 1, 2, ... in the (x′1, t
′) plane.

Let U stand for the macroscopic quantities ρ, u1, and T (U = ρ, u1, T ). Once U is obtained at
all points x′1 = z(k,n,i) (i = 0, 1, 2, ..., Nx − 1; k = 0, 1, ..., Nch − 1) and x′1 = x(n,Nx) for a
given time t′ = t(n), we can obtain U at any point x′1 = x1 for the same t(n) by the Chebyshev
interpolation. More specifically, if the point x1 belongs to the interval I(n,i

′), then we have

U(x1, t
(n)) =

Nch∑
k=0

a
(k,n,i′)
ch TNch−k(x

′
1), x′1 = 2

x1 − x(n,i
′)

x(n,i′+1) − x(n,i′)
− 1. (4.39)

Here, Tk(θ) is the Chebyshev polynomial of the first kind of degree k, defined by

Tk(θ) = cos(k arccos θ), (4.40)

and the Chebyshev coefficients a(k,n,i
′)

ch are obtained in terms of U at x1 = z(k,n,i
′) by

a
(k,n,i′)
ch = La(k, U

(k,n,i′)), (4.41)

where
U (k,n,i) = U(z(k,n,i), t(n)), (4.42)

and La is the function defined in Eq. (4.57) in A.

4.2 Grid points in molecular velocity space

Our grid points in the molecular velocity ζ1 are associated with each grid point in (z(k,n,i), t(n))

in the (x′1, t
′) plane and thus depend on n, i, and k. For simplicity, we denote any grid point in the

(x′1, t
′) plane by (x1, t) and omit the indices n, i, and k in the explanation of the grid points in ζ1.
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In Sec. 3.2, we have seen that for a fixed grid point (x1, t), there may exist singular velocities
ζd, ζf , and ζo. We need two grid points at ζ1 = ζd ± 0 to express the discontinuity and use fine
grid points in ζ1 near these singular velocities to resolve steep changes. Now we denote by ζw
the molecular velocity corresponding to the gradient of the characteristic line connecting the grid
point (x1, t) and an inflection point of the trajectory x′1 = xw(t

′) [we assume that the line segment
between the two points is contained in the gas region x′1 ≥ xw(t

′) in the (x′1, t
′) plane]. When this

characteristic line is tangent to the trajectory at the inflection point, ζw becomes ζf . Therefore, the
probability of having ζf is much less than having ζd or ζo. However, if ζw is close to ζf , we expect
a steep change of Φ near ζ1 = ζw, so that we need fine grid points there, too. Therefore, we extend
the set of the singular velocities from {ζd, ζf , ζo} to {ζd, ζw, ζo} and concentrate the grid points
in ζ1 around these extended singular velocities (see Fig. 4.8).

Let ζ̃(1), ζ̃(2), ..., ζ̃(l+1) be the all elements of the set of the extended singular velocities
{ζd, ζw, ζo} such that ζ̃(m) < ζ̃(m+1). We first restrict the infinite range −∞ < ζ1 < ∞ to a
finite range −Zmax ≤ ζ1 ≤ Zmax. The constant Zmax is to be chosen in such a way that the
velocity distribution function Φ is negligibly small at ζ1 = ±Zmax. Then, our grid points ζ(j) in
ζ1 (j = 0, 1, 2, ..., Mζ ; ζ(0) = −Zmax and ζ(Mζ) = Zmax) are chosen in the following way.

We divide each of the end intervals [−Zmax, ζ̃
(1)] and [ζ̃(l+1), Zmax] into Nζ small intervals

with grid points more concentrated at ζ̃(1) and ζ̃(l+1). Then, we divide each interval [ζ̃(m), ζ̃(m+1)]

(m = 1, ..., l) into N̄ (m)
ζ small intervals with grid points more concentrated at both ends ζ̃(m) and

ζ̃(m+1). Thus, Mζ = 2Nζ +
∑l

m=1 N̄
(m)
ζ . More specifically, the grid points ζ(j) are defined by

using a grid function Lζ(j):
ζ(j) = Lζ(j). (4.43)

The explicit form of Lζ(j) is given in Eq. (4.60) in A, but its schematic shape as a function of
(continuous) j is shown in Fig. 4.9. The concentration of the grid points at ζ̃(m) is made by the use
of the cosine function (or the exponential function in the left-most and right-most intervals) [see
Eq. (4.60)].

When ζw is not close to ζf , the concentration of the grid points at ζw is the waste of grid points.
However, it helps simplification of the computer programme. This grid system in ζ1 enables us to
capture the singular behavior of the velocity distribution function, as we will see in Sec. 5.

4.3 Outline of numerical method

In Problem I, the motion of the plate is given, whereas in Problem II, it is determined together
with the solution Φ. In this subsection, we give the outline of the numerical method for Problem
II. Then, that for Problem I is rather trivial. In our previous paper [16], we considered Problem
II for a free-molecular (or Knudsen) gas. The difference in the numerical procedure between [16]
and the present paper lies in the way how to obtain the velocity distribution function Φ. Once Φ

is obtained on the plate, then the procedure to obtain the motion of the plate is the same as that in
[16]. Therefore, we put the method for obtaining Φ in the next subsection and summarize the other
processes here, referring to [16] for the process of obtaining the motion of the plate.

Let
Φ(k,n,i,j) = Φ(z(k,n,i), ζ(j), t(n)), (4.44)

for the following discussion, and suppose that the quantities x(q)w , v(q)w , U (k,q,i), σ(q)
w , and G(q)

± ≡
G±(t

(q)) for q = 0, ..., n, i = 0, ..., Nx, and k = 0, ..., Nch have been obtained. Our method
for obtaining those quantities at q = n + 1 is the so-called predictor-corrector method, in which
a predicted value ĥ of the quantity h (h stands for x(n+1)

w , v(n+1)
w , σ(n+1)

w , etc.) is first obtained
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by using a suitable extrapolation, and then its corrected value h is obtained using ĥ. To be more
specific,

1. Compute the predicted values x̂(n+1)
w and v̂(n+1)

w , using G±(t
(n)) (see Sec. 5.1 in [16] for

the details).
2. Compute the predicted distribution function Φ̂(k,n+1,i,j) by the procedure that will be de-

scribed in Sec. 4.4.
3. Compute the predicted values Û (k,n+1,i), σ̂(n+1)

w , and Ĝ(n+1), using Φ̂(k,n+1,i,j) in
Eqs. (4.9c), (4.12b), and (4.15), respectively (we use a second-order quadrature for the
numerical integration).

4. Compute the corrected values x(n+1)
w and v(n+1)

w , using Ĝ±(t
(n+1)) (see Sec. 5.1 in [16]

for the details).
5. Compute the corrected distribution function Φ(k,n+1,i,j) by the procedure that will be de-

scribed in Sec. 4.4.
6. Compute the corrected values U (k,n+1,i), σ(n+1)

w , and G(n+1), using Φ(k,n+1,i,j) in
Eqs. (4.9c), (4.12b), and (4.15), respectively (we use a second-order quadrature for the
numerical integration).

We repeat the above processes, starting from the initial condition, until the required time is
reached.

4.4 Calculation of velocity distribution function

We suppose that the quantities x(q)w , v(q)w , U (k,q,i), σ(q)
w , and G(q)

± ≡ G±(t
(q)) for q = 0, ..., n,

i = 0, ..., Nx, and k = 0, ..., Nch are all known. Let us consider fixed i, k, and j and try
to compute Φ(k,n+1,i,j) [cf. Eq. (4.44)]. Then, the characteristic line passing the grid point
(z(k,n+1,i), t(n+1)) in the (x′1, t

′) is determined and thus tb(z(k,n+1,i), ζ(j), t(n+1)) is obtained
[cf. Eq. (4.18)]. In this subsection, we denote the discretized local Maxwellian [Eq. (4.9b)] by

M (k,n,i,j) =M(z(k,n,i), ζ(j), t(n)), (4.45)

and use the notations (4.42) and (4.44).
We divide the interval [tb, t(n+1)] into Nt equal small intervals with width ∆τ by grid points

t′ = τ (mt) in t′ variable (mt = 0, ..., Nt), i.e.,

τ (0) = tb < τ (1) < · · · < τ (mt) < · · · < τ (Nt) = t(n+1), (4.46)

with τ (mt+1)− τ (mt) = ∆τ (see Fig. 4.8). Note that Nt may be different depending on z(k,n+1,i),
ζ(j), and t(n+1). Here, we choose Nt as

Nt = max

(
Ñt,

[
(t(n+1) − tb)

∆τmin

]
int

+ 1

)
, (4.47)

where [x]int indicates the integer part of x, and Ñt and ∆τmin are parameters to be specified. More
precisely, ∆τmin is a standard small time interval, but when t(n+1)− tb is comparable to or smaller
than ∆τmin, then we divide the interval [tb, t(n+1)] into Ñt small intervals.

Now suppose that Φ is known at t = τ (0), τ (1), ..., τ (m) along the characteristic line (0 ≤ m ≤
Nt − 1). In other words,

Tτ(0)

ζ(j) [Φ
(k,n+1,i,j)], Tτ(1)

ζ(j) [Φ
(k,n+1,i,j)], ..., Tτ(m)

ζ(j) [Φ(k,n+1,i,j)], (4.48)
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are known [cf. Eq. (4.16)]. If we integrate both sides of Eq. (4.9a) from t′ = τ (m) to τ (m+1) along
the characteristic line, we obtain [cf. Eq. (4.17)]

Tτ(m+1)

ζ(j) [Φ(k,n+1,i,j)] = Tτ(m)

ζ(j) [Φ(k,n+1,i,j)]

+
2√
π

1

Kn

∫ τ(m+1)

τ(m)

Tτ
ζ(j)

[
H(k,n+1,i,j) − ρ(k,n+1,i)Φ(k,n+1,i,j)

]
dτ. (4.49)

where

H(k,n+1,i,j) = ρ(k,n+1,i)λ(k,n+1,i)M (k,n+1,i,j), λ(k,n+1,i) =

[
1

T (k,n+1,i)

]
. (4.50)

If we apply the trapezoidal rule for the integral over the small interval [τ (m), τ (m+1)] in
Eq. (4.49), we obtain Tτ(m+1)

ζ(j) [Φ(k,n+1,i,j)] in terms of the known quantities Tτ(m)

ζ(j) [Φ(k,n+1,i,j)],

Tτ(m+1)

ζ(j) [U (k,n+1,i,j)], and Tτ(m)

ζ(j) [U (k,n+1,i,j)], that is,

Tτ(m+1)

ζ(j) [Φ( · )] =

(
1 +

1√
π

∆τ

Kn
Tτ(m+1)

ζ(j) [ρ( · )]

)−1

×
[
Tτ(m)

ζ(j) [Φ( · )] +
1√
π

∆τ

Kn

(
Tτ(m)

ζ(j)

[
H( · ) − ρ( · )Φ( · )

]
+ Tτ(m+1)

ζ(j)

[
H( · )

])]
. (4.51)

where the superscript ( · ) indicates either the superscript (k, n+ 1, i, j) or (k, n+ 1, i).
On the other hand, Tτ(0)

ζ(j) [Φ
(k,n+1,i,j)] = Ttb

ζ(j) [Φ
(k,n+1,i,j)] is known from initial or boundary

condition. More precisely,

Ttb

ζ(j) [Φ
(k,n+1,i,j)] =

{
π−1/2σw(t

b) exp(−[ζ(j) − vw(t
b)]2), for tb ̸= 0,

π−1/2 exp(−[ζ(j)]2), for tb = 0.
(4.52)

In the actual computation, tb is obtained by the Newton method as in [16], vw(tb) is interpolated
by the method given in [16], and σw(tb) is linearly interpolated by using σw(t(q)) and σw(t(q+1))

when tb ∈ [t(q), t(q+1)]. If q = n, we use extrapolation to obtain σw(tb).
Then, applying Eq. (4.51) successively for m = 0, 1, ..., Nt−1, we obtain Φ(k,n+1,i,j)=Tτ(Nt)

ζ(j) [Φ(k,n+1,i,j)].

