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Abstract

This dissertation concerns the satellite’s trajectory control problem subject to con-

straints on control magnitude and direction.

Firstly, the formation and reconfiguration problem under thrust magnitude and

direction constraints is considered. An optimal controller with these constraints is

derived using a continuous smoothing method, in which a sequence of unconstrained

optimal control problems are solved according to Pontryagin’s Minimum Principle by

introducing barrier functions to the original performance index. Optimal controllers

are successfully formulated in L1- and L2-norm problems. The magnitude and direc-

tion constrained solution is naturally extended from the solution with only magnitude

constraints. Numerical simulations demonstrate that a successive optimal controller

subject to such multiple constraints can be obtained by solving a two-point bound-

ary value problem using the shooting method in a non-coplanar circular orbit and a

coplanar eccentric orbit.

Secondly, a rendezvous problem under thrust magnitude and direction constraints

is considered. Considering the constraints on the parameters in the general quadratic

performance index, a control design process is proposed using modal analysis to limit

the thrust angle during at the initial and final phases. Subsequently, using a can-

didate control Lyapunov function by solving the Riccati equation for the considered

performance index, a new control applying ”satisficing” concepts is devised to meet

the constraints strictly from start to finish. A constraint-satisficing scheme has been

newly proposed by introducing two barrier functions. For a simple nonlinear controller,

a controller generated by projecting a constraint-free optimal controller onto the input

constraint is proposed and its stability is investigated. Some numerical simulations

treating nonlinear relative orbit systems show that various control sets, which guide

the orbit to the origin, can be generated, while the convergence property of the closed-

loop system is analyzed by the proposed parameter design with the assistance of a

graphical plot.
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Nomenclature

a = Euclidean norm of a, ∥a∥
a′ = differential value of a with respect to τ

ȧ = differential value of a with respect to t

â = unit vector of a

b(x) = selectivity index

Fu,Fb = barrier function

H = Hamiltonian function

J = nondimensional performance index

L1 = L1 norm, u

L2 = L2 norm, u2/2

P = two-point boundary value problem

ps(u,x) = a selectability function

pr(u,x) = a rejectability function

Sb(x) = satisficing set with a selectivity index b(x)

r = position vector from the target to the chaser

u = control acceleration

UC = a subset of the control input constraints

V = control Lyapunov function

x = state of the chaser

β = angle between −p and u

γ = limitation of the thrust angle

θ(ξ,u) = angle between −ξ and u





Chapter 1

Introduction

1.1 Background

1.1.1 Motivation of the Study

This dissertation discusses rendezvous and formation flying trajectory planning where

the target moves in circular and elliptic orbits with such practical constraints, and

proposes a novel safety guidance approach to the rendezvous problem.

In space applications such as rendezvous and formation flying, approaches to the

target and reconfiguring of the formation must be designed under multiple combina-

tions of input constraints. For example, an input magnitude constraint definitely exists

to limit thrusting power and the thrust activation direction may also be constrained

for cases in which the chaser’s attitude must be maintained in a fixed direction due to

factors like the sensor field of view (FOV) and sun direction, or whereby the thrust

plume must be avoided against the target. These conditions can occur when the in-

jection direction is restricted for cases in which the thrust plume must be avoided or

the direction of control with the thrusters fixed on the chaser is restricted, because the

target must be visible in the FOV of the camera of the chaser while the chaser moves

safely toward the target. These constraints can also be caused by peculiarities of the

attitude control system and the stabilization mode of a spacecraft, which are functions

of time and the state vector. Therefore it is worth considering problems under a si-

multaneous combination of input magnitude and directional constraints, which may be

functions of time and the state vector. This dissertation treats the rendezvous problem

under conditions whereby the chaser’s thrust direction relative to the target direction

is constrained to some fixed angle in addition to the thruster saturation.

1



2 Chapter 1. Introduction

1.1.2 Related Works for the Problem

In flight optimization literature, although constraints on the thrust magnitude value

have been extensively investigated, insufficient attention has been applied to constraints

on thrust direction. Some of the scarce literature dealing with the thruster direction

constraints in rendezvous and formation flying applications include, for example, as

follows; an analytic solution was obtained for the effects of continuous radial or verti-

cal thrust on the orbital motion and the mass loss of a vehicle initially in a circular

orbit (Boltz, 1991, 1992). A semianalytic method for determining the periodic trajec-

tories of a spacecraft under the influence of a constant small thrust directed from a

central station in a circular orbit was presented using the Clohessy-Wiltshire equations

by Yamakawa and Funaki (Yamakawa and Funaki, 2008). Woffinden considered the

circular orbital rendezvous problem referred to as trigger angle targeting, in which the

maneuver start point is restricted to the direction of the target (Woffinden et al., 2008).

Sukhanov and Prado (Sukhanov and Prado, 2007, 2008) considered transfers with low

thrust subject to constraints imposed on the thrust vector direction and derived some

necessary optimal conditions. Richards et al. (Richards et al., 2002) introduced a

method for determining fuel-optimal trajectories for spacecraft subject to avoidance

requirements. These include avoidance of collision with obstacles or other vehicles and

prevention of thruster plumes from one spacecraft impinging on another. The resulting

problem is a mixed integer linear program (MILP) that can be solved using available

software.

1.1.3 Numerical Approaches to Optimal Control Problem with

Constraints

Numerical optimization with constraints is employed in this work. Various numerical

optimization techniques can be used to solve such problems under complicated condi-

tions. Betts (Betts, 1998) surveyed numerical methods for a trajectory optimization

problem in which path and boundary constraints are imposed. Direct transcription

methods using a piecewise polynomial representation for the state and controls are

often used to solve optimal control problems in the context of spacecraft transfer tra-

jectories (Conway, 2010). These methods discretize the time horizon and the control

and state variables. When no state constraint exists, minimum-fuel problems have

sometimes been solved by directly applying Pontryagin’s Minimum Principle (PMP)

(Pontryagin, 1961; Bryson and Ho, 1975). This approach yields a two-point boundary

value problem (TPBVP), which is then solved using a shooting method (Betts, 1998).

Enright and Conway (Enright and Conway, 1991) studied a method employing a direct
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optimization technique that uses a piecewise polynomial representation for the state,

controls, and collocation, which converts the optimal control problem into a nonlinear

programming problem.

