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General Introduction

In recent years, researches and developments of nanoscale materials such as semicon-

ductor nanowires and new functional materials have become popular. These new materials

have excellent properties as compared to conventional ones, and hence they can construct

new energy systems and further miniaturization of electronic devices. For such nanoscale

materials, quantum effects are important and need to be considered. Therefore in this the-

sis, various materials are analyzed by using first-principles electronic structure calculations.

The thesis is organized into two parts. PART I (consisting in Chapter 1-4) is devoted to

reports of development of calculation methods for electronic structures with electric currents

and calculations of local electric conductive properties by using these methods. In PART

II (consisting in Chapter 5-9), analysis of bonding nature for understanding crystal growth,

dielectric properties, and conductive properties are reported.

PART I is further devided to reports for developments of the calculation methods and

ones for applications to semiconductor nanowire models. In these studies, local electric

conductivities
↔
σ(r⃗) are analyzed.

↔
σ(r⃗) is defined in Rigged Quantum ElectroDynamics

(QED) which is formalized and proposed by Tachibana. Ordinary global quantities for a

whole device reveal effects of impurities, defects, and interfaces only indirectly, and hence
↔
σ(r⃗) is important for the analysis of conductive properties for nanomaterials.

In Chapter 1, Calculation method for electronic structures with electric currents based

on the method of self-consistent field (SCF) are shown. Application results for alminum

nanowire models are also reported. Although there are many studies on the electric con-

ductivity, most of them do not represent electric currents as flows of actual electrons, and

interactions of the electrons are not safficiently described. For the method developed in

this study, conduction electrons are represented as quantum states, and the Coulomb and

exchange interactions between bound and condcution electrons are included. In addition,
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effects of magnetic field caused by electrons are investigated by including vector potential

in calculations of electronic structures. Since the electronic currents and vector potential

depend on each other, electronic structures are calculated based on a SCF method. Calcula-

tions of electronic structures of two aluminum nanowire models which have different lengths

are performed, and local electric current densities in these models are investigated.

Development of a calculation method of electronic structures with electric currents based

on the perturbation theory is reported in Chapter 2. Calculation results for silicon nanowire

models are also shown. In this study, a new calculation method for electronic structures

with electric currents have been developed by using the coupled perturbed Hartree-Fock

theory, the perturbation method at the Hartree-Fock level. Thus, analytical calculations of

the local electrical conductivities have been available. In this study, calculations of local

electric conductivities defined both for external and internal electric fields are performed.

The one defined for internal electric field reveals the response of the current density to

the electric field which is actually occurring at that point. It should be noted that this

local quantity does not have corresponding macroscopic one. For calculation models, a

silicon nanowire model without impurities and a model with a germanium atom which is

substituted for one of the silicon atoms are considered. It is shown that regions where local

electric conductivities have negative eigenvalues exist. These regions may be related to the

origin of negative differential resistance. Regions with complex eigenvalues are also found.

It can be shown that electric current densities responses “rotationally” to electric field in

these regions. This can be proved by taking appropriate linear combinations of complex

eigenvectors so that they are in real space. For the local electric conductivity defined for

internal electric field, it shows a different position dependence from that of the external one.

The impurity model shows changes for the value of the local conductivity in the vicinity of

the germanium atom.

In Chapter 3, an analysis of conductive properties for a gallium nitride (GaN) nanowire

model are reported. Since having a high mobilities due to ballistic conductions, semiconduc-

tor nanowires are candidate materials for next-generation field effect transistors. For such

nanomaterials, analysis of local electric conductive properties is important. In this study,

electric conductive properties are investigated in terms of local electrical conductivity tensor.

This is calculated by using the method developed in Chapter 1. Analysis are performed for
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a GaN nanowire which is one of the semiconductor nanowires. In this study, local electric

conductivity tensors defined for external electric field is analyzed. It is confirmed that local

electric conductivity tensor has large position dependence. In addition, it is found that re-

gions which have complex eigenvalues are present in the model. As mentioned above, these

regions show rotational response of electric currents to external electric field.

Chapter 4 is a research report for electronic spin dynamics and local electric conductive

properties. Local electric conductivity tensors are calculated for a silicon nanowire model

with [011] growth direction. In order to obtain electronic structures with electric currents,

the method which is developed in the study reported in Chapter 1 are used. As a result,

similar characteristics to the GaN nanowire model in Chapter 3 are found. In addition,

electronic spin dynamics is investigated for dimers of alkali atoms. In this analysis, spin

torque and zeta force which is defined in Rigged QED are used.

Analysis for crystal growth of GaN in terms of both gas phase reactions and ones on a

surface is reported in Chapter 5. GaN has attracted much attention in the field of opto-

electronic applications such as light emitting diodes and photodetectors because of its wide

band gap. In recent years, a high-quality GaN crystal can be obtained by using a metal

organic chemical vapor deposition technology. The stability of a GaN crystal depends on

the state of its surface. Chemical reactions in the gas phase also play important roles in

the crystal growth. In this study, gas-phase and surface reactions in the process of crystal

growth are investigated by using first-principles calculations in order to obtain a high-quality

GaN crystal. Trimethyl-gallium (TMG) and ammonia (NH3) is considered as precursors in

gas phase. First, the series of reactions where the methyl groups of TMG are replaced by

an amino group derived from NH3 is investigated in terms of stabilization and activation

energies. Reactions where coordination bonds are made between NH3 and the molecules

produced in these reactions are also investigated. As a result, it is found that alkyl gallium

molecules which have a coordination bond with NH3 are relatively stable and supposed to

be present in gas phase. Next, bonding between a gallium atom of the molecules in gas

phase and the atom on the surface of GaN crystal is investigated. As a result, it is found

that if a Ga-Ga bond between them are produced, it prevents the stable crystal growth.

Furthermore, it is shown that if the alkyl gallium molecules with the coordination bond with

NH3 are produced in gas phase, they do not make the Ga-Ga bond and may help crystal
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growth. Kinetic energy density defined in the Rigged QED is used for the determination of

the presence or absence of bonds between atoms. This kinetic energy density may take both

positive and negative values. In regions which have posivite values, electrons can move as

if they follow classical mechanics, while regions with negative values means that electrons

can move only by quantum effects. In addition, the surface where kinetic energy density is

equal to zero can be interpreted as the boundary of the molecule, and this can determine

the presence or absence of binding between the atoms. By using this property, the bond

between the gallium atoms are examined.

In Chapter 6, Analysis for structures and stabilities for aluminum hydride clusters Al4Hn

(n = 0, 2, 4, 6, 8, 10, and 12) are reported. Chemical bonding in them are also investigated

in terms of quantum energy density. There are several challenges to the spread of the fuel

cell, and the development of high-performance hydrogen storage materials is one of them.

Aluminum hydride clusters are candidates for the hydrogen storage materials. In this study,

a tetrahedral cluster Al4 and its hydrides are focused on, and their properties as a hydrogen

storage material and characteristics of chemical bonds in the clusters are investigated. First,

the structures of hydrides are determined, and their stability is analyzed in terms of total

binding energies and average ones for a Al-H bond. As a result, the total binding energies

increase with the increase in the number of hydrogen atoms adsorbed, while the average ones

for a Al-H bond are decreased. Next, analysis of electronic stress tensor density and bond

orders which are defined in the Rigged QED is performed for the obtained structures. As a

result, it is found that the bond orders for Al-Al and Al-H bonds are well correlated with

bond lengths, respectively. In addition, it is confirmed that the maximum eigenvalues of

the electronic stress tensor density are negative around Al-Al bonds, while they are positive

around Al-H bonds. This result indicates that our bond orders and electronic stress tensors

can be used to characterize types of various chamical bonds.

In Chapter 7, almunum hydride clusters are analyzed as well as the report in Chapter 6.

In this study, electronic stress tensor density is investigated for electronic states with electric

currents by using the method which is reported in Chapter 1. As a result, difference from

the results without conduction electrons and symmetry breaking are confirmed.

Chapter 8 is a research report on the adsorption of lithium atoms on a surface of a carbon

nanotube (CNT) model. CNTs are considered as a candidate material for anodes of lithium-
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ion batteries. A theoretical report has reported that CNTs have a capacity of lithium atom

three times more than graphites. However, experiments do not show an increase in the

capacity as many as expected. Instead, a large amount of irreversible lithium storage is

reported. These features suggest that most lithium atoms are stored on interior surfaces of

CNTs and cannot be available. In this study, a model for (12,0) zigzag single wall CNT

is considered. The adsorption of a lithium atom to the inner surface of this model shows

greater stabilization energy than the adsorption to the outer surface. In order to understand

the cause of this feature, both charge transfer and local chemical potential density which

is defined in Rigged QED are examined. For charge transfer, it is found that the lithium

atom which adsorbed on the interior surface have slightly larger positive charge than that

adsorbed on the exterior surface. Chemical potential denisity at a specific point reveals the

energy per an electron on the corresponding point, and hence electrons are supposed to be

transfered to the regions which have relatively small values of the chemical potential density

in chemical reactions. It is found that the regions which have small values are distibuted

around the inner surfaces more widely than those around the outer surfaces. In other

words, electrons in lithium atom prefer the adsorption on the inner surface. In addition,

adsorption of multiple lithium atoms on inner surface of nanotubes are investigated in terms

of adsorption energy and charge transfer. As a result, it is shown that the repulsion between

a lithium atoms destabilize the system.

Chapter 9 is a report on a local the dielectric properties of hafnium oxide (HfO2). Field

effect transistors require very thin gate insulating films, and the conventional ones made

of silicon oxide (SiO2) have reached their limits of thinning because of increasing leak cur-

rents. Hence, it is expected that HfO2 which has a high dielectric constant is an alternative

material. The thickness of gate insulating films are about few nanometers. For such nano-

materials, position dependences of local physical quantities are very important. In this

study, local dielectric properties of HfO2 are investigated by using a local polarizability and

a local dielectric constant which is defined in Rigged QED. For the crystal structures of

HfO2, cubic, tetragonal, monoclinic ones are known, and the dielectric constants of them

are different between them. In this study, the local dielectric properties for these structures

are analyzed. In addition, SiO2 also analyzed for comparison, and differences in the dielec-

tric properties of ionic and covalent bondings are investigated. Although it is known that
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lattice polarization contributes largely for dielectric constant of HfO2, only the contribution

of the electronic polarization is focused on. First of all, termination conditions of cluster

models in this study are investigated in order to reproduce the properties of the crystals.

As a result, it is found that the model with point charges is preferable for HfO2, and the

model with hydrogen termination is better for SiO2, in order to reproduce the nature of

the crystals. Next, the local polarizability and local dielectric constant for these models

are calculated. As a result, it is found that regions around oxygen atoms paricularly has

large eigenvalues of polarizability. Regions with complex eigenvalues are also found. As

well as the local electrical conductivity described in Chapter 2, it can be said that the local

polarization responses rotationally to external electric field for these regions. For the local

dielectric constant, regions which have negative eigenvalues are found around oxygen atoms.

This means that the magnitude of the local polarization induced by external electric field is

greater than the magnitude of the field. The average values of the local polarizability and

local dielectric constant in the vicinity of specific atoms and bonds are also investigated in

this study. From the comparison with the results for SiO2, it it found that the eigenval-

ues of local polarizability around silicon atoms in SiO2 are significantly smaller than those

around hafnium atoms in HfO2. This is because electrons near the silicon atoms are bound

covalently and hard to move.
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Chapter 1

Calculation of the Electronic State in

Electronic Current for Nanowire

Models

1.1 Introduction

Recently, semiconductor nanowire structure, in particular silicon nanowire, is paid much

attention by many researchers [1–9]. Semiconductor nanowire is considered as a good can-

didate for materials of Field Effect Transistor (FET) devices. High electric conductance is

expected due to the ballistic conduction. Among semiconductor nanowire, the most popu-

lar one is silicon nanowire, since this is the leading candidate for a material for post Moore

devices [7–9]. For nanoscale materials, it is important that properties of them are predicted

by the first principles calculations before the fabrication in laboratories.

Although the conductive properties are reported in many works, conductive electrons

have not been included in calculations by a satisfactory manner. In other words, electronic

current has not been represented by electrons in most calculations. Hence, there is little

knowledge of the effect of the internal electronic current on small (semi)conductive mate-

rials, such as these nanowire. For example, when the electronic current exists in system, a

magnetic field is induced by the current. The electronic state of the system is affected by

the magnetic field induced by a large current. However, available calculation codes have not

included this effect.
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One of purposes of this work is to report the first step of our first principles calcula-

tions program representing electronic current. In our program, the conductive electrons are

treated as quantum states which are calculated along with other electrons. In other words,

the electronic current is represented by electrons. Since the wave functions of the conductive

electrons can be calculated, the local electronic current density, which is defined by one of

the authors [10, 11], can also be calculated. We can clarify the conductive properties of

nanoscale materials by using this quantity. By doing so, the effects of the Coulomb and

exchange interactions by conductive electrons on electrons in system are included. Another

purpose of this work is to include the effect of the magnetic field. In addition to the rep-

resentation of that induced by the internal electronic current, the magnetic field is used to

realize a boundary condition that the calculating molecular system is embedded in a larger

system, which includes electrodes. We develop the algorithm of first principles calculations

considering electromagnetic field. Magnetic field is treated as the vector potential. In order

to treat correctly large magnetic fields, which are even out of perturbative region, we take

a self-consistent field (SCF) manner. This is because the vector potential and the elec-

tronic current are dependent on each other. In this work, we show our results for small

aluminum nanowire models. Before semiconductor nanowires are studied, which is our goal

for the present, we should check our results for conductor materials and clarify the required

calculation condition for our purpose.

This paper is organized as follows. In the next section, we define the local electronic

current density, and show how the vector potential is calculated by using the current density.

In Sec. 1.3, the calculation method of our program code is summarized. We show how our

code represents the conductive electrons and how the electronic current and the vector

potential are determined in a SCF manner. The sample models used in this work are

introduced in Sec. 1.4. In Sec. 1.5, we show our results for the small nanowire models.

We compare our results of local electronic currents of the nanowire models. The effect of

magnetic fields induced by the internal current is also discussed. Section 1.6 is devoted to

the summary and discussion.
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1.2 Theory

The covariant derivative for electromagnetic interaction for an electron is defined as

D̂µ = ∂µ + iZee/(~c)Âµ(r), where Ze = −1 for electrons, c is the speed of the light in

the vacuum, and Âµ is the four component vector potential. Hence, the four component

momentum of the electron is p̂µ = i~∂µ − Ze(e/c)Âµ(r) and the three dimensional one is

given by

p̂ = −i~∇− Ze(e/c)Â(r). (1.1)

The local electronic current density [10, 11] is given by using the local value of the

probability current based on the Rigged QED theory [12–22]. In the nonrelativistic theory,

this is given as

Ĵ(r) =
Zee

2me

∑
i

[
ψ̂†
i (r)p̂(r)ψ̂i(r) + h.c.

]
=

Zee

2me

∑
i

[
−i~ψ̂†

i (r)∇ψ̂i(r)−
Zee

c
ψ̂†
i (r)Â(r)ψ̂i(r) + h.c.

]
, (1.2)

where ψ̂i is the i-th natural orbital and me is the mass of the electron.

The electronic current induces a magnetic field, i.e., vector potential. Hence, the vector

potential is given as

Â(r) =
1

c

∫
d3s

ĴT (cu, s)

|r − s|
, (1.3)

where ĴT (r) is the transverse component of Ĵ(r) and u ≡ t− |r− s|/c. We show explicitly

the time coordinate for this expression due to retardation effects. With the vector potential,

the kinetic part of Hamiltonian is given as the following operator,

Ĥk =
1

2me

[
−i~∇− Zee

c
Â(r)

]2
. (1.4)

By using this Hamiltonian, the electronic states with considering the vector potential can

be derived.

1.3 Calculation Method

In this work, conductive electrons are included in our electronic state calculation. Our

calculation is performed based on the quantum mechanics. We use the linear combination
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of atomic orbital (LCAO) method, since we pay attention to the relation between the local

electronic current and the bonding state of molecules. For this purpose, the LCAO method is

appropriate. In our calculation, wave functions are expanded by gaussian functions. Hence,

the electronic states representing the electronic current is given by the linear combination

of gaussian functions. The state of conductive electron is considered to be similar to a plain

wave rather than gaussian functions. Therefore, we assume the following function as the

initial electronic state representing electronic current,

f(r) ≡ exp(−axx2) exp(−ayy2) exp(ikzz), (1.5)

where ax, ay, and kz are parameters. These parameters are fixed during a calculation for

simplicity. We expand this function by gaussian basis functions ϕi,

fG(r) = cG
∑
i

⟨ϕi|f⟩|ϕi⟩, (1.6)

where cG is the normalization factor. We adopt this function fG as a conductive state

in our calculation and replace the initial electronic state of the highest occupied molecular

orbital (HOMO) by this function. The function fG has complex number, and hence complex

molecular orbital coefficients must be used in our calculation. We take ax = ay = 1.0 a.u.

(= 0.280 Å
−2
) as constants and kz as an input parameter. In the following, the value of kz

is shown in the atomic unit. We checked that the results are not significantly dependent on

ax,y. Note that the effect of vector potential is not considered in this current.

In our calculations, the electronic state representing the electronic current is derived

as follows. We inject the conductive state, i.e., fG(r) into as the initial condition of the

HOMO for the SCF calculation. Of course, if the ordinary SCF calculation is completed,

the derived electronic state is the ground state and has no net current. We want to derive

conductive electronic states with including the Coulomb and exchange interactions by con-

ductive electrons. Hence, we also replace the HOMO by the conductive state in every SCF

cycle. This conductive state is generically not orthogonal to other orbitals. Hence, if so, the

orthogonalization is performed in every cycle. Empirically, this orthogonalization is required

in first several cycles, and after then, the conductive state is orthogonal to others within

the accuracy. In other words, our procedure is to derive the most stable electronic states

with the condition that the HOMO is the conductive state. In the sense, our procedure

is interpreted as a boundary condition. This condition is a first step to derive conductive
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electrons as quantum state by the boundary condition that the scalar and vector potentials

appropriately represent the medium, in which the system is embedded.

Once electronic states with net electronic current are derived, the vector potential in-

duced by the current can be calculated by the Maxwell equation. In our calculation, the

vector potential is calculated as grid data, whose calculation region is wide enough. Data at

each point require the integration over the whole region, which wastes very huge calculation

resources. By the integration using the following Fourier expansion, this problem can be

avoided,

A(r) =
1

c

∫
d3s

∑
k

jTk

eik·s

|r − s|
=

1

c

[
jT0

∫
d3s

1

|r − s|
+
∑
k ̸=0

jTk

4π

|k|2
eik·r

]
. (1.7)

However, another problem is seen to be arisen. The integration of the zero mode of Fourier

expansion is divergent.

Our prescription for this divergence is the introduction of the cutoff parameter as,

A(r) =
1

c

∫
d3s

JT (s)

|r − s|
e−α|r−s|, (1.8)

where α is the cutoff parameter. This removes the source of the artificial divergence, which

is the contributions from points at infinity. This cutoff parameter can also be interpreted as

effective photon mass. In condensed matter, the photon cannot travel to an infinitely distant

point. Therefore, we introduced this parameter to remove the divergence, and however, this

is supported by the physical reason. After the inclusion of this parameter, Eq. (1.7) is

reduced to

A(r) =
1

c

[∑
k

jTk

4π

|k|2 + α2
eik·r

]
. (1.9)

In this form of the vector potential, we can use the fast Fourier transformation routine.

The parameter α can be determined by estimating the effective photon mass in materials.

However, in this work, we take α = 1.0 a.u. as an input parameter for simplicity.

After the vector potential is derived, the Hamiltonian with the vector potential (1.4) can

be calculated. Then, the electronic states with the existence of the magnetic field can be

derived. While the vector potential is determined by the electronic current, the electronic

current is dependent on the vector potential. Hence, we should calculate these quantities by

a SCF method. In our calculation, first the electronic current are calculated, and then the
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Figure 1.1: The structure of models are shown. The left figure shows the small zigzag Al4 model,

while the right figure shows the large Al4-Al4-Al4 model.

vector potential induced by this current are estimated. Then, the electronic state calculation

is performed again by using the Hamiltonian with the vector potential. A new electronic

current is derived by this electronic state and a new vector potential is calculated by the

new electronic current. This procedure is continued till the updated electronic state and

vector potential remain unchanged within the accuracy.

We carry out a series of the calculation by the Molecular Regional DFT (MRDFT)

program package [23], which is developed in our laboratory. In this work, we adopt the

restricted Hartree-Fock (RHF) method as a first step. Of course, post SCF calculation is

required to derive accurate enough results. This issue will be tried in near future works.

1.4 Model

We choose two simple models for demonstration. In Fig. 1.1, we show our models, the

small model of zigzag Al4 and the large model of Al4-Al4-Al4. The structure of the both

sides of the Al4-Al4-Al4 model is the regular tetrahedron, whose directions are the same

as each other. By using these extra aluminum atoms, we check the effects of the ends of
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the model. The structure of the zigzag Al4 models are optimized on the condition without

the conductive state. For the Al4-Al4-Al4 model, the structure of the middle Al4 part is

optimized.

For the aluminum atoms, the LANL2DZ basis set is taken for saving the calculation costs

[24–27]. Larger basis sets are favored for our calculation method, since the input current

state is expanded in basis sets. However, the purpose of this work is to check our method,

and hence, the small basis set is used as a reference. We are now comparing with the results

of different basis sets, which are shown elsewhere in near future. As the driving force to

accelerate the electron, the electric field is imposed on z direction as Ez = 0.001 a.u.

1.5 Results

In Figs. 1.2 and 1.3, the z-component of the current density on the y = 0 plane is shown

for the small and large models, respectively. The values of kz are chosen as kz = −0.1,−0.5,

and 1.0 for (a), (b), and (c), respectively. The red (blue) color shows the positive value of

electronic current density. The depth of the color shows the magnitude of the current density.

The unit of the electronic current density is the atomic unit (1 a.u.= 2.37 × 1018 A/m2).

Since we use the basis set which has pseudopotential to represent the core electrons, the

region close to the nuclei are not accurate. Hence, we put the filled circle indicating the

nuclei on the regions. We confirmed that the current density is zero in the whole region for

kz = 0 and has the opposite sign and the same value for kz > 0. We also confirmed that

the strong correlation between the value of kz and the electronic current density for kz = 0

to (−1.0).

The results of the small and large models have some similarity. For larger kz, the current

density are widely distributed throughout nanowire. The net current is considered to pass

straightly through nanowire. For smaller kz, the current density is small between atoms.

This is attributed to the smallness of the basis functions, which are the gaussian functions

whose centers are the positions of nuclei. The straightness of the current is slightly worse

in small model. On the other hand, there are some differences arisen from the difference

of the structure. Around the aluminum atoms on both end of the small nanowire model,

the negative current density can be seen. This feature cannot be seen in the center four
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Figure 1.2: The z-component of the electronic current density of the small model is shown for the

y = 0 plane. The values of kz are chosen as kz = −0.1 for (a), kz = −0.5 for (b), and kz = −1.0

for (c). The red (blue) color shows the positive value of electronic current density. The depth of

the color shows the magnitude of the current density. The unit of the electronic current density is

the atomic unit (1 a.u.= 2.37× 1018A/m2).
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Figure 1.3: The z-component of the electronic current density of the large model is shown for the

y = 0 plane. The values of kz are chosen as kz = −0.1 for (a), kz = −0.5 for (b), and kz = −1.0

for (c). The red (blue) color shows the positive value of electronic current density. The depth of

the color shows the magnitude of the current density. The unit of the electronic current density is

the atomic unit (1 a.u.= 2.37× 1018A/m2).
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aluminum atoms of the large model. The small Al4 models have only four atoms. Hence, we

speculate that the both ends cannot correctly represent the electronic state of the conductive

electrons.

Here, we compare the electronic states with and without the conductive electron. For

this purpose, we take the large model with kz = −1.0 as a reference model. First, the energy

of the system without the conductive state is calculated as −22.59 a.u., while that with the

conductive state rises to −21.70 a.u. This energy difference is roughly close to the kinetic

energy of the conductive state. (More strictly, the kinetic energy difference between the

conductive state and the HOMO of the calculation without the conductive state.) However,

the rise of the energy is not considered to be contributed only by the conductive state after

the optimization of the electronic states. In the highest nine orbitals, the energy eigenvalues

rise by 0.05-0.25 a.u., and the energy increases are larger for higher states. (Since the RHF is

adopted, the number of orbitals are eighteen.) On the other hand, the lowest eight orbitals

are stabilized by the conductive states by 0.02-0.10 a.u., and the energy decreases are larger

for lower states. It is surprised that the conductive state stabilizes some orbitals, though

the energy of the system rises. Since the energy eigenvalues for higher energy states rise,

some electrons in the system can be moved by smaller external fields.

Unfortunately, the effect of the vector potential is very small in this calculation. In

Fig. 1.4(a), the difference between the results with and without the vector potential is

shown. The value of kz is chosen as kz = −1.0. The difference is very small, and hence, the

effects of the vector potential are small within the present calculations. The effects on the

electronic current is suppressed by the square of c as seen in Eqs. (1.2) and (1.3). Hence,

the effects are negligible for small current density, which is the case in this calculation. In

Fig. 1.4(b), the vector potential on this model is shown. The strong correlation of the vector

potential to the current density can be seen. The wavy pattern of the vector potential is

seen in Fig. 1.4(b). This is due to the restriction of the summation of k in Eq. (1.9). In

our calculation, we chose the max value of k as (1/16, 1/16, 1/32) in units of a.u. Much

larger model and larger electronic current are better for the discussion of the effects of vector

potential in detail. This calculation is the first step to this goal.
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Figure 1.4: The difference between the results with and without the vector potential (left panel)

and the vector potential (right panel). The results are shown on y = 0 plane. The value of kz is

chosen as kz = −1.0.

1.6 Summary and Discussion

We have shown the first results of the calculations of our program code. In our code,

the electronic current is treated as quantum states. Hence, the local electronic current

density defined by one of the authors can be calculated and the Coulomb and exchange

interactions by the conductive electrons are included. Moreover, the magnetic field induced

by the electronic current is included in electronic state calculations. However, the vector

potential has not been treated as the operator but classical fields in the present version of

our code.