In this process, we need the macroscopic quantities at τ = τ (m), i.e., Tτ(m)

ζ(j) [U (k,n+1,i,j)]. If
τ (m) ≤ t(n) (say, τ (m) ∈ [t(q), t(q+1)] with q ≤ n − 1), we obtain the values by the linear
interpolation in t′ using U(x∗, t

(q)) and U(x∗, t
(q+1)), where

x∗ = z(k,n,i) − ζ(j)(t(n+1) − τ (m)), (4.53)

and the values of U(x∗, t
(q)) are obtained by the interpolation in x′1 as described in Sec. 4.1 (see

Fig. 4.8). If t(n) < τ (m) ≤ t(n+1), we obtain the values Tτ(m)

ζ(j) [U (k,n+1,i,j)] by extrapolation.

The Φ(k,n+1,i,j) thus obtained is the predicted distribution function Φ̂(k,n+1,i,j) in Process 2 in
Sec. 4.3. Once we obtain the predicted values Û (k,n+1,i) and σ̂(n+1)

w in Process 3 in Sec. 4.3 and the
corrected values x(n+1)

w and v(n+1)
w in Process 4 there, we can repeat the same procedure to obtain

the corrected distribution function Φ(k,n+1,i,j) using interpolation only (without any extrapolation),
which is Process 5 in Sec. 4.3.
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Fig. 4.10 The velocity distribution function g(x1, ζ1, t) vs ζ1 for K = ∞ and a = 1. (a)
x1 = xw(t) + 0.2243, (b) x1 = xw(t) + 2.3052, and (c) x1 = xw(t) + 10.05. The upper
figures are at t = 15π, and the lower figures at t = 16π.

5 Results of numerical analysis
In this section, we show some results of numerical analysis. For convenience, we use the fol-

lowing K, in place of the Knudsen number Kn, as the measure of gas rarefaction:

K = (
√
π/2)Kn. (4.54)

Since our interest is a correct description of the singularities explained in Sec. 3.2, we are mainly
concerned with the cases of non-small Knudsen numbers where the singularities are more eminent.
We also make a comparison of the results by the present method with those by a finite-difference
method with ENO scheme [23] (cf. B). Accuracy checks for the present method as well as the ENO
scheme will be made in C.

5.1 Problem I (forced motion)

We first consider Problem I in Sec. 2.1. Here, emphasis is placed on the description of the
velocity distribution function of complex shape.

5.1.1 Velocity distribution function
Here, we only consider the marginal velocity distribution function g(x1, ζ1, t) [Eq. (4.7a)]. Fig-

ure 4.10 shows g as a function of ζ1 at two different times and three different positions for free-
molecular flow (K = ∞) and a = 1. Panels (a), (b), and (c) are, respectively, the results at the
points x1 = xw(t) + 0.2243, x1 = xw(t) + 2.3052, and x1 = xw(t) + 10.05 with fixed distances
from the moving plate; the upper and lower figures in each panel show the results at t = 15π and
t = 16π. Panel (a) is for a close neighborhood of the plate, and panel (c) for a relatively far field.
The specified times t = 15π and 16π correspond to the middle and the end of the eighth period,
respectively. In all panels, one observes discontinuities that are shown by vertical dashed lines.
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Fig. 4.11 The velocity distribution function g(x1, ζ1, t) vs ζ1 for K = 10 and a = 1. (a)
x1 = xw(t) + 0.2243, (b) x1 = xw(t) + 2.3052, and (c) x1 = xw(t) + 10.05. The upper
figures are at t = 15π, and the lower figures at t = 16π.

In addition, the gradient ∂g/∂ζ1 is very large at the right-hand sides of the discontinuities (see
Sec. 3.2.1).

Figure 4.11 is the corresponding figure for K = 10, and Fig. 4.12 for K = 1. Note that the
locations of the discontinuities in ζ1 (i.e., ζ1 = ζd; see Sec. 3.2.1) are the same in Figs. 4.10–
4.12. When K = 10, there is the effect of collisions between gas molecules though it is not
strong. This effect can be seen clearly by comparing Figs. 4.10 and 4.11. More specifically, the
shape of the function g is globally similar in both figures, but the discontinuities are weaker in
Fig. 4.11. In particular, the older discontinuities produced at earlier times, which are located closer
to ζ1 = 0, have decayed more. However, when K = 1, the effect of inter-molecular collisions
becomes more eminent and makes the shape of g much smoother, as seen in Fig. 4.12. In fact, the
discontinuities are hardly seen far away from the plate [Fig. 4.12(c)]. In the vicinity of the plate
shown by Fig. 4.12(a), only the youngest discontinuity, produced in the nearest past, is observed
clearly. These properties are well described by Eq. (4.28).

Figures 4.13(a), 4.13(b), and 4.13(c) show, respectively, the magnified figures of the upper fig-
ures of Figs. 4.10(b), 4.11(b), and 4.12(b) for the range 0 ≤ ζ1 ≤ 0.1. We can observe the
discontinuities (Type-1 singularities) more clearly in these magnified figures. In addition, we can
also see the Type-3 singularity, originating from the initial condition (see Sec. 3.2.3), at ζ1 ≈ 0.006

in Fig. 4.13(a), as noted in the figure. The same singularity can still be identified by a close look in
Fig. 4.13(b) for K = 10, whereas it is not visible in Fig. 4.13(c) for K = 1.

As explained in the second paragraph in Sec. 4.2, Type-2 singularities arise rarely. For instance,
when a = 1, it arises only for (x1, ζ1) = (π/2, 1) and (5π/2, 1) at time t = 4π, since (x′1, t

′) =

(0, 3π/2) and (0, 7π/2) are only the inflection points of the trajectory x′1 = xw(t
′) with t′ ≤ t =

4π. However, at the grid points in the (x′1, t
′) plane located in the neighborhood of the tangential

line at an inflection point of the trajectory, the molecular velocity ζw (the velocity corresponding
to the characteristic line connecting the grid point and the inflection point; see Sec. 4.2) becomes
close to ζf (see Secs. 3.2.2 and 4.2). Therefore, we expect steep changes in the velocity distribution
function at these ζw. Figure 4.14 demonstrates this situation for a = 1. More precisely, we plot
the velocity distribution function g(x1, ζ1, t) at t = 4π and x1 ≈ π/2 as a function of ζ1 for
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Fig. 4.12 The velocity distribution function g(x1, ζ1, t) vs ζ1 for K = 1 and a = 1. (a)
x1 = xw(t) + 0.2243, (b) x1 = xw(t) + 2.3052, and (c) x1 = xw(t) + 10.05. The upper
figures are at t = 15π, and the lower figures at t = 16π.

K = ∞ [panel (a)], K = 10 [panel (b)], and K = 1 [panel (c)]. The upper figures show the overall
shape at x1 = π/2 = 1.57080 (the exact value of π/2 is 1.570796...); thus the dashed vertical line
indicates the location of the Type-2 singularity. The lower figures show the magnification of the
upper figures in the vicinity of ζ1 = 1, together with some additional curves for x1 very close to
π/2. More specifically, the curve for x1 = 1.57080 shows the Type-2 singularity at ζ1 = 1, and
the curves for x1 = 1.5688 and 1.5698 exhibit Type-1 singularities (discontinuities), as indicated
by the dotted vertical line. On the other hand, the curves for 1.5718 and 1.5728 do not contain
any singularities. It is seen from the figures that the gradient |∂g/∂ζ1| at (the right side of) Type-1
singularity and that at Type-2 singularity are very large not only for K = ∞ [cf. Eqs. (4.30) and
(4.32)] but also for K = 10 and 1 [the curve seems to have a cusp at ζ1 = 1 in the upper figures
of panels (a) and (b)]. In addition, the curves for 1.5718 and 1.5728 still have very large gradients
near the points ζ1 = ζw. This is the reason why we have regarded ζ1 = ζw as singular velocities
(see the second paragraph in Sec. 4.2). Otherwise we would miss the true shape of the velocity
distribution function.

Type-3 singularity

Fig. 4.13 The velocity distribution function g(x1, ζ1, t) vs ζ1 for a = 1 at x1 = xw(t) +
2.3052 and t = 15π (magnified). (a) K = ∞, (b) K = 10, and (c) K = 1. Panels (a), (b), and
(c) are the closeups of the upper figures of Figs. 4.10(b), 4.11(b), and 4.12(b), respectively.
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Fig. 4.14 The velocity distribution function g(x1, ζ1, t) at t = 4π. (a) K = ∞, (b) K = 10,
and (c) K = 1. The upper figures show g at x1 = 1.5708, where ζ1 = ζf (Type-2 singularity)
is indicated by the dashed vertical line. Lower figures show the closeups of the upper figures in
the neighborhood of ζ1 = 1, together with g at some x1 near x1 = π/2 (= 1.570796...), i.e.,
at x1 = 1.5688, 1.5698, 1.5708, 1.5718, and 1.5728.

Finally, we compare the result of present computation with that obtained by the finite-difference
method with the ENO scheme in Figs. 4.15 and 4.16. Figure 4.15 shows the comparison of
g(x1, ζ1, t) at t = 16π for a = 1 and for K = ∞ [(a)], 10 [(b)], and = 1 [(c)], where the
solid line indicates the present result and the circle the ENO result. The upper figures are for
x1 = xw(t) + 0.2243 [near the oscillating plate; note that xw(16π) = a = 1], and lower figures
for x1 = xw(t) + 22.3111 (far field). It is seen that the ENO scheme (with fixed grid points in
the molecular velocity space) can neither resolve the singularities nor the sharp changes for large
K [panels (a) and (b)]. The same is true for K = 1 near the plate [the upper figure of panel (c)].
However, in the far field, where the velocity distribution function is smooth, the ENO scheme gives
a correct result [the lower figure of panel (c)]. The upper figures of Fig. 4.16 are the correspond-
ing figures to the upper figures of Fig. 4.15 when the amplitude of oscillation is small. That is,
g(x1, ζ1, t) for a = 0.1 and at t = 16π and x1 = xw(t) + 0.2243 is plotted versus ζ1. The lower
figures of Fig. 4.16 are the closeup around ζ1 = 0 of the upper figures. The ENO result gives a
better agreement in this case. However, its difference from the present result is quite visible for
K = ∞ and 10. When the amplitude a is small, the deviation of the velocity distribution function
from the reference equilibrium state is small. In this case, one need to handle the deviation itself
to describe physical phenomena using, e.g., the linearized Boltzmann equation. It is seen from
the lower figures of Figs. 4.16(a) and (b) that the error of the ENO result is of the same order of
magnitude as the deviation itself.