Irvin, Cobb, and Lovell (Irvin Jr. et al., 2009) investigated strategies to enable

a deputy satellite to hover within a defined volume fixed in the vicinity of a chief

satellite in a circular orbit for an extended period. The problem of optimizing low-

thrust reconfiguration maneuvers for spacecraft flying in formation was addressed by

Massari and Bernelli-Zazzera (Massari and Bernelli-Zazzera, 2009). The problem was

stated as solving an optimal control problem, in which an objective function related

to control was minimized, satisfying a series of constraints on the trajectory that were

both differential and algebraic. The problem was treated as a nonlinear programming

problem with a parallel multiple-shooting method.

Bertrand and Epenoy (Bertrand and Epenoy, 2002) investigated the solution to

bang-bang optimal control problems by shooting methods and proposed a new smooth-

ing approach that yielded a good approximation of the original problem. In this

method, a sequence of unconstrained optimal control problems is solved according

to PMP by introducing a barrier function to the original performance index. The solu-

tions converge toward the solution of the original problem while strictly satisfying the

treated constraints as the perturbation coefficients of the barrier functions approach

zero. The orbit transfer problem with a magnitude constraint was first treated in

(Bertrand and Epenoy, 2002). Gil-Fernandez also considered this method and solved

a practical continuous low-thrust orbit transfer problem (Gil-Fernandez and Gomez-

Tierno, 2010). In addition, Epenoy solved a collision avoidance rendezvous problem by

introducing new penalty functions (Epenoy, 2011).

Receding horizon (RH) control is a finite horizon open-loop optimal control problem

in which the current control is obtained by solving an optimal control problem at each

sampling instant using the current state of a nonlinear plant as the initial state and the

first control in this sequence is applied to the plant. An important advantage of the RH

techniques is its ability to cope with constraints on controls and states (Mayne et al.,

2000). Keerthi and Gilbert (Keerthi and Gilbert, 1988) imposed a terminal state equal-

ity constraint and first used the value function as the Lyapunov function to ensure the

stability of model predictive control (MPC) of constrained nonlinear systems. Several

modified nonlinear and stabilized RH formulations have since been proposed; mostly

based on a combination of additional constraints or a terminal penalty (Mayne et al.,

2000; Maciejowski, 2002). Sznaier (Sznaier et al., 2003) proposed a controller design

method, based on a combination of RH and control Lyapunov functions (CLFs), for

nonlinear systems subject to input constraints. In principle, stability can be achieved
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by simply extending the optimization horizon until the trajectory enters an invariant

set where these constraints are no longer binding.

1.2 Approach

In the thesis, a continuous low-thrust formation and reconfiguration problem under

control magnitude and direction constraints is treated. Specifically, we herein focus

on the condition where the thrust direction of the chaser relative to the direction of

the target is constrained. The basic objectives include to drive the chaser vehicle to

transfer between the relative periodic orbit around the target under a small thrust

magnitude and angle conditions and minimize fuel consumption.

We first discuss the necessary condition of the optimal controller subject to con-

straints on control magnitude and direction using a smoothing approach. To the best

of the authors’ knowledge, there has been no report on treating control direction con-

straints by applying the smoothing method. This approach is based on previous work

by Bertrand and Epenoy (Bertrand and Epenoy, 2002) and the necessary condition

of the optimal controller is successfully formulated in L1- and L2-norm problems re-

spectively by introducing a newly proposed extra barrier function. These solutions

are a natural extension of the solution using only a magnitude constraint obtained by

Bertrand and Epenoy (Bertrand and Epenoy, 2002). As the perturbation coefficients

of the barrier functions approach zero, the smoothed optimal controller approaches

the necessary condition whereby the optimal thrust is directed along the projection of

Lawden’s primer vector (Lawden, 1963) onto the restricting set, while the control, the

primer, and the admissible direction vectors are coplanar. This extremal property is

completely consistent with the results reported by Sukhanov and Prado (Sukhanov and

Prado, 2007, 2008). The method proposed herein is an optimal open-loop controller

that emphasizes the performance index.

Secondly, we propose a new approach that considers constraints on thrust angle

based on optimal feedback control to introduce a general linear quadratic regulator

(LQR), in which the performance index in state and control is designed to align the

thrust direction to the relative position vector. A modal analysis method is used to de-

termine the design parameters to make the final thrust angle small. The initial thrust

angle can be estimated easily from the optimal control and rendezvous start phase.

The transient rendezvous phase, however, may not guarantee constraints on the thrust

direction. For the transient phase, this paper proposes a novel method to guarantee

closed-loop stability subject to constraints on the thrust angle. Based on a ”satisfic-

ing” theory proposed by Curtis and Beard (Curtis and Beard, 2002b, 2004) that can



1.2. Approach 5

deliver a parametric set of stable control inputs, the optimal control designed by modal

analysis and contour plots is projected onto a stable domain defined by a candidate

control Lyapunov function (CLF). The control applying the satisficing method to the

rendezvous problem with control direction constraints is first considered in (Mitani and

Yamakawa, 2010). In addition, we show that choosing the candidate CLF generated by

solving the Riccati equation for the general performance index easily makes the thrust

angle at the final phase small and analytically predictable. In addition, the design

process to select parameters to maintain a small-magnitude thrust angle is clarified.

The proposed method assumes active rendezvous, involving communication between

target and chaser so that chaser’s relative states to the target are well estimated.

We consider the elliptic rendezvous problem with constraints on thrust direction

using a satisficing method proposed by Curtis and Beard (Curtis and Beard, 2002b,

2004) and devise a feedback controller that strictly satisfies the thrust angle constraints

(Mitani and Yamakawa, 2010). The idea of introducing a control restriction space to

the satisficing set was proposed by Ren and Beard (Ren and Beard, 2004), who treated

only control magnitude constraints. Although, in principle, the proposed method can

treat added magnitude constraints, this controller does not strictly satisfy the necessary

condition of optimality as defined by the L1 or L2-norm. The previously proposed

method was a feedback controller that emphasizes stability.