Two aluminum nanowire models are used for the study of the electronic states with

the existence of the conductive electrons. We have confirmed the correlation between the

value of kz and electronic currents density. The basis set in this work is not large enough

to represent conductive electrons, and hence, we compare these results and those of larger

basis sets in future works. The effects of vector potential are negligibly small in the present

calculations as expected. In order to discuss the effects of vector potential, we should study
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much larger model with larger electronic current. The present version of our code is not

suitable for large current, and moreover, requires huge calculation costs in spite of some

technique to save it. We should bring some additional technique and/or innovate more

sophisticated algorithm.

The effects on the electrons in the system by the conductive electrons have also been

studied. The energy eigenvalues of higher orbitals rise, while the lower orbitals are stabi-

lized by the conductive states. It may imply that materials are made more conductive by

conductive electrons since electrons with higher energy in the materials are unstabilized by

them.

In this work, the electronic current is injected by hand as the conductive state of plain

wave. This is not the optimal current state for systems. Hence, we should improve the

calculation code to realize the coductive electronic state by suitable boundary conditions.

Moreover, the local conductivity defined in refs. 10, 11 should be investigated by codes to

treat the conductive electrons as quantum states. The local conductivity can clarify the

local conductive property of the system, qualitatively and quantitatively. The calculation

code in this work is a first step to this goal.
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Chapter 2

Local Electric Conductive Property of

Si Nanowire Models

2.1 Introduction

Recently, semiconductor nanowires have gathered much attention since they have unique

physical properties and can be applied in the fields of nano-electronics [1–6], nano-optoelectronics

[7], and nano-photovoltics [8]. For instance, semiconductor nanowires are good candidates

for next-generation materials of field effect transistor (FET) devices. Nanowire materials

provide high electric conductance due to its ballistic conduction, and their structures are

suitable for the suppression of the short channel effect by, for example, gate-all-around FET.

Especially, Si nanowires are the leading candidate material for post-Moore devices [9–13]

and have been studied intensively.

For electric conductive properties of nanosize materials, it is important to predict them

by the first principles calculations before the fabrication in laboratories. In fact, many the-

oretical and computational studies have been performed for conductivity of nanomaterials.

One of the most well-known approaches is non-equilibrium Green’s function method [14].

By using this method, conductive properties of various nanodevices are analyzed [15–18].

These results show qualitatively sufficient consistency with experimental ones. However, we

consider that this global and averaged conductivity for whole devices is not sufficient for

understanding conductive properties of nanosize materials. For example, analysis by using

global conductivity clarifies the effects of impurities only indirectly. Therefore, we have

26



proposed the analysis by local quantities such as local dielectric constant tensor [19–23],
↔̂
ϵ (r⃗), and local electric conductivity tensors [24–27],

↔̂
σext(r⃗) and

↔̂
σ int(r⃗), which are defined

in Rigged QED [24, 25]. The use of local conductivity tensors enables us to discuss the

effects of impurities or interface, and the position dependence of conductivity efficiently. In

addition, local conductivity tensors help us to investigate the origins of some unusual electric

phenomena, such as negative differential resistance (NDR) effect which has been found for

semiconductor nanowires [28–35] and molecular electronic devices [36–38].

In our previous work [27], we analyzed nanomaterials by only
↔̂
σext(r⃗) which represents the

response to external electric field. In the present work, we show the validity of our analysis

which uses both
↔̂
σext(r⃗) and

↔̂
σ int(r⃗), following our earlier works about the local quantity

analyses [19–27, 39, 40]. It is especially noted that
↔̂
σ int(r⃗) is defined as the response of

the electric current density to the internal electric field, and hence this does not have the

corresponding macroscopic quantity. This quantity represents how the actual electric field

at a specific position drives carriers such as electrons. This effect can never be analyzed by

macroscopic conductivity. By using these two local electric conductivity tensors, we study

electric conductive properties of Si nanowire models. In the present paper, we consider a

pristine Si nanowire model and that which includes a Ge atom as an impurity.

In order to obtain the local electric conductivity tensors, the wave function of conductive

electrons should be derived. However, most program codes for the calculations of electronic

structures give us wave functions without net electric current. Hence, we must develop

a calculation code to introduce electric current in a system. In our previous works, we

developed a code which uses self-consistent field (SCF) procedure [26, 27]. Effects of the

conductive electrons on other ones were also considered in this code. In this work, we

improve the method, based on a perturbation theory. By using this, we can calculate linear

response to external electric field strictly.

This paper is organized as follows. In the next section, we define local electric current

density and two conductivity tensors. In Sec. 2.3, calculation method of our program code

and computational models are summarized. In Sec. 2.4, we show results of our models in

terms of our local electric conductivity tensors. Section 2.5 is devoted to the conclusion.
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2.2 Theory

2.2.1 Definition of the local properties

In this section, we show the definition of the local quantities for the response to the

electric field. These quantities are introduced by Rigged QED [24, 25]. We consider that a

system (A) is embedded in an environmental background medium (M). The corresponding

scalar potentials for A and M are given as the regional integrals of charge density,

Â0A,M
(r⃗) =

∫
A,M

d3s⃗
ρ̂(s⃗)

|r⃗ − s⃗|
. (2.1)

Here, ρ̂(r⃗) is the electronic charge density defined as,

ρ̂(r⃗) ≡ ZeeΨ̂
†(r⃗)Ψ̂(r⃗), (2.2)

where e is the value of the elementary electric charge and Ze = −1. The electric field
ˆ⃗
E(r⃗)

is given as the sum of the electric displacement
ˆ⃗
D(r⃗) from M and the polarization

ˆ⃗
P (r⃗) of

A. These quantities are defined with the scalar potentials of these regions,

ˆ⃗
D(r⃗) = −∇Â0M(r⃗), (2.3)

ˆ⃗
P (r⃗) =

1

4π
∇Â0A(r⃗), (2.4)

where the time variation of the vector component of gauge fields is dropped, since only

steady states are treated in this work. As a result, the electric field is given as the following

equation,

ˆ⃗
E(r⃗) =

ˆ⃗
D(r⃗)− 4π

ˆ⃗
P (r⃗). (2.5)

The electric displacement
ˆ⃗
D(r⃗) from M acts as the external electric field for A. Hence, the

polarization of A is considered to be linear response to
ˆ⃗
D(r⃗),

ˆ⃗
P (r⃗) =

↔̂
α(r⃗)

ˆ⃗
D(r⃗), (2.6)

where
↔̂
α(r⃗) is the polarizability tensor. The dielectric constant tensor

↔̂
ϵ (r⃗) is given as,

ˆ⃗
D(r⃗) =

↔̂
ϵ (r⃗)

ˆ⃗
E(r⃗) =

1

1− 4π
↔̂
α(r⃗)

ˆ⃗
E(r⃗). (2.7)

It is emphasized that
↔̂
α(r⃗) and

↔̂
ϵ (r⃗) are defined for every local point. There are several

approaches which seems to be similar to our one. For example, Stone et al. have developed
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distributed polarizabilities [41–43]. This theory is often used for the purpose of inducing

efficient intermolecular potential functions [44, 45]. The advantage of our approach is its sim-

ple definitions of local quantities. They are quite similar to the definitions of corresponding

macroscopic quantities.

From gauge covariant derivative, the local electric current density
ˆ⃗
j(r⃗) can be given as,

ˆ⃗
j(r⃗) =

Zee

2me

[−i~Ψ̂†(r⃗)∇Ψ̂(r⃗)− Zee

c
Ψ̂†(r⃗)

ˆ⃗
A(r⃗)Ψ̂(r⃗) + h.c.]. (2.8)

In our previous work [26], we have shown that the effects of vector potential are negligible

for small current density. Therefore, we ignore the vector potential in this work. Local

electric conductivity tensors
↔̂
σext(r⃗) and

↔̂
σ int(r⃗) are defined as [24, 25],

ˆ⃗
j(r⃗) =

↔̂
σext(r⃗)

ˆ⃗
D(r⃗)

=
↔̂
σext(r⃗)

↔̂
ϵ (r⃗)

ˆ⃗
E(r⃗)

=
↔̂
σ int(r⃗)

ˆ⃗
E(r⃗), (2.9)

where
ˆ⃗
D(r⃗) and

ˆ⃗
E(r⃗) are external and internal electric field, respectively. As mentioned

above,
↔̂
σ int(r⃗) represents how the actual electric field at each position drives electric carriers.

This effect cannot be observed in macroscopic points of view. Some of computational works

for the ballistic nanowire FET [46, 47] have reported that the I-V characteristics of ballistic

nanowires have a linear region, where the drain current ID is proportional to the drain

voltage VD, and a saturation region, where ID is independent of VD. For the method in the

present study, we assume the linear region.

In this study, local electric conductivity tensors are mainly investigated by their eigen-

values and eigenvectors. We also use the average of the eigenvalues as,

σAve. =
1

3
(σ1 + σ2 + σ3) =

1

3
Tr(

↔
σ). (2.10)

where σ1, σ2, and σ3 are the first, the second, and the third eigenvalue, respectively. Each

element in these tensors is a Hermitian operator and its expected value is real. These tensors,

however, are not symmetric. For example, σ̂xy(r⃗) and σ̂yx(r⃗) may have different expected

values. Hence, these tensors possibly have a pair of conjugate complex eigenvalues as,

σ2 = β + iγ,

σ3 = β − iγ, (β, γ ∈ R). (2.11)
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In such cases, the complex eigenvalues do not have the corresponding eigenvectors in real

space. Instead, we can make two vectors from the complex eigenvectors as,

v⃗+ =
1√
2
(v⃗2 + v⃗3), (2.12)

v⃗− =
1√
2i
(v⃗2 − v⃗3). (2.13)

v⃗+ and v⃗− are real vectors and respond to
↔
σ(r⃗) as,

↔
σv⃗+ = βv⃗+ − γv⃗−, (2.14)

↔
σv⃗− = βv⃗+ + γv⃗−. (2.15)

We call this response of the local quantities as “rotational response”. Rotational responses

are also seen in our previous works [21–23, 27]. The local property of rotational response is

correctly described only in the analysis using matrix, since the complex eigenvalues originate

in off-diagonal elements of the matrix.

2.3 Calculation Methods

2.3.1 CPHF equations

In this study, the response to electric field is calculated by using Coupled Perturbed

Hartree-Fock (CPHF) method [48–50]. CPHF method enables us to calculate linear response

to external electric field strictly. In this subsection, the CPHF method used in this study is

summarized.

First, the power series expansions of Hamiltonian h and density matrix R are given for

the strength parameter of the perturbation λ as

h(λ) = h(0) + λh(1), (2.16)

R(λ) = R(0) + λR(1) + · · · . (2.17)

The corresponding first order Fock matrix hF (1) can be defined as

hF (1) = h(1) +G(R(1)), (2.18)

where matrix G is the two-electron interaction defined as

Gpq(R) =
∑
r,s

Rrs

(
[ψpψq|ψrψs]− [ψpψs|ψrψq]

)
, (2.19)
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where the subscripts p, q, r, s are used for all molecular orbitals (MOs). Then, the first order

CPHF equation is written as

(ϵa − ϵi)R(1)
ai = −hF (1)

ai , (2.20)

where ϵ is the zeroth order orbital energy, and the subscripts a and i are used for the virtual

and the occupied MOs, respectively. From Eqs. (2.18) and (2.19), it is clear that hF (1)

includes only the linear terms of R(1) with respect to R. Therefore, R(1) can be obtained by

solving simultaneous linear equations. In a similar way, the second order CPHF equation is

represented as

(ϵa − ϵi)R(2)
ai = −hF (2)

ai +
∑
p

(
R(1)

ap h
F (1)
pi − hF (1)

ap R
(1)
pi

)
. (2.21)

2.3.2 Electronic structures with electric currents

Calculations of the electronic structures with electric currents are generally difficult.

There are several approaches to deal with these structures. For example, Stuchebrukhov has

developed the formalism of tunneling currents [51–56]. This theory is helpful to understand

charge transfer systems in terms of interatomic currents. In this study, we calculate them

by imposing some restriction to general CPHF method. In this subsection, this treatment

is explained.

First, it is assumed that electron conduction is ballistic. Then, plane wave is considered

as one of the simplest approximations for the conduction state. Therefore, conduction

orbitals are considered to have the form,

|f (x)(r⃗)⟩ = exp(ikxx),

|f (y)(r⃗)⟩ = exp(ikyy),

|f (z)(r⃗)⟩ = exp(ikzz), (2.22)

where kx,y,z are the parameters which correspond to the wave number vector. The extension

of the direction perpendicular to momentum is restricted by the extension of virtual MOs

of a system. In other words, |f (x,y,z)(r⃗)⟩ are projected onto them as,

|ψ(i)
PW⟩ = Cnorm

∑
a

|ψa⟩⟨ψa|f (i)(r⃗)⟩

= Cnorm

∑
a

|ψa⟩
∑
µ

C∗
µa⟨ϕµ|f (i)(r⃗)⟩ (i = x, y, z), (2.23)
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where the subscript µ is used for basis functions ϕµ, Cµa is the expansion coefficients of the

virtual MOs, and Cnorm is the normalization coefficient. The spreads of the plane waves are

suppressed by this procedure. In this study, |ψ(i)
PW⟩ is regarded as the perturbation of the

Highest Occupied MO (HOMO) |ψ(1i)
HOMO⟩. This is given as,

|ψ(i)
HOMO⟩ = |ψ

(0)
HOMO⟩+ d|ψ(1i)

HOMO⟩+ · · · (2.24)

= |ψ(0)
HOMO⟩+ d|ψ(i)

PW⟩+ · · · (i = x, y, z), (2.25)

where d is the perturbation mixing parameter related to the strength of the electric field,

and |ψ(0)
HOMO⟩ is an unperturbed HOMO. |ψ(1i)

HOMO⟩ is fixed in corresponding CPHF equations,

and the perturbation of the other occupied orbitals are determined as,

(ϵa − ϵj)R(1)
aj = −hF (1)

aj , (2.26)

where the subscript j is used for occupied MOs except for the HOMO. The effect of the

fixed wavefunction is included in R
(1)
ah and R

(1)
ha , where the subscript h is used for the HOMO.

In other words, the elements of R
(1)
ah are not variables but constants in Eq. (2.26), which is

different from Eq. (2.20).

The first order density matrix is dependent on the phase of |f (x,y,z)(r⃗)⟩. Especially, if

the phase changes by π, the sign of the first order density matrix R(1) becomes opposite as,

R(1)(θ + π) = −R(1)(θ). (2.27)

Therefore, the current caused by R(1) also becomes opposite as,

j⃗(1)(r⃗; θ + π) = −j⃗(1)(r⃗; θ). (2.28)

If the phase of |f (x,y,z)(r⃗)⟩ can be taken arbitrarily and the average current caused by each

phase is regarded as the real current, currents caused by the first order perturbation are

equal to zero at all positions,

j⃗(1)(r⃗; Ave.(θ)) = 0. (2.29)

On the other hand, the second order density matrix R(2) does not change for the opposite

phase. Hence in this study, currents caused by R(2) for θ = 0 is treated as the lowest order

density matrix. The lowest order perturbation current is assumed to be derived from it.
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j⃗(r⃗) by our method is strongly dependent on kx,y,z and d. In the present study, we

choose the values of kx,y,z so that the difference between the projection of the plane waves

on the virtual MOs and the original plane waves is relatively small. The value of d can

be chosen so that j⃗(r⃗) is consistent with the macroscopic value obtained by experiments or

other theoretical calculations such as the global current of non-equilibrium Green’s function

method. Accordingly, this value changes as the change of external field. However, the value

of d does not change the distribution pattern of j⃗(r⃗). Hence we assume d = 1 and discuss

the dependence on sites only qualitatively by using this method.

2.3.3 Calculation method for local properties

In this subsection, our calculation method for the local quantity tensors is given. First,

CPHF calculations are done by using the perturbation Hamiltonians corresponding to the

electric current and external electric field,

λxh
(1x) = −λxD0Zeex,

λyh
(1y) = −λyD0Zeey,

λzh
(1z) = −λzD0Zeez,

(2.30)

where x, y, z are the directions of the external electric field, D0 is the unit electric field, and

λx,y,z are the strength parameters of the perturbation. The strength of the external electric

field Dx,y,z can be written as

Dj = λjD0 (j = x, y, z). (2.31)

Then, density matrices R(2x,2y,2z) are obtained. Local electric current density j⃗(r⃗) can be

expanded as

ji(r⃗, λx, λy, λz) = j
(0)
i (r⃗)

+ λxj
(2x)
i (r⃗) + λyj

(2y)
i (r⃗) + λzj

(2z)
i (r⃗)

+ · · ·

(i = x, y, z), (2.32)
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where j
(2j)
i (r⃗) is caused by R(2). By using this j⃗(r⃗), each element of

↔
σ(r⃗) is calculated from

Eq. (2.9). For instance, the value at D⃗(r⃗) = 0 is calculated as,

σij(r⃗) =
∂ji(r⃗)

∂Dj

∣∣∣∣
Dj=0

=
∂ji(r⃗)

∂λj

∂λj
∂Dj

∣∣∣∣
Dj=0

=
j
(2j)
i (r⃗)

D0

(i, j = x, y, z). (2.33)

Local polarizability tensor,
↔
α(r⃗), can be calculated in a similar way, and then

↔
ϵ (r⃗) is

obtained from Eq. (2.7).

In order to analyze the characteristics of the local quantities in specific regions, spatial

averages of the local quantities are calculated with the equations,

⟨↔α⟩V =
1

V

∫
V

↔̂
α(r⃗)dr⃗, (2.34)

⟨↔ε ⟩V =
1

1− 4π⟨↔α⟩V
, (2.35)

⟨↔σext⟩V =
1

V

∫
V

↔
σext(r⃗)dr⃗, (2.36)

⟨↔σ int⟩V = ⟨↔σext⟩V ⟨
↔
ϵ ⟩V , (2.37)

where V indicates the integral region. In the present paper, V is taken as a sphere around

a specific atom. The scheme of the spherical average is shown in Fig. 2.1. In order to focus

on the valence region of the atom and remove the effects of core electrons, we do not include

the core of the sphere in the integral region. The radius of the core sphere, r0, is taken

to be 1 (bohr) for reference. In the present paper, the spherical average is analyzed as the

function of the radius, r.

2.3.4 Computational models

In this subsection, computational models used in this study are shown. It has been

reported that Si nanowires which have ⟨110⟩ growth direction have smaller electron and

hole effective masses than those which have ⟨100⟩ or ⟨111⟩ growth direction [57]. Therefore

in this work, we use Si nanowire models which have ⟨110⟩ growth direction.

In Fig. 2.2 (a), our pristine Si nanowire model is shown. This model consists of eight

layers. Each layer consists of three or four Si atoms. All dangling bonds are terminated
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r

V

Core region

r0

Figure 2.1: Scheme of the spherical average around a specific atom.

S1S2

S3
side view

top view

(b)(a)

x

z

y

Figure 2.2: Si nanowire models. Light-gray, green, and white spheres correspond to Si, Ge,

and H atoms, respectively. (a) Pristine model and (b) Ge-substituted model. Thick line

in panel (a) corresponds to xz -plane, where some results are shown on this plane in the

following.
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with H atoms. Geometry is fully optimized. We also consider a model shown in Fig. 2.2 (b).

From the analysis of this model, we investigate the effects on the local electric conductivities

caused by the change of the electronic and geometrical structures. For the model (b), the Si

atom on site S1 in Fig. 2.2 (a), which makes bonds with four nearby Si atoms, is substituted

by a Ge atom. All atoms are relaxed for the geometrical optimization calculation. The

Model (b) is called the Ge-substituted model below in the present paper.

Electronic structures without perturbations (external electric field and electric current)

are calculated by using the Hartree-Fock (HF) method, while those with perturbation Hamil-

tonians are calculated by CPHF method, as mentioned in this section. We choose the

Dunning-Huzinaga double-zeta basis set with Effective Core Potential (ECP) by Hay and

Wadt (LANL2DZ) [58–60] as basis set, and hence Si and Ge atoms in our models have ECP.

Gaussian 09 [61] is used for HF calculations, and CPHF calculations are done by using our

original code. All local physical quantities are calculated at the vicinity of D⃗(r⃗) = 0. For

the parameters kx,y,z in Eq. (2.22), they are taken as kx,y,z = 1.0 (bohr−1) for reference, since

the difference between the projection of the plane waves on virtual MOs and the original

plane wave are relatively small for this value.

2.4 Results

2.4.1 Pristine model

In this subsection, we show the results for the pristine Si nanowire model. Local elec-

tric conductivity tensor for the external electric field,
↔
σext(r⃗), on the xz -plane is shown in

Fig. 2.3. We can find the regions which have negative eigenvalues, around Si atoms, the

center axis of the nanowire, and the exterior of it. In these regions, D⃗(r⃗) and j⃗(r⃗) show op-

posite directions. An important factor inducing negative eigenvalues is the large off-diagonal

elements of
↔
σext(r⃗). For example, this is seen at r⃗ = (8, 0, 0), which is at the surface of the

nanowire. The value of
↔
σext(r⃗) is given as,

↔
σext(8, 0, 0) =


0.44 0.00 2.07

0.00 1.07 0.00

1.93 0.00 3.93

 (×10−4 a.u.). (2.38)
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Figure 2.3: Eigenvalues of
↔
σext(r⃗) (a.u.) for the pristine model. Results are shown on the

xz -plane. Eigenvalues are sorted in descending order of their real part. Panels (a), (b), and

(c) show the results of the first, second, and third eigenvalues. Panel (d) shows the average

of those three eigenvalues. The solid line segments show the directions of the eigenvectors.

The eigenvalues in the purple (green) contours have positive (negative) complex values.
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It is found that the zx -element is larger than the xx -element. This means that when the

external electric field is applied for the x -direction, the z -component of the current density is

larger than the x -component. In addition, negative eigenvalues are seen in some unimportant

regions, e.g., around the center axis of the nanowire. In these regions, our basis set does not

have enough degree of freedom for the accurate description, and hence we do not discuss

those. Negative eigenvalues of
↔
σext(r⃗) may be associated with NDR. It is considered that we

can investigate the origin of NDR in more detail by using
↔
σext(r⃗) than conventional global

conductivity. In addition, if
↔
σext(r⃗) is analyzed for various voltages, we can also study the

dependence of NDR on voltage.

The regions which have complex eigenvalues are seen around Si atoms. As mentioned

in Sec. 2.2, j⃗(r⃗) responds to D⃗(r⃗) rotationally in these regions. For example,
↔
σext(r⃗) at

r⃗ = (4, 0, 1) is given as,

↔
σext(4, 0, 1) =


2.57 0.00 1.16

0.00 0.56 0.00

−0.17 0.00 2.04

 (×10−4 a.u.). (2.39)

We can find that the signs of xz - and zx -elements are opposite, and the difference of xx - and

zz -element are small. The rotational response is caused by these response properties. In our

previous works, these responses are also seen in the results of
↔
σext(r⃗) or

↔
ϵ (r⃗) of HfO2, SiO2,

and so on [21–23, 27]. Therefore, we consider that these characteristics are often seen in

microscopic view.

Local electric conductivity tensor for the internal electric field,
↔
σ int(r⃗), is shown in

Fig. 2.4. Around Si-Si bonds, the third eigenvalues of
↔
σ int(r⃗) has quite large negative

eigenvalues, while those of
↔
σext(r⃗) are positive there. It means that j⃗(r⃗) responds to D⃗(r⃗) in

the same direction, while it responds to E⃗(r⃗) in the opposite direction. From the definition

of
↔
σ int(r⃗), which is shown in Eq. (2.9), it can be speculated that this difference is due to

the effect of the local dielectric constant,
↔
ϵ (r⃗). Therefore it is helpful to analyze

↔
ϵ (r⃗) for

the further understanding of the behavior of
↔
σ int(r⃗) in these regions. The results of

↔
ϵ (r⃗)

are shown in Fig. 2.5. As well as
↔
σ int(r⃗),

↔
ϵ (r⃗) has negative eigenvalues around Si-Si bonds.

In these regions, the polarization is significantly large and E⃗(r⃗) and D⃗(r⃗) show the opposite

directions. If the eigenvalue of
↔
σ int(r⃗) is negative, the change of j⃗(r⃗) at the position has the

opposite direction to the change of E⃗(r⃗) for the direction of the corresponding eigenvector.
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Figure 2.4: Eigenvalues of
↔
σ int(r⃗) (a.u.) for the pristine model. Results are shown on the

same plane as Fig. 2.3 in the same manner. See the caption of Fig. 2.3 for the details.

Regions with negative
↔
σ int(r⃗) impede the current.

Next, in order to discuss the site dependence of
↔
σext(r⃗) and

↔
σ int(r⃗), we show the spherical

average of the local electric conductivity tensors. In Fig. 2.6, the spherical average of
↔
σext(r⃗)

around the three Si atoms on the sites S1,2,3 in Fig. 2.2 (a) are shown. We find that the

third eigenvalues are negative or almost zero in the region of 1.0 < r < 2.0 (bohr) for sites

S2 and S3. This indicates that the electric current density j⃗(r⃗) may respond to the external

electric field D⃗(r⃗) for the opposite direction or hardly respond to it for a specific direction.

For the sites S1 and S3, we also find that all the eigenvalues are more scattered in the region

of 1.0 < r < 2.0 (bohr) than those in the region of r > 2.0 (bohr). This result means that

the regions in the vicinities of the Si atoms on the sites S1 and S3 have relatively anisotropic
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Figure 2.5: Eigenvalues of
↔
ϵ (r⃗) for the pristine model. Results are shown on the same plane

as Fig. 2.3 in the same manner. See the caption of Fig. 2.3 for the details.

S3S2S1

Figure 2.6: Spherical average of
↔
σext(r⃗) (a.u.) around three specific Si atoms on the sites

S1,2,3 shown in Fig. 2.2 (a). The gray regions represent the core regions of the atoms.
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S3S2S1

Figure 2.7: Spherical average of
↔
σ int(r⃗) (a.u.) around the Si atoms. Results are shown in

the same manner as Fig. 2.6.