5.1.2 Macroscopic quantities
Next, we show some results for the macroscopic quantities, which illustrate the propagation of

nonlinear acoustic waves in a rarefied gas. We will present only limited cases because the detailed
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Fig. 4.15 The velocity distribution function g(x1, ζ1, t) at t = 16π for a = 1. (a) K= ∞, (b)
K= 10, and (c) K= 1. The upper figures show the results at the position x1 = xw(t)+0.2243,
while the lower figures those at x1 = xw(t)+22.3111. The results obtained by the ENO scheme
(circles) are shown together with those by the present method (Solid lines).

discussions on the physical behavior are not the main purpose of the present paper and moreover,
some of them are included in [24].

Figures 4.17, 4.18, and 4.19 show the profiles of the macroscopic quantities in the eighth period
(14π ≤ t ≤ 16π) for (K, a) = (∞, 1), (∞, 0.1), and (1, 0.1), respectively. In the figures, ρ−1 is
shown in panels (a), T−1 in panels (b), u1 panels (c), and p−1 in panels (d). The behavior during a
period can be followed as bold dashed line (t = 14π) → dashed line (t = 14.5π) → dot-dashed line
(t = 15π) → dot-dot-dashed line (t = 15.5π) → solid line (t = 16π). Since the curves for t = 14π

and t = 16π are almost the same, an almost periodic state has been established near the plate after
the transient behavior. In the case of free-molecular flow (Figs. 4.17 and 4.18), the wave caused
by the oscillating plate decays rapidly with the distance from the plate. This tendency remains
when the Knudsen number is of the order of unity (Fig. 4.19). This strong decay was already
recognized in some early works based on the linearized setting (see, e.g., [25, 26, 27, 28, 29]). In
Fig. 4.17, one observes a weak streaming motion (i.e., a positive u1) in the far field, as observed
in earlier works based on the nonlinear setting (see, e.g., [5, 14, 24, 30]). In Figs. 4.18 and 4.19
for a small amplitude (a = 0.1), the nonlinearity is weak, so that the profiles are almost symmetric
with respect to the reference equilibrium values. The reader is referred to [24] for the profiles for
small K.

In Fig. 4.20, we compare the density profile, more precisely, (ρ− 1)/a, obtained by the present
method and that by the ENO scheme for (K, a) = (∞, 1) [(a)], (∞, 0.1) [(b)], (∞, 0.01) [(c)],
and (10, 0.1) [(d)]. Here, the solid line indicates the present result, and the dashed line the ENO
result. In each panel, the left figure shows the closeup near the oscillating plate (at t = 14π, 14.16π,
14.32π, 14.48π, 15.6π, 15.76π, 15.92π), and the right figure is for the far field (at t = 16π). The
ENO scheme (with decent numerical parameters, see Sec. C.2 and B) gives good results near the
plate except for a slight deviation in Fig. 4.20(a). It also gives the correct result for the far field
in Fig. 4.20(a). This is surprising because the velocity distribution function for K = ∞ obtained
by the ENO scheme is far from the correct one, in particular, for the far field [see Fig. 4.15(a)].
In Figs. 4.20(a) and 4.20(b) for small amplitudes, the ENO results show visible oscillations. In
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Fig. 4.16 The velocity distribution function g(x1, ζ1, t) at t = 16π for a = 0.1. (a) K
= ∞, (b) K = 10, and (c) K = 1. The upper figures show the results at the position x1 =
xw(t) + 0.2243, and the lower figures are the closeup of the upper figures around ζ1 = 0.
The results obtained by the ENO scheme (circle) are shown together with those by the present
method (Solid line).

Fig. 4.20(d), where the effect of collisions between gas molecules are included, the ENO scheme
gives good results even for the far field as is expected from the comparison in Sec. 5.1.1.

5.2 Problem II (free motion)

In Problem II, the displacement of the plate xw(t) decays to zero as time proceeds because of
the drag force exerted by the surrounding gas. We focus our attention on the rate of the decay. In
the present paper, we let M = 2 and change a and K as a = 1, 0.1, and 0.01, and K = ∞, 10, and
1. The case of K = ∞ and that of K = 10 and 1 will be discussed separately.

5.2.1 Case of K = ∞
For K = ∞ (free-molecular flow), there exists a rigorous mathematical study [31], which has

proven that the decay of |xw(t)| is proportional to an inverse power of time. The proof is restricted
to the case of non-oscillatory decay. The algebraic decay has then confirmed numerically also for
the oscillatory case [16]. In these works, linear motion of a three-dimensional body (a circular disk)
is considered, and the one-dimensional case in [16] exactly corresponds to the present Problem II.
According to [16], the asymptotic behavior of the displacement of the plate is

|xw(t)| ≈ Ct−2, for t≫ 1, (4.55)

where C is a positive constant. Here we note that the method in [16] is specialized to a free-
molecular gas and different from the present method. In Fig. 4.21, we show the displacement
|xw(t)| versus t in double logarithmic scale for K = ∞ and for a = 1 [(a)], 0.1 [(b)], and 0.01

[(c)]. Here, the solid line indicates the results obtained by the present method, the bold dashed
line those by the ENO scheme, and the bold dot-dashed line and the bold dot-dot-dashed line in
panel (a) those by the ENO scheme with coarser grid systems (the grid for the bold dot-dot-dashed
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Fig. 4.17 Profiles of the macroscopic quantities at different times in 14π ≤ t ≤ 16π for
K = ∞ and a = 1. (a) ρ − 1, (b) T − 1, (c) u1, and (d) p − 1. The results are shown at
t = 14π (bold dashed line), 14.5π (dashed line), 15π (dot-dashed line), 15.5π (dot-dot-dashed
line), and 16π (solid line). In each panel, the left figure shows the closeup near the oscillating
plate.

Fig. 4.18 Profiles of the macroscopic quantities at different times in 14π ≤ t ≤ 16π for
K = ∞ and a = 0.1. (a) ρ − 1, (b) T − 1, (c) u1, and (d) p − 1. The results are shown at
t = 14π (bold dashed line), 14.5π (dashed line), 15π (dot-dashed line), 15.5π (dot-dot-dashed
line), and 16π (solid line). In each panel, the left figure shows the closeup near the oscillating
plate.

line is 2.5 times coarser than that for the bold dashed line). For both schemes, numerical systems
slightly coarser than those for Problem I are used because the computation for a longer time is
required in this problem (up to t = 200 in Fig. 4.21). In each panel, a straight line corresponding
to const(> 0) × t−2 is shown by the dotted line. Panel (a) for a = 1 shows that the result by the
present method tends to be parallel to the straight line for large t, which means that it captures the
decay given by Eq. (4.55). In contrast, the results by the ENO scheme fails to capture it. The same
is true in panel (b) for a smaller initial displacement (a = 0.1). However, in panel (c), where the
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Fig. 4.19 Profiles of the macroscopic quantities at different times in 14π ≤ t ≤ 16π for K = 1
and a = 1. (a) ρ− 1, (b) T − 1, (c) u1, and (d) p− 1. The results are shown at t = 14π (bold
dashed line), 14.5π (dashed line), 15π (dot-dashed line), 15.5π (dot-dot-dashed line), and 16π
(solid line). In each panel, the left figure shows the closeup near the oscillating plate.

Fig. 4.20 Profiles of (ρ − 1)/a at several different times in 14π ≤ t ≤ 16π for four sets of
(K, a). (a) (K, a) = (∞, 1), (b) (K, a) = (∞, 0.1), (c) (K, a) = (∞, 0.01), (d) (K, a) =
(10, 0.1). The solid line indicates the solution by the present method, and the dashed line that
by the ENO scheme. In each panel, the left figure shows the closeup near the oscillating plate at
t = 14π, 14.16π, 14.32π, 14.48π, 15.6π, 15.76π, 15.92π, and the right figure for the far field
at t = 16π. In panels (b) and (c) for the far field, the solid line is thickened in order that it is
distinguishable from the oscillatory dashed line.

initial displacement is so small (a = 0.01) that accurate computation is very hard, even the present
method has a difficulty in describing the behavior given by Eq. (4.55). As discussed in [16], the
power-law decay (4.55) is attributed to the localized steep changes in the velocity distribution
function. Therefore, there is little hope to capture the correct decay rate by the ENO scheme even
with finer grid systems.
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Fig. 4.21 The displacement |xw(t)| vs t in double logarithmic scale for K = ∞. (a) a = 1,
(b) a = 0.1, and (c) a = 0.01. The solid line indicates the results obtained by the present
method, the bold dashed line those by the ENO scheme, and the bold dot-dashed line and the
bold dot-dot-dashed line in panel (a) those by the ENO scheme with coarser grid systems.

5.2.2 Case of finite K

For finite K with the effect of inter-molecular collisions, nothing is known about the rate of the
decay of the displacement. Figures 4.22 and 4.23 are, respectively, the figures for K = 10 and
K = 1, corresponding to Fig. 4.21. In contrast to Fig. 4.21, the result by the ENO scheme is very
close to that by the present method. In Problem II, the motion of the plate attenuates as time goes
on, so that the singularities created by the moving plate at later time are weaker than those created
at earlier times. Since the stronger singularities produced at earlier times has decayed at later times
because of the effect of inter-molecular collisions, the velocity distribution function for finite K

(even for K = 10) is much milder than that for K = ∞. This may be the reason why the ENO
scheme works this time. For K = 10 (Fig. 4.22), the computation up to time t = 200 is not enough
to obtain a clear decay rate. On the contrary, for K = 1 and a = 0.1 and 0.01 [panels (b) and (c)
in Fig. 4.23], the curves tend to approach the straight line corresponding to const(> 0) × t−3/2.
Therefore, it is likely in these cases that xw(t) decays as |xw(t)| ≈ const(> 0)× t−3/2 as t→ ∞.
This is slower than in the case of K = ∞. However, to arrive at a more definite conclusion, we
need more intensive computation until longer times. The ENO scheme, which is computationally
less expensive than the present method, could be useful for this purpose.

6 Concluding remarks
In the present study, we are concerned with moving boundary problems in kinetic theory of

gases. We focused our attention to the singularities in the velocity distribution function created by
the moving boundary and to the numerical method capable of describing the propagation of the
singularities in the gas. In order to single out the essence of the problems without being bothered
by other complexities, we employed the BGK model of the Boltzmann equation instead of the full
Boltzmann equation and restricted ourselves to spatially one-dimensional problems: the propaga-
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Fig. 4.22 The displacement |xw(t)| vs t in double logarithmic scale for K = 10. (a) a = 1,
(b) a = 0.1, and (c) a = 0.01. The solid line indicates the results obtained by the present
method, the bold dashed line those by the ENO scheme, and the bold dot-dashed line and the
bold dot-dot-dashed line in panel (a) those by the ENO scheme with coarser grid systems.
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Fig. 4.23 The displacement |xw(t)| vs t in double logarithmic scale for K = 1. (a) a = 1,
(b) a = 0.1, and (c) a = 0.01. The solid line indicates the results obtained by the present
method, the bold dashed line those by the ENO scheme, and the bold dot-dashed line and the
bold dot-dot-dashed line in panel (a) those by the ENO scheme with coarser grid systems.

tion of nonlinear acoustic waves in a semi-infinite expense of a rarefied gas caused by the sudden
start of harmonic oscillation of a plate (Problem I), and the decay of the displacement of a linear
pendulum in a rarefied gas (Problem II) (Sec. 2). With the help of physical and formal mathe-
matical arguments, we have clarified possible types of singularities introduced by the moving plate
(Sec. 3). On the basis of the knowledge obtained in Sec. 3, we have constructed a numerical method
that can describe the singularities and steep changes in the velocity distribution function (Sec. 4).
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The results of numerical analysis are shown in Sec. 5.
For Problem I, we have put special emphasis on the complex shape of the velocity distribu-

tion function at large Knudsen numbers made up of accumulating singularities and steep changes
(Sec. 5.1.1). This complex shape is very difficult to capture by standard numerical methods for
kinetic equations, as exemplified by the numerical result using a finite-difference method with the
ENO scheme. The behavior of the time evolution of the macroscopic quantities are then discussed
(Sec. 5.1.2). In spite of the fact that the ENO scheme totally fails to describe the complex shape of
the velocity distribution function for large Knudsen numbers, it gives surprisingly correct result for
the macroscopic quantities. This may give a hope that, as far as the macroscopic quantities are con-
cerned, standard methods can be used for moving boundary problems. The present results would
serve as a reference solution or a benchmark for other methods devised to tackle the moving bound-
ary problems. We should also emphasize that the present results give an insight for mathematical
study of moving boundary problems for the Boltzmann equation. For instance, a mathematical
theory based on the assumption that the solution of the Boltzmann equation is smooth does not
make any practical sense.