Lastly we take over the main results in the satisficing method initially applied to the

rendezvous problem with control direction constraints (Mitani and Yamakawa, 2010,

2011). Likewise, a Lyapunov function for the general linear quadratic regulator (LQR)

is chosen as a local constrained control Lyapunov function (CCLF) (Sznaier et al.,

2003). By performing modal analysis in a linear system (Khalil, 2002), the thrust angle

in the final convergent phase can be analytically predicted. The trajectory becomes

optimal once the trajectory enters the invariant set where these constraints are no

longer binding. To treat the input constraint in the transient phase, a new satisficing set

to guarantee closed-loop stability under input constraints on magnitude and direction

is proposed, inspired by the idea of a smoothing technique (Bertrand and Epenoy, 2002;

Gil-Fernandez and Gomez-Tierno, 2010). Subsequently, a proposed controller is chosen

to minimize a pre-Hamiltonian from the given set. The proposed controller in the set

resembles that in (Mitani and Yamakawa, 2010) from the perspective of having stability

and satisficing constraints, except the magnitude constraint consideration. However,

the proposed controller would be more suitable for the following reasons: firstly, since

a local CCLF is chosen for the value function in the nonbinding case, the proposed

controller becomes a unique optimal control solution where the constraint condition is

nonbinding. Secondly, conversely, the proposed controller gives a projection solution
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onto the input constraint set where the constraint condition is binding. The projected

controller would be sub-optimal because it is guaranteed that the projection vector

of a negative signed Lawden’s primer vector onto the constraint boundary is optimal

(Sukhanov and Prado, 2007, 2008).

1.3 Outline of the Thesis

This dissertation is organized as follows. We propose two new approaches to the prob-

lem of controlling the trajectory of a spacecraft safely while reducing fuel consumption

subject to constraints on control magnitude and direction. The first approach involves

finding an optimal solution in an open loop by introducing a barrier function. The

second involves determining a sub-optimal and closed-loop solution by applying a so-

called satisficing method. Solving the optimal control problem is largely divided into

two approaches: solving a Hamilton-Jacobi-Bellman (HJB) equation based on dynamic

programming and solving a Euler-Lagrange equation based on the variational calculus.

Chapter 2 describes an approach for solving both classic optimal control problems. We

cover some basic properties of a smoothing technique that will jointly apply to both

methods and also take into account the constraints. Finally, we describe the concept of

control Lyapunov function (CLF), which plays an important role in the so-called sat-

isficing theory. The relevance of the solution of the HJB equation provides the overall

outlook.

Chapter 3 states the dynamic equations, which are known as TH equations, and

presents the formulation of a two-point boundary value problem (TPBVP) subject to

constraints on control magnitude and direction, with a brief reviews of how to adapt the

smoothing method to the magnitude constrained problem. The smoothing approach

is applied to the optimal control problem subject to constraints on magnitude and

direction and the formulation of the sequential optimal controller by extending the

results with the magnitude constraint obtained in the previous section is described.

Finally, simulation results are presented, and the effectiveness of the proposed method

is discussed.

In Chapter 4, the theory of satisficing is briefly reviewed. The basic idea involves

defining two utility functions that quantify the benefits and costs of an action. The

”selectability” function was chosen as the distance from the predicted state at the next

time instant to the origin, while the ”rejectability” function was chosen as proportional

to the control effort. By linking the ”selectability” function to a CLF, closed-loop

asymptotic stability is ensured (Curtis and Beard, 2002a, 2004), and provides complete

parameterization as a generalization of the input-to-state stabilizing (ISS) version of
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Sontag’s formula (Sontag, 1989) and Freeman and Kokotovic’s mini-norm approach

(Freeman and Kokotovic, 1996).

Chapter 5 explains the satisficing method in the case of a circular orbit. We for-

mulate the fuel-optimal control problem, which includes the effect of thrust angle con-

straints as a penalty function, and show how to determine the design parameters to

survey the final thrust angle using modal analysis. Using the theory of satisficing,

the stable control for the transient phase is constructed. We show how our proposed

method can be extended to cases of eccentric orbit. Finally, simulation results are

given and the effectiveness of the proposed method is discussed.

Chapter 6 proposes a new representation of the satisficing set by applying two

barrier functions and discusses some properties, conditions and differences from the

constraint-free satisficing set. The applicability of the control is shown for the ren-

dezvous nonlinear control problem subject to constraints on magnitude and direction

and the controller’s stability is investigated. Finally, the nonlinear rendezvous simula-

tion results are presented, and the effectiveness of the proposed method is discussed.

Finally, Chapter 7 presents conclusions and future areas of research suggested by

this thesis.





Chapter 2

Approaches for Solving Nonlinear

Optimal Control Problems

2.1 Introduction

We propose two new approaches to the problem of controlling the trajectory of the

spacecraft safely while reducing fuel consumption, subject to constraints on control

magnitude and direction. The first involves finding an optimal solution in an open

loop by introducing a barrier function. The second involves determining a sub-optimal

and closed-loop solution by applying the so-called satisficing method. Solving the

optimal control problem is largely divided into two approaches: solving the Hamilton-

Jacobi-Bellman (HJB) equation based on dynamic programming and solving the Euler-

Lagrange equation based on the variational calculus. Chapter 2 describes an approach

for solving both classic optimal control problems. We cover some basic properties of

smoothing technique that will jointly apply to both methods to also take into account

the constraints. Finally, we describe a concept of control Lyapunov function (CLF),

which plays an important role in the satisficing theory. The relevance of the solution

of the HJB equation provides an overall prospect in this thesis.

2.2 Trajectory Optimization with Constraints

Typically the system dynamics are defined by a set of ordinary differential equations

written in explicit form, which are referred to as the state or system equations

ẋ = f(t,x(t)) + g(t,x(t))u(t) (2.1)

9
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where x ∈ Rn, f : Rn → Rn, g : Rn → Rn×m and u ∈ Rm. Initial conditions at time

t0 are defined by

x(t0) = x0 (2.2)

and terminal conditions at the final time tf are defined by

x(tf ) = xf (2.3)

In addition, the solution must satisfy algebraic path constraints in the form

g[x(t),u(t), t] ≤ 0 (2.4)

where g is a vector of size Ng. The basic optimal control problem involves determining

the control vectors u(t) to minimize the performance index (Betts, 1998)

J =

∫ tf

t0

L[x(t),u(t), t]dt (2.5)

Various index values L ≥ 0 can be taken according to the considered problems. The

case L = ∥u(t)∥ is the L1-norm problem, where the performance index Eq. (2.5)

represents the minimum fuel consumption, whereas the case L = ∥u(t)∥2/2 is the L2-

norm problem, where the performance index Eq. (2.5) represents the minimum energy.