Table 2.2: Eigenvalues, their averages, and the standard deviations (SDs) of ⟨↔σ int⟩V (×10−4

a.u.) at r = 2.10 (bohr).

first second third average SD

S1 5.49 5.37 2.10 4.32 1.57

S2 9.71 2.82 −0.42 4.04 4.23

S3 11.22 2.95 1.25 5.14 4.35

properties. In order to analyze ⟨↔σext⟩V in more detail, its eigenvalues and eigenvectors at

r = 1.25, 2.00, and 4.00 (bohr) are summarized in Table 2.1. We can find that the third

eigenvectors for the sites S2 and S3 are almost correspond to the x-direction.

⟨↔σ int⟩V around the three Si atoms are shown in Fig. 2.7. It can easily be found that

⟨↔σ int⟩V depends on r more heavily than ⟨↔σext⟩V . Due to this property, we can see the peak

positions of the eigenvalues clearly. In order to discuss the difference between the sites in

more detail, the results of ⟨↔σ int⟩V at r = 2.10 (bohr) (covalent radius of a Si atom [62]) are

summarized in Table 2.2. It is found that the average of the eigenvalues for ⟨↔σ int⟩V around

the Si atom on the site S3 is the largest of the all sites, followed by the sites S1 and S2. It is

also clear that the standard deviation of the eigenvalues is the smallest for the site S1. This

is obviously because the Si atoms on the site S1 have four Si-Si bonds, and therefore have

more isotropic characteristics.
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Figure 2.8: Eigenvalues of
↔
σext(r⃗) (a.u.) for the Ge-substituted model. Results are shown

on the same plane as Fig. 2.3 in the same manner. See the caption of Fig. 2.3 for the details.

2.4.2 Comparison with the Ge-substituted model

In this subsection, we show the results for the Ge-substituted model and compare them

with those for the pristine Si nanowire model.
↔
σext(r⃗) of the Ge-substituted model is shown

in Fig. 2.8. The difference from the results of the pristine model is mainly seen around the

substituted atom. The eigenvalues around the Ge atom are smaller than those around the

Si atom on site S1 in the pristine model. This feature is also seen in the results of
↔
σ int(r⃗),

which are shown in Figs. 2.9.

In Fig. 2.10, we show the spherical average of
↔
σext(r⃗) around the Ge atom in the Ge-

substituted model. The eigenvalues and eigenvectors for three specific r are summarized in

43



Figure 2.9: Eigenvalues of
↔
σ int(r⃗) (a.u.) for the Ge-substituted model. Results are shown

on the same plane as Fig. 2.3 in the same manner. See the caption of Fig. 2.3 for the details.
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Figure 2.10: Spherical average of
↔
σext(r⃗) (a.u.) around the Ge atom in the Ge-substituted

model. Results are shown in the same manner as Fig. 2.6.
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Table 2.3: Eigenvalues (×10−4 a.u.) and eigenvectors v⃗ = (vx, vy, vz)
T of ⟨↔σext⟩V at r =

1.25, 2.00, and 4.00 (bohr) for the Ge atom in the Ge-substituted model.

Ge

r first second third

1.25 eigenvalue 1.769 1.389 −0.015

vx 0.000 0.991 −0.185

vy 1.000 0.000 0.000

vz 0.000 −0.136 0.983

2.00 eigenvalue 1.809 1.273 1.069

vx 0.000 0.164 0.868

vy 1.000 0.000 0.000

vz 0.000 0.987 0.497

4.00 eigenvalue 3.211 1.857 0.419

vx 0.001 0.000 1.000

vy 0.000 1.000 0.000

vz 1.000 0.000 −0.018

Table 2.3. We can find that the difference between the eigenvalues of ⟨↔σext⟩V is relatively

moderate in the region of r < 2.5 (bohr), in comparison with the result of the Si atom on the

site S1 of the pristine model. In other words, ⟨↔σext⟩V around the Ge atom is more isotropic

than that of the Si atom on the site S1 in the pristine model. We speculate that this result

corresponds to the fact that the valence electrons of a Ge atom are bound to the nucleus

more weakly than those of a Si atom: They can move more freely. For r = 4.00 (bohr), the

values become similar to those of the Si atoms. This is because the effects nearby Si atoms

are included in this result.

Finally, we show the results of ⟨↔σ int⟩V for the Ge-substituted model in Fig. 2.11. The

results at r = 2.27 (bohr) (covalent radius of a Ge atom [62]) are also summarized in

Table 2.4. The second and the third eigenvalues of ⟨↔σ int⟩V around the covalent radius are

close to each other for the Ge atom in the Ge-substituted model, while the first and second

ones are close to each other for the Si atom at the site S1 in the pristine model. This result

represents a qualitative difference of the Si atom and the substituted Ge one. In addition, it
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Figure 2.11: Spherical average of
↔
σ int(r⃗) (a.u.) around the Ge atom in the Ge-substituted

model. Results are shown in the same manner as Fig. 2.6.

Table 2.4: Eigenvalues, their average, and their SD of ⟨↔σ int⟩V (×10−4 a.u.) at r = 2.27

(bohr) for the Ge atom in the Ge-substituted model.

first second third average SD

8.12 4.30 3.24 5.22 2.09

can be found that both the first eigenvalue and the average of the eigenvalues at the covalent

radius are larger than those the Si atom on the site S1 for the pristine model. As mentioned

above, this reflects the effect of the valence electrons of the Ge atom which can move more

freely than those of the Si atom. It is also found that the standard deviation (SD) of the

eigenvalues is larger than that of the Si atom on the site S1 for the pristine model. Hence it

can be said that ⟨↔σ int⟩V around the Ge atom is more anisotropic than that of the Si atom

on the site S1 in the pristine model. This is the opposite result to that of ⟨↔σext⟩V and clearly

reflects the effect of anisotropic ⟨↔ϵ ⟩V .

2.5 Conclusion

In this work, we investigate the local response of Si nanowire models to the electric

field. For this purpose, two local electric conductivity tensors,
↔
σext(r⃗) and

↔
σ int(r⃗), which

are defined in Rigged QED, are used. We emphasize that
↔
σ int(r⃗) can be defined as the

electric current response to the internal electric field.
↔
σ int(r⃗) does not have the corresponding
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macroscopic quantity.
↔
σ int(r⃗) can represent how the actual electric field at a specific position

drives carriers such as electrons. In order to investigate the effects of impurities for the local

response to electric field, we consider both a pristine Si nanowire model and Ge-substituted

one which include a Ge atom.

For the results of
↔
σext(r⃗) and

↔
σ int(r⃗) of the pristine Si nanowire model, there are the

regions which show complicated response to the electric field, such as rotational one. For
↔
σext(r⃗), there are the regions which show negative eigenvalues around the center axis of the

nanowire and the exterior of it. On the other hand, for
↔
σ int(r⃗), the regions around the Si-Si

bonds also show negative eigenvalues. Spherical average of
↔
σext(r⃗) around three specific

atoms is also shown. We can see the site dependence of
↔
σext(r⃗) clearly. From the analysis

of ⟨↔σ int⟩V , it is clarified that the difference among the eigenvalues is the smallest for the site

S1. This is because the Si atoms on the site S1 have four Si-Si bonds, and therefore have

more isotropic characteristics.
↔
σext(r⃗) and

↔
σ int(r⃗) of the Ge-substituted model show different features from the pristine

model. The difference from the pristine model is seen mainly around the Ge atom, but this

is relatively small. The spherical average of
↔
σext(r⃗) and

↔
σ int(r⃗) for the Ge-substituted model

is also shown. It is found that ⟨↔σext⟩V of the substituted Ge atom is more isotropic than

that of the corresponding Si atom in the pristine model, while ⟨↔σ int⟩V shows the opposite

result.

In this work, the conductive state is assumed to be represented as plane waves. To derive

a more appropriate conductive state, we should improve the calculation code to realize

conductive electronic states by more suitable boundary conditions, which is our future task.
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[62] B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverŕıa, E. Cremades, F.
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Chapter 3

Local Transport Property of GaN

Cluster as a Model of Nanowire

3.1 Introduction

Recently, many researches for semiconductor nanowire have been reported [1–11]. The

semiconductor nanowire is a good candidate for next generation materials of field effect

transistor (FET) devices. Nanowire materials provide high electric conductance due to its

ballistic conduction, and their structure is suitable for the suppression of the leak current

by, for example, gate-all-around FET.

For nanosize materials, it is important to predict their properties by the first principles

calculations before the fabrication in laboratories. In previous works, conductive proper-

ties are discussed in terms of global and averaged conductivity. However, local conduc-

tive properties are important for nanosize materials, as well as the dielectric properties of

nano-materials are analyzed by local quantities [12–15]. By considering local conductive

properties, we can discuss many features, the effects of impurities, interface, the position

dependence of conductance, and so on. Hence, we have proposed the analysis by local

conductivity density tensors [16–18].

In this work, we show the validity of our analysis using a local conductivity density tensor

following our earlier works about the local quantity analyses [12–19] and nanowire models

[20, 21]. By using this local conductivity density tensor, we study conductive properties of

a GaN cluster model which attempts to mimic a GaN nanowire. Among the semiconductor
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nanowires, the most popular one is the silicon nanowire, since this is the leading candidate

material for post-Moore devices [7–11]. In addition to the silicon nanowire, we consider the

GaN nanowire as an alternative candidate or a material next to the silicon nanowire. Hence,

we investigate the conductivity of a GaN model in this work. For this purpose, the wave

function of conductive electrons should be derived, since our local conductivity is calculated

with local electronic current density. However, most program codes of electronic structure

calculations give us a state without net electronic current. Hence, we have developed a

calculation code to introduce electronic current in a system [18]. As a result, the effects

of coulomb and exchange interactions by conductive electrons on electrons in a system are

included.

This paper is organized as follows. In the next section, we define local electronic current

density and a conductivity density tensor. In Sec. 3.3, the calculation method of our

program code is summarized. Then, we show our cluster model used in this work. In Sec.

3.4, we show results of our model in terms of our local electronic current density and local

conductivity. Section 3.5 is devoted to the summary and discussion.

3.2 Theory

The local electronic current density [16, 17] is given by using the local value of probability

current based on the Rigged QED theory [20, 22–29, 31, 32]. It is explicitly given as,

Ĵ(r) =
Zee

2me

∑
i

[
ψ̂†
i (r)p̂(r)ψ̂i(r) + h.c.

]
=

Zee

2me

∑
i

[
−i~ψ̂†

i (r)∇ψ̂i(r)−
Zee

c
ψ̂†
i (r)Â(r)ψ̂i(r) + h.c.

]
, (3.1)

where ψ̂i is the i-th natural orbital, me is the electron mass, Ze = −1 for electrons, and

Â(r) is vector potential.

With this current density operator, we show the definition of electric conductivity oper-

ators. Here, the current is induced by three factors; (1) external electric field, (2) the time

variation of magnetic field, and (3) radiation (photocurrent). Since we consider only the

steady state, the latter two effects can be neglected. Hence, we consider only the external

electric field, D̂(r). The linear response of electrons in a system to an external field is
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defined by using the external local electrical conductivity tensor σ̂ext as,

Ĵ(r) = σ̂ext(r)D̂(r). (3.2)

The ordinary electrical conductivity is defined as a global constant for a material. However,

the averaged property, such as a global constant, is insufficient for the description of the

conductive property of nanosize materials. Hence, we should treat the conductivity as a

local quantity.

The external electric field D̂(r) is related to the electric field including the effect of

internal polarization,

D̂(r) = ϵ̂(r)Ê(r), (3.3)

where ϵ̂(r) is the local dielectric constant tensor operator. [12–15] Hence, we can consider

the linear response to the internal electric field, Ê(r). This internal electric conductivity

σ̂int is defined as

Ĵ(r) = σ̂ext(r)ϵ̂(r)Ê(r) (3.4)

= σ̂int(r)Ê(r). (3.5)

The external conductivity, σ̂ext(r), is related to the internal conductivity, σ̂int(r), through

the local dielectric tensor, ϵ̂(r).

These operators, σ̂ext(r), σ̂int(r), and ϵ̂(r), are Hermite, and hence all elements in these

tensor are real. However, these tensors are not symmetric matrix. Therefore, three eigenval-

ues of these tensor are derived as three real numbers, or one real and two complex. Complex

eigenvalues shows a remarkable feature, rotational response. This rotational response can-

not correctly be described if the conductivity or dielectric constant is treated as a scalar

quantity. Hence, σ̂ and ϵ̂ should be treated as tensors for nanosize materials.

3.3 Calculation Method

3.3.1 Quantum states of conductive electrons

In this work, conductive electrons are included in our electronic structure calculations

[18]. Our calculation is performed based on quantum mechanics. We use the linear combina-

tion of atomic orbital (LCAO) method, since one of the purposes of this work is to investigate
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the relation between local electronic current and the bonding state between atoms. For this

purpose, the LCAO method is appropriate. In our calculation, wave functions are expanded

by Gaussian functions. Then, the electronic states representing the electronic current is

given by the linear combination of Gaussian functions. However, since we focus on the

steady state of the scattering of electrons, the states of conductive electrons are considered

to be similar to plain waves rather than Gaussian functions. Therefore, we assume the

following function as an electronic state representing electronic current,

f(r) ≡ exp(−axx2) exp(−ayy2) exp(ikzz), (3.6)

where ax, ay, and kz are parameters and the direction of current is taken to be the z direction.

These parameters are fixed during a calculation. We expand this function in Gaussian basis

functions ϕi as

fG(r) = cG
∑
i

⟨ϕi|f⟩|ϕi⟩, (3.7)

where cG is the normalization factor. We adopt this function fG as a conductive state in our

calculations and replace the initial electronic state of the highest occupied molecular orbital

(HOMO) by this function. Since the function fG is a complex one, complex molecular orbital

coefficients must be used in our calculation. We take ax,y,z = 0.01 a.u. (1 a.u.= 0.280 Å
−2

for ai) and the values of kx,y,z are chosen as kx,y,z = −0.5 a.u. (1 a.u.= 1.890 Å
−1

for

ki). We checked the dependence of the current on the values of ai and ki. The results

are almost independent of the values of ai for this model as long as ai . 0.01 a.u. The

correlation between the value of ki and electronic current density has also been confirmed

by the calculations of seven values of kz for several models [18]. The current density is

roughly proportional to the value of ki in the range, |ki| = 0.01 − 1.0. For too large |ki|,

conductive states cannot be expanded sufficiently in Gaussian basis functions. Note that

the effect of vector potential is not considered in this current.

In our calculations, electronic states representing electronic current are derived as fol-

lows. We adopt the conductive state, fG(r), as the initial condition of the HOMO for our

self-consistent field (SCF) calculations. Of course, if an ordinary SCF calculation is com-

pleted, the derived electronic state is the ground state and has no net current. We want

to derive conductive electronic states including coulomb and exchange interactions by con-

ductive electrons. Hence, we also inject the conductive state into the HOMO in every SCF
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cycle. This conductive state is generically not orthogonal to other orbitals. Hence, the or-

thogonalization is performed in every cycle. Empirically, this orthogonalization is required

only in first several cycles, and after that, the conductive state is orthogonal to others within

the accuracy. In other words, our procedure gives the most stable electronic state under

the condition that the HOMO is the conductive state. In the sense, this condition is inter-

preted as a boundary condition. Our procedure is a first step to derive conductive electrons

as quantum state by the boundary condition that scalar and vector potentials represent

embedding medium appropriately.

3.3.2 Conductivity tensor

The procedure of the calculation of σext(r) is summarized as follows. First, the calcula-

tions with external electric fields of the x direction, D1x and D2x, are carried out, and the

current density J1(r) and J2(r) are derived. Uniform external fields are assumed in our

calculations. Then three components of the external electrical conductivity tensor are given

as

∆J i(r) = σix
ext(r)∆Dx (i = x, y, z), (3.8)

where ∆Dx = D1x −D2x and ∆J i(r) = J i
1(r)− J i

2(r). These calculations are repeated for

other orthogonal directions, y and z, and all components of the external electrical conduc-

tivity tensor are derived as

σext(r) =


σxx
ext(r) σxy

ext(r) σxz
ext(r)

σyx
ext(r) σyy

ext(r) σyz
ext(r)

σzx
ext(r) σzy

ext(r) σzz
ext(r)

 . (3.9)

In this work, we take D1i = 0.002 a.u. and D2i = 0.001 a.u. as a reference. Although the

conductivity should be studied depending on values of D, we demonstrate the analysis using

the local conductivity tensor only for these values of external fields. In this work, we study

only the external conductivity tensor. The internal one will be discussed in our next article.

3.3.3 Computational model

Next, we show our cluster model in Fig. 3.1. This model is based on the [0001] wurtzite

structure with lattice parameters, a = 8.189 Å and c = 5.095 Å. This structure consists of
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X

Y

X

Z

Figure 3.1: GaN cluster model for the analysis. The dark spheres are Ga atoms and the

light spheres are N atoms.

six layers. Three Ga triangles and three N triangles are stacked mutually. This cluster model

is motivated to extract some conductive properties of the GaN nanowire. Although our goal

is the investigation of conductive properties for nanowires, we study this small model as

demonstration because of limited computer resources. Of course, the cluster model is not

connected to any other atoms at the ends of the model, and hence the electronic states near

the ends are expected to be much different from those of nanowires. Hence, we should be

careful, when we speculate a conductive property of the GaN nanowire from our cluster

model. We will not discuss any conductive property near both ends in this work.

Basis sets are chosen as the Dunning-Huzinaga double-zeta basis set [33] with effective

core potential by Hay and Wadt (LANL2DZ) [34–37]. Larger basis sets are favored for our

calculation method, since an input current state is expanded in a basis set. We are now

expanding our results to larger basis sets, which will be shown elsewhere in the near future.

All electronic states calculations are based on the restricted Hartree-Fock (RHF) method.

Of course, in order to include exchange correlation correctly, a post Hartree-Fock calculation

is mandatory. However, in this work, we report our results within the RHF as a first step

of our analysis method. We are now developing our code to complete active space (CAS)

SCF method.

Once electronic states are determined by SCF calculations, local electronic current den-

sity can be determined by the equation of the operator, (3.1). We carry out the calculation

of the local electronic current density and the conductivity density tensor by the molecular

regional DFT (MRDFT) program package [38], which is developed in our laboratory. In this

calculation, we ignore effects of magnetic fields, since calculations of vector potential waste
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Figure 3.2: The z-component of the local current density for our model with kz = −0.5 a.u.

The left and right panels are results on y = 0 and x = 0 planes, respectively.

a tremendous machine resource. The effects of vector potential on current is suppressed by

c. As a result, within the range of the current of this study, the effects are negligibly small.

We have confirmed that the effects are not large in our previous works [18].

3.4 Results

The z-component of the local current density is shown in Fig. 3.2 for our model with

kz = −0.5 a.u. The left and right panels are results on y = 0 and x = 0 planes, respectively.

The unit of current density is the atomic unit (1 a.u.= 2.37×1018 A/m2). The net current is

seen to pass straightly through the nanowire (z-direction). The current density is uniformly

distributed within the nanowire. Our cluster model is very small for the representation of

the GaN nanowire. Since the cluster model is not connected to any other medium atoms

at the both ends of the z-direction, the electronic states near the ends are much different

from those of the GaN nanowire. Hence, we should pay attention to the region apart from

the ends. The region, −4 < z < 4 bohr, is taken into account for definiteness. We consider

that this model may realize some properties of the nanowire, in this region. In Fig. 3.3, the

electron density of our model is shown. The left and right panels are results on y = 0 and

x = 0 planes, respectively. The electron density around Ga atoms are much smaller than

that around N atoms. This is because we used the pseudopotential for the Ga atom and the

Ga-N bond is ionic. In other words, this electron density shows the density of electrons which

can move easily, since electrons in inner core are not expected to move easily. Comparing

59



−6 −4 −2  0  2  4  6

x (bohr)

−10

−8

−6

−4

−2

 0

 2

 4

 6

 8

10

z
 (

b
o
h
r)

0.0 × 10
0

1.0 × 10
−2

2.0 × 10
−2

3.0 × 10
−2

4.0 × 10
−2

5.0 × 10
−2

6.0 × 10
−2

7.0 × 10
−2

8.0 × 10
−2

9.0 × 10
−2

1.0 × 10
−1

−6 −4 −2  0  2  4  6

y (bohr)

−10

−8

−6

−4

−2

 0

 2

 4

 6

 8

10

z 
(b

o
h
r)

0.0 × 10
0

1.0 × 10
−2

2.0 × 10
−2

3.0 × 10
−2

4.0 × 10
−2

5.0 × 10
−2

6.0 × 10
−2

7.0 × 10
−2

8.0 × 10
−2

9.0 × 10
−2

1.0 × 10
−1

N

Ga
N

Ga
N

Ga

Figure 3.3: The electron density. The left and right panels are results on y = 0 and x = 0

planes, respectively.
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Figure 3.4: The zz component of the external conductivity density tensor. The left and

right panels are results on y = 0 and x = 0 planes, respectively.

Figs. 3.2 and 3.3, the correlation between the electronic current and the electron density is

weak for our calculations. Conductive electrons do not stay around atoms in this model.

The zz component of the external conductivity density tensor is shown in Fig. 3.4. The

left and right panels are results on y = 0 and x = 0 planes, respectively. As seen in the

right panel, the conductivity is large in the region between the left two atoms. The distance

between the Ga and N atoms on the left side is much shorter than that between the middle

Ga and N atoms on the right side, since these atoms on the left side are on the layers next to

each other. The conductivity around the center of the nanowire is significantly smaller than

around atoms. Since the electron density is small in the region, the response to an external

electric field is speculated to be smaller than in other region. The region between upper Ga
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and N atoms on the right side shows positive conductivity, while the region between bottom

two atoms shows negative one. As mentioned above, the atoms at the both ends of our

model are truncated from longer nanowire and have dangling bonds. Hence, the electronic

states of these atoms should be different from that of the nanowire. As a result, we should

not pay attention to these regions, and this difference is not discussed further. Note that

since conductive states are included a la boundary condition in our code, the dependence of

the conductive states on external fields cannot be described precisely in principle. However,

some expected conductive properties are realized in our results. We will check our results

by longer models and larger basis sets. The dependence of the conductivity on the value of

internal fields is discussed in the next article.

In Fig. 3.5, the three eigenvalues of the external conductivity density tensor are shown for

our model. The left and right panels are results on y = 0 and x = 0 planes. The top, middle,

and bottom panels are the first, second, and third eigenvalues, respectively. The eigenvalues

are arranged as the descending order for real eigenvalues. For complex eigenvalues, which

exist in contours, the two complex eigenvalues are assigned as the second and third ones.

The short line segments show the direction of eigenvectors. The depth of color means the

eigenvalues for real eigenvalues, while for complex ones, the color means the sign of the real

part, the depth means the absolute value, and the contour means the arguments of complex

eigenvalues. In very wide area, complex eigenvalues of the conductivity are seen in Fig. 3.5.

Hence, linear responses to external fields of this cluster model has rotational behavior. For

nanosize materials, conductivity is dependent on positions, and conductivity tensor is not a

diagonal matrix. Hence, we should analyze nanosize material by a local density and tensor

quantity. Large conductivity between the left two atoms on the x = 0 plane appears again

as the first eigenvalue. In this region, the direction of eigenvector is roughly the z one. The

first eigenvalue of this region is dominated by the large zz component, as seen in Fig. 3.4.

This implies that the path between the atoms is the conductive path in this model. On the

other hand, the eigenvector for the first eigenvalue in the region around the Ga atom on the

right side (z ≃ −3 bohr) does not indicate the z direction. The atoms nearest to this Ga

atom and on the upper layer are located on different x and y positions, as seen in Fig. 3.1.

(The Ga and N atoms on the left side have the same x and y positions.) Hence, we speculate

that the conductive path of this region should have large x and y components. The property

61



−6 −4 −2  0  2  4  6

x (bohr)

−10

−8

−6

−4

−2

 0

 2

 4

 6

 8

10

z
 (

b
o
h
r)

−1.0 × 10
−1

−8.0 × 10
−2

−6.0 × 10
−2

−4.0 × 10
−2

−2.0 × 10
−2

0.0 × 10
0

2.0 × 10
−2

4.0 × 10
−2

6.0 × 10
−2

8.0 × 10
−2

1.0 × 10
−1

−6 −4 −2  0  2  4  6

y (bohr)

−10

−8

−6

−4

−2

 0

 2

 4

 6

 8

10

z 
(b

o
h
r)

−1.0 × 10
−1

−8.0 × 10
−2

−6.0 × 10
−2

−4.0 × 10
−2

−2.0 × 10
−2

0.0 × 10
0

2.0 × 10
−2

4.0 × 10
−2

6.0 × 10
−2

8.0 × 10
−2

1.0 × 10
−1

N

Ga
N

Ga
N

Ga

5°
20°
45°
60°

−6 −4 −2  0  2  4  6

x (bohr)

−10

−8

−6

−4

−2

 0

 2

 4

 6

 8

10

z
 (

b
o
h
r)

−1.0 × 10
−1

−8.0 × 10
−2

−6.0 × 10
−2

−4.0 × 10
−2

−2.0 × 10
−2

0.0 × 10
0

2.0 × 10
−2

4.0 × 10
−2

6.0 × 10
−2

8.0 × 10
−2

1.0 × 10
−1

5°
20°
45°
60°

−6 −4 −2  0  2  4  6

y (bohr)

−10

−8

−6

−4

−2

 0

 2

 4

 6

 8

10

z 
(b

o
h
r)

−1.0 × 10
−1

−8.0 × 10
−2

−6.0 × 10
−2

−4.0 × 10
−2

−2.0 × 10
−2

0.0 × 10
0

2.0 × 10
−2

4.0 × 10
−2

6.0 × 10
−2

8.0 × 10
−2

1.0 × 10
−1

N

Ga
N

Ga
N

Ga

5°
20°
45°
60°

−6 −4 −2  0  2  4  6

x (bohr)

−10

−8

−6

−4

−2

 0

 2

 4

 6

 8

10

z
 (

b
o
h
r)

−1.0 × 10
−1

−8.0 × 10
−2

−6.0 × 10
−2

−4.0 × 10
−2

−2.0 × 10
−2

0.0 × 10
0

2.0 × 10
−2

4.0 × 10
−2

6.0 × 10
−2

8.0 × 10
−2

1.0 × 10
−1

5°
20°
45°
60°

−6 −4 −2  0  2  4  6

y (bohr)

−10

−8

−6

−4

−2

 0

 2

 4

 6

 8

10

z 
(b

o
h
r)

−1.0 × 10
−1

−8.0 × 10
−2

−6.0 × 10
−2

−4.0 × 10
−2

−2.0 × 10
−2

0.0 × 10
0

2.0 × 10
−2

4.0 × 10
−2

6.0 × 10
−2

8.0 × 10
−2

1.0 × 10
−1

N

Ga
N

Ga
N

Ga

Figure 3.5: The three eigenvalues of the external conductivity density tensor. The left and

right panels are results on y = 0 and x = 0 planes, respectively. The top, middle, and

bottom panels are the first, second, and third eigenvalues, respectively. The eigenvalues

are arranged as the descending order for real eigenvalues. For complex eigenvalues, which

exist in contours, the two complex eigenvalues are assigned as the second and third ones.