For Problem II, we have focused our attention on the rate of the decay of the displacement (or
amplitude) of an oscillating plate (Sec. 5.2). In the case of a free-molecular gas, the present method
was able to reproduce the slow algebraic decay [Eq. (4.55)], obtained by an accurate numerical
analysis specialized to a free-molecular gas, whereas the finite-difference method with the ENO
scheme failed to capture it. In contrast, when there is the effect of inter-molecular collisions, the
ENO scheme seemed to give correct result for the time evolution of the displacement of the plate.
In addition, some results suggest that the decay rate is even slower than the free-molecular case.
The definite clarification of the decay rate will be the subject of future research. It should be
mentioned that similar decay problems (decay of a pendulum and of a rotating sphere) have been
studied for a Stokes fluids [32, 33]. It would be interesting to study the present Problems I and II
for a (compressible) Navier–Stokes fluids.

A Details for grid systems and interpolation
The grid function Lη occurring in Eq. (4.37) is defined as follows:

Lη(n, i) =

{
A(n)i exp(B(n)i), for i = 0, · · · , N̄ ,

C(n)i+D(n), for i = N̄ + 1, · · · , Nx,
(4.56a)

C(n) = ∆xmax, D(n) = Dmax − x(n)w − C(n)Nx, (4.56b)

B(n) =
1

N̄

(
C(n)N̄

C(n)N̄ +D(n)
− 1

)
, A(n) =

C(n)N̄ +D(n)

N̄
exp(−B(n)N̄), (4.56c)

where N̄ , Dmax, and ∆xmax are the parameters: N̄ controls the density of the grid points in the
neighborhood of the plate, Dmax the size of the domain of computation, and ∆xmax the maximum
of the width of the intervals I(n,i).

The function La appearing in Eq. (4.41) is defined as

La(k, U
(k,n,i)) =

1

Nche
(k)
ch

Nch−1∑
m=0

[
U (m,n,i)TNch−k(y

(m)) + U (m+1,n,i)TNch−k(y
(m+1))

]
,

(4.57a)

e
(k)
ch =

{
2, for k = 0 and Nch,
1, otherwise, (4.57b)
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y(m) = cos(mπ/Nch). (4.57c)

The grid function Lζ(j) in Eq. (4.43) is defined as follows. We choose the number of small
intervals N̄ (m)

ζ in the interval [ζ̃(m), ζ̃(m+1)] in the following way:

N̄
(m)
ζ = max

(
Ñζ ,

[
π

2

ζ̃(m+1) − ζ̃(m)

∆ζmax

]
int

+ 1

)
, (4.58)

where [x]int indicates the integer part of x, and Ñζ and ∆ζmax are numbers that are chosen suitably.
More specifically, ∆ζmax is, in principle, the size of the largest small intervals in [ζ̃(m), ζ̃(m+1)]

for all m, but when the size of the interval [ζ̃(m), ζ̃(m+1)] is comparable to or smaller than ∆ζmax,
we put Ñζ small intervals there. Then, we define the cumulative number of the grid points by

C̄(m−1) = Nζ +

m−1∑
q=1

N̄
(q)
ζ , (m = 1, 2, ..., l + 1), (4.59)

with C̄(0) = Nζ , so that we have ζ(C̄
(m)) = ζ̃(m+1). With these symbols, the grid function Lζ(j)

is given by

Lζ(j) =



A0j exp(B0j) + C0, for 0 ≤ j ≤ Nζ ,

Am cos(Bm(j − Cm)) +Dm, for C̄(m−1) < j ≤ C̄(m),
(m = 1, 2, ..., l)

−Al+1j
′ exp(Bl+1j

′)− Cl+1, j′ = Nζ −
(
j − C̄(l)

)
,

for C̄(l) < j ≤ C̄(l) +Nζ ,

(4.60)

where

A0 = (Zmax + ζ̃(1)) exp(1)/Nζ , B0 = −1/Nζ , C0 = −Zmax,

Am = (ζ̃(m+1) − ζ̃(m))/2, Bm = π/N̄
(m)
ζ ,

Cm = C̄(m), Dm = (ζ̃(m+1) + ζ̃(m))/2,

Al+1 = (Zmax − ζ̃(l+1)) exp(1)/Nζ , Bl+1 = −1/Nζ , Cl+1 = −Zmax.

(4.61)

In summary, the parameters to be set for the velocity grid ζ(j) are Zmax, Nζ , Ñζ , and ∆ζmax. It
should be noted that the grid system ζ(j), thus the parameters Zmax, Nζ , Ñζ , and ∆ζmax, can be
different depending on the grid points (x1, t). For instance, we can use large Nζ near the plate and
small Nζ for the far field.

B Basic equation for finite-difference method with ENO
scheme

The ENO scheme employed in this paper is based on [23]. Since it is a well-known method,
we will omit its description. However, because we are considering a moving boundary problem
here, some preliminary analysis is necessary. More specifically, we introduce the space coordinate
relative to xw(t) and the molecular velocity relative to vw(t), i.e.,

x̌1 = x1 − xw(t), ζ̌1 = ζ1 − vw(t), ť = t. (4.62)
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and let

α̌(x̌1, ζ̌1, ť) = α(x̌1 + xw(ť), ζ̌1 + vw(ť), ť) (with α = g, h, or Φ), (4.63a)

β̌(x̌1, ť) = β(x̌1 + xw(ť), ť) (with β = ρ or T ), (4.63b)

ǔ1(x̌1, ť) = u1(x̌1 + xw(ť), ť)− vw(ť). (4.63c)

Then, the BGK equation (4.9) is recast as[
∂ť + ζ̌1∂x̌1 − v̇w(ť)∂ζ̌1

]
Φ̌ =

2√
π

1

Kn
ρ̌

([
1
Ť

]
M̌ − Φ̌

)
, (4.64a)

M̌ =
ρ̌

(πŤ )1/2
exp

(
− (ζ̌1 − ǔ1)

2

Ť

)
, (4.64b)

ρ̌ =

∫
R
ǧdζ̌1, ǔ1 =

1

ρ̌

∫
R
ζ̌1ǧdζ̌1, Ť =

2

3ρ̌

∫
R
[(ζ̌1 − ǔ1)

2ǧ + ȟ]dζ̌1. (4.64c)

The initial condition (4.10) and the boundary condition (4.11) are, respectively, written as

Φ̌ = π−1/2 exp(−[ζ̌1 + vw(0)]
2) δ = π−1/2 exp(−ζ̌21 ) δ, (ť = 0), (4.65)

and

Φ̌(x̌1, ζ̌1, ť) = M̌w±(ζ̌1, ť) δ, at x̌1 = ±0, for ζ̌1 ≷ 0, (4.66a)
M̌w±(ζ̌1, ť) = π−1/2σ̌w±(ť) exp

(
−ζ̌21

)
,

σ̌w±(ť) = ∓2
√
π

∫
ζ̌1≶0

ζ̌1ǧ(±0, ζ̌1, ť)dζ̌1.
(4.66b)

We solve this initial- and boundary-value problem by a finite-difference method with the ENO
procedure, which automatically avoids the use of sharp gradients in finite differences. A first-order
time discretization (the forward Euler scheme) with constant ∆ť is used. For both x̌1 and ζ̌1, we
employ a third-order finite difference, using non-uniform grid systems concentrated at x̌1 ≈ 0 and
ζ̌1 ≈ 0. For the integration in velocity space, a second-order quadrature is used.

C Accuracy checks
C.1 Accuracy of the results by the present method

First, we numerically estimate the error contained in the results obtained by the present method
by varying the numerical parameters, such as the grid size, in Problem I. Recall that the numerical
parameters involved in this case are ∆t for time discretization, Nx, N̄ , Dmax, ∆xmax, Nch for
space discretization, Zmax, Ñζ , ∆ζmax, Nζ for molecular-velocity discretization, and ∆τmin, Ñt

for the integration along characteristics. We fix some of them as follows:

Nx = 110, N̄ = 40, Dmax = 120× 2π, ∆xmax = 9.1,

Zmax = 5, Ñζ = 40, ∆τmin = ∆t, Ñt = 5.
(4.67)

The error coming from the choice of Zmax has been confirmed to be smaller than the error dis-
cussed below.

The error is measured by the quantities defined as follows. Let P(t) and E(t) be the (non-
dimensional) momentum and energy fluxes per unit area and time across the oscillating plate.
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Then, they are expressed as

P(t) = p11(xw(t), t), E(t) = q1(xw(t), t) + p11(xw(t), t)vw(t), (4.68a)

p11(x1, t) = 2

∫
R3

(ζ1 − u1)
2f(x1, ζi, t)dζ1dζ2dζ3, (4.68b)

q1(x1, t) =

∫
R3

(ζ1 − u1)(ζi − ui)
2f(x1, ζi, t)dζ1dζ2dζ3. (4.68c)

We define their one-period averages P̄k and Ēk over k-th period, normalized by a, as

P̄k =
1

2πa

∫ 2πk

2π(k−1)

P(t′)dt′, Ēk =
1

2πa

∫ 2πk

2π(k−1)

E(t′)dt′. (4.69)

Then, we introduce the following quantities Perr and Eerr as a measure of the error:

Perr =
1

8

8∑
k=1

|P̄(ref)
k − P̄k|, Eerr =

1

8

8∑
k=1

|Ē(ref)
k − Ēk|, (4.70)

where the superscript (ref) indicates P̄k and Ēk of the reference solution specified later. The quan-
tities Perr and Eerr are, roughly speaking, the average over 8 periods of the difference between the
reference solution and the solution under consideration.

Let us first consider the effect of ∆t. Our reference solution is the solution obtained with the
following parameter setting:

R1: ∆t = 10−3, Nch = 4, ∆ζmax = 5× 10−4, Nζ = 360. (4.71)

In Table 4.1, the results for larger ∆t are compared with the reference solution (with R1 setting) in
the cases of (K, a) = (∞, 1), (∞, 0.01), (1, 1), and (1, 0.01). In all four cases, the error coming
from the size of ∆t is satisfactorily small.