When L = x(t)TQx(t) + u(t)TRu(t) + 2x(t)TNu(t), Eq. (2.5) is the more general

performance index of the well-known LQR problem, where Q, R, and N are weight

matrices (Bryson and Ho, 1975).

2.3 Nonlinear Optimal Control

Optimal control theory, in its modern sense, began in the 1950s with the formulation

of two design optimization techniques: Pontryagin Minimum Principle and Dynamic

Programming. While the minimum principle, which represents a far-reaching general-

ization of the Euler-Lagrange equations from the classical calculus of variations, may

be viewed as an outgrowth of the Hamiltonian approach to variational problems, the

method of dynamic programming may be viewed as an outgrowth of the Hamilton-

Jacobi approach to variational problems (Primbs, 1999; Bryson and Ho, 1975).
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2.3.1 Dynamic Programming: Hamilton-Jacobi-Bellman equa-

tions

Define V ∗(x0) as the minimum of the performance index taken over all admissible

trajectories (x(t),u(t)) where x starts at x0:

V ∗(x0) = min
u

∫ ∞

0

(q(x) + uTu)dt (2.6)

s.t. ẋ = f(x) + g(x)u (2.7)

x(0) = x0 (2.8)

Using the principle of optimality yields one form of the so-called Hamilton-Jacobi-

Bellman equation

min
u

{
[q(x(t)) + uT (t)u(t)] +

(
∂V ∗

∂x

)T

[f(x(t)) + g(x(t))u(t)]

}
= 0 (2.9)

The boundary condition for this equation is given by V ∗(0) = 0 where V ∗(x) must be

positive for all x (since it corresponds to the optimal cost which must be positive).

In many cases, this is not the final form of the equation. Two more steps can

often be performed to reach a more convenient representation of the Hamilton-Jacobi-

Bellman equation. First, the indicated minimization is performed, leading to a control

law of the form

u∗ = −1

2
gT (x)

∂V ∗

∂x
(2.10)

The second step involves substituting Eq. (2.10) back into Eq. (2.9), and solving the

resulting nonlinear partial differential equation(
∂V ∗

∂x

)T

f(x)− 1

4

(
∂V ∗

∂x

)T

g(x)gT (x)
∂V ∗

∂x
+ q(x) = 0 (2.11)

for V ∗(x). Equation (2.11) is what we will often refer to as the Hamilton-Jacobi-

Bellman (HJB) equation.

2.3.2 Calculus of variations: Euler-Lagrange equations

The Euler-Lagrange solution is based on consideration of the optimal control problem

within the framework of constrained optimization:

min
u

∫ tf

t0

(q(x) + uTu)dt+ φ(x(tf )) (2.12)

s.t. ẋ = f(x) + g(x)u (2.13)

x(0) = x0 (2.14)



12 Chapter 2. Approaches for Solving Nonlinear Optimal Control Problems

The objective function is based on a finite horizon length of terminal weight φ(·) applied
at the end of the horizon. This cost is equivalent to an infinite horizon cost only when

the terminal weight is chosen as the value function, i.e. φ(·) = V ∗(·), which can only

be found from the solution to the HJB equation. Secondly, in addition to viewing the

dynamics as a constraint, a specific initial condition is imposed.

The calculus of variations solution can be thought of as a standard application of

the necessary conditions for constrained optimization. The first step involves using

Lagrange multipliers to adjoin the constraints to the performance index. Since the

constraints are determined by the system differential equation and represent equality

constraints that must hold at each instant in time, an associated multiplier λ(t) ∈ Rn

is a function of time. Defining for convenience, the following scalar function H, called

the Hamiltonian,

H(x(t),u(t),λ(t)) = q(x(t)) + uT (t)u(t) + λT (t)(f(x(t)) + g(x(t))u(t)) (2.15)

For a stationary point, this must be equal to zero for all allowable variations. The

following equations, which represent the necessary conditions for optimality known

as Euler-Lagrange equations, are used to design the control u(t) that minimizes the

performance index, and can be summarized as follows:

ẋ = f(x) + g(x)u (2.16)

λ̇ = −
(
∂H

∂x

)
(2.17)

∂H

∂u
= 0 (2.18)

with boundary conditions

x(0) given (2.19)

λ(T ) =

(
∂φ

∂x

)∣∣∣∣
t=T

(2.20)

The optimizing control action u∗(t) is determined by

u∗(t) = argmin
u

H(x∗(t),u,λ∗(t)) (2.21)

where x∗(t) and λ∗(t) denote the solution corresponding to the optimal trajectory.

2.4 Smoothing Technique

Smoothing techniques are a useful tool, also used in optimal control to solve problems

with discontinuous mixed constraints on state and control (Epenoy and Ferrier, 2001).
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Bertrand and Epenoy propose deducing the solution to the initial problem from suc-

cessive solutions of an auxiliary problem (Bertrand and Epenoy, 2002). This last one

is defined by Eqs. (2.1-2.3), constraint (2.4), and the following perturbed performance

index

Jε =

∫ t1

t0

[L(x,u) + εF (x,u)]dt =

∫ t1

t0

h[x,u, ε]dt (2.22)

where F is a continuous function satisfying

F (w) ≥ 0 ∀w ∈ [0, 1] (2.23)

We will see below the role of this property. In addition, parameter ε is assumed to

be in the interval (0, 1], whereupon the function h[x,u, ε] is continuous and strictly

decreasing for each t in [t0, t1] and each u ∈ U .