The short line segments show the direction of eigenvectors. The depth of color means the

eigenvalues for real eigenvalues, while for complex ones, the color means the sign of the real

part, the depth means the absolute value, and the contour means the arguments of complex

eigenvalues.
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of conductivity similar to that in this region is seen for the region where z & 2 bohr around

the Ga atom on the left side (z ≃ 2 bohr). As another feature, the regions around N atoms

have large absolute values of eigenvalues. Compared with Fig. 3.3, this feature is seen to

be related to the electron density. The strong response around these regions to an external

electric field is attributed to larger electron density. In addition to the response by the large

number of electrons, electrons in these regions have weak electric potential by N nuclei, due

to the screen effect by the large number of electrons. Hence, the move of these electrons are

easier than other regions.

We consider that some qualitative results are reasonable and appropriate in spite of small

model and small basis sets, while many uncertainties remain for quantitative ones. Hence,

it is desirable that these properties will be confirmed by the calculations with longer models

and larger basis sets.

3.5 Summary and Discussion

We have shown the validity of our local conductivity density analysis method by using

a GaN cluster model, which is motivated to imitate GaN nanowire. We have discussed

conductive properties of GaN nanowire speculated from our cluster model by our new code,

which can represent electronic current as quantum states. The properties are analyzed by one

of our novel quantity, the external local conductivity density tensor. The local conductivity

shows some reasonable conductive properties. For example, the conductive path between

atoms next to each other is clarified. In addition, the rotational behavior of conductivity

has been found as complex values of eigenvalues. This behavior can only be studied by the

analysis using a tensor.

In this work, we have taken only two values of external electric fields. Since the con-

ductivity can depend on external fields, we will investigate the relation between the local

conductivity and values of external fields. In addition, the basis set is not large enough to

represent conductive electrons precisely, and hence we should confirm our results by larger

basis sets in future works. In this work, the electronic current is injected by hand as a

conductive state of plain waves. To derive a more appropriate current state for systems, we

should improve the calculation code to realize conductive electronic states by more suitable
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boundary conditions.
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Chapter 4

Nanosize Electronics Material

Analysis by Local Quantities Based

on the Rigged QED Theory

4.1 Introduction

We propose the novel analysis method, using the novel local quantity. In this article, we

introduce two types of analysis method. One is the spin torque and the zeta force, which are

related to the dynamics of the electron spin. Hence, these quantities are especially related

to the spintronics. The other is the conductivity. The microscopic viewpoint is important

for the analysis of nanosize material.

The control of electron spin becomes more and more important recently. The spin

quantum number is widely used in many fields of research and technology, for example,

spintronics. In order to control the spin of specific electron in atoms or molecules, the

knowledge of the torque for the spin of these electrons is inevitably important. However, we

have not established the way to estimate the torque for the spin, though some works tackle

this issue [1]. In this article, we propose the novel theoretical approach to predict the torque

for spin. One of the authors proposed previously the novel quantities of the spin torque

and the zeta force [2]. These quantities are the torque for electronic spin and govern the

motion of the spin of electrons. Therefore, the essential description of the dynamics of the

spin can be clarified by our approach. Hence, these quantities are widely applicable to spin

68



phenomenology in various fields. For example, to analyze or design spin electronics devices,

we may use these quantity and control electronic spin in the devices. In this article, the spin

torque and zeta force are shown for the dimer of alkali atoms. To derive these quantities,

we use Molecular Regional DFT (MRDFT) program package [3], which developed in our

laboratory. In this work, we consider the stationary spin state as a first step. The stationary

spin state is maintained by the balance between the spin torque and the zeta force. We clarify

the relation of the torque for spin to the bonding states.

Recently, the semiconductor Integrated Circuits (ICs) have been downsized rapidly. To

achieve further downsizing beyond the Moore’s law, field effect transistors (FETs) with semi-

conductor nanowires are proposed [4]. Especially, silicon nanowires are the most hopeful

materials. For nanoscale materials like silicon nanowires, the prediction of physical prop-

erties by electronic state calculations is important. In this article, we report the analysis

method of electron transport properties by first-principles calculations. For this purpose, we

investigate electron transport properties by the local electrical conductivity obtained by the

first-principles calculations which treat conduction electrons as quantum states. The local

electrical conductivity can clarify the currents of the electrons which move around the vicin-

ity of atoms. This property is useful for the investigation of the effect of defects and dopants

on carrier transport properties. In this article, we show our results for small silicon nanowire

model favored by the calculations for the band structures. In particular, we mention the

difference of the external and internal local electrical conductivity, which are defined for

the external electric field and the local electric field including the effect of the polarization,

respectively. We also stress the importance of the treatment of the conductivity as a tensor

for nanosize materials.

4.2 Theory

4.2.1 Spin torque and zeta force

In this work, the spin of electrons is discussed in relativistic theory since the degree of

freedom of the spin can essentially be described only in the relativistic theory. The spin
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angular momentum density operator is given by,

1

2
~σ̂k

e (r⃗) =
1

2
~ψ̂†(r⃗)σkψ̂(r⃗), (4.1)

where k = 1 − 3. In the relativistic theory, ψ̂ is the four component spinor. Hence, the

Pauli matrix σk is extended to 4 × 4 matrix. The equation of motion of the spin angular

momentum density is given by

∂

∂t

[~
2
σ̂k
e (r⃗)

]
= t̂ke(r⃗) + ζ̂ke (r⃗), (4.2)

where the first term is the spin torque and the second one is the zeta force [2]. The spin

torque is defined by using the relativistic stress tensor density operator,

t̂ke(r⃗) = −ϵlnkτ̂Πln
e (r⃗). (4.3)

The relativistic stress tensor density operator is given by

τ̂Πkl
e (r⃗) =

i~c
2

[
ˆ̄ψ(r⃗)γlD̂k(r⃗)ψ̂(r⃗)− D̂†

k(r⃗)
ˆ̄ψ(r⃗)γlψ̂(r⃗).

]
. (4.4)

This stress tensor density is known to classify the properties of chemical bonding [5]. This

relativistic stress tensor is not symmetric tensor for the exchange of indices k and l. On

the other hand, the nonrelativistic stress tensor is symmetric, and hence, the spin torque is

derived only in the relativistic theory. The other term is the zeta force,

ζ̂ke (r⃗) = −c∂k
[
ˆ̄ψ(r⃗)γk

1

2
~σlψ̂(r⃗).

]
, (4.5)

where the multiple appearance of the index k does not means the summation. After easy

algebra, the zeta force and the spin torque are derived as the product of the large and small

components of a four component wave function.

In this work, only the steady states of the spin are considered. In the steady states, the

expectation value of the spin angular momentum density operator should be independent of

the time. Accordingly, the spin torque should be in balance with the zeta force in the steady

states. We can interpret the stability of the spin vector of an electron by this balance. This

stability is similar to the balance between the Lorentz force and the tension force [5], which

may explain the quantum condition, such as the stability of the electronic energy level in

atoms. In an unsteady state of the spin, this balance is no longer maintained. The unsteady

state is realized, for example, by the existence of an external magnetic field. Hence, the

electronic structure calculation with an external magnetic field will clarify a torque to rotate

the spin vector of an electron. This work is a first step to this goal.
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4.2.2 Local conductivity

The electronic charge current density is given by using the local value of the probability

current [1],

ˆ⃗
J(r⃗) =

Zee

2me

[
ψ̂†(r⃗)ˆ⃗p(r⃗)ψ̂(r⃗) + h.c.

]
(4.6)

=
Zee

2me

[
− i~ψ̂†(r⃗)∇⃗(r⃗)ψ̂(r⃗)− Zee

c
ψ̂†(r⃗)A⃗(r⃗)ψ̂(r⃗) + h.c.

]
. (4.7)

The current induces a magnetic field, i.e., vector potential. This induced vector potential is

given as,

ˆ⃗
A(ct, r⃗) =

1

c

∫
d3s⃗

ˆ⃗
JT (cu, s⃗)

|r⃗ − s⃗|
, (4.8)

where subscript T means the transverse component and u includes the retardation effects.

Next, we explain the formulation of the electric conductivity operator. The linear response

of electrons in a system is defined by using the local electrical conductivity tensor,

ˆ⃗
J(r⃗) =

↔̂
σext(r⃗)

↔̂
ϵ (r⃗)

ˆ⃗
E(r⃗) (4.9)

=
↔̂
σ int(r⃗)

ˆ⃗
E(r⃗). (4.10)

The ordinary electrical conductivity is defined as a global constant for a material. However,

the averaged property, such as global constants, is insufficient for the description of the

conductive property of the nanoscale material. Hence, we should treat the conductivity as

the local quantity. The external electric field is related to the electric field included the effect

of the internal polarization by the dielectric constant. Hence, the first and second equations

mean the linear response to the external and internal electric fields. These conductivity

operators are Hermite, and all elements in these tensors are real. However, these tensors are

not symmetric matrices. Therefore, three eigenvalues of these tensors are derived as three

real numbers or one real and two complex numbers. The case of the complex eigenvalues

shows remarkable feature. Even if the direction of the eigenvector is chosen as that of the

electric field, the response is rotated to other direction. This rotational response cannot

correctly be described if the conductivity or dielectric constant is treated as scalar quantity.
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Figure 4.1: The spin torque (left) and the zeta force (right) of the lithium dimer. The unit

of the axes are angstrom, and the unit of the spin torque and the zeta force are the atomic

unit.

4.3 Results

4.3.1 Spin torque and zeta force

The spin torque and zeta force of D =2.8, 3.2, 4.2, and 4.8 Angstrom (D is the distance

between atoms.) for the ground state of the dimmers of lithium, sodium, potassium and

rubidium are shown with three dimensional representation in Figs. 4.1, 4.2, 4.3 and 4.4,

respectively. The left panel is the results of the spin torque, while the right one is the

results of the zeta force.

The spin torque and the zeta force are localized around the atoms and disappears on

the x=0 plane, which is equidistant from the two atoms, for all models. The rotational

pattern of the spin torque can be seen around the x axis for all atoms, and it is not seen

for other directions. The rotational pattern around two nuclei has the opposite directions

of the rotation. For all four models, the rotational and distribution patterns are almost the

same. On the other hand, the zeta force of potassium dimer is significantly different from

the others. The other three results are similar to each other. These results show rotational

pattern around the nuclei. The pattern for that of the other atom has the opposite direction,

which are the same feature for the spin torque. However, the pattern is significantly different

from that of the spin torque in the region apart from the x axis. In the region, even the
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Figure 4.2: The spin torque (left) and the zeta force (right) of the sodium dimer. The unit

of the axes are angstrom, and the unit of the spin torque and the zeta force are the atomic

unit.

Figure 4.3: The spin torque (left) and the zeta force (right) of the potasium dimer. The

unit of the axes are angstrom, and the unit of the spin torque and the zeta force are the

atomic unit.
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Figure 4.4: The spin torque (left) and the zeta force (right) of the rubidium dimer. The

unit of the axes are angstrom, and the unit of the spin torque and the zeta force are the

atomic unit.

rotational pattern cannot be seen, and the vectors of zeta force face each other in some place.

Since the value of the zeta force for the region is small, the analysis of three dimensional

pattern of the zeta force may require more accurate calculation, unfortunately. In other

words, the rotational pattern of the zeta force is found by our results.

The values of the spin torque and the zeta force are different by several orders of mag-

nitude. The reason why the spin torque and the zeta force are not in balance within this

calculation is discussed in Ref. 6. The similarity of the rotational and distribution patterns

between the dimers of alkali atoms except for potassium is attributed to the similarity of

the electronic states of these atoms. However, the values of the spin torque and the zeta

force are significantly different between them.

The electron spin rotates in the unsteady state by the existence of an external magnetic

field. Then, the torque for the electron spin can be described by the spin torque, which

is dependent on the vector potential, while the zeta force is not. Hence, the balance be-

tween the spin torque and the zeta force are not maintained. Hence, in the future work,

the electronic structure calculation with an external magnetic field will be tackled for the

clarification of the torque to rotate the electron spin.
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Figure 4.5: The external conductivity (left) and the internal conductivity (right) of the

silicon nanowire model. Only the zz component of conductivity tensors is shown.

4.3.2 Local conductivity

We discuss the local electrical conductivity for small [011] silicon nanowire models. Fig-

ure 4.5 shows the zz component of the external and internal local conductivity of silicon

nanowire model. This conductivity is defined as the difference between the results of the

external electric field, 0.002 a.u. and 0.001 a.u. The difference between them can be clearly

seen. This result shows that the internal electric field including the internal polarization

should be considered for nanoscale materials.

Figure 4.6 shows the three eigenvalues of the external conductivity tensor of silicon

nanowire model. For real parts, the first eigenvalue is much larger values than the others.

We speculate that this is due to the quantum confinement effect of one dimensional structure.

We can also see that the electrical conductivity show the complex values in many regions.

In the regions, linear response for the complex conductivity gives the rotational response.

Particularly, the complex values appear around atoms. We speculate that the electric fields

by nuclei produce complicated conductivity in silicon nanowire model. As a result, we

emphasize that this result can be seen only when the electrical conductivity is treated

as tensor. Hence, we should treat conductivity as tensor, even for the material with the

isotropic dielectric constant as macroscopic property.
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(a) (b)

(c) (d)

Figure 4.6: The first(a), second(b), and third(c) eigenvalues and rotational parameters(d)

of the external local electrical conductivity tensor for the [011] silicon nanowire with H

termination. The red (blue) color shows the positive (negative) value of the eigenvalues.

The black lines show the ratio of the imaginary parts of the eigenvalues to the real parts of

them. The green lines show the directions of eigenvectors. The rotational parameters (d)

mean the absolute values of the arguments of the complex eigenvalues. The eigenvalues are

sorted into the descending order. If there are complex eigenvalues, they are shown as the

second and third eigenvalues.
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4.4 Summary

In this article, we have introduced the two novel analysis methods by using the novel

local quantities. One is the spin torque and the zeta force, which essentially clarify the

dynamics of the electron spin. The other is the external and internal local conductivities.

As a first step, we have shown the validity and usefulness of our methods. The zeta force

clarifies how the local torque works on the electron spin in molecules. The external and

internal local conductivities show how electrons pass through nanosize materials and how

electrons are locally accelerated in the materials.
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Chapter 5

Theoretical Study of Gallium Nitride

Crystal Growth Reaction Mechanism

5.1 Introduction

Rapid progress in the metalorganic chemical vapor deposition (MOCVD) technology

makes it possible to fabricate high quality gallium nitride (GaN) based devices under the

condition of atmospheric pressure [1]. GaN, which has wide band gap energy, is currently

paid great attention due to its potential ability in optoelectronics and microelctronics, such

as light-emitting diodes, laser diodes, and photodetectors [2, 3]. For a commercial use of

this material, the fabrication of high quality GaN single crystal is required. It is already

known that high NH3 partial pressure and high temperature (1300-1400 K) are desirable

as a steady growth condition of GaN. In order to improve the quality of fabricated GaN

crystal, we should study how the crystal of GaN grows.

The stability of GaN crystal is dependent on its surface aspect, and GaN surfaces show

several types of growth mechanism [4]. Besides the surface dependence, chemical reactions

which progress in the gas phase have important roles in the crystal growth. Hence, it is

important for the growth of GaN crystal that both reactions on the surface and in the gas

phase are under the control, though this control is very difficult. It is required to understand

the mechanism of the surface and gas-phase reactions. Recently, many researchers study

the mechanism by experimental analysis and computational simulation.

In our previous studies [5–10], we discussed parasitic reactions of trimethylgallium (TMG)
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and trimethylaluminum in the gas phase, which disturbed the growth of AlGaN single crys-

tals. In these works, it has been found that there is no energy barrier for the reaction,

Ga(CH3)3 +NH3 → Ga(CH3)3 : NH3.

Therefore, parasitic reactions easily occur, so that they may affect the growth of GaN crystal

as well as AlGaN. It has also been found that the activation energy required for the reaction,

Ga(CH3)3 +NH3 → Ga(CH3)2(NH2) + CH4,

is 14.8 kcal/mol (0.64 eV) [7]. This activation energy is not so large that substitution

reactions also occur.

In this work, we analyze both gas-phase and surface reactions on the growth of GaN

crystal by ab initio calculations. We consider the initial surface for the GaN crystal growth

and adsorptions of various compounds of Ga and N atoms on the surface. The effect of

a Ga-Ga bond formed on the GaN(0001) surface on the crystal growth is investigated in

detail. Then, we suggest reaction processes avoiding the Ga-Ga bond.

5.2 Computational Methods

5.2.1 Gas-phase reactions

Before the analysis of chemical reactions occurred on the GaN(0001) surface, we need to

know what molecules exist in the gas phase. Therefore, we first study gas-phase reactions

in detail. We perform ab initio quantum chemical calculations of equilibrium structures of

molecules in the gas phase. We also calculate transition states (TSs) to obtain the activation

energies of the reactions. All the geometries are fully optimized using the density functional

theory (DFT) based on the Lee-Yang-Parr gradient-corrected functional [11, 12] with Becke’s

three hybrid parameters [13] (B3LYP). In this calculation, the Dunning-Huzinaga double-

zeta basis set [14] with effective core potential by Hay and Wadt [15–17] (LanL2DZ) are

used for Ga atoms. On the other hand, D95** [14] basis set is employed for the other atoms.

Vibrational frequency analysis is performed to calculate zero-point energy correction. These

calculations are performed by Gaussian 09 program package [18].
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5.2.2 Surface reactions

To simulate surface reactions, cluster models are used. However, we also use periodic

model to decide the optimized structure of the initial surface for the GaN crystal growth

(and which surface is more stable, Ga or N), and to check whether cluster models realize a

feature of bulk crystal.

As the periodic model, a 2×2 periodic surface on the GaN(0001) wurtzite structure

is considered. Lattice constants for initial atom positions of our GaN surface model are

determined by our calculation of the optimized GaN bulk structure. The GaN surface

model consists of six layers and vacuum thicker than 11 Å. The top layer of them is four Ga

atoms, while the bottom one is N atoms, which are passivated with hydrogen atoms. For

geometrical optimization calculations, the positions of atoms of two layers from the top are

relaxed, and those of the others are fixed. First principles calculations of the periodic models

are carried out by supercell approximation techniques, using CASTEP program package [19].

The electron-ion potential is described by Vanderbilt type ultra-soft pseudopotentials [20].

The generalized-gradient approximation (GGA) method by Perdew-Burke-Ernzerhof (PBE)

[21] is employed for density functional exchange-correlation interactions. For the calculation

of bulk crystal and those of surface, kinetic energy cutoff of plane-wave expansion (k-point)

is taken as 800 eV (the 9×9×6 k-point set) and 280 eV (the 4×4×1 k-point set), respectively.

The density of state (DOS) of the GaN surface model is calculated for the model which

consists of seven layers with periodic boundary conditions using ADF program package [22].

In this calculation, the GGA method by Perdew and Wang (PW91) [23] is employed for the

density functional exchange-correlation interaction.

Electronic structure of GaN(0001) surface and its reactions are investigated in detail by

using a cluster model. This cluster model is required to realize a large crystal surface. Hence,

this cluster model needs to be sufficiently large in order to reproduce the electronic structure

of models with periodic boundary condition. Calculations of this model are done by using

the combined quantum mechanics and molecular mechanics (QM/MM) method [24–28], so

called ONIOM method [29–32] of Gausssian 09 program package. In Fig. 5.1, we show this

cluster model. The QM(Ga24N24) and the MM(Ga141N141) regions are shown in Figs. 5.1(a)

and (b), respectively. This model consists of six layers. The MM region surrounds the QM

region. In the geometrical optimization calculation, four Ga atoms in the top layer, four N
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Figure 5.1: (a) QM and (b) MM regions of GaN(0001) cluster model.

atoms in the second layer [Ga1-4 and N1-4 in Fig. 1(a)], and admolecules are relaxed and

the others are fixed. For the QM calculation, we use the DFT method based on B3LYP,

and basis sets are chosen as LanL2DZ basis set for Ga atoms and D95** basis set for the

others. The universal force field (UFF) method [33] is used for the calculation of the MM

region.

Calculations for kinetic energy density as explained below are also carried out by ex-

tending QM region as including the atoms bonding to the atoms in the original QM region.

In these calculations, other Ga and N atoms in the MM region are replaced by pointing

charges. Ga (N) atoms are replaced by +0.9e (−0.9e) point charges. These values of the

point charge are determined in order to correspond to the average of the Mulliken charges

[34] of the Ga atoms on the top surface layer.
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5.2.3 Electronic quantum energy density

After electronic structure calculations, we analyze local electronic properties such as the

electronic quantum energy density. According to the Rigged QED theory [35–41], the kinetic

energy density nT (r) is given as follows:

nT (r) =
1

2

∑
i

νi

{[
− ~2

2m
∆ψ∗

i (r)

]
ψi(r) + ψ∗

i (r)

[
− ~2

2m
∆ψi(r)

]}
, (5.1)

where m is the electron mass, ψi(r) is ith natural orbital, and νi is the occupation number

of ψi(r). The integration of kinetic energy density over the whole space is the kinetic energy

of a system. In classical mechanics, only positive kinetic energy is allowed, while negative

kinetic energy appears in quantum mechanics. This means that electrons can also exist in

regions with negative kinetic energy density by quantum effects. The surface of zero kinetic

energy density can be interpreted as the boundary of the molecule. In this study, we show

this value for the discussion whether atoms have a chemical bond or not. To calculate the

kinetic energy density, we use Molecular Regional DFT program package [42].

5.3 Results and Discussion

5.3.1 Reaction pathway in the gas phase

For the comprehension of the growth of GaN crystal, it is important to understand gas-

phase reactions. If we know the reactions well, we can know what molecules exist in the gas

phase. Then, the knowledge let us speculate which molecules promote the growth of GaN

by surface reactions.

Actually, it is known that many species of Ga compounds exist in the gas phase. Ex-

perimentally, gallium-nitrogen compounds made by alkylgallium and NH3 molecules and

molecules made by dissociation reactions of TMG were reported [43]. On the other hand, in

computational simulation works by Kusakabe et al. [44], many reaction paths were studied

and many compounds are reported such as GaN and TMG:NH3. Unfortunately, experimen-

tal and theoretical results are not consistent sufficiently. Hence, we assume several promising

reaction paths in the gas phase and investigate surface reactions for the paths.

In this work, it is assumed that TMG and NH3 are used as Ga and N precursors,

respectively. Many species of compounds of Ga and N atoms can be produced by reactions
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Figure 5.2: The relative potential energy diagram of gas-phase reactions. Values are written

in kcal/mol (eV).

between TMG and NH3 molecules. For example, they are produced by reactions that methyl

groups of TMG are sequentially replaced by NH2 groups [45]. In this work, we focus on

these reactions. These reactions are summarized as follows:

TMG+NH3 → [TS1]→ DMG(NH2) + CH4 ∆E = −20.6 kcal/mol (5.2)

DMG(NH2) + NH3 → [TS2]→ MMG(NH2)2 + CH4 ∆E = −16.7 kcal/mol (5.3)

MMG(NH2)2 +NH3 → [TS3]→ Ga(NH2)3 + CH4 ∆E = −14.4 kcal/mol (5.4)

Here, DMG (MMG) is a dimethyl (monomethyl) gallium. Figure 5.2 shows the relative

potential energy diagram of these reactions. From this figure, we can see that all reac-

tions are exothermic. As a result, we can find that Ga(NH2)3 is the most stable compound

in this reaction chain. However, it is also found that activation energy of these reactions

are 15.2 kcal/mol, 21.1 kcal/mol, and 24.7 kcal/mol, respectively. This result indicates

that Ga(NH2)3 is the most difficult to be produced among DMG(NH2), MMG(NH2)2, and

Ga(NH2)3. From another viewpoint, it can be said that if Ga(NH2)3 are sufficiently pro-

duced, DMG(NH2) and MMG(NH2)2 should be also produced in the gas phase.

Next, molecules which make the coordinate bond with NH3 are considered. These gas-
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phase reactions are given as follows:

TMG+ NH3 → TMG : NH3 ∆E = −15.6 kcal/mol (5.5)

DMG(NH2) + NH3 → DMG(NH2) : NH3 ∆E = −12.6 kcal/mol (5.6)

MMG(NH2)2 +NH3 → MMG(NH2)2 : NH3 ∆E = −11.6 kcal/mol (5.7)

The stabilization energies of TMG:NH3, DMG(NH2):NH3, and MMG(NH2):NH3 are 15.6 kcal/mol

(0.68 eV), 12.6 kcal/mol (0.55 eV), and 11.6 kcal/mol (0.51 eV), respectively. From this

result, it can be found that these molecules are more stabilized than TMG, DMG(NH2), and

MMG(NH2)2. It can also be found that there is no activation energy for these reactions.

Ga-N parts in cores of these molecules, which we call GaN core, are attached on the GaN

surface and promote the GaN growth. In other words, it is supposed that two layers, namely

Ga and N layers, are stacked simultaneously.

5.3.2 GaN(0001) surface structure

Before the analysis of the reactions on the GaN(0001) surface, we calculate optimized

surface structures of Ga covered GaN(0001) surface to study surface reactions. As shown

below, N covered surface is not suitable for a successful crystal growth.