Next, we consider the effect of the grid size in the molecular velocity space, i.e., the parameters
∆ζmax and Nζ . Our reference solution for this error estimate is the solution obtained with the
following parameter setting:

R2: ∆t = 4× 10−3, Nch = 4, ∆ζmax = 5× 10−4, Nζ = 360. (4.72)

We compare the results of Eerr for larger ∆ζmax and smaller Nζ in Table 4.2. It is seen that the
error coming from the choice of ∆ζmax and Nζ is small. For (K, a) = (∞, 0.01), the size of
∆ζmax does not change the result. This can be explained as follows. We notice from Eq. (4.58)
that, if ζ̃(m+1) − ζ̃(m) is small, the size of ∆ζmax does not affect N̄ (m)

ζ and thus the result unless

∆ζmax is small enough to make [(π/2)(ζ̃(m+1) − ζ̃(m))/∆ζmax] + 1 (= ˜̃Nζ say) larger than Ñζ .

In fact, when ∆ζmax = 1× 10−4 or larger, Ñζ = 40 is always larger than ˜̃Nζ , so that the effect of
the size ∆ζmax does not appear.

Finally, we consider the effect of the grid size in the space variable x1. Here, we have fixed the
main grid points as Eq. (4.67). The minimum of the intervals at time t = 0, i.e., x(0,1)−x(0,0) [see
Eq. (4.37)], is about 3× 10−3 with these parameters. Our reference solution for this error estimate
is the solution obtained with the following parameter setting:

R3: ∆t = 4× 10−3, Nch = 5, ∆ζmax = 5× 10−4, Nζ = 360. (4.73)

We change the value of Nch, which is the number of the sub grid points, as Nch = 2, 3, and 4. We
summarize the results in the cases of (K, a) = (10, 1), (10, 0.01), (1, 1), and (1, 0.01) in Table
4.3. For large K, we need less grid points in physical space.
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Table 4.1 Perr and Eerr for different ∆t. The reference solution is the solution obtained by the
present method with R1 parameter setting.

K = ∞, a = 1 K = ∞, a = 0.01

∆t Perr Eerr Perr Eerr

∆t = 10−3 × 1.5625 2.3328(-6)† 1.5425(-6) 1.0485(-7) 4.3386(-8)

∆t = 10−3 × 2.5 8.5853(-6) 5.7321(-6) 2.9381(-7) 1.2408(-7)

∆t = 10−3 × 4 2.4097(-5) 1.6210(-5) 6.3311(-7) 2.7711(-7)

K = 1, a = 1 K = 1, a = 0.01

∆t Perr Eerr Perr Eerr

∆t = 10−3 × 1.5625 6.5225(-5) 1.0359(-4) 1.1801(-5) 2.8746(-5)

∆t = 10−3 × 2.5 2.2507(-4) 3.3878(-4) 2.2044(-5) 2.5759(-4)

∆t = 10−3 × 4 6.4364(-4) 8.5192(-4) 5.3475(-5) 9.9085(-4)

† read as 2.3328× 10−6.

Table 4.2 Eerr for different ∆ζmax and Nζ . The reference solution is the solution obtained by
the present method with R2 parameter setting.

K = ∞ K = 1

a = 1 a = 0.01 a = 1 a = 0.01

∆ζmax = 5× 10−4 × 2 4.1223(-9)† 2.1398(-9) 2.0276(-7) 1.6878(-6)

∆ζmax = 5× 10−4 × 4 2.1832(-7) 2.1398(-9) 7.8101(-7) 4.5371(-6)

∆ζmax = 5× 10−4 × 8 9.1535(-7) 2.1398(-9) 2.5030(-6) 7.8966(-6)

Nζ = 360× (6/9) 6.4550(-7) 5.6307(-7) 2.1314(-6) 4.3095(-5)

Nζ = 360× (4/9) 2.0741(-6) 2.2062(-6) 1.1308(-5) 1.8328(-4)

Nζ = 360× (2/9) 1.7939(-5) 1.7903(-5) 1.0500(-4) 1.6191(-3)

† read as 4.1223× 10−9.

Table 4.3 Eerr for different Nch. The reference solution is the solution obtained by the present
method with R3 parameter setting.

K = 10 K = 1

a = 1 a = 0.01 a = 1 a = 0.01

Nch = 4 5.1879(-8)† 1.3194(-8) 2.0746(-7) 1.3386(-6)

Nch = 3 9.6869(-8) 5.9826(-7) 4.1121(-6) 3.3980(-5)

Nch = 2 3.6278(-6) 7.9736(-6) 1.2553(-5) 4.0008(-4)

† read as 5.1879× 10−8.
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Table 4.4 ∥ρ∥ at t = 16π.

K = ∞ K = 10 K = 1

a 1 0.1 0.01 1 0.1 0.01 1 0.1 0.01

Present 6.1(-5)† 7.9(-6) 5.0(-6) 6.6(-5) 1.3(-5) 6.0(-7) 1.0(-5) 6.1(-5) 3.0(-5)

ENO 2.0(-3) 5.0(-2) 5.9(-2) 3.8(-3) 5.1(-2) 6.0(-2) 1.4(-2) 4.6(-2) 9.2(-2)

† read as 6.1× 10−5.

C.2 Accuracy of the results by the finite-difference method

In this subsection, we discuss the accuracy of the results for Problem I obtained by using the ENO
scheme. For this purpose, we consider Perr and Eerr formed by the ENO solution with different grid
sizes and the reference solution obtained by the present method with R1 setting [see Eq. (4.71)].
We truncate the physical space as 0 ≤ x̌1 ≤ 200 and the molecular velocity space as −6 ≤ ζ̌1 ≤ 6.
We vary the numerical parameters contained in the ENO scheme, i.e., the time step ∆ť, the number
of grid points in the physical space Ňx, and the number of grid points in the molecular velocity
space Ňζ , as

∆ť/2π = ∆× 10−4, Ňx = (1/∆)× 4000, Ňζ = (1/∆)× 400,

(0.625 ≤ ∆ ≤ 6.25). (4.74)

That is, we change the values of ∆ť, Ňx, and Ňζ at the same time by varying ∆. The grid size
in physical space ∆x̌1 and that in the molecular velocity space ∆ζ̌1 for ∆ = 1 are 0.02236 ≤
∆x̌1 ≤ 0.07763 and 0.0217 ≤ ∆ζ̌1 ≤ 0.03892, respectively (recall that we use the non-uniform
grid system). Figure 4.24 shows Perr (upper figures) and Eerr (lower figures) versus ∆ť for K = ∞
[(a)], K = 10 [(b)], and K = 1 [(c)]. The symbols circle, square, and inverted triangle indicate,
respectively, the case of a = 1, a = 0.1, and a = 0.01. It is seen from the figure that Perr

and Eerr decrease in proportion to ∆ť or (∆ť)2, depending on a and K, except in the case of
(K, a) = (∞, 0.01), where the rate is slower than ∆ť.

Finally, we show the conservation of mass, which gives another measure of accuracy. The quan-
tity ∥ρ∥(t) defined as

∥ρ∥(t) = 1

a

∣∣∣∣∣
∫ ∞

xw(t)

[ρ(x1, t)− 1]dx1

∣∣∣∣∣ , (4.75)

should vanish for all t, i.e., the total mass of the gas is conserved. However, since both of our
present method and the finite-difference method with the ENO scheme are not conservative, ∥ρ∥(t)
does not vanish in the actual computation. In Table 4.4, the values of ∥ρ∥(t) at time t = 16π are
shown for both methods. Here, we have used the parameter setting R1 for the present method and
∆ = 1 for the ENO scheme. The present method conserves the total mass relatively well compared
with the ENO scheme.
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Fig. 4.24 Perr and Eerr obtained by the ENO scheme vs ∆ť. (a) K = ∞, (b) K = 10, and (c)
K = 1. Here, the reference solution is the solution obtained by the present method with the R1
parameter setting. The symbols circles, squares, and inverted triangles indicate, respectively,
the cases of a = 1, a = 0.1, and a = 0.01.
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Chapter 4

Part 2: Gas motion in a micro gap
between longitudinally oscillating
and stationary plates

Abstract Unsteady motion of a gas between two parallel plates is investigated
in the case where one of the plates starts longitudinal (harmonic) oscillation.
A kinetic-theoretic approach is employed under the condition that the distance
between the two plates is comparable to the mean free path of the gas molecules
and/or the frequency of oscillation of the plate is comparable to their mean col-
lision frequency. More specifically, the Bhatnagar–Gross–Krook (BGK) model
of the Boltzmann equation is solved numerically for wide ranges of parameters,
such as the Knudsen number and the Mach number, with special interest in the
fully nonlinear wave motion. As the result, the time evolution of the local flow
field and the periodic state attained at later times are obtained accurately. It
is shown that, in the periodic state, one-period average of the momentum (or
energy) transferred from the oscillating to the stationary plate takes a non-zero
value in contrast to the linear theory, and it becomes minimum at an intermedi-
ate Knudsen number (for a given oscillation of the plate and for a given distance
between the center of the oscillating plate and the stationary plate).

1 Introduction
Gas motion caused by a micro-mechanical oscillator plays an important role in MEMS devices

and has been investigated by many authors in connection with, for instance, the squeeze film damp-
ing [1, 2, 3, 4, 5]. A typical setting is an oscillator placed in the vicinity of another micro compo-
nent. When the distance between the two components is comparable to the mean free path of gas
molecules, the ordinary gas dynamics (or the Navier–Stokes and Euler equations) fails to describe
the behavior of the gas. In this case, an approach based on kinetic theory (or the Boltzmann equa-
tion) [6] is required. In addition, if the oscillator undergoes an oscillation with very high frequency
comparable to the mean collision frequency of gas molecules, the ordinary gas dynamics is not
valid any more and should be replaced by kinetic theory.

In the present paper, we consider this problem restricting ourselves to a one-dimensional setting.
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That is, we investigate, on the basis of kinetic theory, the transient and subsequent (almost) time-
periodic behavior of a gas between two infinitely wide plates, parallel to each other, when one of
the plates starts a longitudinal harmonic oscillation.

This problem and the case where the plate at rest is absent (i.e., the gas occupies a half space
bounded by the oscillating plate) are classical problems in kinetic theory that have been investigated
extensively in connection with sound-wave propagation (see, e.g., [7, 8, 9, 10, 11, 12, 13]). Most
of the existing works are based on the linearized kinetic equations under the assumption that the
speed of oscillation of the plate is much lower than the sonic speed. In addition, the oscillating
plate is usually approximated by a stationary wall, the oscillation being produced by imposing an
oscillating macroscopic velocity in the boundary condition.

In contrast, the present paper aims at analyzing the full nonlinear problem numerically. When
the amplitude of oscillation is increased at a fixed frequency, or when the frequency is increased
at a fixed amplitude, the speed of oscillation of the plate may become comparable to the sonic
speed. We consider such cases where the nonlinearity cannot be neglected. For this purpose, we
have to handle the problem with a real moving boundary. It is a challenging numerical analysis
for kinetic equations. We carry out accurate numerical analysis using the Bhatnagar–Gross–Krook
(BGK) model [14, 15] of the Boltzmann equation and give precise description of time-dependent
macroscopic profiles, the periodic state established after several periods of oscillation, and the
momentum and energy transfer from the oscillating to the stationary plate.