The continuation approach consists first of solving the perturbed problem with

ε = 1 (i.e. the corresponding TPBVP yields by the minimum principle). Subsequently,

after defining a decreasing sequence of ε values (ε1 = 1 > ε2 > · · · > εn)), the current

TPBVP associated with ε = εk(k = 2, · · · , n) is solved with the solution of the previous

one as a starting point. This iterative process terminates when a certain precision on

the performance index has been achieved

||Jεk+1 − Jεk || ≤ η, η > 0 (2.24)

As a result of the inequality (2.23), we can derive some interesting properties:

Proposition 2.4.1

Jε1(u∗
ε1
) ≤ Jε2(u∗

ε2
) ≤ · · · ≤ Jεn(u∗

εn) ≤ J(u∗) ≤ J(u∗
εk
), k = 1, · · · , n (2.25)

where u∗
ε denotes the optimal control associated with Jε and u∗ is the original optimal

control given by Eq. (2.21).

Moreover, under some mild assumptions, and if the existence of a solution for all

ε ∈ (0, 1] is assumed, we can also write:

Proposition 2.4.2

lim
ε→0

Jε(u∗
ε) = J(u∗) (2.26)

lim
ε→0

J(u∗
ε) = J(u∗) (2.27)

The proofs of these propositions are given by Gergaud (Gergaud, 1989).
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2.5 Control Lyapunov Function Technique

A control Lyapunov function (CLF) is a C1, proper, positive-definite function V :

inf
u

V̇ = inf
u

V T
x [f(x) + g(x)u] < 0 (2.28)

for all x ̸= 0 (Artstein, 1983). Specifically, if u ∈ UC ⊂ Rm, V (x) is said to be a

constrained CLF (CCLF) (Sznaier et al., 2003). We treat a general definition CLF V

which depends on time t explicitly from Chapter 4 onward.

If it is possible to make the time derivative V̇ negative at every point by an appro-

priate choice of u, then we will have achieved our goal and can stabilize the system

with V , a Lyapunov function for the controlled system under the chosen control actions,

which is exactly the condition given in the inequality (2.28).

In what follows we develop connections between nonlinear control techniques based

on control Lyapunov functions, and the HJB approach to the optimal control problem.

When a CLF is viewed beyond a mere Lyapunov stability framework, as an approxima-

tion of the value function V ∗, many CLF approaches have natural derivations the HJB

frame work. We pursue these connections here, focusing the majority of our attention

on Sontag’s formula and pointwise min-norm controllers.

Rewiring the HJB equation (2.11) as(
∂V ∗

∂x

)T [
f − 1

2
ggT

∂V ∗

∂x

]
+

1

4

(
∂V ∗

∂x

)T

ggT
∂V ∗

∂x
+ q = 0

and recalling that

u∗ = −1

2
gT

∂V ∗

∂x

allows us to reformulate Eq. (2.11) as(
∂V ∗

∂x

)T

[f + gu∗] = −

[
1

4

(
∂V ∗

∂x

)T

ggT
∂V ∗

∂x
+ q

]
≤ 0 (2.29)

Note that now the left-hand side appears as in the definition of a control Lyapunov

function (cf. Eq.(2.28)). Hence, if the right-hand side is negative, V ∗ is a control Lya-

punov function. Technically, the right-hand side need only be negative semi-definite,

meaning the value function may only be a so-called weak CLF. Of course, for any

positive-definite cost parameter q, this equation shows that V ∗ is in fact a strict CLF.

Many CLF-based techniques can be viewed assuming that a CLF is an estimate of the

value function, which is ideal for performance purposes.



Chapter 3

Continuous-thrust Transfer with

Control Magnitude and Direction

Constraints Using Smoothing

Techniques

3.1 Introduction

The method proposed herein is an optimal open-loop controller that emphasizes the

performance index.

Various numerical optimization techniques can be used to solve such problems under

complicated conditions. Direct transcription methods that use a piecewise polynomial

representation for the state and controls are often used to solve optimal control prob-

lems in the context of spacecraft transfer trajectories (Conway, 2010). These methods

discretize the time horizon and the control and state variables. When no state con-

straint exists, minimum-fuel problems have sometimes been solved by directly applying

Pontryagin’s minimum principle (PMP) (Pontryagin, 1961; Bryson and Ho, 1975). This

approach yields a two-point boundary value problem (TPBVP), which is then solved

using a shooting method (Betts, 1998). Few authors have used PMP to solve the

inequality constrained optimal control problem that arises when constraints on mag-

nitude and direction are imposed. Bertrand and Epenoy (Bertrand and Epenoy, 2002)

investigated the solution of bang-bang optimal control problems by shooting methods.

They proposed a new smoothing approach that yields a good approximation of the orig-

inal problem. In this method, a sequence of unconstrained optimal control problems is

solved according to PMP by introducing a barrier function to the original performance

index. The solutions converge toward the solution of the original problem while strictly

15
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Constraints Using Smoothing Techniques

satisfying the treated constraints as the perturbation coefficients of the barrier func-

tions approach zero. The orbit transfer problem with a magnitude constraint was first

treated in (Bertrand and Epenoy, 2002). Gil-Fernandez also considered this method

and solved a practical continuous low-thrust orbit transfer problem (Gil-Fernandez

and Gomez-Tierno, 2010). In addition, Epenoy solved a collision avoidance rendezvous

problem by introducing new penalty functions (Epenoy, 2011).

To the best of the authors’ knowledge, there has been no report on treating the

control direction constraints by applying the smoothing method. In this chapter, the

authors first discuss a necessary condition of the optimal controller under constraints on

the control magnitude and direction using a smoothing approach. This contribution

owes to the previous work by Bertrand and Epenoy (Bertrand and Epenoy, 2002)

and the necessary condition of optimal controller is successfully formulated in L1-

and L2-norm problems respectively by introducing a newly proposed extra barrier

function. These solutions are a natural extension of the solution using only a magnitude

constraint obtained by Bertrand and Epenoy (Bertrand and Epenoy, 2002). As the

perturbation coefficients of the barrier functions approach zero, the smoothed optimal

controller approaches the necessary condition that the optimal thrust is directed along

the projection of Lawden’s primer vector onto the restricting set, while the control,

the primer, and the admissible direction vectors are coplanar. This extremal property

is completely consistent with the results reported by Sukhanov and Prado (Sukhanov

and Prado, 2007, 2008).