First, we optimize the wurtzite GaN bulk structure, and their lattice constants are

obtained as a = 3.235 Å, c = 5.279 Å. To investigate surface reactions, we make a surface

model with these lattice constants. In Fig. 5.3(a), we show this model. This model is a 2×2

GaN(0001) surface model whose top layer consists of Ga atoms.

For this initial structure, we calculate the optimized structure of this surface model. As

a result, the parameters of d12 and d23 are derived as 0.729 Å and 1.963 Å, respectively. In

the following, we use this model as Ga-covered surface of the GaN crystal.

Next, we optimize the N-covered surface. In other words, we study the reaction between

N atoms and Ga atoms on the surface. For this purpose, we consider a GaN(0001) surface

model whose top Ga surface is terminated by N atoms. The structures before and after

geometrical optimization are shown in Figs. 5.3(b) and (c), respectively. It can be seen that

a N atom on the surface approaches another N atom. It is considered that N atoms of N

adlayer make bonds with other N atoms of the adlayer. Thus, N atoms form dimers whose

bond length is 1.27 Å. The optimized surface is more stabilized than the initial surface
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Figure 5.3: Structures of (a) Ga-covered GaN(0001) surface, (b) non-reconstructed N-

covered surface, and (c) reconstructed N-covered surface.

shown in Fig. 5.3(b) by 302.7 kcal/mol (13.1 eV). Hence, we consider that this N-N bond

is too strong for subsequent adsorption of Ga atoms, which inevitably requires to cut the

bond. Therefore, N-covered surface interrupts the crystal growth. These results also suggest

that adsorption of bare N atoms on the Ga-covered surface is not suitable for the growth of

GaN.

Hence, in the next subsection, we consider the adsorption of compounds with Ga and N

atoms on the Ga-covered surface as shown in Fig. 5.3(a), which we call GaN(0001) surface

for abbreviation below.

5.3.3 Chemical reactions on the GaN surface

In § 5.3.1, we have chosen some reaction pathways to produce GaN cores in the gas

phase. In this subsection, reactions between GaN(0001) surface and the GaN cores are

investigated. To study the reactions in detail, we use a large surface cluster model which

has electronic properties similar to a GaN(0001) surface periodic model.

Electronic state of GaN(0001) cluster model

We have made the GaN surface cluster model shown in Fig. 5.1. To check whether this

cluster model has properties similar to the 2×2 periodic GaN(0001) surface model, we com-

pare the electronic structure of the cluster model with that of the periodic model calculated
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Figure 5.4: (a) PDOS of the periodic model. Fermi energy level is set as 0 eV. (b) GPDOS

of the cluster model. The highest occupied energy level is set as 0 eV.

by ADF program package. Figures 5.4(a) and (b) show the partial DOS (PDOS) of the

periodic model and the gross population DOS (GPDOS) of the cluster model, respectively.

By comparing these results, it is found that both electronic structures have various common

features. First, these electronic structures are divided into two regions dominated by N(s)

or N(p). Second, N(p) region consists of two parts. In higher energy level of this region,

the contribution from Ga is mainly occupied by Ga(p), while that is mainly from Ga(s) in

lower one. Third, near the Fermi level (0 eV), namely in the highest orbital energy level, Ga

orbitals have larger contribution to occupation than N orbitals. From these similarities, we

consider that our GaN cluster model reproduces properties of the periodic model. Therefore,

we can take this model as a reference model to study the GaN surface.

Adsorption reaction of Ga(NH2)3

First, we calculate the adsorption reaction of Ga(NH2)3. This reaction is represented as

follows:

Ga(NH2)3 +GaN(0001)→ Ga(NH2)3/GaN(0001) ∆E = −78.8 kcal/mol (5.8)

Figure 5.5 shows the optimized structure of Ga(NH2)3/GaN(0001). The Ga-N bond length

between the surface and the admolecule is 1.98 Å and the length of Ga-N bond in the

admolecule is 2.22 Å. For comparison, we calculated the same reaction for the periodic
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2.22 Å

1.98 Å

Figure 5.5: Optimized structure of Ga(NH2)3/GaN(0001) in the cluster model.

model and two Ga-N bond lengths were 1.96 and 2.19 Å. The values of the cluster model

are close to these values. This confirms again that our surface cluster model reproduces the

features of the periodic model for adsorption reactions. The Ga atom at the top of this

model is considered to be a new Ga-terminated GaN(0001) surface. Three amino groups of

Ga(NH2)3 are appropriately used to make bonds with the Ga atom on the top layer.

However, in actual fabrication processes, it has been reported that Ga(NH2)3 is not

produced from TMG by only gas-phase reactions [43]. As discussed in the previous section,

DMG(NH2) and MMG(NH2)2 exist more abundantly in the gas phase. Therefore, other

reactions should also be studied.

Surface reactions of DMG(NH2) and MMG(NH2)2

Next, we consider the optimized structures after the adsorption of DMG(NH2) and

MMG(NH2)2. These reactions are given as follows:

GaN(0001) + DMG(NH2)→ DMG(NH2)/GaN(0001) ∆E = −39.6 kcal/mol (5.9)

GaN(0001) +MMG(NH2)2 → MMG(NH2)2/GaN(0001) ∆E = −77.7 kcal/mol (5.10)

Figures 5.6(a) and (b) show optimized structures of these reactions, respectively. In these fig-

ures, Ga-Ga bonds are seen in both DMG(NH2)/GaN(0001) and MMG(NH2)2/GaN(0001),

which have not been seen in the case of Ga(NH2)3/GaN(0001) shown in Fig. 5.5. Obviously,

Ga-Ga bonds formed on the GaN(0001) surface are one of serious problems which disturb

steady GaN crystal growth. Therefore, the GaN crystal growth is not expected to proceed

by the adsorption of these GaN cores and surface reactions. It is necessary to prevent Ga-Ga
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2.59 Å
2.61 Å

(a) (b)

Figure 5.6: Optimized structures of (a) DMG(NH2)/GaN(0001) and (b)

MMG(NH2)2/GaN(0001) after surface reactions.

bonds for the crystal growth with the adsorption of GaN cores. As mentioned above, in

the presence of Ga(NH2)3, DMG(NH2) and MMG(NH2)2 also exist. Hence, these molecules

should prevent the steady GaN crystal growth.

To study these Ga-Ga bonds in detail, we calculate the electronic kinetic energy density

of MMG(NH2)2/GaN(0001). The values on a plane including the Ga-Ga bond are shown in

Fig. 5.7(a). In red (blue) regions, the kinetic energy density is positive (negative). Circles on

Ga atoms show pseudopotential. From this figure, it is confirmed that the values are positive

between the Ga atoms. As mentioned above, only positive kinetic energy is allowed in

classical mechanics, while negative kinetic energy appears in quantum mechanics. Therefore,

it can be said that electrons are bound to the region between the Ga atoms of admolecule

and surface, and that there is a strong bond there.

Surface reactions of the molecules with coordinate bond of NH3

We have discussed that Ga-Ga bonds disturb the crystal growth via adsorption of GaN

cores. Hence, GaN cores which do not make Ga-Ga bonds are suitable for a steady growth

of the GaN crystal.

In the following, we study optimized structures and adsorption energies of GaN cores

with a coordinate bond with NH3. First, it cannot be expected that TMG:NH3 is adsorped

on the GaN(0001) surface, since it does not have lone electron pair. Reactions for other
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Figure 5.7: The values of the kinetic energy density on the planes including the Ga-Ga

bond (a) in MMG(NH2)2/GaN(0001) and (b) in MMG(NH2)2:NH3/GaN(0001). In red
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molecules are written as follows:

GaN(0001) + DMG(NH2) : NH3

→ DMG(NH2) : NH3/GaN(0001) ∆E = −34.6 kcal/mol (5.11)

GaN(0001) +MMG(NH2)2 : NH3

→ MMG(NH2)2 : NH3/GaN(0001) ∆E = −60.8 kcal/mol (5.12)

In Figs. 5.8(a) and (b), the optimized structures of DMG(NH2):NH3/GaN(0001) and

MMG(NH2)2:NH3/GaN(0001) are shown, respectively. Lengths between the Ga atom in

GaN cores and its closest Ga atom are about 4 Å in these structures. These lengths are much

longer than those for DMG(NH2)/GaN(0001) and MMG(NH2)2/GaN(0001) in Fig. 5.6.

We show the values of the kinetic energy density on the plane including these Ga atoms

in Fig. 5.7(b). The values of MMG(NH2)2:NH3/GaN(0001) are negative between the Ga

atoms of admolecule and surface. This contrasts to the results of MMG(NH2)2/GaN(0001)

shown in Fig. 5.7(a). From this result, it is confirmed that strong Ga-Ga bonds do not

appear between these Ga atoms for MMG(NH2)2:NH3/GaN(0001). We speculate that

91



(a) (b)

Figure 5.8: Optimized structures of (a) DMG(NH2):NH3/GaN(0001) and (b)

MMG(NH2)2:NH3/GaN(0001).

this difference consists in that of the highest occupied molecular orbital (HOMO) of these

molecules. HOMO of DMG(NH2) and MMG(NH2)2 are mainly occupied with Ga(p) and

N(p). For DMG(NH2):NH3 and MMG(NH2)2:NH3, Ga(p) is stabilized to a lower energy

level and only N(p) dominantly occupies their HOMO. As a result, when DMG(NH2):NH3

or MMG(NH2)2:NH3 is adsorbed on the GaN(0001) surface, only amino groups make bonds

with the surface. In conclusion, these results suggest the possibility of the crystal growth

without Ga-Ga bonds by adsorption of DMG(NH2):NH3 and MMG(NH2)2:NH3, which are

more stabilized than DMG(NH2) and MMG(NH2)2 in the gas phase.

It is known that DMG(NH2):NH3 exists in the gas phase for low temperature (≤ 650 K)

[43]. At high temperature of the MOCVD process (1300-1400 K), a density of these

molecules may be insufficient. However, since reactions in gas phase are not known well, we

consider that these molecules remain one of candidates promoting the GaN crystal growth.

In addition, it may be considered that NH3 or NH2 attached on the GaN surface plays also

the same role in a growth process. Under the MOCVD condition that high NH3 partial pres-

sure and high temperature, NH3 or NH2 molecules are stuck on the surface of GaN, without

making N-N bonds due to the protection by hydrogen atoms. These molecules prevent an

approaching Ga molecule from bonding a surface Ga atom as the NH3 in DMG(NH2):NH3

or MMG(NH2)2:NH3. Hence, Ga-Ga bonds are considered to be sufficiently suppressed for

NH3 or NH2-covered surface.
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5.4 Conclusions

In this work, we have investigated the GaN(0001) crystal growth focusing on both gas-

phase and surface reactions. As initial surface of GaN(0001), Ga-covered one is suitable for

the crystal growth, while N-covered one is not, due to N-N bonds. We have studied the

adsorption of gallium-nitrogen compounds on the Ga-covered surface. For the adsorption of

compounds of Ga and N atoms, we have pointed out that unwanted Ga-Ga bonds are one

of serious problems for the steady growth, and DMG(NH2):NH3 and MMG(NH2)2:NH3 can

be a solution for this problem. This result contrasts the fact that parasitic reactions are not

suitable for the steady growth in the case of the AlGaN crystal growth.
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Chapter 6

Theoretical Study of Hydrogenated

Tetrahedral Aluminum Clusters

6.1 Introduction

Recently, hydrogen is paid much attention as new primary energy source because of the

depletion of fossil fuels and environmental issues such as global warming. There are three

basic research challenges – production, storage, application – for a “hydrogen economy”. Our

study in this paper is related to hydrogen storage. As is emphasized in the recent reports on

basic research challenges for hydrogen storage, its high efficiency is a key factor in enabling

the success of the hydrogen economy [1, 2]. Hydrogen storage systems must exhibit following

properties: appropriate thermodynamics, fast kinetics, high storage capacity (more than 10

wt %), effective heat transfers, high volumetric densities, long cycle lifetime, safety under

normal use [3]. To implement these properties, solid-state storage is useful. Metal hydrides,

chemical storage materials, nanostructured materials are well known for effective solid-state

storage systems.

Among them, we investigate aluminum hydrides in the form of aluminum clusters. More

specifically, we deal with an aluminum tetrahedral cage (Al4) and its hydrides which were

recently observed in experiment and confirmed to have enhanced stability [4, 5]. Although

the clusters found in Refs. [4, 5] are produced by vaporizing aluminum metal in hydrogen gas

and do not lead to immediate application for hydrogen storage material at this stage, it would

be useful to study their properties theoretically to further explore possible connection with
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more realistic materials for hydrogen storage. It is also interesting to study the tetrahedral

cage in the aspect that it is the fundamental structure of an aluminum icosahedral cage

(Al12) [6]. In this paper, we report on the structures of aluminum hydrides which can be

constructed by adding H2 molecules to an Al4 tetrahedral cluster.

We also evaluate and discuss the chemical properties of aluminum clusters and hydrogen

adsorption by using a novel method of the electronic stress tensor based on the Regional

Density Functional Theory (RDFT) and Rigged Quantum Electrodynamics (RQED) [7–19].

This paper is organized as follows. In the next section, we briefly explain our quantum

chemical computation method. We also describe our analysis method based on the RDFT

and the RQED, and in particular we define our bond orders and regional chemical potential.

In Sec. 6.3, we discuss our results. Sec. 6.3.1 shows structures of hydrogenated Al4 tetra-

hedral clusters and discuss their binding energies. In Sec. 6.3.2, we analyze the structures

using the electronic stress tensor and our bond orders. We summarize our paper in Sec. 6.4.

6.2 Theory and Calculation Methods

6.2.1 Ab initio electronic structure calculation

We perform ab initio quantum chemical calculation for several clusters of aluminum

hydrides derived from an Al4 tetrahedral cage. In this work, calculations are performed

by Gaussian03 program package [20] using density functional theory (DFT) with Perdew-

Wang 1991 exchange and correlation function (PW91) [21, 22]. The split-valence triple-zeta

6-311G** basis set [23–25] with polarization functions has been used. Optimization was

performed without imposing symmetry. The visualization is done using Visual Molecular

Dynamics (VMD) [26] and PyMOL Molecular Viewer programs [27].

6.2.2 RDFT analysis

In the following section, we use quantities derived from the electronic stress tensor to

analyze electronic structures of hydrogenated Al4 clusters. This method based on RDFT

and RQED [7–13, 19] include useful quantities to investigate chemical bonding and reactivity

such as new definition of bond order and regional chemical potential [14–16]. We briefly
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describe them below. (For other studies of quantum systems with the stress tensor in a

slightly different context, see Refs. 28–39.)

The basic quantity in this analysis is the electronic stress tensor density ←→τ S(r⃗) whose

components are given by

τSkl(r⃗) =
~2

4m

∑
i

νi

[
ψ∗
i (r⃗)

∂2ψi(r⃗)

∂xk∂xl
− ∂ψ∗

i (r⃗)

∂xk
∂ψi(r⃗)

∂xl

+
∂2ψ∗

i (r⃗)

∂xk∂xl
ψi(r⃗)−

∂ψ∗
i (r⃗)

∂xl
∂ψi(r⃗)

∂xk

]
, (6.1)

where {k, l} = {1, 2, 3}, m is the electron mass, ψi(r⃗) is the ith natural orbital and νi is its

occupation number.

Taking a trace of
↔
τ
S
(r⃗) can define energy density of the quantum system at each point

in space. The energy density εSτ (r⃗) is given by

εSτ (r⃗) =
1

2

3∑
k=1

τSkk(r⃗). (6.2)

We note that, by using the virial theorem, integration of εSτ (r⃗) over whole space gives usual

total energy E of the system:
∫
εSτ (r⃗)dr⃗ = E.

Regional chemical potential µR [7] is calculated approximately using εSτ (r⃗) [14].

µR =
∂ER

∂NR

≈ εSτ (r⃗)

n(r⃗)
, (6.3)

where n(r⃗) is the ordinary electron density at r⃗. Since electrons tend to move from high µR

region to low µR region, the distribution of µR maps the chemical reactivity.

Now, we define bond orders as εSτ (r⃗) or µR at “Lagrange point” [14]. The Lagrange point

r⃗L is the point where the tension density τ⃗S(r⃗) given by the divergence of the stress tensor

τSk(r⃗) =
∑
l

∂lτ
Skl(r⃗)

=
~2

4m

∑
i

νi

[
ψ∗
i (r⃗)

∂∆ψi(r⃗)

∂xk
− ∂ψ∗

i (r⃗)

∂xk
∆ψi(r⃗)

+
∂∆ψ∗

i (r⃗)

∂xk
ψi(r⃗)−∆ψ∗

i (r⃗)
∂ψi(r⃗)

∂xk

]
, (6.4)

vanishes. Namely, τSk(r⃗L) = 0. τ⃗S(r⃗) is the expectation value of the tension density

operator ˆ⃗τS(r⃗), which cancels the Lorentz force density operator
ˆ⃗
L(r⃗) in the equation of

99



motion for stationary state [11]. Therefore, we see that τ⃗S(r⃗) expresses purely quantum

mechanical effect and it has been proposed that this stationary point might characterize

chemical bonding [14]. Then, our newly defined bond orders are

bε =
εSτAB(r⃗L)

εSτHH(r⃗L)
, (6.5)

and

bµ =
εSτAB(r⃗L)/nAB(r⃗L)

εSτHH(r⃗L)/nHH(r⃗L)
. (6.6)

One should note normalization by the respective values of a H2 molecule calculated at the

same level of theory (including method and basis set).

We use Molecular Regional DFT (MRDFT) package [40] to compute these quantities

introduced in this section.

6.3 Results and Discussion

6.3.1 Structures and stability

The bare tetrahedral optimized structure of Al4 is shown in Fig. 6.1 (a). We found that

all the six Al—Al bonds have an equal length of 2.74 Å to a great accuracy. Al4 is considered

to have a structure very close to a regular tetrahedron. We note that this regular tetrahedral

structure is stable only for high spin state (multiplicity = 5). Also it should be noted that

the global minimum of Al4 cluster is planar rhombus with multiplicity 3 [41, 42], which has

lower energy by 0.5 eV. Below, we investigate the structures when hydrogens adsorbs to this

tetrahedral structure.

We first considered the adsorption of two hydrogen atoms. We examined many combi-

nations of adsorption sites and multiplicities 1, 3 and 5. We found that Al4H2 with two

hydrogen atoms at terminal sites as shown in Fig. 6.1 (b) and with multiplicity 3, has the

lowest energy.

We further added hydrogen atoms to this structure. Fig. 6.1 (c)-(g) show structures of

most stable isomer of Al4Hn (n = 4, 6, 8, 10 and 12) we have obtained. We have tried to

adsorb more hydrogen, without success. We could not find a stable structure for Al4H14.

Thus, we believe Al4H12 is the saturated structure of the Al4 cluster.
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 6.1: Optimized structures for Al4 tetrahedral cage and its hydrides Al4Hn (n =

2, 4, 6, 8, 10, 12). The bonds are drawn at which Lagrange points are found and our energy

density based bond order bε is shown.
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Here, we comment on the comparison with the structures which were reported in litera-

tures. The structure of Al4H4, Fig. 6.1 (c), is consistent with Ref. 5, 43 and Al4H6, Fig. 6.1

(d), is consistent with Ref. 5. As for Al4H12, there are several literatures which investigated

stable structures for this as a tetramer of alane AlH3 [43–46]. This structure also attracts

interest because of its high hydrogen storage capacity of 10.0 wt%, which exceeds the tar-

get value of a hydrogen storage system specified by some technical report [3]. Ref. 43 has

pointed out that structures in Refs. 44 and 45 are not stable in light of recent quantum

chemical computation and reported a structure with S4 symmetry as the global minimum.

Our results, Fig. 6.1 (g), agrees with the structure found in Ref. 43. Ref. 43 also reported

stable structures of Al4H10, including the structure we have found as Fig. 6.1 (f). They have

shown that there is a structure with lower energy but since that structure is chain-like, we

adopt the structure of Fig. 6.1 (f) as the one which is derived by adding hydrogen atoms to

Fig. 6.1 (e).

In order to investigate the stability of these structures, we here define two types of

binding energies (B.E.). The total B.E. of Al4Hm is

∆Etotal = E(Al4Hm)− [4E(Al) +mE(H)], (6.7)

where E(X) is the energy of X. ∆Etotal represents the sum of the strength of all the bonds

existing in the molecule. The average B.E. of H atoms is defined as

∆EH =
1

m
{E(Al4Hm)− [E(Al4) +mE(H)]} , (6.8)

which represents the strength of Al—H bond per one hydrogen atom. We use the structure

of Fig. 6.1 (a) to calculate E(Al4).

The results for these two types of binding energy are summarized in Table 6.1 and

Fig. 6.2. As is shown in Fig. 6.2 (a), ∆Etotal decreases as more hydrogens are adsorbed.

This indicates that adsorption of hydrogen stabilizes the cluster. On the other hand, as

we plot in Fig. 6.2 (b), ∆EH is almost same for Al4H2 and Al4H4 but increases as more

hydrogens are adsorbed. This is considered to be due to the increased hydrogens at bridge

sites for larger clusters than Al4H6. It should be stressed that lower total B.E. and higher

average B.E. of H atoms are favorable for hydrogen storage systems. This means that

hydrogen atoms turn into state such that they are easily desorbed, while clusters become

more stable as hydrogen are adsorbed.
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Table 6.1: Total B.E. ∆Etotal, average B.E. of H atoms ∆EH and mean nearest-neighbor

bond lengths dx-x of Al4Hn (n = 2, 4, 6, 8, 10 and 12). H(t) and H(b) denote a hydrogen at

the terminal site and the bridge site respectively.

∆Etotal (eV) ∆EH (eV) dAl-Al (Å) dAl-H(t) (Å) dAl-H(b) (Å)

Al4 −5.59 — 2.74 — —

Al4H2 −11.5 −2.94 2.66 1.61 —

Al4H4 −17.3 −2.94 2.60 1.61 —

Al4H6 −22.7 −2.84 2.63 1.60 1.74

Al4H8 −27.6 −2.75 2.69 1.59 1.77

Al4H10 −32.2 −2.66 3.11 1.59 1.74

Al4H12 −36.6 −2.59 3.47 1.59 1.72
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Figure 6.2: Total B.E. ∆Etotal (panel(a)) and average B.E. of H atoms ∆EH (panel (b)) of

Al4Hn (n = 0, 2, 4, 6, 8, 10 and 12).
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Figure 6.3: Energy density bond order bε (panel (a)) and chemical potential bond order

bµ (panel (b)) as functions of bond length. Data are taken from the structures of Al4Hn

(n = 0, 2, 4, 6, 8, 10 and 12) as shown in Fig. 6.1. Al–Al bonds with bridging hydrogen are

plotted with red crosses and those without are plotted with magenta plus marks. Al–H

bonds at terminal sites are plotted with blue asterisks and those at bridge sites are plotted

with green squares.

6.3.2 Stress tensor analysis of chemical bond

In the previous subsection, we have shown structures of aluminum hydrides derived from

the Al4 tetrahedral cage and discussed the stability of these clusters by the usual binding

energy. In this section, we discuss their chemical bonds using RDFT analysis introduced in

Sec. 6.2.2.

Actually, we have already used the RDFT concept to draw Fig. 6.1. There, we draw

bond lines when the Lagrange point is found between two atoms. The Lagrange point is

the point at which tension density vanishes (Sec. 6.2.2) and considered to be suitable to

define chemical bond [14–16]. Two types of bond orders, bε (Eq. (6.5)) and bµ (Eq. (6.6)),

are computed and summarized as functions of bond distance in Fig. 6.3. The bε describes

bond strength in relation to bond in H2 molecule and how particular bond contributes to

lowering of total energy of a structure, whereas bµ shows bond electrophilicity in relation to

H2 molecule as reference bond.

In the figure, we distinguish different types of bonds. Al–Al bonds with and without

bridging hydrogen are denoted by “Al–Al(b)” and “Al–Al”. Al–H bonds at terminal sites
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Figure 6.4: The largest eigenvalue of the stress tensor and corresponding eigenvector of

Al4H8 on the right panel. They are shown on a plane which includes three labeled atoms.

As for the eigenvectors, the projection on this plane is plotted. The positions of these atoms

are shown by the circle dots. Parenthesized numbers in the labels correspond to the numbers

on atoms on the left panel. As for the eigenvalue, we only show for the range [−0.01, 0.01]

with color scale shown on the right and the contours for 0.01 and −0.01 are shown by white

dashed lines. The triangle dots shows the locations of the Lagrange points.

are denoted as “Al–H(t)” and those at bridge sites are denoted as “Al–H(b)”. We find good

correlation between bond distance and our bond orders as has been found in other molecules

[14–16]. bε and bµ basically exhibit similar features regarding the correlation between bond

length in the sense that the slope for Al–Al bonds are larger than Al-H bonds. There is a

subtle difference in Al–H bonds between bε and bµ. For bε, Al-H(t) and Al-H(b) together

make a single slope but there seems to appear three families of slopes for bµ. Since bµ

concerns the regional chemical potential, the difference may reflect the chemical reactivity

of these bonds.

We can further examine features in chemical bonds by analyzing the electronic stress

tensor (Eq. (6.1)). For example, hydrogen bridged Al–Al bonds are investigated for Al4H8,

Al4H10 and Al4H12. Figs. 6.4, 6.5 and 6.6 plot the largest eigenvalue of the stress tensor

105



-0.01

-0.005

 0

 0.005

 0.01

(bohr)

(b
oh

r)

Al4H10

-6 -4 -2  0  2  4  6
-6

-4

-2

 0

 2

 4

 6

 

Al(1) Al(2)

H(11)

Figure 6.5: The largest eigenvalue of the stress tensor and corresponding eigenvector of

Al4H10, plotted in the same manner as Fig. 6.4.
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Figure 6.6: The largest eigenvalue of the stress tensor and corresponding eigenvector of

Al4H12, plotted in the same manner as Fig. 6.4.
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and corresponding eigenvector on a plane with includes three atoms which participate in

the bridging bonds, respectively for Al4H8, Al4H10 and Al4H12. Since the eigenvectors have

three spatial components, namely they are 3D objects, we express them by projecting on

the plane. In all these clusters, there are Lagrange points between Al and H. There is a

region with positive eigenvalue of the stress tensor (tensile stress) between them, which is

typical for covalent bond involving H atom [12, 18]. Also, there is a flow of corresponding

eigenvectors connecting Al and H which indicates a formation of strong bonding.