2 Formulation of the problem
2.1 Problem and Assumptions

We consider an ideal monatomic gas in a uniform equilibrium state at rest, with density ρ0∗ and
temperature T0∗, between two infinitely wide plates, parallel to each other and kept at uniform
and constant temperature T0∗. One of the plates is placed at X1 = a∗ (> 0) and the other at
X1 = d∗ (> a∗), where Xi (i = 1, 2, 3) denotes the Cartesian coordinate system with the X1

axis perpendicular to the plates. At time t∗ = 0, the plate at X1 = a∗ starts an oscillation around
X1 = 0 with angular frequency ω∗ according to X1 = Xw(t∗) with Xw(t∗) = a∗ cosω∗t∗ (see
Fig. 4.1). We investigate the subsequent unsteady motion of the gas, in particular, steady oscillatory
motion established at later times, numerically on the basis of kinetic theory when the size of the
gap between two plates is comparable to the mean free path of the gas molecules and the frequency
of oscillation of the plate is comparable to their mean collision frequency.

The assumptions for our analysis are as follows:

1. The behavior of the gas is described by the BGK model of the Boltzmann equation ([14, 15];
see also [6]).

2. The gas molecules undergo diffuse reflection on the plates (see, e.g., [6]). More specifically,
the molecules reflected on each plate are distributed according to the half-range Maxwellian
distribution characterized by the velocity and temperature of the plate and with the density
adjusted in such a way that there is no net mass flow across the boundary.

3. The gas motion is one dimensional, that is, the motion is only in the X1 direction, and the
physical quantities do not depend on X2 and X3.

Before formulating the problem, we summarize the notations used throughout the present paper.
We first introduce (and repeat) basic dimensional quantities, that is, t∗ is the time variable, Xi the
Cartesian coordinate system in space, ξi the molecular velocity, Xw the position (X1 coordinate)
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Fig. 4.1 A gas between an oscillating plate and a stationary plate.

of the plate, f∗ the velocity distribution function of gas molecules, ρ∗ the density, (u1∗, 0, 0) the
flow velocity, T∗ the temperature, p11∗ the X1-X1 component of the stress tensor (normal stress),
and (q1∗, 0, 0) the heat-flow vector. Then, adopting the time and length scales given respectively
by

1/ω∗, c0∗/ω∗, (4.1)

where c0∗ = (2RT0∗)
1/2 with R the gas constant per unit mass, we introduce the dimensionless

counterparts, t, xi, ζi, xw, f , ρ, u1, T , p11, and q1, as follows:

t = t∗/(1/ω∗), xi = Xi/(c0∗/ω∗), ζi = ξi/c0∗, xw = Xw/(c0∗/ω∗),

f = f∗/(ρ0∗c
3
0∗), ρ = ρ∗/ρ0∗, u1 = u1∗/c0∗, T = T∗/T0∗,

p11 = p11∗/p0∗, q1 = q1∗/(p0∗c0∗),

(4.2)

where p0∗ = Rρ0∗T0∗. In addition, we define the Knudsen number Kn and the Mach number Ma

as
Kn = l0∗/(c0∗/ω∗), Ma = a∗ω∗/(5RT0∗/3)

1/2, (4.3)

where l0∗ is the mean free path of the gas molecules at the reference equilibrium state at rest, a∗ω∗
is the maximum speed of the oscillating plate, and (5RT0∗/3)

1/2 is the sonic speed at temperature
T0∗; the l0∗ is defined in terms of the collision frequency ν0∗ of the gas molecules at the reference
state as l0∗ = (2/

√
π)(c0∗/ν0∗); for the BGK model, ν0∗ is given as ν0∗ = Acρ0∗ with a constant

Ac.

2.2 Basic Equations

The independent variables (i.e., the arguments of f ) in the present spatially one-dimensional
problem are x1, ζ1, ζ2, ζ3, and t. However, in the case of the BGK model, one can eliminate ζ2 and
ζ3 (the molecular velocity components parallel to the plates) by introducing the following marginal
velocity distribution functions g and h [16]:[

g(x1, ζ1, t)
h(x1, ζ1, t)

]
=

∫ ∞

−∞

∫ ∞

−∞

[
1

ζ22 + ζ23

]
f(x1, ζ1, ζ2, ζ3, t) dζ2dζ3. (4.4)
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To be more specific, the BGK model equation for f is reduced to simultaneous integro-differential
equations for g and h, which read as

∂Φ

∂t
+ ζ1

∂Φ

∂x1
=

2√
π

1

Kn
ρ (λM − Φ) ,

(
Φ =

[
g
h

]
, λ =

[
1
T

])
, (4.5a)

M =
ρ

(πT )1/2
exp

(
− (ζ1 − u1)

2

T

)
, (4.5b)

ρ =

∫ ∞

−∞
gdζ1, u1 =

1

ρ

∫ ∞

−∞
ζ1gdζ1, T =

2

3ρ

∫ ∞

−∞
[(ζ1 − u1)

2g + h]dζ1. (4.5c)

The initial condition for Eq. (4.5) is given by

g = h =M0, M0 = π−1/2 exp(−ζ21 ), at t = 0. (4.6)

The boundary condition on the oscillating plate is written as

g(x1, ζ1, t) = h(x1, ζ1, t) =ML
w(ζ1, t), for ζ1 − vw(t) > 0, at x1 = xw(t), (4.7a)

ML
w(ζ1, t) = π−1/2σL

w(t) exp
(
−[ζ1 − vw(t)]

2
)
, (4.7b)

σL
w(t) = −2

√
π

∫
ζ1−vw(t)<0

[ζ1 − vw(t)]g(xw(t), ζ1, t)dζ1, (4.7c)

where
xw(t) =

√
5/6Ma cos t, vw(t) = dxw(t)/dt = −

√
5/6Ma sin t, (4.8)

that is, c0∗vw is the dimensional velocity of the plate. The boundary condition on the stationary
plate is given by

g(x1, ζ1, t) = h(x1, ζ1, t) =MR
w (ζ1, t), for ζ1 < 0, at x1 = d, (4.9a)

MR
w (ζ1, t) = π−1/2σR

w(t) exp
(
−ζ21

)
, (4.9b)

σR
w(t) = 2

√
π

∫
ζ1>0

ζ1g(d, ζ1, t)dζ1, (4.9c)

where x1 = d indicates the dimensionless location of the stationary plate defined by

d = d∗/(c0∗/ω∗). (4.10)

Note that d depends not only on d∗ but also on T0∗ and ω∗.
As is seen from Eqs. (4.5)–(4.9), the present problem is characterized by the three parameters:

Kn, Ma, and d. In place of these, we use

K = (
√
π/2)Kn, M =

√
5/6Ma, d, (4.11)

in the following. Incidentally, another (and a more standard) way of non-dimensionalization is to
use d∗ as the length scale and 1/ν0∗ as the time scale. Then, one is led to the following three
dimensionless parameters, rather than Kn, Ma, and d:

K̃n = l0∗/d∗, Ma, ω̃ = ω∗/ν0∗. (4.12)

where Ma is the same, and K̃n is the standard Knudsen number. These are related to our parameters
(4.11) as

K̃n = (2/
√
π)(K/d), Ma =

√
6/5M, ω̃ = K. (4.13)
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2.3 Additional Physical Quantities

The dimensionless normal stress p11 and heat flux q1 are expressed in terms of the marginals g
and h as

p11 = 2

∫ ∞

−∞
(ζ1 − u1)

2gdζ1, q1 =

∫ ∞

−∞
(ζ1 − u1)[(ζ1 − u1)

2g + h]dζ1. (4.14)

We now denote, respectively, by Pβ and Eβ the X1 component of the momentum and the energy,
per unit area and time, transferred to the gas from the oscillating plate (when β = L) or transferred
to the stationary plate from the gas (when β = R). Then, they are expressed as

PL = p11|x1=xw(t), PR = p11|x1=d, (4.15a)

EL = [q1 + p11vw(t)]|x1=xw(t), ER = q1|x1=d. (4.15b)

In addition, we introduce the time average ϕ̄(·, t) of a physical quantity ϕ, where ϕ = ρ, u1, T ,
Pβ , and Eβ , over a period 2π from t− 2π to t, i.e.,

ϕ̄(·, t) = 1

2π

∫ t

t−2π

ϕ(·, t′)dt′. (4.16)

2.4 Remarks on Numerical Method

Because of limited space, we only give very brief remarks on the present numerical method. As
mentioned in Sec. 1, we investigate a strongly nonlinear problem with truly oscillating boundary,
which continuously sends out discontinuities of the velocity distribution function in the gas. As
can be seen from the results for free-molecular gas [17, 18], this makes the shape of the velocity
distribution function highly oscillatory for large Knudsen numbers. We have developed a numerical
method that can describe such a complex shape of the velocity distribution function accurately for
a wide range of the Knudsen and Mach numbers. The details of the method will be explained in
our forthcoming paper.

It should be mentioned that the nonlinear sound-wave propagation in a half space has been in-
vestigated using classical gas dynamics, e.g., [19], as well as kinetic theory [20]. In [20], the direct
simulation Monte Carlo (DSMC) method was employed in contrast to the present deterministic
method. The DSMC method is also used for one-dimensional slab problems, similar to the present
problem, in [21, 22]. In [21], unsteady gas flows caused by a sudden start of longitudinal oscilla-
tion as well as transverse motion (with a constant speed) of one of the plates are investigated. This
reference focuses on supersonic flows at small Knudsen numbers and the comparison between the
DSMC results and the results based on the Navier–Stokes equations with slip boundary conditions.
In [22], moving-boundary algorithms are applied to unsteady gas flows caused by oscillatory mo-
tion of a piston in micro-scales.

3 Numerical results
In the present paper, we restrict ourselves to the case of d = 2(5/6)1/2π. This value corresponds

to one wave length in the classical theory of sound wave propagation [23].
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Fig. 4.2 Profiles of the macroscopic quantities for (K, M) = (0.2, 0.1). (a) ρ, (b) u1, (c) T ,
(d) ρ̄, (e) ū1, and (f) T̄ . In panels (a)–(c), the profiles are shown at t/2π = 29.1, · · · , 29.5
(solid line), t/2π = 29.6, · · · , 29.9 (dashed line), and t/2π = 30 (bold line). In panels (d)–(f),
the profiles are shown at t/2π = 1 (solid line), t/2π = 2 (dashed line), t/2π = 6 (dash-dotted
line), t/2π = 10 (long-dashed line), and t/2π = 30 (bold line).

Fig. 4.3 Profiles of the macroscopic quantities for (K, M) = (0.5, 0.1). (a) ρ, (b) u1, (c) T ,
(d) ρ̄, (e) ū1, and (f) T̄ . In panels (a)–(c), the profiles are shown at t/2π = 19.1, · · · , 19.5
(solid line), t/2π = 19.6, · · · , 19.9 (dashed line), and t/2π = 20 (bold line). In panels (d)–(f),
the profiles are shown at t/2π = 1 (solid line), t/2π = 2 (dashed line), t/2π = 3 (dash-dotted
line), t/2π = 4 (long-dashed line), and t/2π = 20 (bold line).