In this chapter, a continuous low-thrust formation and reconfiguration problem

under control magnitude and direction constraints is treated. Specifically, the authors

herein treat primarily the condition in which the thrust direction of the chaser relative

to the direction of the target is constrained. The basic objectives are to drive the chaser

vehicle to transfer between the relative periodic orbit around the target under a small

thrust magnitude and angle conditions and to minimize fuel consumption.

3.2 Problem Statement

3.2.1 Dynamic Equations

Consider two satellites subject to the gravitational force of the Earth, namely, a chaser

satellite equipped with a continuous-thrust propulsion system and a passive target

satellite, both flying in elliptical orbits. The analysis does not take into account mass

changes of the satellites as a result of propellant usage. Introduce a rotating right-

hand reference frame o − {R,S,W}, where o is the center of mass of the target, R
is in the radial direction, S is in the flight direction, and W is the direction outward
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from the orbital plane. Let r be the position vector of the chaser relative to the

target, and let u be the control acceleration vector. Set r = xR + yS + zW and

u = uxR + uyS + uzW . The Tschauner-Hempel (TH) equations (Tschauner and

Hempel, 1964; Tschauner, 1967; Alfriend et al., 2010) are then given by

ẍ− 2ḟ ẏ − f̈y − (ḟ 2 + 2
µ

R3
0

)x = ux (3.1)

ÿ + 2ḟ ẋ+ f̈x− (ḟ 2 − µ

R3
0

)y = uy (3.2)

z̈ +
µ

R3
0

z = uz (3.3)

where ȧ is the derivative with respect to time t, µ is the gravitational parameter of the

Earth, R0 = ∥R0∥ = p0/ρ(f), R0 is the position vector of the target, p0 = A0(1− e2)

is the semilatus rectum, ρ(f) = 1 + e cos f , A0 is the semimajor axis, e ∈ [0, 1) is

the eccentricity of the orbit of the target, and f is the true anomaly. Introducing

r̄ = (x̄, ȳ, z̄) = (x, y, z)/R0 and replacing independent variable t by f , Eqs. (3.1)

through (3.3) are transformed into the state-space form, as follows:

x̄′(f) = A(f)x̄(f) +B(f)ū(f) (3.4)

where differentiation with respect to f is indicated by ′, x̄(f) = [r̄ r̄′]T ∈ R6, ū(f) =

u(f)/αmax ∈ R3 is the normalized control acceleration vector of the chaser at the true

anomaly f , as expressed in the (R,S,W) frame, ū(f) satisfies ∥ū(f)∥ ≤ 1, ∥ · ∥
denotes the Euclidean norm, αmax is the maximum control acceleration, and

A(f) =

[
O3×3 I3×3

A1(f) A2

]
, B =

R2
0(f)

ρ(f)

αmax

µ

[
O3×3

I3×3

]
(3.5)

A1(f) =

 3/ρ(f) 0 0

0 0 0

0 0 −1

 , A2 =

 0 2 0

−2 0 0

0 0 0

 (3.6)

In×n is the n × n identity matrix, and On×n is the n × n zero matrix. The period of

the orbit is T = 2π(A3
0/µ)

1/2, and the orbital mean motion, which is the average of the

orbit rate ḟ , is n = (µ/A3
0)

1/2.

For convenience, Table 3.1 shows the transformation from true dimensional values

preserving the physical meaning into nondimensional values (Yamanaka and Ankersen,

2002). The true anomaly f must be converted to the mean anomaly M in order to

obtain dimensional time t (Wie, 1998). In the same table, h and tp represent the

angular momentum of the target and the time of perigee, respectively. Hereinafter, all

formulations are executed using the nondimensional values obtained using f . Therefore,

the bars over x and u are not shown in Sections 3.3 and 3.4. Note that directions of r̄
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Table 3.1: Transformation from true dimensional values to nondimensional values.

Physical quantity The transformation The inverse transformation

f(t), x̄(f) = [r̄ r̄′]T , ū(f) t(f), x(t) = [r v]T , u(t)

Time, True anomaly f = f(M), M = n(t− tp) t = (1/n) ·M(f) + tp

Position r̄ = r/R0 r = R0 · r̄
Velocity r̄′ = −(e sin f/p0)r + (p0/(hρ))v v = (h/p0)(e sin f r̄ + ρr̄′)

Control acceleration ū = u/αmax u = αmax · ū

and ū as expressed in the (R,S,W) frame are preserved as the respective directions

of the true physical values. However, r̄′ and v do not always have the same direction

if e ̸= 0. Therefore, a certain constraint corresponding to the relative angle between r

and u is simply converted to the corresponding nondimensional constraint.

3.2.2 Optimal Control Problem Under Control Magnitude and

Direction Constraints

Assuming that the initial and final true anomalies (denoted, respectively, as f0 and

f1) are fixed, with f0 < f1, the optimal control problems under control magnitude and

direction constraints, denoted as (Pmdj), can be written as follows:

Problem (Pmdj) : Find

u∗
mdj = argmin

u
Jmdj(u) (3.7)

Jmdj(u) =

∫ f1

f0

Lj(∥u(f)∥)df (3.8)

Lj(∥u(f)∥) =

∥u(f)∥, j = 1

∥u(f)∥2/2, j = 2
(3.9)

such that

x′(f) = A(f)x(f) +B(f)u(f) (3.10)

∥u(f)∥ ≤ 1, f ∈ [f0, f1] (3.11)

∥θ[ξ(f, r),u(f)]∥ ≤ γ, f ∈ [f0, f1] (3.12)

x(f0) = x0, x(f1) = x1 (3.13)

Problem (Pmd1) is the L1-norm problem, where the performance index J∗
md1 = Jmd1(u

∗)

represents the minimum fuel consumption, and problem (Pmd2) is the L2-norm problem,
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where the performance index J∗
md2 = Jmd2(u

∗) represents the minimum energy. The

initial and final vectors x0 and x1 in Eq. (3.13) are fixed and can be computed from

the original true relative position and velocity using the conversion in Table 3.1.