For Al4H8, which has a Lagrange point between Al atoms, also has a flow of eigenvectors

between them. In contrast to the case of Al-H bond, the eigenvalue of the stress tensor

turns out to be negative (compressive stress) indicating a different nature of bonding. In

the case of Al4H10, we did not find a Lagrange point between Al atoms. In Fig. 6.5, there is

a similar flow of eigenvectors as in Fig. 6.4 between Al atoms, but this structure is shifted

off the region between Al atoms likely to be because the H atom came close to Al atoms.

Therefore we may conclude there is not so much direct interaction between Al atoms as to

call bonding. We can reach similar conclusion for the case of Al4H12. Fig. 6.6 shows similar

structure but it is further away from the region between Al atoms and in fact (when we see

the flow in 3D) the flow is connected to H(11) atom which locates at slightly off this plane.

This indicates that Al–Al bonding is completely disrupted by the existence of H atoms.

Another example of the electronic stress tensor analysis is provided for Al4H10 in Fig. 6.7.

This concerns the somewhat radical structural change between n = 0, 2, 4, 6, 8 and n = 10, 12

of Al4Hn. As shown in Fig. 6.1, in terms of Lagrange points, four Al atoms form a tetrahedral

cage for n ≤ 8 and but the cage seems to be broken for n ≥ 10. This is also seen in

a jump in the average Al-Al distance (Table 6.1). We can confirm this by analyzing the

stress tensor density. As is shown in Fig. 6.7, there is a region between Al(2) and Al(3) in

which eigenvectors go perpendicular to the plane (so that expressed by dots), showing total

disconnection of these atoms.

6.4 Summary

In this paper, we investigated the structures of aluminum hydrides derived from a tetra-

hedral aluminum (Al4) cluster using ab initio quantum chemical calculation. We reported
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Figure 6.7: The largest eigenvalue of the stress tensor and corresponding eigenvector of

Al4H10 (but on the different plane from Fig. 6.5), plotted in the same manner as Fig. 6.4.

stable structures of Al4Hn (n = 0, 2, 4, 6, 8, 10 and 12), which include structures already

found in the literature who had investigated the hydrogenated aluminum clusters from

other aspects. We calculated binding energies of the aluminum hydrides and found inter-

esting properties as hydrogen storage material: stability of the clusters increases as more

hydrogen atoms are adsorbed, while stability of Al–H bonds decreases.

We also analyzed and discussed the chemical bonds of those clusters by using the elec-

tronic stress tensor. The bond orders defined from energy density and regional chemical

potential (which are in turn calculated from the stress tensor) are shown to have a good

correlation with respect to the bond distance and to be able to distinguish types of bonding

to some extent. As far as metallic elements are concerned, our bond order analysis had been

only applied to Pt clusters [16] so the present analysis can be useful basis for further research

using our stress tensor based analysis. This is also true for the eigenvalue and eigenvector

analysis of the stress tensor. We have found that Al–H bonds have a positive eigenvalue

(tensile stress) at the region between the atoms where as Al–Al bonds have a negative value.

This indicates that the stress tensor can be a powerful tool to classify chemical bonding and

may provide a deeper insight into the nature of chemical bonds.
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Chapter 7

Aluminum Hydride Clusters as

Hydrogen Storage Materials and

Their Electronic Stress Tensor

Analysis

7.1 Introduction

Aluminum hydride is one of promising materials for hydrogen storage. For example,

AlH3 has very high volumetric hydrogen density (∼ 150 kgH2/m
3) and gravimetric hydrogen

density (∼ 10 wt%). Also, it is known that the hydrogen desorption reaction proceeds with

relatively low temperature (∼ 400 K) compared with other metal hydrides. These attractive

properties lead to a lot of experimental and theoretical studies of aluminum hydride. Among

them, nano-size aluminum hydride clusters attract much attention due to their different

properties from bulk materials, which sometimes turn out to be more advantageous as

hydrogen storage material.

To achieve a goal to find a useful hydrogen storage material, it would be important for

theoretical side to predict the stability of the clusters and details of hydrogen desorption

reactions. We report results of such computational studies for aluminum hydride clusters

with relatively small numbers of aluminum atoms. We introduce our novel approach to

analyse electronic structures of molecules using “electronic stress tensor” and apply this
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method to the aluminum hydride clusters. We, in particular, discuss chemical bonds between

aluminum and hydrogen. We also introduce our recently-developed way to study electronic

structures of molecules under the existence of electronic current. We apply this to the

aluminum hydride clusters and investigate its effect on the aluminum-hydrogen bonds. This

may lead to provide us a hint to control hydrogen desorption from materials.

7.2 Theory and calculation method

7.2.1 Electronic structure calculation

We perform ab initio quantum chemical calculation for hydrogenated aluminum clusters.

The optimizations of the geometries of the clusters and electronic structures are calculated

by GAUSSIAN03 program package [1] using density functional theory (DFT) with B3LYP

functional [2,3]. 6-311++G** basis set [4-6] is used for the diffuse and polarization functions.

As for the calculation of the electronic state in electronic current, we follow our recently

developed procedure, which is described in Ref. 7.

7.2.2 Regional DFT calculation

The theoretical method utilized in this study (Regional Density Functional Theory:

RDFT) allows one to assign energy density to any point in space according to associated

electronic density. The obtained energy density might be decomposed into following en-

ergy densities: the kinetic energy density, the external potential energy density, and the

interelectron potential energy density [8]. The details of the theory can be found elsewhere

[8-15] and here we would like to only briefly review a part of it, directly related to this

study. The non-positively defined kinetic energy density nT (r⃗) [9] plays a particular role in

the theoretical method used in this study. The unique concept of electronic drop (RD) and

electronic atmosphere (RA) regions, separated with interface surface (S) is used to define

shape of atoms and molecules [9]. In the RD region, where kinetic energy density, the clas-

sical movement of electrons is granted, while in RA (nT (r⃗) < 0) only quantum effects for

electrons are possible and the S defines a turning point for an electron. Below, m denotes
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the electron mass and νi denotes the occupation number of the natural orbital ψi(r⃗). Here,

nT (r⃗) = −
~2

4m

∑
i

νi[ψ
∗
i (r⃗)∆ψi(r⃗) + ∆ψ∗

i (r⃗)ψi(r⃗)], (7.1)

and

RD : nT (r⃗) > 0,

RA : nT (r⃗) < 0, (7.2)

S : nT (r⃗) = 0.

The electronic structure of system under study is characterized using electronic stress

tensor τSkl(r⃗) [9-15]

τSkl(r⃗) =
~2

4m

∑
i

νi

[
ψ∗
i (r⃗)

∂2ψi(r⃗)

∂xkxl
− ∂ψ∗

i (r⃗)

∂xk
∂ψi(r⃗)

∂xl
+
∂2ψ∗

i (r⃗)

∂xkxl
ψi(r⃗)−

∂ψ∗
i (r⃗)

∂xl
∂ψi(r⃗)

∂xk

]
,

(7.3)

which describes the internal distortion of electronic density. The three eigenvalues of stress

tensor and their eigenvectors determining principal axis can be used for geometrical visual-

ization of bonding as well as quantitative evaluation of its properties and reactive regions

in molecules [16-18]. The trace over the eigenvalues of stress produces energy density εSτ (r⃗)

in non-relativistic limit of the Rigged QED [12],

εSτ (r⃗) =
1

2

∑
k

τSkk(r⃗), E =

∫
d3r⃗εSτ (r⃗). (7.4)

The total force acting on electrons in the system is composed of Lorentz force
ˆ⃗
LS(r⃗) and

tension force ˆ⃗τS(r⃗). For system in stationary state the total force at every point in space

equals zero, thus Lorentz force exactly cancels the tension force.

ˆ⃗
F S(r⃗) = ˆ⃗τS(r⃗) +

ˆ⃗
LS(r⃗), (7.5)

⟨ˆ⃗τS(r⃗)⟩+ ⟨ ˆ⃗LS(r⃗)⟩ = 0, (7.6)

τSk(r⃗) = ∂lτ
Skl(r⃗)

=
~2

4m

∑
i

νi

[
ψ∗
i (r⃗)

∂∆ψi(r⃗)

∂xk
− ∂ψ∗

i (r⃗)

∂xk
∆ψi(r⃗) +

∂∆ψ∗
i (r⃗)

∂xk
ψi(r⃗)−∆ψ∗

i (r⃗)
∂ψi(r⃗)

∂xk

]
.

(7.7)
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If one investigates the tension force in the bonding regions of molecule in stationary state,

one might find a point where (along with condition F⃗ S(r⃗) = 0) the tension (as well as

Lorentz force) itself will vanish and any force acting on electron density at that point will

be zero [9-15]. The point is called a Lagrange point (r⃗Lagrange) and it is a stationary point

for electron density distribution in a molecule [16,17]. The properties calculated at r⃗Lagrange

can be used to characterize respective interaction between atoms. The energy density based

bond order indices were proposed [16,17]:

bε =
εSτAB(r⃗Lagrange)

εSτHH(r⃗Lagrange)
, (7.8)

bµ =
εSτAB(r⃗Lagrange)

nS
AB(r⃗Lagrange)

(εSτHH(r⃗Lagrange)

nS
HH(r⃗Lagrange)

)−1

, (7.9)

(7.10)

where εSτAB(r⃗Lagrange) is the energy density at the Lagrange point of bond of interest and

εSτHH(r⃗Lagrange) is the energy density at Lagrange point of the H-H bond in a H2. In bµ index,

nAB(r⃗Lagrange) and nHH(r⃗Lagrange) denote corresponding electronic density respectively. The

ratio of energy density to electronic density gives a linear approximation of the regional

electronic chemical potential µR [16-18]

µR =
∂ER

∂NR

≈ εSτ (r⃗)

nR(r⃗)
, (7.11)

thus bµ index is called chemical potential bond order.

These quantities are calculated by Molecular Regional DFT program (MRDFT) package

developed by our group [19].

7.3 Results and discussion

7.3.1 Energy density based bond order and spindle/pseudo-spindle

structures

We begin by showing the results of the Lagrange point search and bond order calculation

for Al clusters (Aln, n = 2 − 8) and hydrogenated Al clusters (AlnHm , n = 1 − 8 and

m = 1, 2). The optimized structures are obtained based on those reported in Ref. 20. After

we obtain the structures, we search for the Lagrange point, where tension vector vanishes,
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Figure 7.1: The relation between bond length and energy density bond order bε for Al

clusters (Aln, n = 2− 8) and hydrogenated Al clusters (AlnHm , n = 1− 8 and m = 1, 2).

between atom pairs and if found, we compute the energy density and bond order as Eq. (8).

For similar calculation for hydrogenated tetrahedral Al4 clusters, we refer to Ref. 21. We

summarize the result in Fig. 7.1. We plot bond order against the bond length for all the

bonds in the clusters mentioned above.

In the figure, we distinguish between different types of bonding. The types we consider

are Al-Al, terminal Al-H, two-fold Al-H and three-fold Al-H. Here, two-fold Al-H bond is

associated with the H atom bridging two Al atoms like Al-H-Al and, similarly for three-fold

Al-H bond with the H atom bonded to three Al atoms. As for Al-H bonds, although two-

fold and three-fold bonds have lower bond order than terminal ones, they seem to be on

the same family of curve in the plot. Hence we expect there is not much difference among

Al-H bonds with different number of coordination. As for Al-Al bonds, bare Al clusters and

hydrogenated Al clusters are on the same curve in the plot. Therefore it can be said that

the bonding nature do not change much upon hydrogenation.

We next examine Al-H-Al bridging bond more closely via electronic stress tensor. We plot

the largest eigenvalue of the electronic stress tensor and corresponding eigenvector, which is
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Figure 7.2: The largest eigenvalue of the electronic stress tensor and corresponding eigen-

vector for Al-H-Al bridging bond. The solid lines show zero contour of the eigenvalue and

regions including Al atoms has negative values.

considered to give the directionality of the chemical bond. We see a bundle of flow lines that

connects Al and H. We see similar structure between two Al’s. The difference is that the

former has a positive eigenvalue region (“spindle structure”) and the latter has a negative

eigenvalue region (“pseudo-spindle structure”). The spindle structure defines covalency of

the bonding. The pseudo-spindle structure is known to represent some different types of

bonding. One of them is a bond between metallic atoms as in this case.

7.3.2 Electronic structure under the presence of electronic cur-

rent and the electronic stress tensor

We analyze the electronic structure of AlH3 by the electronic stress tensor when there

is electronic current. We we use our recently developed procedure, which is described in
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Ref. 7 for the calculation of the electronic structure under the existence of the electronic

current. In Ref. 7, the electronic current is realized by the boundary condition on HOMO,

which is constrained to have a form as exp(−axx2) exp(−ayy2) exp(ikzz). Here, ax and ay

are constants which are taken to be 0.01 a.u. and kz is a parameter for the electronic current.

We take kz to be -0.1 and -0.5 below.

The results of stress tensor calculation are shown in Fig. 7.3. The panel (a) shows the

result when there is no electronic current. There is a spindle structure between three Al-H

pairs but the flow lines do not connect between two H atoms. For kz = -0.1, shown in

the panel (b), we see the spindle structure is formed between one of the H-H pairs (center

bottom part of the figure). Other H-H pairs seem to exhibit pseudo-spindle structure. For

kz = -0.5, as shown in the panel (c), the spindle structure between the H-H pair is changed

to the pseudo-spindle structure. The turning point is about kz = -0.3.

7.4 Summary

In this paper, we have studide the chemical bonds of small Al clusters (Aln, n=2-8)

and hydrogenated Al clusters (AlnHm , n=1-8 and m=1,2) using electronic stress tensor.

We calculated the energy density based bond order for these clusters and found that we

can classify bond type on the bond length v.s. bond order plot. We have also studied the

electronic structure under the presence of electronic current by the electronic stress tensor

for AlH3 molecule. When we turned on the electronic current, a spindle structure first

formed between one of the H-H pairs and as we increase the electronic current, the spindle

structure changed to a pseudo-spindle structure.
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Figure 7.3: Comparison of the largest eigenvalue of the electronic stress tensor and corre-

sponding eigenvector for AlH3 : (a) no electronic current, (b) electronic current kz = -0.1,

and (c) kz = -0.5. The solid lines show zero contour of the eigenvalue.
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Chapter 8

Theoretical Study of Adsorption of

Lithium Atom on Carbon Nanotube

8.1 Introduction

Carbon nanotubes (CNTs) have been paid much attention since its discovery in 1991 [1],

due to their outstanding mechanical and electric properties [2–5]. Very high Young’s modu-

lus of CNTs has been predicted by theoretical studies [3] and confirmed in experiments [4].

Electric properties such as conductance are dependent on the radius and chirality of a CNT

through the change of band gap [5, 6].

CNTs have been considered as a candidate of anode materials for lithium ion battery. A

theoretical study reported that the density of lithium insertion attains LiC2, since both the

interior and exterior of CNTs are suitable for storage [7]. This lithium storage capability is

three times higher than that of normal graphite, LiC6 [8]. However, primary experiments

reported only a poor increase of the reversible capacity of lithium compared to that of

graphite [9]. In addition, a very large amount of irreversible lithium storage was reported.

These features suggests that lithium are stored in the inside of CNTs as unavailable form.

It was reported that the reversible capacity is independent of whether the ends of single

wall CNTs (SWCNTs) are open, though the amount of lithium storage is increased due to

the diffusion into the inside of CNTs [10]. This imply two facts. One is that the direct

diffusion through the sidewalls of pristine CNTs is difficult for lithium ions. Second, lithium

(not necessarily ions) stored in the interior of CNTs through open ends of CNTs is not
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suitable for lithium ion battery as reversible resources. In other words, electrolyte molecules

and lithium ions solvated with the electrolyte molecules can freely enter into the interior of

CNTs, and this inner surface of the CNTs does not provide available site for lithium ion

storage, since the inner surface is similar to the basal plane of the graphite in the electrolyte.

Recently, some ideas using steric effects are proposed to improve the reversible capacity of

lithium ions [11, 12]. It was proposed that the electrolyte molecules and the solvated lithium

ions are eliminated by screen materials or defects on the end of CNTs and only bare lithium

ions are stored in interior of the CNTs after the desolvation of the solvated lithium ions [12].

They argued that the inner surface of CNTs can provide available site for the bare lithium

ions. In their results, the density of lithium storage only in the interior of the (12,0) zigzag

SWCNT was shown as LiC6 by ab intio quantum chemical calculations.

In this study, we investigate the adsorption of lithium atoms on the surface of the (12,0)

SWCNT and the limit of the storage by using ab initio quantum chemical calculations. We

clarify the difference between the adsorptions on the inside and outside of the SWCNT in

viewpoints of charge transfer and regional chemical potential density, which is defined by

one of the authors [13, 14]. As a result, the advantage of the adsorption on the inside of

this SWCNT is shown. We also study the storage density on the interior of the SWCNT

in terms of adsorption energy and charge transfer. As a result, we find that the interaction

between lithium atoms is a key ingredient for this thin tube. We show that this interaction

changes as lithium density increases, in viewpoints of the local charge density

8.2 Computational Details

We use the (12,0) zigzag type CNT model. The model is shown in Fig. 8.1. This model

consists of 144 carbon atoms and 24 hydrogen atoms, which are used for the termination of

dangling bonds. The structure of this model is determined by the geometrical optimization

calculation. The positions of all atoms are relaxed. As a result, the averages of bond lengths

are calculated as 1.43 Å for C-C bonds and 1.09 Å for C-H bonds.

In this paper, we study this SWCNT by using ab initio quantum chemical calcula-

tions. Electronic structure calculations are performed by density functional theory (DFT).

In DFT calculations, the Lee-Yang-Parr gradient-corrected functions [15] is selected for
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4.76Å

:1.09Å:1.43Å

Figure 8.1: The (12,0) SWCNT model. Dark (black) circles are carbon atoms, and light

(blue) ones are hydrogen atoms.

the correlation interaction, and it is employed with Becke’s hybrid three parameters [16]

for generalized-gradient-approximation exchange-correlation functions. These calculations

are carried out by Gaussian03 program package [17]. The basis sets are chosen as the

6−31G* basis set for carbon and lithium atoms [18, 19] and the 3−21G** basis set for

hydrogen atoms [19, 20]. Zigzag SWCNTs with hydrogen termination are known to have

spin polarized ground states [21]. Hence, we choose the lowest energy state among all spin

multiplicity states in our calculations. Septet state gives the lowest one for the (12,0) CNT

without lithium atoms.

We analyze electronic states and properties using quantum energy density, which is

proposed by one of the authors [13, 22, 23]. One of the quantities of the quantum energy
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density, the electronic kinetic energy density nT (r⃗), is defined as,

nT (r⃗) =
1

2

∑
i

νi

{[
− ~2

2m
∆ψ∗

i (r⃗)

]
ψi(r⃗) + ψ∗

i (r⃗)

[
− ~2

2m
∆ψi(r⃗)

]}
, (8.1)

where m is the electron mass, ψi(r⃗) is the ith natural orbital, and νi is the occupation

number of ψi(r⃗). The integration of kinetic energy density over the whole space is the

kinetic energy of a system. In classical mechanics, only positive kinetic energy is allowed,

while negative kinetic energy appears in quantum mechanics. This means that electrons can

also exist in regions with negative kinetic energy density by quantum effects. The surface

of zero kinetic energy density can be interpreted as the boundary of a covalent molecule.

The electronic structure of a system is characterized using electronic stress tensor τSkl(r⃗),

τSkl(r⃗) =
~2

4m

∑
i

νi

[
ψ∗
i (r⃗)

∂2ψi(r⃗)

∂xk∂xl
− ∂ψ∗

i (r⃗)

∂xk
∂ψi(r⃗)

∂xl

+
∂2ψ∗

i (r⃗)

∂xk∂xl
ψi(r⃗)−

∂ψ∗
i (r⃗)

∂xl
∂ψi(r⃗)

∂xk

]
, (8.2)

which describes the internal distortion of electronic density. The three eigenvalues of stress

tensor and their eigenvectors determining principal axis can be used for quantitative evalua-

tion of properties of bonding and reactive regions in molecules. The trace over the eigenval-

ues of stress tensor produces energy density ϵSτ (r⃗) in the non-relativistic limit of the Rigged

QED,

ϵSτ (r⃗) =
1

2

∑
k

τSkk(r⃗), (8.3)

E =

∫
d3r⃗ϵSτ (r⃗). (8.4)

The ratio of energy density to electronic density gives a linear approximation of the regional

electronic chemical potential µR,

µR =
δER

δnR

≈ ϵSτ (r⃗)

nR(r⃗)
. (8.5)

In this work, the calculations of these quantities of quantum energy density are carried out

by using Molecular Regional DFT program package (mrdft) [24].
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Figure 8.2: Optimized structures of the models of (12,0) SWCNTs with one lithium atom.

Panels (a) and (b) show the structures of the CNT with one inside and outside lithium

atom, respectively.

8.3 Result and Discussion

8.3.1 The electronic structure of one lithium adsorbed carbon

nanotube models

First, we consider the difference between the adsorption of lithium atom on the inside

and outside of the (12,0) SWCNT. Optimized structures of the models of (12,0) SWCNTs

with one lithium atom are shown in Fig. 8.2. Panels (a) and (b) show the structures of the

CNT with one inside and outside lithium atom, respectively. In geometrical optimization

calculations, the positions of all atoms are relaxed. The deformation of the CNT by the
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attachment of a Li atom is negligibly small. The optimized distances between the Li atom

and CNT are 1.87 Å and 1.70 Å for the inside and outside adsorption, respectively.

The lithium adsorption energy in this work is defined as,

∆E = ECNT+NLi×Li − ECNT −NLi × ELi, (8.6)

where ELi is the energy of one lithium atom and NLi is the number of lithium atoms. The

adsorption energy of one lithium atom on the inside is −0.98 eV, while that on the outside

is −0.86 eV. As a result, the inside of the CNT is more favored for the adsorption of one

lithium atom. This is in contrast to some results for the attachment on C60[25], in which

exohedral fullerenes are more favored. In the following, we study the reason of the difference

of the adsorption energy.

To clarify the interaction between the CNT and the lithium atom, the charge transfer

is known to be important [26, 27]. Hence, we analyze the NBO charge of the lithium atom.

The NBO charge of the lithium atom of the inside of the CNT is calculated as 0.92, while

that of the outside is 0.89. This small difference of the charge transfer is attributed to

a curvature of the CNT. For the lithium atom on the outside, the nearest carbon atoms

are C(1) and C(4), where the position of each carbon atom is shown in Fig. 8.2 by the

number in a parenthesis. On the other hand, the nearest ones are C(2), C(3), C(5), and

C(6) for the inside. In addition, the distances from the inside Li atom to carbon atoms

in next hexagonal rings are shorter than those from the outside one. Hence, for the inside

adsorption, the transfered charge from the Li atom can be distributed for the larger number

of carbon atoms.

The distribution of the difference of electron density, i.e., charge transfer, is shown in

Fig. 8.3. The charge transfer is given by the difference of the electron density,

∆ρ(r⃗) = ρ(r⃗)CNT+NLi×Li − ρ(r⃗)CNT − ρ(r⃗)NLi×Li, (8.7)

where ρ(r⃗)X is the electron density of a system, X. Panels (a) and (b) are the results of

the lithium adsorption on the inside of the CNT, while panels (c) and (d) are those for the

outside adsorption. Panels (a) and (c) show the plane perpendicular to the axis. Panel (b)

(panel (d)) shows the plane including the Li, C(2), and C(3) atoms (Li, C(1), and C(4)),

where these carbon atoms are the nearest from the Li atom. The circles in panels (a)

and (c) mean the cross section of our CNT model. As seen in Fig. 8.3, electrons around
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Figure 8.3: Distribution of the difference of electron density. Panels (a) and (b) are the

results of the lithium adsorption on the inside of the CNT, while panels (c) and (d) are

those on the outside. Panels (a) and (c) show the plane perpendicular to the axis. Panel (b)

(panel (d)) shows the plane including the Li, C(2), and C(3) atoms (Li, C(1), and C(4)),

where a carbon atom specified in a parenthesis corresponds to that shown in Fig. 8.2. The

circles in panels (a) and (c) mean the cross section of our CNT model.
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Figure 8.4: The zero kinetic energy density surface. Panels (a) and (b) are the results of the

lithium adsorption on the inside and outside of the CNT, respectively. Panel (b) (panel (d))

shows the plane including the Li, C(2), and C(3) atoms (Li, C(1), and C(4)), where a carbon

atom specified in a parenthesis corresponds to that shown in Fig. 8.2.

lithium atoms move to the regions around carbons for both cases. We can see some common

properties for both distribution patterns. For example, the electron density decreases behind

the lithium atom, and the density increases between Li and C atoms and around C atoms.

However, one outstanding feature of the inside adsorption is the larger density increase

around carbon atoms in next hexagonal rings as seen in panel (a). This is due to the

difference of the distance from the lithium atom as explained above.

In Fig. 8.4, we show the zero kinetic energy density surface. The definition of the kinetic

energy density is given in Eq. (8.1). Panels (a) and (b) show the results for the same

planes in Fig. 8.3(b) and (d), respectively. It has been shown that this quantity classifies

whether a bond has covalent property [13, 22, 23]. The positive kinetic energy region

extends between atoms if the bond between the atoms has covalent property. This feature

can be seen between carbon atoms in panel (b). For a bond with ionic property, we see

two separate positive kinetic energy regions associated with two atoms. As seen in Fig. 8.4,

since the positive kinetic energy regions associated with Li and C atoms are separate for

both inside and outside adsorptions, we have confirmed that covalent property is weak and

an ionic property is seen for the Li-C bond by our kinetic energy density. Hence, the inside

adsorption is favored due to the difference of the charge transfer, which originates in the
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Inside Outside

Figure 8.5: Regional chemical potential density of our CNT model without the lithium atom

on the zero kinetic energy surface.

curved structure of the CNT wall.