3.1 Profiles of Macroscopic Quantities

In this subsection, we show the profiles of ρ, u1, and T . We first consider the case of relatively
small Mach number, M = 0.1. Figures 4.2(a)(b)(c), respectively, show the profiles of ρ, u1, and T
for (K,M) = (0.2, 0.1) after the periodic state is judged to be established (see Sec. A). To be more
specific, they are depicted at ten distinct times during one period (t/2π = 29.1, 29.2, · · · , 30) .
Since our parameter values, (K,M) = (0.2, 0.1), are not very far from the case of classical theory
of sound, the velocity profile is close to the sinusoidal shape. However, the density and temperature
profiles deviate from it significantly. Figures 4.2(d)(e)(f), respectively, show the time development
of the one-period averages, ρ̄ − 1, ū1, and T̄ − 1 [cf. Eq. (4.16)], divided by M. The bold curves
indicate these quantities at the periodic state, and the other curves those at the transient stage.
Unlike the linearized problem, these quantities do not vanish even in the periodic state (nonlinear
effect). Note that, in the panels (d)(e)(f), we show the result for the domain x1 ∈ [M, d] because ϕ̄
cannot be defined inside the amplitude of the oscillation of the plate, i.e., x1 ∈ [−M,M]. Therefore,∫ d

M
(ρ̄− 1)dx1 does not vanish. This is why the mass is seemingly not conserved in panel (d).
Figures 4.3, 4.4, and 4.5 are, respectively, the figures for K = 0.5, K = 1, and K = 10 corre-

sponding to Fig. 4.2 (i.e., M = 0.1). It is seen from panel (b)’s that the shape of the wave for u1
deviates more from the sinusoidal shape as K increases. As seen from panel (f)’s, T̄ at the periodic
stage becomes more uniform in space for larger values of K.

Next, we show the profiles for larger Mach numbers, M = 0.2, 0.5, 1, at a fixed value of K,
i.e., K = 1. That is, Figs. 4.6 (M = 0.2), 4.7 (M = 0.5), and 4.8 (M = 1) are the figures to be
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Fig. 4.4 Profiles of the macroscopic quantities for (K, M) = (1, 0.1). (a) ρ, (b) u1, (c) T ,
(d) ρ̄, (e) ū1, and (f) T̄ . In panels (a)–(c), the profiles are shown at t/2π = 19.1, · · · , 19.5
(solid line), t/2π = 19.6, · · · , 19.9 (dashed line), and t/2π = 20 (bold line). In panels (d)–(f),
the profiles are shown at t/2π = 1 (solid line), t/2π = 2 (dashed line), t/2π = 3 (dash-dotted
line), t/2π = 4 (long-dashed line), and t/2π = 20 (bold line).

Fig. 4.5 Profiles of the macroscopic quantities for (K, M) = (10, 0.1). (a) ρ, (b) u1, (c) T ,
(d) ρ̄, (e) ū1, and (f) T̄ . In panels (a)–(c), the profiles are shown at t/2π = 19.1, · · · , 19.5
(solid line), t/2π = 19.6, · · · , 19.9 (dashed line), and t/2π = 20 (bold line). In panels (d)–(f),
the profiles are shown at t/2π = 1 (solid line), t/2π = 2 (dashed line), t/2π = 3 (dash-dotted
line), t/2π = 4 (long-dashed line), and t/2π = 20 (bold line).

compared with Fig. 4.4. The profiles in Fig. 4.6, where M is still rather small, do not differ much
from those in Fig. 4.4. However, as M increases, clear differences arise naturally. In particular,
panel (c)’s and panel (f)’s show that there appears a significant temperature rise for larger M. More
precisely, the temperature rise is in such a manner that the profile is lifted up more for larger M,
with its wavy shape being kept almost the same.

3.2 Momentum and Energy Transfer

We next discuss the momentum transfer Pβ [Eq. (4.15a)] and the energy transfer Eβ

[Eq. (4.15b)] after the periodic state is judged to be established (see Sec. A). Figures 4.9(a) and
(b) show, respectively, PL and PR versus t for M = 0.1 and for several K. Figures 4.9(c) and
(d) are the corresponding figures for EL and ER. We see from panels (a) and (c) that PL and EL,
the quantities on the oscillating plate, are weakly dependent on K. In contrast, PR [panel (b)]
and ER [panel (d)] on the stationary plate vary significantly depending on K, since the manner
of deformation of waves while propagating in the gas is different for different K. Figure 4.10
is the corresponding figure for M = 1. As in the case of M = 0.1, the quantities PL and EL

on the oscillating plate depend weakly on K, but the curves deviate more significantly from
sinusoidal-like shape compared with the former case.

In Fig. 4.11(a) and (b), we depict the one-period averages of the momentum and energy transfer
from oscillating plate to the gas (P̄L and ĒL), and from the gas to the stationary plate (P̄R and
ĒR) for various values of K and M in the periodic state. As one can see, P̄L and P̄R (or ĒL and
ĒR ) coincide with each other in the periodic state (see Sec. A). Therefore, the values in the figure
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indicate the one-period averages of the momentum (or energy) transferred from the oscillating plate
to the stationary plate. One can see that these quantities take their minimum values with respect to
K around K ≈ 1. Since the initial (dimensionless) distance d − M between the plates is smaller
than the average distance d, it is natural to think that the stationary plate is pulled (relative to the
pressure exerted on the plate in the initial equilibrium state) by the oscillating plate on the average.
In fact, it is the case (i.e., P̄β − 1 < 0) when the oscillation is weak (M = 0.1). However, as M
increases, it is pushed more strongly by the oscillating plate.

Fig. 4.6 Profiles of the macroscopic quantities for (K, M) = (1, 0.2). (a) ρ, (b) u1, (c) T ,
(d) ρ̄, (e) ū1, and (f) T̄ . In panels (a)–(c), the profiles are shown at t/2π = 19.1, · · · , 19.5
(solid line), t/2π = 19.6, · · · , 19.9 (dashed line), and t/2π = 20 (bold line). In panels (d)–(f),
the profiles are shown at t/2π = 1 (solid line), t/2π = 2 (dashed line), t/2π = 3 (dash-dotted
line), t/2π = 4 (long-dashed line), and t/2π = 20 (bold line).

Fig. 4.7 Profiles of the macroscopic quantities for (K, M) = (1, 0.5). (a) ρ, (b) u1, (c) T ,
(d) ρ̄, (e) ū1, and (f) T̄ . In panels (a)–(c), the profiles are shown at t/2π = 19.1, · · · , 19.5
(solid line), t/2π = 19.6, · · · , 19.9 (dashed line), and t/2π = 20 (bold line). In panels (d)–(f),
the profiles are shown at t/2π = 1 (solid line), t/2π = 2 (dashed line), t/2π = 3 (dash-dotted
line), t/2π = 4 (long-dashed line), and t/2π = 20 (bold line).

Fig. 4.8 Profiles of the macroscopic quantities for (K, M) = (1, 1.0). (a) ρ, (b) u1, (c) T ,
(d) ρ̄, (e) ū1, and (f) T̄ . In panels (a)–(c), the profiles are shown at t/2π = 19.1, · · · , 19.5
(solid line), t/2π = 19.6, · · · , 19.9 (dashed line), and t/2π = 20 (bold line). In panels (d)–(f),
the profiles are shown at t/2π = 1 (solid line), t/2π = 2 (dashed line), t/2π = 3 (dash-dotted
line), t/2π = 4 (long-dashed line), and t/2π = 20 (bold line).
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Fig. 4.9 Momentum transfer Pβ and energy transfer Eβ versus time (19 ≤ t/2π ≤ 20) for
M = 0.1. (a) PL, (b) PR, (c) EL, and (d) ER. The results for several different K are shown:
K = 5 (solid line), K = 2 (dashed line), K = 1.4 (dash-dotted line), K = 1 (long-dashed line),
K = 0.7 (dash-double-dotted line), K = 0.5 (dotted line). In panels (a) and (c), only the results
for K = 0.5, 1, 5 are shown.

Fig. 4.10 Momentum transfer Pβ and energy transfer Eβ versus time (19 ≤ t/2π ≤ 20) for
M = 1. (a) PL, (b) PR, (c) EL, and (d) ER. The results for several different K are shown:
K = 5 (solid line), K = 2 (dashed line), K = 1.4 (dash-dotted line), K = 1 (long-dashed line),
K = 0.7 (dash-double-dotted line), K = 0.5 (dotted line).

3.3 Accuracy of Computations

The computations have been carried out carefully with appropriate accuracy checks. For in-
stance, for some typical cases, we have performed computations with different grid systems and
estimated the error in the obtained numerical solutions. Here, we omit the details because of the
limited space, only mentioning an error estimate based on the mass conservation.

Because of the conservation of mass of the gas contained between the plates, the total mass per
unit area of the plates, ρ̌(t) =

∫ d

xw(t)
ρ(x1, t)dx1, should be constant. In other words, we have the

identity

ρ̌(t) = ρ̌(0) =

∫ d

xw(0)

ρ(x1, 0)dx1 = d− xw(0) = d−M, for all t. (4.17)

However, ρ̌(t) obtained in the actual numerical computation [say, ρ̌comp(t)] varies with time and
thus does not satisfy Eq. (4.17), since the present numerical method is not conservative. We there-
fore modify the density by replacing ρ(x1, t) by [(d−M)/ρ̌comp(t)]ρ(x1, t) at the end of each time
step. The quantity

∥ρ̌comp(t)∥∞ ≡ 1

M
max

t/2π∈[0,20]
|ρ̌comp(t)− ρ̌(0)| (4.18)

gives a measure of the error contained in the numerical solutions. In fact, it decreases as we
increase the accuracy of computation by using, e.g., a smaller time step and/or a finer grid system.
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Fig. 4.11 Momentum transfer P̄β and energy transfer Ēβ over a period versus K for M =
0.1, 0.2, 0.5, and 1 at the periodic state. (a) P̄L and P̄R, (b) ĒL and ĒR. In panel (a), the solid
line with □ indicates (P̄L−1)/M, and the dashed line with ⃝ indicates (P̄R−1)/M. In panel
(b), the solid-line with □ indicates ĒL/M, and the dashed line with ⃝ indicates ĒR/M. The
results at t/2π = 30 are shown for (K, M) = (0.2, 0.1) and (0.2, 0.2), those at t/2π = 15
are shown for (K, M) = (0.2, 1), and those at t/2π = 20 are shown for other cases.

For the result presented in the present paper, we have confirmed that

∥ρ̌comp(t)∥∞ < 1.3× 10−3 for M = 0.1, ∥ρ̌comp(t)∥∞ < 1.3× 10−3 for M = 0.2,
∥ρ̌comp(t)∥∞ < 1.1× 10−3 for M = 0.5, ∥ρ̌comp(t)∥∞ < 3.0× 10−3 for M = 1.

(4.19)
for K = 0.2, · · · , 20.

4 Concluding remarks
In the present paper, we have investigated numerically the unsteady motion of a gas between two

parallel plates, caused by a sudden start of longitudinal oscillation of one of the plates, on the basis
of kinetic theory. We focus our attention on the nonlinear problem with high-speed oscillation of
the plate. The BGK model of the Boltzmann equation has been analyzed, for various values of the
Knudsen number (or K) and the Mach number (or M), using an accurate numerical method that
is capable of describing the discontinuities of the molecular velocity distribution function in the
gas generated continuously by the oscillating plate. The transient macroscopic profiles at earlier
times as well as the (almost) periodic state at later times (after several periods of oscillation from
the initial time) have been obtained accurately. In the linear setting used mostly in the literature, a
one-period average of the deviation of any physical quantity from its equilibrium value vanishes in
the periodic state. In contrast, it does not vanish even after a periodic state have been established
in the present problem. We have shown that the one-period average of the momentum (or energy)
transferred from the oscillating to the stationary plate P̄β (or Ēβ) takes its minimum with respect
to K (for fixed M and d). Moreover, we have pointed out that, depending on the values of K and
M, the difference P̄β − 1 can be either positive or negative, which means that the stationary plate
is either pushed or pulled (relative to the initial pressure) on the average by the oscillating plate.