Equation (3.12) indicates that the control direction, which is defined as the angle

between the admissible direction vector −ξ and the control direction vector u, is con-

strained within the angle γ ∈ (0, π]. The magnitude of the control direction ∥θ∥ is

defined as

∥θ[ξ(f, r),u(f)]∥ = acos[−ξ̂(f, r)T û(f)] (3.14)

where â is a unit vector of a. The polarity of θ is defined later herein based on a discus-

sion and after calculating simulation cases. When taking ξ(f, r) = r, ∥θ[r(f),u(f)]∥
corresponds to the angle between the direction vector toward the target −r and u from

the view of the chaser in the direction away from the target (Mitani and Yamakawa,

2010). Note that the direction of control input u is opposite the direction of injection

−u. In this case, since the state x and control u are coupled in the inequality condition

of Eq. (3.12), it is generally difficult to solve (Pmdj). This condition can occur when

the direction of injection is restricted because of the thrust plume or when the direction

of control with the thrusters fixed on the chaser is restricted because the target must

be visible in the FOV of the camera of the chaser as the chaser moves safely toward the

target. On the other hand, when taking ξ(f, r) = s(f), ∥θ[s(f),u(f)]∥ corresponds

to the angle between the sun direction vector s and u. In this case, Eq. (3.12) does

depend on not the state x, but rather depends on f explicitly. In the present chapter,

the case in which ξ = r will be primarily treated in Section 3.5.

Here, (Pmdj), j = 1, 2 are the problems to eventually be solved herein. In a stepwise

fashion, define the problems in which inequality conditions are relaxed. For a problem

in which the magnitude constraint of Eq. (3.11) is not considered, the subscript m is

omitted from the corresponding characters and values, such as P , u and J . In addition,

for a problem in which the direction constraint of Eq. (3.12) is not considered, the

subscript d is omitted from the corresponding characters and values. For example,

(Pmj) and u∗
mj denote the optimal control problem and the corresponding optimal

controller minimizing Lj-norm under the magnitude constraint of Eq. (3.11), while

not considering the direction constraint of Eq. (3.12). Likewise, (P2) and u∗
2 denote

the unconstrained optimal control problem and the corresponding optimal controller

minimizing the L2-norm. Note that (P1) cannot be defined without the magnitude

constraint of Eq. (3.11) because the solution satisfying PMP cannot exist.
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3.3 Solving the Control Magnitude Constrained Prob-

lem

First, how to solve (Pm1) is briefly reviewed. In the following, λ denotes the costate

corresponding with the x state. Even without the direction constraint, the solution

of (Pm1) using PMP is not straightforward. Indeed, according to PMP (Pontryagin,

1961; Bryson and Ho, 1975), the optimal control u∗
m1 takes the following form when

p(f) ≜ B(f)Tλ(f) ̸= 0:

u∗
m1(f) = −u∗

m1(f)p̂(f) (3.15)

with

u∗
m1(f) =


1 if ρsw(f) < 0

0 if ρsw(f) > 0

w ∈ [0, 1] if ρsw(f) = 0

(3.16)

where ρsw(f) is normally referred to as the switching function:

ρsw(f) = 1− p(f) (3.17)

For the case in which p(f) = 0, u∗
m1(f) = 0. For convenience, a scalar value a ≜

∥a∥ represents the Euclidean norm of a vector a. Denoting p(f) = B(f)Tλ(f), the

adjoint to r′(f), is referred by Lawden as the primer vector (Lawden, 1963; Conway,

2010). Thus, Eq. (3.16) reveals that the optimal control u∗
m1 has such a bang-off-bang

structure because assuming that no singular arc exists, the interval [f0, f1] splits into

subintervals in which, alternately, u∗
m1(f) = 1 (magnitude of control is maximum) and

u∗
m1(f) = 0 (magnitude of control is zero). Then, according to (Bertrand and Epenoy,

2002), the shooting function arising from PMP is not continuously differentiable, and

its Jacobian is singular on a large domain. Consequently, solving problem (Pm1) by

means of the shooting method is very difficult. A novel regularization technique has

been developed in (Bertrand and Epenoy, 2002) for solving this type of minimum-fuel

problem. The same technique was used in (Gil-Fernandez and Gomez-Tierno, 2010;

Epenoy, 2011) and is here again applied to the solution of problem (Pm1). Based on

(Bertrand and Epenoy, 2002), a regularized control magnitude constrained problem,

denoted as (Pε
m1), is established as follows:

Problem (Pε
m1) : Find

uε
m1 = argmin

u
Jε
m1(u) (3.18)

Jε
m1(u) =

∫ f1

f0

u+ εuFu[u(f)]df (3.19)
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such that the conditions of Eqs. (3.10) and (3.13) are satisfied.

Function εuFu is given hereinafter as

εuFu[u(f)] = −εu log u(1− u), f ∈ [f0, f1] (3.20)

where εu > 0, and εuFu is a continuous function satisfying

εuFu(u) ≥ 0, u ∈ [0, 1] (3.21)

Note that Eq. (3.20) is opposite in sign to the definition in (Bertrand and Epenoy,

2002). If εuFu(u) → +∞ as u approaches one or zero, then Fu is referred to as a barrier

function. Specifically, a barrier function having the form of Eq. (3.20) is referred to

as a logarithmic barrier function. For a given n > 0, a sequence of values denoted as

εui (i = 1, · · · , n) is defined with (εu1 > εu2 > · · · > εun > 0). Then, problems (Pεi
m1)

(i = 1, · · · , n) are solved sequentially using the solution obtained at step (i− 1) as an

initial guess for step i. Finally, assuming that εu is sufficiently small, the solution of

(Pε
m1) provides a very accurate approximation of the solution of (Pm1) (See (Bertrand

and Epenoy, 2002)).

According to PMP (Pontryagin, 1961; Bryson and Ho, 1975), the optimal control

uε
m1 takes the following form when p(f) ̸= 0:

uε
m1(f) = −uε

m1(f)p̂(f) (3.22)

The optimal magnitude uε
m1 ∈ (0, 1) is obtained as the solution of the following equation

(Bertrand and Epenoy, 2002):

ρsw − εu
1− 2u

u(1− u)
= 0 (3.23)

The solution is

uε
m1(f) =

2εu

ρsw(f) + 2εu +
√

ρsw(f)2 + 4ε2u
(3.24)

For the case in which p = 0, the thrust direction is undetermined. Then, in both cases,

the following holds:

uε
m1(f) ∈ (0, 1); f ∈ [f0, f1] (3.25)

The key point in (Bertrand and Epenoy, 2002) is that uε
m1 is a smooth approximation

of the bang-off-bang optimal control u∗
m1. In the same way, uε

m2 can be constructed

for (Pε
m2) by introducing the same barrier function, i.e., Eq. (3.20). The derivation of

the L2-norm problem is explained in Appendix A.