Our novel analysis tool, the linear approximation of the regional chemical potential

density [13, 14], supports the above conjecture. We show the regional chemical potential

density on the zero kinetic energy density surface in Fig. 8.5. As seen in this figure, the value

of the regional chemical potential density of the hexagon on the outer surface is larger than

that on the inner surface. As seen in the definition, the regional chemical potential density

means the energy per one electron. Our result shows that electrons on the inner surface

have lower energy. The region where electrons have lower energy is more favored for the

increase of electron density. For the attachment of lithium atoms, the charge is transfered

from lithium atoms to the CNT as shown above. Therefore, the interior of isolated SWCNTs

is more favorable for the attachment of lithium atoms compared to the exterior of them.

8.3.2 The electronic structure of multiple lithium atoms adsorp-

tion model

In previous subsection, we have confirmed that the interior of the (12,0) SWCNT is

favored for the adsorption of a lithium atom compared to the exterior and shown a reason

of this feature. In this subsection, we consider multiple attachment of lithium atoms on the
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Figure 8.6: The optimized structures of the models of (12,0) SWCNTs with lithium atoms.

In panels (a)-(d), two, three, four, and six lithium atoms are attached on the inside of the

CNT.
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Figure 8.7: Adsorption energy as the function of the number of lithium atoms.

inside of our CNT model.

The structures of the models of (12,0) SWCNTs with lithium atoms are shown in Fig. 8.6.

In panels (a)-(d), two, three, four, and six lithium atoms are attached on the inside of

the CNT, respectively. The structure of these models are fully optimized by geometrical

optimization calculations. We show also Li-Li and Li-CNT distances in Fig. 8.6. The

deformation of our CNT models are very small. On the other hand, in a result of first

principles calculations by other group [7], the deformation of CNTs by the intercalation of

lithium was reported as about 10% in the aspect ratio. In their result, the density of lithium

atom are much larger than ours. We consider that their deformation is attributed to the

difference of the density. In Fig. 8.6(b), the Li-Li distance is shorter than that for Li2@C60

whose Li-Li distance is about 3 Å[28]. We consider that this difference of the length is due

to a difference of reactivity between our CNT model and C60.

In Fig. 8.7, the adsorption energy of lithium atoms is shown as a function of the number

of lithium atoms, which is defined in Eq. (8.6). The adsorption energy of four lithium atoms

is the largest (−1.13 eV) in this result, and the six lithium structure is strongly destabilized

from the four lithium structure. This feature is explained from the viewpoint of the Li-Li

distance. As seen from Fig. 8.6, the Li-Li distance becomes short as the number of lithium

atoms increases. Particularly, for the insertion of six lithium atoms, Li-Li distances are

about 2.9 Å, which is shorter than that of the bulk lithium structure (3.48 Å). Hence, a

repulsive force between lithium atoms is expected for this short distance. In contrast, for

four lithium model, Li-Li distances are very close to the value of the bulk structure and
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Figure 8.8: NBO charge of lithium atoms as the function of the number of lithium atoms.

The solid line is the total charge, and the dashed line is the average for the charge at the

number of lithium atoms.

the Li-Li interaction is expected to stabilize these lithium atoms. Therefore, we consider

that Li-Li interaction is important for NLi ≥ 4 for the (12,0) SWCNT. On the other hand,

the Li-CNT distance is the longest for four lithium atoms. Hence, the stabilization of the

four lithium model originates more significantly in the Li-Li interaction compared to other

models. The decrease of the distance for six lithium atoms is due to the smallness of the cross

section of the CNT. For six lithium atoms, lithium atoms does not occupy enough space,

and hence they stay near the surface of the CNT. As a result, the six lithium structure is

less stabilized than the four lithium one, due to the repulsion between lithium atoms arisen

from this narrow space of the inside of the CNT.

Next, we discuss the difference of the stabilization in terms of the NBO charge of lithium

atoms. In Fig. 8.8, the NBO charge is shown as the function of the number of lithium atoms.

The solid line is the total charge, and the dashed line is the average for the charge per the

number of lithium atoms. The average is small for NLi ≥ 3, while the total charge is not

small. The charge transfer is one of important factors for the stabilization of a system as

attractive force between C-Li atoms and repulsive force between Li-Li atoms. For NLi ≤ 2,

the attractive force is dominantly important, since the average charge is the same for NLi = 1

and 2. On the other hand, the importance of the repulsive force is significant for NLi ≥ 3,

since the average value of charge is smaller than those for NLi = 1 and 2. Hence, the

stabilization mechanism is not so simple and we study the charge transfer in detail below.
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The distribution of the difference of electron density is shown in Fig. 8.9. Panels (a),

(c), (e), and (g) show the plane perpendicular to the axis. Panels (b), (d), and (h) show the

plane including the Li, C(2), and C(6) atoms, and panel (f) is for the Li, C(2), and C(5)

atoms, where these carbon atoms are the nearest two C atoms. The circles in panels (a), (c),

(e), and (g) mean the cross section of our CNT model. As seen in Fig. 8.9, electron density

increase in the regions around carbons and between the nearest C atoms and the lithium

atom as one lithium attachment. As seen in panels (a) and (b), the charge distribution

difference for NLi = 2 is very similar to that for NLi = 1, and hence the stabilization

mechanism is also considered to be the same. For three, four, and six lithium atoms, the

electron density around the center of the CNT increases. This is caused by repulsive force

by negative charge stored in the CNT wall. It can also be said that this charge increase is

induced by the repulsion between lithium atoms, since this feature is only seen for NLi ≥ 3

due to the high density of lithium atoms. This charge increase arises from the narrow space

in the CNT. As a result, the stabilization is not simply explained by the amount of charge

transfer. Although the largest total charge transfer occured for NLi = 6, this large charge

also induces large repulsive force between lithium atoms.

8.4 Conclusions

In this study, we have investigated the adsorption of lithium atoms on the surface of the

(12,0) zigzag CNT to clarify the interaction between lithium atoms and between a lithium

atom and the CNT. For one lithium atom attachment on this CNT, it has been shown that

the inside of this (12,0) zigzag CNT is more favorable than the outside. We have shown that

after the lithium attachment, charge is transfered from the Li atom to the CNT and the

bond between the Li atom and the CNT has ionic property. The amount of charge transfer

is larger for the inside attachment than the outside. This feature is studied for the lithium

atom adsorption on the (12,0) zigzag CNT in this work. The amount of charge transfer

should be dependent on the curvature of the radius of a CNT, and hence it is important for

us to investigate this feature for a CNT with different radius.

We have also shown that four lithium insertion for one layer of the carbon hexagon is

the most stable. Our model have shown that the electron density around the center of the
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Figure 8.9: Distribution of the difference of electron density. Panels (a), (c), (e), and (g)

show the plane perpendicular to the axis. Panels (a), (c), (e), and (g) show the plane

perpendicular to the axis. Panels (b), (d), and (h) show the plane including the Li, C(2),

and C(6) atoms, and panel (f) is for the Li, C(2), and C(5) atoms, where these carbon

atoms are the nearest two C atoms. The circle in panels (a), (c), (e), and (g) means the

cross section of our CNT model.
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CNT increases significantly for NLi ≥ 3. This increase originates in the repulsion between

lithium atoms. For the six lithium atom structure, the distance between lithium atoms

is shorter than that of the lithium bulk. Hence, the repulsive force between lithium atoms

strongly destabilize the system. The structure of four lithium on one layer is much favorable

compared to that of six.
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Chapter 9

Local Dielectric Property of Cubic,

Tetragonal, and Monoclinic Hafnium

Oxides

9.1 Introduction

Recently, semiconductor integrated circuits have been downsized rapidly. Although sil-

icon dioxide (SiO2) is well known as desirable gate insulator, it will reach its limit for

maintaining reliability, since the thickness of the gate insulator becomes a few nanometers.

Leak current in complementary metal-oxide-semiconductor (CMOS) is significantly large

for very thin films of silicon dioxide. This leak current is a serious problem in viewpoints

of the reliability of advanced electronic devices and the loss of electric power. To achieve

further downsizing beyond the limit of the Moore’s law, many researchers have argued that

high-k materials such as hafnium dioxide (HfO2) are superior to silicon dioxide as hopeful

materials for gate dielectric thin film due to their high dielectric constant [1, 2].

Hafnia has several crystal structures, and their dielectric constants are dependent on

them. The dielectric constant of the most stable monoclinic structure is reported to be

about 22 [3], while metastable structures, cubic and tetragonal are reported to have higher

dielectric constants. From the ab initio calculation, the dielectric constants of the cubic

and tetragonal hafnia are predicted to be about 20-30 and 40-70, respectively [4, 5]. Ex-

perimentally, the cubic or tetragonal structures of hafnia derived by yttrium-doped hafnia
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or a mixture film of HfO2 and ZrO2, show high dielectric constants of about 30 [6, 7]. In

recent works, it has also been reported to fabricate the cubic hafnia without doping other

elements owing to new metastable phase control technology [8]. The dielectric constant of

their samples is about 40. While it is metastable in room temperature, many experimental

attempts to fabricate the cubic and tetragonal hafnia are made with these technique. Hence,

the cubic and tetragonal hafnia may be available as device material in the near future.

High-k gate insulator films such as hafnia films will be important for very small CMOS

chips, which have a thickness of few nanometers. For such small materials, the position

dependence of physical quantity is significantly important. For example, it is recently re-

ported that the leak current is dependent on a position in materials [9]. Hence, to study

the dielectric properties of nanosize materials, the macroscopic dielectric constant is not

appropriate. It is important to investigate the local dielectric property.

In our laboratory, we study nano-materials in terms of local density quantities defined

by Tachibana [10–19]. In particular, in our previous works [12, 13], we have clarified the

relation between local dielectric property and electron population on a lanthanum atom in

a lanthanum oxide (La2O3) cluster using local dielectric constant density. The existence

of oxygen vacancies is an important topic for high-k gate thin films [20–24]. Regarding

oxygen vacancies, we have also clarified the relation between the formation energy of oxygen

vacancies in La2O3 and HfO2 and their bonding states [14].

In this work, we investigate the dielectric properties of the cubic, tetragonal, and mono-

clinic hafnia in terms of the electronic contribution to the static dielectric constant density

tensor following our previous work [15], in which we study the local dielectric property of

cubic hafnia. First, we check termination conditions to realize the property of crystals in

cluster models. Then, we study the local dielectric property of the cubic, tetragonal, and

monoclinic hafnia crystals using the cluster models. Their dielectric properties are compared

with each other. We also consider dielectric property of SiO2 for a comparison. We pay

special attention to the covalent property of Si-O bond. The difference between dielectric

properties arising from ionic bond and those from covalent bond is discussed.

We note that in this work we consider only the electronic contribution to the dielec-

tric response. It is well known that the lattice oscillation contribution dominates over the

electronic one and is more sensitive to the structure of the material [4, 5, 25, 26]. One
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of the purposes of this work is to clarify the electronic contribution to the local dielectric

response before we include the lattice contribution, and to establish the local dielectric re-

sponse analysis, since the electronic contribution is easy to handle and its calculations have

less ambiguity than the lattice contribution.

This article is organized as follows. In the next section, we show the formalism of the

local polarizability density tensor and dielectric constant density tensor operators. In §9.3,

the calculation models and conditions are explained. The calculation procedure of the local

polarizability and dielectric constant densities are also explained. Our results are shown

in §9.4. In §9.4.1, we discuss appropriate termination conditions of cluster models for the

evaluation of the local polarizability and dielectric constant densities. In §9.4.2, we study

the local dielectric properties of cubic, tetragonal, and monoclinic hafnia. In §9.4.3, the

dielectric properties of SiO2 for comparison with HfO2 are studied. The last section is

devoted to the summary.

9.2 Theory

In this section, we show our formalism of the dielectric constant density operator, defined

in the Rigged QED theory [10, 11]. We consider that a system (A) is embedded in an

environmental background medium (M). The corresponding scalar potentials for the system

and background are given as the regional integrals of the electric charge,

Â0A,M
(r) =

∫
A,M

d3s
ρ̂(s)

|r − s|
. (9.1)

Here, ρ̂(r) is the charge density defined as,

ρ̂(r) ≡ Zee
∑
a

ψ̂†
a(r)ψ̂a(r), (9.2)

where Ze = −1 for the electron. The electric field Ê(r) is given as the sum of the electric

displacement D̂(r) of the medium M and the polarization P̂ (r) of the system A. These are

defined as follows,

D̂(r) = −gradÂ0M (r), (9.3)

P̂ (r) =
1

4π
gradÂ0A(r), (9.4)
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where the time variation of the vector potential is neglected, since only steady states are

considered in this work. As a result, the electric field is given as

Ê(r) = D̂(r)− 4πP̂ (r). (9.5)

The electric displacement D̂(r) of the medium M works as the external electric field for

the system A. The polarization of the system A is hence considered to be linear response to

D̂(r),

P̂ (r) = α̂(r)D̂(r), (9.6)

where α̂(r) is the polarizability density tensor. The dielectric constant density tensor ϵ̂(r)

is therefore defined as

D̂(r) = ϵ̂(r)Ê(r) =
1

1− 4πα̂(r)
Ê(r). (9.7)

These operators of the polarizability density tensor and the dielectric constant density tensor

are Hermite, and all elements of these tensors are real. However, these tensors are not

symmetric, and hence its eigenvalues have three real values, or one real and two complex

values. The case with the complex eigenvalues is interesting, since the dielectric response

shows rotational behavior [15]. Note that the complex eigenvalues can be correctly described

only in the analysis using tensor, since it is due to off-diagonal elements. The off-diagonal

elements of the ordinary global dielectric constant tensor are negligible for large enough

amorphous materials and crystals with high symmetry, such as cubic hafnia. However, the

off-diagonal elements cannot be neglected for nano-materials and in a local region even for

such materials. Hence, the local and tensor analyses are important for very thin dielectric

films.

9.3 Computational Details

9.3.1 Calculation models and conditions

In this section, we explain our calculation models and conditions. In Fig. 9.1, we show

the structures of cluster models of cubic, tetragonal, and monoclinic hafnia and SiO2 (α-

quartz). The cubic and tetragonal hafnia models have 13 Hf and 56 O atoms and the
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(a) (b) (c) (d)

Figure 9.1: The cluster models of (a) cubic, (b) tetragonal, and (c) monoclinic hafnia and

(d) SiO2 (α-quartz) are shown. These models show the structures of point charge models.

The gray (large), red (small), and violet (middle) spheres denote hafnium, oxygen, and

silicon atoms, respectively. Point charges surrounding these clusters are not shown in these

figures.

monoclinic hafnia model has 13 Hf and 53 O atoms. We consider SiO2 for a comparison

of dielectric property arising from ionic bond with that from covalent bond. In this SiO2

model, there are 17 Si and 52 O atoms. These models are surrounded by point charges

(point charge models), which are put on surrounding Hf, O, and Si sites. Point charges are

used as the termination condition for the realization of the environment that an analyzed

system in a large crystal is surrounded by other atoms in the crystal. The number of point

charges are 606 for the cubic and tetragonal hafnia models, 600 for the monoclinic hafnia

model, and 594 for the SiO2 model. The charge of Hf(O) site is 1.0 (−0.5) for the cubic and

tetragonal HfO2 and 1.4 (−0.6 and −0.8 for three and four fold O sites) for the monoclinic

one. The charges of Si and O sites of the SiO2 model are 0.4 and −0.2, respectively. These

values of the point charge are determined as follows. The point charges on the Hf sites have

a positive charge, while those on the O sites have a negative charge, whose sum is the same

as that on the Hf sites. The values of these charges are determined so that the Mulliken

charges of the atoms in analyzed system are uniformly distributed, for the realization of a

feature of crystals.

The parameters of structures of our models are summarized in Table 9.1. The distance

between Hf and O atoms in the cubic hafnia is determined to be 2.200 Å by our geometric

optimization calculations. In the calculations, only the Hf-O length is varied with the

structure being preserved. This Hf-O length is consistent with the values of experimental
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Table 9.1: Parameters of structures of three HfO2 crystal phases and SiO2 (α-quartz).

Cubic (Expt.a) Tetragonal Monoclinic SiO2

a (Å) 5.081 (5.08) 5.056 5.032 4.910

b (Å) - - 5.125 -

c (Å) - 5.127 5.192 5.401

δz - 0.042 - -

β (deg) - - 99.580 -

aRef. 29

(a) (b) (c) (d)

Figure 9.2: The cluster models of (a) cubic, (b) tetragonal, and (c) monoclinic hafnia and

(d) SiO2 (α-quartz) are shown. These models show the structure of hydrogen termination

models. The gray (large), red (dark small), and violet (middle) spheres denote hafnium,

oxygen, and silicon atoms, respectively. The light blue (light small) spheres are hydrogen

atoms.

results and other computational works [4, 27–29]. For other two models, tetragonal and

monoclinic hafnia, geometric optimization calculations are not so easy task. Hence, instead

of the optimization, we use the reported values of the geometrical parameters of theses

structures [4, 30]. The differences of polarizability density and dielectric constant density

are negligibly small for small difference of bond lengths. The geometrical parameters of

SiO2 model are also taken from the reported value [31].

In this work, we study dielectric property of hafnia using these point charge models, since

the hafnia is known to be ionic crystal. On the other hand, in the field of ab initio quantum

calculations, hydrogen termination is often used to make dangling bond harmless, which

may be suitable for SiO2. To compare two termination methods, we consider the models
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with hydrogen termination shown in Fig. 9.2. The cubic and tetragonal hafnia models have

13 Hf and 32 O atoms, and the 24 outer oxygen atoms are terminated by hydrogen atoms.

The monoclinic hafnia model has 13 Hf and 53 O atoms, and the 27 outer oxygen atoms are

terminated. In the SiO2 model, 17 Si and 52 O atoms exist, and the 36 outer oxygen atoms

are terminated. The number of oxygen atoms of the cubic and tetragonal hafnia models

is different from the point charge models, since condensed features are realized better for

these choices of models. The distance between the hydrogen and oxygen atoms is taken as

0.958 Å for all hafnia models and 0.953 Å for the SiO2 model.

In our previous works, we used silicon termination models [12, 13]. The silicon termina-

tion (more precisely SiH3 termination) is superior to the hydrogen termination in viewpoints

of representing condensed systems. However, the geometric optimization is required for sil-

icon termination models. Crystal structures of hafnia never remain after the optimization,

and hence we cannot use the silicon termination for our purposes. However, in other view-

point, both of our termination models are interpreted as hafnium termination ones for the

inner one Hf and oxygen atoms coupling to the Hf atom, which is superior to the silicon

termination.

The electronic structure calculations are performed by using the Gaussian 03 program

package [32]. The Hartree-Fock method is chosen to derive the electronic structure for the

dielectric constant density tensor calculation, since the density functional theory (DFT) is

known to overestimate the dielectric constant [33–37]. The basis sets are chosen as the

LanL2DZ basis set for Hf atoms [38–40] and the 6-31G** basis sets for Si, O, and H atoms

[41, 42]. We have checked that this choice of basis sets is accurate enough to evaluate the

local value of dielectric constant. Then, we calculate the polarizability density tensor and the

dielectric constant density tensor using these derived electronic states. These calculations

are performed by the Molecular Regional DFT program package [43], which is developed in

our laboratory.

9.3.2 Local polarizability and dielectric constant densities

In this section, we show in detail how to derive the dielectric constant density. In this

work, the external electric field D(r) is assumed to be universal vector D. The calculation

procedure of the dielectric constant density tensor is summarized as follows. First, we
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calculate electronic structures with two different external electric fields Di
1,2 (i = x, y, z),

which are taken as Di
1,2 = ±0.001 a.u. This calculation is carried out in three directions.

The scalar potential and polarization are calculated by Eqs. (1) and (4) for these electronic

states. The difference of the polarization ∆P i(r) between these two results is divided by

the difference of the external fields (∆Di ≡ Di
1 − Di

2), and thus the polarizability density

tensor can be derived as

∆P i(r) = αij(r)∆Dj. (9.8)

Only the response to external fields can be extracted by this procedure. For the dielectric

constant density tensor, we show only the eigenvalues and their eigenvectors. These are

easily derived by eq. (7) after the eigenvalues of the polarizability density tensor are calcu-

lated. Note that the lattice polarization effects are not included in this calculation, though

the quantum states of nuclei are well defined in the Rigged QED [10, 11].

To display eigenvalues of the polarizability and dielectric constant density tensor, we

defined the ordering of them as follows. When all eigenvalues are real, the order of the

eigenvalues is the descending order of their values. On the other hand, when the eigenvalues

include complex values, the real eigenvalue is defined as the first one, and two complex

values are the second and third ones. The magnitude of the imaginary part is represented

by the argument θ defined as follows:

θ = sin−1

(
|Im[λi]|
|λi|

)
, (9.9)

where λi is the corresponding eigenvalue.

We can also calculate the local averages of the polarizability density and the dielectric

constant density, which mean contributions from the corresponding region. We can compare

contributions from some particular regions. To calculate the averages, we consider a region

with the volume, V , and integrate the local polarizability density as follows:

⟨α⟩ =
1

V

∫
V

α̂(r)dr. (9.10)

Then, the average of the dielectric constant is given by

⟨ϵ⟩ =
1

1− 4π⟨α⟩
. (9.11)

In order to know the macroscopic dielectric constant of a material, we calculate the average

of the polarizability density and the dielectric constant density over the unit cell of crystal
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structures. We also investigate the contributions from two particular regions. One is a

region around atoms and the other is a region around bond axis, i.e., the region between

hafnium (silicon) and oxygen atoms. Integration around an atom region is carried out for

a sphere whose center is the position of the atom. We take the radius as free parameter

and study the dependence on the volume of the region. For hafnium atoms, the region of

the pseudopotential is removed, where the radius of the potential is taken as 0.9 bohr. On

the other hand, integration around a bond axis region is carried out for a cylinder, whose

length is that of a bond axis. The radius of the cylinder is also taken as free parameter. For

the calculation around Hf-O bonds, we also remove the pseudopotential region.

9.4 Results and Discussion

9.4.1 Appropriate termination conditions

In this section, we show that point charge models are suitable for HfO2 whose Hf-O bond

has strong ionic property and a hydrogen termination model is suitable for SiO2 whose Si-

O bond has covalent property. We consider that point charge models use coulomb force

by point charges to stabilizes electrons in the system, which is the same situation as ionic

bond, while hydrogen termination models make dangling bonds of oxygen atoms harmless

by the covalent bond between oxygen and hydrogen atoms. In this work, we use cluster

models, and hence our calculation is restricted for finite system. The reason of this choice is

that cluster model calculations based on molecular orbitals has advantages over calculations

with periodic boundary conditions to realize local dielectric property, particularly, around

impurities. On the other hand, periodic system is suitable for reproducing the properties of

crystal.

We choose cluster models for our purpose, and check whether our models reproduce

sufficiently the properties of crystal. For these purposes, we study the following three

properties for two termination conditions; the first one is the density of states (DOS), the

second one is the distribution of Mulliken charges, and the last one is the macroscopic value

of dielectric constant.

First, we discuss DOS of cluster models and compare them with those of crystals. In

particular, we check whether the pattern of DOS is similar to that of results of crystal
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Table 9.2: HOMO-LUMO gap (eV) for three HfO2 crystal phases and SiO2.

Model Cubic Tetragonal Monoclinic SiO2

Point charge 6.146 5.175 3.768 1.500

Hydrogen termination 6.994 6.990 8.942 15.886

and experimental values of band gap are reproduced. The band gap is important quantity

to realize the property as insulator. Experimentally, the gap is reported to be 5.7 eV for

poly-monoclinic HfO2 [44]. As the quantity for a comparison with the band gap, we show

the energy difference between the the highest occupied molecular orbital (HOMO) and the

lowest unoccupied molecular orbital (LUMO), i.e. HOMO-LUMO gap, in Table 9.2. In

the case of point charge models, the values of the gap of cubic and tetragonal HfO2 are

similar to the experimental value in spite of the structural difference. For monoclinic HfO2,

our value of the gap is slightly smaller than the experimental one. On the other hand, the

HOMO-LUMO gaps of hydrogen termination models are relatively large compared to the

experimental value. In particular, the value of monoclinic structure is larger than that of

the point charge model by about 5.0 eV, though both models of point charges and hydrogen

termination can reproduce the property of insulator. Then, we compare two termination

conditions in viewpoints of the pattern of DOS.

In Fig. 9.3, the total DOS of our HfO2 models are shown. The energy of HOMO is taken

as 0 eV. All results of point charge models are reasonably consistent with results calculated

with periodic boundary conditions [45, 46]. Hence, we consider that our point charge mod-

els sufficiently represent the electronic states of hafnia crystals. On the other hand, the

results for cubic and tetragonal HfO2 of the hydrogen termination models are significantly

different from the calculation results of periodic systems. The hydrogen termination model

of monoclinic HfO2 has roughly correct pattern of DOS and large band gap. Therefore, in

viewpoints of DOS, the point charge models are much better for cubic and tetragonal HfO2,

while for monoclinic model, it will be concluded after the comparison of the point charge

and hydrogen termination models in terms of the distribution of Mulliken charges and the

macroscopic dielectric constant.

The total DOS and the HOMO-LUMO gap in the point charge and hydrogen termination
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Figure 9.3: The total DOS of (a) cubic, (b) tetragonal, and (c) monoclinic HfO2 and (d) SiO2

are shown. The energy of the HOMO is taken as 0 eV. Red (solid) and green (dashed) lines

show the DOS of point charge and hydrogen termination models, respectively.

models of SiO2 are also shown in Fig. 9.3 and Table 9.2, respectively. The gap of the point

charge model is much smaller than the experimental value, 9.2 eV [47]. The point charge

model is disfavored in viewpoints of the realization of the property of SiO2 as insulator.

The gap of the hydrogen termination model is considerably larger than the experimental

value [47]. Nevertheless, the pattern of DOS has similarity with computational result of

periodic system [48]. On the other hand, the pattern of DOS of the point charge model

is significantly different from the computational one. Therefore, for SiO2, the hydrogen

termination model is at least better in terms of DOS.