A Approach to periodic state
In Secs. 3.1 and 3.2, we showed some results for the periodic state that seems to be almost

established after several periods form the initial time. In this appendix, we give some additional
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Fig. 4.12 Momentum transfer over a period P̄β versus time (5 ≤ t/2π ≤ 20) for different
M and K. (a) M = 0.1, (b) M = 0.2, (c) M = 0.5, and (d) M = 1. The solid line indicates
(P̄L − 1)/M, and the dashed line (P̄R − 1)/M.

Fig. 4.13 Energy transfer over a period Ēβ versus time (5 ≤ t/2π ≤ 20) for different M and
K. (a) M = 0.1, (b) M = 0.2, (c) M = 0.5, and (d) M = 1. The solid line indicates ĒL/M and
the dashed line ĒR/M.

data that demonstrate the process of approach to the periodic state. We show in Figs. 4.12 and 4.13
the time evolution of P̄β and Ēβ (solid line: β = L, dashed line: β = R) for M = 0.1, 0.2, 0.5,

and 1 and for K = 0.5, · · · , 20. If an exact periodic state is established, the averaged quantities
over a period, P̄β and Ēβ , do not depend on time t, and furthermore, P̄L = P̄R and ĒL =

ĒR hold because of the momentum and energy conservations. From these figures, the periodic
state is seemingly established at the 20th period from the initial state. This observation is more
or less confirmed by Tables 1 and 2. More specifically, Table 1 shows P̄β at later times, e.g.,
t/2π = 16, 17, 18, 19, and 20, for the cases of M = 0.1 and 1 and K = 0.2, 1, and 20. Table
2 is the corresponding table for Ēβ . These tables indicate that for K = 0.2, the periodic state is
obtained only approximately, and further computation until later times is required to obtain better
approximation of the periodic state. It is seen from Fig. 4.12 that, for large K, P̄L and P̄R tend to
approach each other first and then evolve to a constant value as time proceeds. This tendency is not
seen clearly for ĒL and ĒR in Fig. 4.13.
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Table 4.1 Momentum transfer P̄L and P̄R at later times for K = 0.2, 1, and 20 and for M = 0.1 and 1.

(P̄β − 1)/M

M = 0.1, K = 0.2 M = 0.1, K = 1 M = 0.1, K = 20

t/2π β = L β = R t/2π β = L β = R t/2π β = L β = R

26 8.7043(−2)∗ 8.6792(−2) 16 −7.8898(−2)−7.8891(−2) 16 −3.8190(−2)−3.8194(−2)

27 8.6983(−2) 8.7096(−2) 17 −7.8896(−2)−7.8891(−2) 17 −3.8156(−2)−3.8158(−2)

28 8.7212(−2) 8.7055(−2) 18 −7.8896(−2)−7.8890(−2) 18 −3.8132(−2)−3.8135(−2)

29 8.7186(−2) 8.7229(−2) 19 −7.8895(−2)−7.8890(−2) 19 −3.8116(−2)−3.8117(−2)

30 8.7317(−2) 8.7212(−2) 20 −7.8895(−2)−7.8889(−2) 20 −3.8104(−2)−3.8105(−2)

M = 1, K = 0.2 M = 1, K = 1 M = 1, K = 20

t/2π β = L β = R t/2π β = L β = R t/2π β = L β = R

11 9.0137(−1) 8.9822(−1) 16 3.7675(−1) 3.7683(−1) 16 5.2312(−1) 5.2315(−1)

12 9.0460(−1) 9.0255(−1) 17 3.7675(−1) 3.7683(−1) 17 5.2317(−1) 5.2322(−1)

13 9.0667(−1) 9.0534(−1) 18 3.7675(−1) 3.7683(−1) 18 5.2321(−1) 5.2325(−1)

14 9.0800(−1) 9.0712(−1) 19 3.7675(−1) 3.7683(−1) 19 5.2322(−1) 5.2328(−1)

15 9.0885(−1) 9.0827(−1) 20 3.7675(−1) 3.7683(−1) 20 5.2325(−1) 5.2329(−1)

∗ read as 8.7043× 10−2.

Table 4.2 Energy transfer ĒL and ĒR at later times for K = 0.2, 1, and 20 and for M = 0.1 and 1.

Ēβ/M

M = 0.1, K = 0.2 M = 0.1, K = 1 M = 0.1, K = 20

t/2π β = L β = R t/2π β = L β = R t/2π β = L β = R

26 5.1731(−2)∗ 5.2191(−2) 16 3.4960(−2) 3.4973(−2) 16 5.7218(−2) 5.7274(−2)

27 5.1786(−2) 5.2196(−2) 17 3.4960(−2) 3.4972(−2) 17 5.7226(−2) 5.7267(−2)

28 5.1779(−2) 5.2161(−2) 18 3.4961(−2) 3.4972(−2) 18 5.7233(−2) 5.7262(−2)

29 5.1810(−2) 5.2162(−2) 19 3.4961(−2) 3.4972(−2) 19 5.7237(−2) 5.7258(−2)

30 5.1807(−2) 5.2142(−2) 20 3.4961(−2) 3.4972(−2) 20 5.7239(−2) 5.7256(−2)

M = 1, K = 0.2 M = 1, K = 1 M = 1, K = 20

t/2π β = L β = R t/2π β = L β = R t/2π β = L β = R

11 4.3469(−1) 4.4249(−1) 16 2.9480(−1) 2.9498(−1) 16 4.9926(−1) 4.9927(−1)

12 4.3766(−1) 4.4337(−1) 17 2.9480(−1) 2.9498(−1) 17 4.9930(−1) 4.9928(−1)

13 4.3957(−1) 4.4393(−1) 18 2.9480(−1) 2.9498(−1) 18 4.9932(−1) 4.9928(−1)

14 4.4079(−1) 4.4429(−1) 19 2.9480(−1) 2.9498(−1) 19 4.9934(−1) 4.9928(−1)

15 4.4158(−1) 4.4453(−1) 20 2.9480(−1) 2.9498(−1) 20 4.9934(−1) 4.9929(−1)

∗ read as 5.1731× 10−2.
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Conclusion

The present thesis consists of several numerical investigations of time-dependent problems in
rarefied gas dynamics with a stationary or moving boundary. More specifically, in Chapters 1, 3,
and 4, the moving boundary problems for the free-molecular gas (Chapters 1, 3, and 4), the spe-
cial Lorentz gas (Chapter 3), and the gas described by the Bhatnagar-Gross-Krook (BGK) model
(Chapter 4) are considered. In these chapters, the cases where the boundary motion is coupled
with the gas behavior are mainly concerned, although the case with an assigned boundary mo-
tion is also treated in Chapter 4. The time-dependent problem with a stationary boundary for the
free-molecular gas is considered in Chapter 2.

In the case of a free-molecular gas (i.e., the Knudsen number is infinite), because of the absence
of inter-molecular collisions, a gas molecule transfers directly the information in the past to the
future by its free flight until it hits a physical boundary. In other words, a gas molecule at a
time may contain the long-memory from the far past (e.g., the initial condition). After being
reflected on the boundary, the molecule obtains the new information, that is, the long-memory is
destroyed by the collision with the boundary. Hence, if the long-time behavior of the solution in
time-dependent problems of a free-molecular gas with a stationary or moving boundary is under
concern, it is necessary to understand the long-memory of the problem and how it is destroyed.
Since the destruction of the long-memory is caused only by the collision with the boundary in the
case of the free-molecular gas, the geometrical shape of the boundary plays an important role in
determining the long-time behavior. In Chapters 1 and 3, where the unsteady motion of a boundary
in the infinite expanse of a free-molecular gas is considered, the long-memory manifests itself
as the recollision of gas molecules with the boundary. In Chapter 2, where a free-molecular gas
is contained in a fixed vessel, the slow molecules at the initial time contain the long-memory.
Although the physical meanings of the long-memory are different depending on the problems, its
role in determining the long-time behavior of the solution seems same: the long-memory makes
the rate of approach to the time-asymptotic state be proportional to an inverse integer power of
time (the algebraic approach).

On the other hand, when an interaction of gas molecules with a background (the special Lorentz
gas, Chapter 3) or an inter-molecular collision (the BGK model, Chapter 4) is considered (i.e., the
Knudsen number is finite), the destruction of the long-memory is enhanced, and thus the resulting
long-time behavior of the solution is qualitatively different from that of the free-molecular gas.
In particular, the analysis based on the special Lorentz gas in Chapter 3 clarifies that the rate of
approach is exponentially fast in the case of the special Lorentz gas. This exponential approach
should be contrasted with the algebraic approach for the free-molecular gas. In the case of the BGK
model in Chapter 4, the rate of approach seems to be proportional to a half-integer power of time,
however, more careful investigation is necessary in order to conclude this half-integer algebraic
rate and clarify its underlying mechanism.

The long-memory appears in the velocity distribution functions as the localized structure,
namely, the variation of them due to the boundary is confined in a small region in the molecular
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velocity space. These localized structures include singularities such as discontinuities in the
velocity distribution function. Moreover, they become more localized as time goes on. Accurate
numerical analyses for the problems containing these singularities are difficult in general, since the
ordinary higher-order schemes do not work due to the singularities. The numerical error induced
by the singularities destroys the long-memory of the problem, and this unphysical disappearance
of the long-memory leads to the wrong long-time behavior. Throughout the thesis, the method
based on the characteristics, which is capable of capturing the singularities accurately, are mainly
employed in order to catch the correct long-time behavior of the solution. In Chapter 4, the
occurrence of the singular behavior of the velocity distribution function is closely discussed, and
the proper treatment of it in the numerical analysis is introduced. It is shown that the careful
treatment of the singular behavior is necessary under certain conditions.

The time-dependent problems with a stationary or moving boundary treated in this thesis are
restricted to some simple cases, such as the case of a free-molecular gas (Chapters 1, 2, and 3)
or the case of a spatially one-dimensional problem (Chapter 4). Owing to the simplicity of the
problems, it is able to obtain the details of the long-time behavior of the solution, and the correct
shape of the velocity distribution function including the singularities. The present results can
be extended in the following directions. First of all, it is of great interest to develop an easily-
implemented and efficient numerical method to simulate time-dependent problems of rarefied gas
flows with a stationary or moving boundary in practical applications, since the present method
is too complicated to apply to spatially two- or three-dimensional problems that one often faces
in micro engineering. The knowledge about the velocity distribution function established in the
thesis will be helpful for this purpose, and the numerical solutions obtained in the present simple
settings will serve as the reference solutions to be compared with the newly-developed methods in
the future. Another extension is to investigate some fundamental problems in physics involving a
moving boundary in the framework of kinetic theory, such as a linear pendulum treated in Chapter
3. The piston problem, for instance, is the one which has been under concern in statistical physics
for a couple of decades. The effect of the boundary condition, as well as the shape of the boundary,
is also to be studied more carefully. It should be mentioned that, in the present thesis, only the
convex boundary (convex toward the gas side) has been considered for the cases with the moving
boundary. The long-memory for the case with the a concave moving boundary is expected to have
different features, since the gas molecules can be trapped in the concaved part of the boundary.
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