Next, we discuss the distribution of Mulliken charges. The dielectric property is studied

by using only the inner parts of our models. Therefore, we consider the distribution of Mul-

liken charges in inner regions, where the Mulliken charges should uniformly be distributed.
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Table 9.3: The distribution of Mulliken charges of the atoms for point charge (PC) and

hydrogen termination (HT) models. The distance (bohr) from the center atom in cluster

models is also shown.

Cubic Tetragonal Monoclinic SiO2

Distance PC HT Distance PC HT Distance PC HT Distance PC HT

Hf 0.00 2.48 3.26 Hf 0.00 2.44 3.04 Hf 0.00 2.58 3.09 Si 0.00 1.72 1.70

6.79 2.45 1.85 6.76 2.41 1.85 6.15 2.56 2.67 5.77 1.70 1.70

6.79 2.42 1.85 6.76 2.41 1.85 6.37 2.48 2.66 5.77 1.67 1.69

6.79 2.45 1.85 6.76 2.49 1.85 6.37 2.27 2.45 5.77 1.68 1.69

6.79 2.42 1.85 6.76 2.49 1.85 6.41 2.34 2.54 5.77 1.70 1.70

6.79 2.43 1.85 6.80 2.37 1.87 6.41 2.51 2.62 O 3.03 −0.85 −0.87

6.79 2.45 1.85 6.80 2.43 1.87 6.44 2.42 2.65 3.03 −0.85 −0.87

6.79 2.42 1.85 6.80 2.40 1.87 6.58 2.48 2.57 3.04 −0.86 −0.86

6.79 2.41 1.85 6.80 2.44 1.87 7.28 2.39 2.56 3.04 −0.86 −0.86

6.79 2.42 1.85 6.80 2.37 1.87 7.28 2.33 2.59 6.65 −0.84 −0.84

6.79 2.41 1.85 6.80 2.44 1.87 7.46 2.39 2.61 6.65 −0.84 −0.84

6.79 2.43 1.85 6.80 2.40 1.87 7.46 2.54 2.55 6.66 −0.84 −0.83

6.79 2.45 1.85 6.80 2.43 1.87 8.41 2.46 2.55 6.66 −0.83 −0.83

O 4.16 −1.36 −1.36 O 3.93 −1.36 −1.36 O 3.76 −1.38 −1.39 7.36 −0.82 −0.85

4.16 −1.36 −1.36 3.93 −1.38 −1.36 3.88 −1.36 −1.40 7.36 −0.81 −0.85

4.16 −1.36 −1.36 3.93 −1.34 −1.36 3.95 −1.35 −1.37 7.53 −0.82 −0.82

4.16 −1.36 −1.36 3.93 −1.37 −1.36 3.98 −1.41 −1.41 7.53 −0.81 −0.82

4.16 −1.36 −1.36 4.41 −1.38 −1.36 4.02 −1.39 −1.43 7.76 −0.81 −0.82

4.16 −1.36 −1.36 4.41 −1.36 −1.36 4.16 −1.40 −1.42 7.76 −0.81 −0.82

4.16 −1.36 −1.36 4.41 −1.37 −1.36 4.18 −1.38 −1.41 7.90 −0.81 −0.82

4.16 −1.36 −1.36 4.41 −1.34 −1.36 7.90 −0.81 −0.82
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Table 9.4: The average of the dielectric constant density for a unit cell.

Model ϵ1 ϵ2 ϵ3 Average of ϵi

Cubic Point charge 3.45 2.85 + 0.60i 2.85− 0.60i 3.05

Hydrogen termination 1.31 1.31 1.31 1.31

Tetragonal Point charge 2.32 2.60 + 0.35i 2.60− 0.35i 2.51

Hydrogen termination 1.33 1.32 1.31 1.32

Monoclinic Point charge 4.88 3.72 3.07 3.89

Hydrogen termination 1.55 1.67 + 0.03i 1.67− 0.03i 1.63

SiO2 Point charge 1.54 −4.29 −21.82 −8.19

Hydrogen termination 1.39 1.22 1.19 1.27

The Mulliken charges of atoms in inner regions are shown in Table 9.3. For the point charge

models of HfO2, the Mulliken charges are distributed uniformly, while for the hydrogen

termination models of HfO2, the Mulliken charge of the center Hf atom is considerably dif-

ferent from other Hf atoms. On the other hand, for SiO2, the distribution of the Mulliken

charges of the hydrogen termination model is not so different from that of the point charge

model, though the distribution of the charges of Si atoms is slightly better for the hydrogen

termination model. Therefore, the point charge models are suitable for HfO2, and for SiO2,

both models show the correct distribution of the Mulliken charges.

Finally, we discuss macroscopic value of dielectric constant. In Table 9.4, we show the

average of the dielectric constant density for a unit cell. The average values of the dielectric

constant of the hydrogen termination models for HfO2 are much smaller than those of the

point charge models. The electronic contribution to macroscopic dielectric constant of HfO2

are reported to be about 5, almost independent of the structure of crystal [5, 25, 26]. Hence,

the values of the hydrogen termination models are worse compared to those of the point

charge models. This smallness of the dielectric constant confirms that the termination with

hydrogen atoms is not suitable for HfO2. On the other hand, the average of the dielectric

constant of the point charge model for SiO2 is never acceptable for the value for SiO2. The

electronic contribution to dielectric constant is reported to be about 2.5 [48]. Although

the macroscopic dielectric constant of the hydrogen termination model of SiO2 is smaller
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than this value, the hydrogen termination is more suitable for our calculations than the

point charge model. Our values for the point charge models of HfO2 and the hydrogen

termination model of SiO2 are slightly smaller than other works [48, 49]. One of the reasons

is that the accuracy of our results is somewhat worse for a unit cell calculation, since the

outermost shell of the cluster models are included and electronic structures are worse than

those around the center of the models. In fact, our HfO2 models have slightly larger values

of the band gap than those of other computational works. The larger band gap leads to

smaller macroscopic dielectric constant.

Considering the above three properties comprehensively, appropriate termination condi-

tions for our analysis are clarified. The point charge models are suitable for HfO2, and the

hydrogen termination model is better for SiO2.

9.4.2 Local dielectric property of HfO2

We investigate the dielectric property using cluster models of the cubic, tetragonal, and

monoclinic structures of HfO2 in terms of the local polarizability density and dielectric

constant density. It will be found that the electronic contribution to the local dielectric

properties is almost independent of the structure of HfO2.

We show the eigenvalues and their eigenvectors of the polarizability density tensor of

HfO2 in Fig. 9.4. For cubic HfO2, it can be seen that large polarizability density is distributed

uniformly in the almost whole region for the first eigenvalue. The slightly larger values can

be seen around atoms, particularly oxygen atoms. The polarizability nearby oxygen atoms

(accepter) is larger than that nearby Hf atoms (donor). The electrons around Hf atoms

weakly respond to external electric fields, since electrons are tightly bounded by the Hf

atom due to the reduced number of screening electrons and the electric field between the

Hf and oxygen atoms by the charge transfer. On the other hand, the response of electrons

around oxygen atoms to the external electric fields is strong due to the weak binding in

the oxygen atom by the increased number of screening electrons. The complex eigenvalues

are widely seen in panels (a-2) and (a-3). Hence, the polarization response to external

electric fields should have rotational behavior. These properties cannot be seen in the global

and averaged scalar polarization analysis. It can only be described correctly in the local

and tensor analysis, as stressed above. For tetragonal and monoclinic HfO2, the almost
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Figure 9.4: The eigenvalues and their eigenvectors of the polarizability density tensor of

cubic, tetragonal, and monoclinic HfO2. Panels (a), (b), and (c) show results of the cubic,

tetragonal, and monoclinic HfO2, respectively. The results are shown on the plane with one

hafnium atom at the center of the model and two oxygen atoms next to the hafnium atom.

Panels (1), (2), and (3) correspond to the first, second, and third eigenvalues (α1,2,3) of the

polarizability density tensor. Two oxygen sites in monoclinic structure are labeled as O3

for the three fold oxygen atom and O4 for the four fold oxygen atom. There are also two

Hf-O distances, long (OL) and short (OS) in tetragonal structure. The solid line segments

show the directions of the eigenvectors. The eigenvalues in the green contours have complex

values. The black blob shows the pseudopotential of the Hf atom.
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same features can be seen. Although the regions of complex eigenvalues have different

distribution patterns, the large rotational angle is commonly seen around oxygen atoms.

Around oxygen atoms, after electrons respond to external fields, the electric field in the

region is reconstructed and the direction of this electric field is not necessarily the same

as the external electric field. The complicated response can be seen around oxygen atoms,

since the reconstructed electric field is large due to the large electron density.

In Fig. 9.5, we show the dielectric constant density on the same planes and models as

Fig. 9.4. Figure 9.5 shows the inverse of the eigenvalues (ϵ−1
1,2,3) of the dielectric constant

density tensor. The eigenvalues are sorted for not ϵ−1
i but ϵi. The pattern of the distribution

of the dielectric constant density is not simple compared to the polarizability density. Small

variations around αi = 1/4π result in significant changes of the dielectric constant density,

since 1/(1−4παi) is divergent and changing the sign at αi = 1/4π as seen in eq. (7). We

can see the negative values of the dielectric constant density, particularly around oxygen

atoms in all HfO2 structures. In the region, the induced polarization overcomes external

electric fields. The global response shows positive dielectric constant as is well known,

while the local response can have negative dielectric constant density. The pattern of the

region with complex eigenvalues is of course same as Fig. 9.4, while the rotational angle is

much larger than that of the polarizability density. The small rotational response in the

polarizability density may induce the large rotational one for the dielectric constant density.

As a result, the analysis of the dielectric constant and polarizability as local quantity clarifies

the complicated response dependent on positions in a system.

In Figs. 9.6, 9.7, and 9.8, we also show the eigenvalues and their average along Hf-O

bond axes, which are shown in Figs. 9.4 and 9.5 as the solid lines, for the study of the local

dielectric response in detail. The region nearby the Hf atom is within the pseudopotential

(0-0.9 bohr). For all results, the local polarizability density has similar distribution pattern

to each other. Around the oxygen atom (within about 0.5 bohr from the oxygen atom), the

polarizability density is small, since electrons are strongly bounded by the electric field of

the oxygen nucleus. Then, in outer region of the oxygen atom, the large polarizability can be

seen. Since electrons in this region are valence electrons of the oxygen atom, these electrons

are easy to be affected by external electric fields. The radius of the large polarizability region

is roughly equal to the ionic radius of oxygen. The value of local polarizability around the
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Figure 9.5: The inverse of eigenvalues and their eigenvectors of the dielectric constant density

tensor of (a) cubic, (b) tetragonal, and (c) monoclinic HfO2. Results are shown on the same

plane as Fig. 9.4 in the same manner. See the caption of Fig. 9.4 for the details.
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Figure 9.6: The eigenvalues and their average of (a) the polarizability density tensor and

(b) the dielectric constant density tensor on the Hf-O line of cubic HfO2, which is shown in

Figs. 9.4 and 9.5. The upper part of these panels is the real part of three eigenvalues and

their average, while the lower one is the argument. The shaded region around the Hf atom

shows the pseudopotential.

Hf atom is significantly smaller than that around the O atom as explained above. The

dielectric constant density has also similar distribution pattern to each other. For example,

the positions of peaks are almost same for all models. However, the similarity is seen to be

weaker than the polarizability density, since the value of dielectric constant is divergent for

αi = 1/4π, as discussed above. Even small difference of polarizability density may result in

large difference of dielectric constant density.

It is reported that the electronic contribution to macroscopic dielectric constant is almost

independent of the structure of crystal [5, 25, 26]. The difference of dielectric constant

between different structure of hafnia crystal is considered to originate in the contribution

from nucleus. Here, we find that the electronic contribution to local polarizability and

dielectric constant densities are also independent of the structure. This can be confirmed

only by our local analysis.

Next, we calculate the averages in various regions of the dielectric constant density in

order to investigate local effects on the macroscopic dielectric constant. The average of

dielectric constant density over (a) the sphere around a Hf atom, (b) the sphere around an

O atom, and (c) the cylinder around a Hf-O bond axis are shown in Fig. 9.9 as a function

of the integration radius of sphere or cylinder. As seen in this figure, the average values
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Figure 9.7: The eigenvalues and their average of (a) and (c) the polarizability density tensor

and (b) and (d) the dielectric constant density tensor on Hf-O lines of tetragonal HfO2,

which are shown in Figs. 9.4 and 9.5. The results of Hf-OS (Hf-OL) are shown in panels (a)

and (b) ((c) and (d)). Depicted in the same manner as Figs. 9.6.

around atoms are significantly dependent on the integration radius, while the dependence

around the bond region is negligibly small. Apparently, the maximum values around oxygen

atoms are significantly larger than those of bond regions. Comparing the results around the

Hf and O atoms, the result of the Hf atom is significantly smaller than that of the O atom,

particularly for a large radius. The bond region also shows larger value than that around

the Hf atom. The contribution from Hf atoms to the macroscopic dielectric constant is

smaller than that from O atoms in two points. The first one is that the averaged dielectric

constant of Hf atoms is much smaller than that of O atoms. The other one is the smaller

ionic radius of the Hf atom than the O atom. Larger volume of atom (ion) causes a larger
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Figure 9.8: The eigenvalues and their average of (a) and (c) the polarizability density tensor

and (b) and (d) the dielectric constant density tensor on Hf-O lines of monoclinic HfO2,

which are shown in Figs. 9.4 and 9.5. The results of Hf-O4 (Hf-O3) are shown in panels (a)

and (b) ((c) and (d)). Depicted in the same manner as Figs. 9.6.

influence to macroscopic dielectric constant. As a result, the contribution of the O atom

has larger value than the Hf atom for larger r in Fig. 9.9. In panel (a), the contribution of

the Hf atom becomes a constant value in the region r > 2.0 bohr, while that of the O atom

extends to r ∼ 3.0 bohr as seen in panel (b).

9.4.3 Comparison with the dielectric property of SiO2

In this section, we consider the dielectric property of SiO2 for a comparison. One of the

purposes is the investigation of the difference of the dielectric property of ionic Hf-O bond

and covalent Si-O bond.
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Figure 9.9: The average of dielectric constant density of (a) the sphere around a Hf atom,

(b) the sphere around an O atom, and (c) the cylinder around a Hf-O bond axis as a function

of the integration radius of sphere or cylinder.

In Fig. 9.10, we show the local polarizability density and local dielectric constant density

on the plane defined by the center silicon atom and nearby two oxygen atoms. Similarity

to those of HfO2 can be seen around oxygen atoms in this figure; the large polarizability

density, the negative dielectric constant, and the direction of the eigenvector for the first

eigenvalue. On the other hand, the region around the Si atom is not similar to those around

Hf atoms in HfO2. The values of polarizability density are much smaller than those of

HfO2. The complex eigenvalues are seen in restricted regions. This is because the change

of electric field by the moves of electrons is small. In SiO2, the displacement of electrons

is small, since the polarizability density shows low value. The displacement of electrons is

considered to be restricted due to the strong covalent bond, particularly around Si atoms.

This feature around Si atoms may originate from large band gap, as is the case of the

macroscopic dielectric constant.

In Fig. 9.11, we show the eigenvalues and their average on the Si-O line, which is shown

in Fig. 9.10 as the solid line, for the study of the local dielectric response in more detail.

Local polarizaility density around the O atom is much larger than those around O atoms

in HfO2. It is also seen that local polarizability density around the Si atom is significantly

smaller than those around O and Hf atoms in HfO2. The polarizability density increases

for a distant point from the Si atom. The reason of the tendency in this figure may be

speculated that the Si-O bond has strong covalent property, the electrons in the Si atom

somewhat move to oxygen atoms, and its valence electrons are distributed to significantly
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Figure 9.10: The eigenvalues and their eigenvectors of the polarizability density tensor

and the inverse of eigenvalues and their eigenvectors of the dielectric constant density of

SiO2. Panels (a) and (b) show the polarizability density and the dielectric constant density,

respectively. Depicted in the same manner as Figs. 9.4 and 9.5.

outer regions.

Next, we calculate the averages in various regions of the dielectric constant density in

order to investigate local effects on the macroscopic dielectric constant. As discussed in

§9.4.2, we show the average of dielectric constant density around (a) a Si atom, (b) an O

atom, and (c) a Si-O bond as a function of the integration radius of sphere or cylinder. The

results are shown in Fig. 9.12. The average value of dielectric constant around the O atom is

much larger than those around the Si atom and bond axis, and it is significantly dependent

on the radius. The average around the O atom in SiO2 is significantly lower than that in

HfO2. This can be explained by the smallness of the average value of the polarizability

density, as seen in Figs. 9.6-9.8 and 9.11. The value around the bond axis is larger than
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Figure 9.11: The eigenvalues and their average of (a) the polarizability density tensor and

(b) the dielectric constant density tensor on the Si-O line of SiO2 shown in Fig. 9.10. The

upper part of these panels is the real part of three eigenvalues and their average, while the

lower one is the argument.

that around the Si atom. This is attributed to the contribution from the O atom. The

dependence on the radius around the bond region is negligibly small as in the case of HfO2.

In contrast with that of Hf atoms in HfO2, the average values around the Si atom is almost

independent of the radius. The value increases at around 2.0 Å, and this increase is due

to the contribution from O atoms. Therefore, it is confirmed by this figure the electronic

contribution of Si atoms to the macroscopic dielectric constant is very small, which is in

salient contrast to that of Hf atoms.

In this section, we have studied the electronic contribution to the local dielectric constant

of the cubic, tetragonal, and monoclinic hafnia crystals. The local dielectric property is

particularly useful for the analysis of impurities and interfaces, such as oxygen vacancies

and interface between Si substrate and HfO2 film. We can separate the local effect by these

parts from macroscopic effects in terms of the local dielectric constant. This work is the first

step of this analysis. We should clarify the local dielectric property without impurities and

interfaces, before we analyze the effects of these parts, since the science of the local dielectric

property has not sufficiently been established yet. Hence, we have shown the electronic

contribution to the local dielectric constant of the cubic, tetragonal, and monoclinic hafnia

crystals in this work. In a future work, we will tackle nuclear contribution to the local

dielectric constant, which gives the origin of the difference of the macroscopic dielectric
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Figure 9.12: The average of dielectric constant density around (a) a Si atom, (b) an O atom,

and (c) a Si-O bond as a function of on the integration radius of sphere or cylinder.

constant between the cubic, tetragonal, and monoclinic hafnia crystals. Then, the local

analysis will be a good tool to clarify the science of the effects of oxygen vacancies and

interface between Si substrate and HfO2 film.

9.5 Conclusions

In this work, the dielectric property of hafnia has been investigated in terms of the

local polarizability density and dielectric constant density using cluster models of the cubic,

tetragonal, and monoclinic structures of HfO2. We have also studied the dielectric property

of SiO2 for a comparison between the electronic contribution to the dielectric constant by

ionic property of HfO2 bond and covalent property of SiO2 bond.

We have shown that the choice of the termination condition of models is important for

the realization of the condensed property of dielectric. In this work, we have compared

point charge models and hydrogen termination models in terms of DOS, the distribution

of the Mulliken charges, and the macroscopic dielectric constant. As a result, it is shown

that the appropriate termination conditions for this analysis are point charge conditions

for all structures of HfO2 and hydrogen termination conditions for SiO2, respectively. This

is because point charges are appropriate for the realization of ionic bond and hydrogen

termination is better for that of covalent bond.

We have calculated the local polarizability density tensor and local dielectric constant

density tensor of HfO2. It is shown that local parts of materials have complicated responses
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to external fields, in particular, rotational ones. Hence, the nanosize material should be

studied in the local and tensor quantity analysis to describe rotational responses correctly.

It is shown that three structures of HfO2 crystals have common properties of the electronic

contribution to local polarizability and dielectric constant densities. The response of elec-

trons in SiO2 to external electric fields is significantly weaker compared to those in HfO2

due to small shifts of electrons in SiO2. In addition, we have shown that the average values

of dielectric constant around O atoms are larger than those of other regions. Particularly,

this tendency is more salient in SiO2 than HfO2. Hence, our results show that the electronic

contribution to macroscopic dielectric constant is dominated by O atoms in silicon dioxide,

while in hafnia there is some contribution from Hf atoms.

As future works, we must take the lattice contribution to the dielectric property as local

density quantity in order to reveal the dielectric property of nano-materials, since the lattice

contribution to the dielectric constant dominates over the electronic one and depends on the

structures of crystals. We must also study the modification of the local polarizability density

and dielectric constant density by the existence of vacancies. In addition, the frequency

dependence of the dielectric constant is also mandatory for the study of gate dielectric thin

films for future electronics devices, since these devices work with high frequency.
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General Conclusion

In this thesis, several materials have been investigated in detail by first-principles cal-

culations. Through this thesis, electric conductive properties and bonding nature of the

materials are focused on.

PART I is devoted to the electric conductive properties of nanomaterials. First, two

methods for calculating electronic structures with electric currents are developed. The one

is based on the SCF method and reported in Chapter 1, and the other is based on the

perturbation theory and shown in Chapter 2. In both methods, conduction electrons are

treated as quantum states, and Coulomb and exchange interactions are included. The SCF

method can determine an electronic structure and vector potential consistently, while the

preturbation method can obtain linear responses to external electric field in an analytic

form. By using these methods, local electric conductivity which is defined in Rigged QED

are analyzed for semiconductor nanowire models. The results are shown in Chapters 3

and 4. As a result, some unique properties such as rotational response are found. This is

shown in regions with complex eigenvalues and means that electric current density response

to electric field with the change of direction. In addition,
↔
σ int(r⃗) which reveals response of

electric current density to actual electric field at each spatial point is investigated. As a

result, it is found that
↔
σ int(r⃗) show different distribution pattern from

↔
σext(r⃗). It is worth

noting that these properties can be found only in microscopic viewpoint.

In PART II, chemical reactions, stability of structures, and dielectric properties are

investigated for several materials by focusing on their bonding nature. Growth of GaN

crystal is studied based on gas phase and surface reactions in Chapter 5. It is found that a

Ga-Ga bond between a molecule in gas phase and a Ga surface of the crystal prevents stable

growth, and molecules which have a coordinate bond with NH3 do not meke the Ga-Ga bond.

In this analysis, existance of the Ga-Ga bond is confirmed by calculating the surface where
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kinetic energy density is equal to zero. In Chapters 6 and 7, electronic stress tensor density

is analyzed for alminum clusters, and Al-Al and Al-H bonds in them are found to show

different characteristics in the eigenvalues of the stress tensor. Absorption of lithium atoms

on a single wall CNT model is studied in Chapter 8. From the analysis of stabilization

energies, It is found that single lithium atom perfers the absorption on the inner surface of

the CNT to outer one of it. This result is supported by the analysis of charge transfer and

chemical potential density. Dielectric properties of HfO2 are investigated in terms of local

polarizability and local dielectric constants in Chapter 9. From the comparison with the

results for SiO2, it is found that the difference of bonding nature between HfO2 and SiO2

causes the significant difference of local dielectric properties, especially around Hf and Si

atoms.

In the series of the studies, local phisical quantities which are defined in Rigged QED are

used. As a result, it is found that they are powerful tools for understanding characteristics

of nanomaterials and functional materials.
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• Theoretical Study on Relations between Dynamics of Nuclear Field and its Statistics

Based on Rigged QED. (in Japanese)

Sojiro Takada, Toshihide Miyazato, Yuji Ikeda, Masato Senami, Akitomo Tachibana,

15th Theoretical Chemistry Symposium, 24–26 May 2012, Sendai, Japan

• Time Evolution Simulation of Nuclei and Electrons Based on Rigged QED. (in Japanese)

Masato Senami, Toshihide Miyazato, Sojiro Takada, Yuji Ikeda, Akitomo Tachibana,

15th Theoretical Chemistry Symposium, 24–26 May 2012, Sendai, Japan

• Calculation Method for Electronic Structures with Electric Current Based on Pertur-

bation Theory. (in Japanese)

Yuji Ikeda, Masato Senami, Akitomo Tachibana,
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The 73rd Autumn Meeting, 2012 (The Japan Society of Applied Physics), 11–14

September 2012, Ehime, Japan

• Study of Perturbative Approach for Calculating Electronic Structures under the Exis-

tence of Electric Currents. (in Japanese)

Yuji Ikeda, Masato Senami, Akitomo Tachibana,

The 6th Annual Meeting of Japan Society for Molecular Science 2012, 18–21 Septem-

ber 2012, Tokyo, Japan

• Rigged QED Simulation of Atomic Systems in an External Field. (in Japanese)

Toshihide Miyazato, Masato Senami, Yuji Ikeda, Sojiro Takada, Akitomo Tachibana,

The 6th Annual Meeting of Japan Society for Molecular Science 2012, 18–21 September

2012, Tokyo, Japan

• Theoretical study of the relation between the statistics of nucleus fields and their be-

havior based on Rigged QED. (in Japanese)

Sojiro Takada, Toshihide Miyazato, Yuji Ikeda, Masato Senami, Akitomo Tachibana,

The 6th Annual Meeting of Japan Society for Molecular Science 2012, 18–21 Septem-

ber 2012, Tokyo, Japan

• Analysis of Local Electric Conductivities for Si Nanowire Models., Yuji Ikeda, Masato

Senami, Akitomo Tachibana,

IUMRS-ICEM 2012, 23–28 September 2012, Yokohama, Japan

• Analysis of Local Electric Conductive Property for Si Nanowire Models.

Yuji Ikeda, Masato Senami, Akitomo Tachibana,

PRiME 2012, 7–12 Octobar 2012, Honolulu, Hawaii

• Perturbative Approach for Calculating Electronic Structures with Electric Currents.

Yuji Ikeda, Masato Senami, Akitomo Tachibana,

Conference on Computational Physics (CCP2012), 14–18 Octobar 2012, Kobe, Japan

• Study of CVD process of GeSbTe by first principles calculations.

Kazuhide Ichikawa, Masato Senami, Yuji Ikeda, Hiroo Nozaki, Akitomo Tachibana,

The 24th Symposium on Phase Change Oriented Science PCOS 2012, 29–30 November

2012, Sizuoka, Japan

179