In addition, the costate differential equations for (Pε
m1) and (Pε

m2) take the same

following form:

−λ′ =
∂Hε

mj

∂x
= A(f)Tλ (3.26)
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3.4 Solving the Control Magnitude and Direction

Constrained Problem

3.4.1 Introducing an Extra Barrier Function

In the following, the extended smoothing approach to solve (Pmdj) is attempted. When

u is constrained within the angle γ from an admissible direction vector −ξ(f, r) ̸= 0,

an optimal controller can be smoothed by introducing an extra barrier function, in the

same manner as in the previous section. For this purpose, a parameter b and a new

logarithmic barrier function εbFb will be introduced as follows:

b[ξ(f, r),u(f)] =
−ξ̂

T
û− cos γ

1− cos γ

=
cos θ − cos γ

1− cos γ
(3.27)

εbFb[ξ(f, r),u(f)] = −εbu log b (3.28)

where εb > 0 and Eq. (3.14) is used, εbFb is a continuous function satisfying

εbFb[ξ(f, r),u(f)] ≥ 0, u ≤ 1, ∥θ∥ ≤ γ (3.29)

Note that 0 ≤ b ≤ 1, and as ∥θ∥ approaches γ, b and εbFb approach +0 and +∞, respec-

tively. Therefore, εbFb satisfies the condition of the barrier function. The coefficient

u in front of the logarithmic function is added for two reasons. First, the uncertainty

of the direction can be circumvented when u = 0. Second, each equation for solving

the optimal magnitude and direction can be well separated, and these equations will

become extended expressions from the optimal smoothed controller for dealing with

the magnitude constraint in the previous section.

In the same manner, adding εbFb to Jε
mj, consider the following (Pε

mdj):

Problem (Pε
mdj) : Find

uε
mdj = argmin

u
Jε
mdj(u) (3.30)

Jε
mdj(u) =

∫ f1

f0

Lj(u) + εuFu[u(f)] + εbFb[ξ(f, r),u(f)]df (3.31)

such that the conditions of Eqs. (3.10) and (3.13) are satisfied.

Using the same PMP approach as in (Pε
mj), build the Hamiltonian function Hε

mdj,

as follows:

Hε
mdj = Lj(u)− εu log u(1− u)− εbu log b+ λT (Ax+Bu) (3.32)
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The optimal controller is then given by

uε
mdj(f) = argmin

u
Hε

mdj (3.33)

Here, the Cauchy-Schwartz inequality cannot be directly applied to obtain the optimal

direction of uε
mdj because the term εbFb has −ξ̂

T
û, which depends on the direction of

u. In the following subsection, the optimal magnitude and direction of uε
mdj will be

derived.

3.4.2 Derivation of Optimal Direction ûε
mdj

Case in which ξ ∦ p

Introduce a control-space frame o−{I,J ,K}, where o is the zero point of the control,

I = −ξ̂, K = ξ̂ × p̂/∥ξ̂ × p̂∥, and J completes the setup (J = K × I). Then, u is

expressed in polar coordinate (u, θ, φ) as follows:

u = u · (cosφ cos θ · I + cosφ sin θ ·J + sinφ ·K) (3.34)

where u ∈ (0, 1), θ ∈ (−γ, γ), and φ ∈ (−acos[cos γ/ cos θ], acos[cos γ/ cos θ]) from the

Figure 3.1: Definition of a control-space frame o − {I,J ,K}, control u in polar

coordinates (u, θ, φ), and relative angle β between ξ̂ and p̂.

constraints on control magnitude and direction of Eqs. (3.11) and (3.12). Since θ and

φ are linked by the inequality constraint on the direction

G(θ, φ) ≜ (cos γ − cosφ cos θ) ≤ 0 (3.35)

the necessary optimality conditions of constrained problems should be treated analyt-

ically by adjoining the inequality (3.35) to Hε
mdj in Eq. (3.32). The extremal value of
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Hε
mdj + νuG indicates that the partial derivatives of θ, φ, and u are zero:

∂Hε
mdj + νuG

∂α
= 0 ⇒

u ·

(
− εb

ξ̂
T
û+ cos γ

ξ̂
T
ûα + pT ûα + ν

∂G

∂α

)
= 0, α = θ, φ (3.36)

∂Hε
mdj + νuG

∂u
= 0 ⇒

∂Lj(u)

∂u
+ pT û− εb log b−

εu(1− 2u)

u(1− u)
+ νG = 0 (3.37)

where ûα = ∂û/∂α for simplicity and ν is a Lagrange multiplier corresponding to the

inequality uG ≤ 0

ν

≥ 0, uG(θ, φ) = 0

= 0, uG(θ, φ) < 0
(3.38)

Choosing the inequality uG ≤ 0, not G ≤ 0 is for the same reasons as the case of εbFb.

Equation (3.36) corresponds to the condition in which the equality is obtained when

the Cauchy-Schwartz inequality is applied, which implicitly determines the optimal

direction of u. As u ∈ (0, 1), both sides of Eq. (3.36) can be divided by u(̸= 0).

Therefore, the direction α can be derived without any dependence on the magnitude

of u. This simplification is possible due to the coefficient u in front of the logarithmic

function in Eq. (3.28). Then, Eq. (3.36) reduces to

∂Hε
mdj + νuG

∂θ
= 0 ⇒

cosφ [{sin(θ − β) + ν̃ sin θ}(cos γ − cosφ cos θ)− ε̃b sin θ] = 0 (3.39)

∂Hε
mdj + νuG

∂φ
= 0 ⇒

sinφ [{cos(θ − β) + ν̃ cos θ}(cos γ − cosφ cos θ)− ε̃b cos θ] = 0 (3.40)

where β ∈ (0, π) represents the angle between −ξ̂ and −p̂, which are defined by the

following expressions ξ̂
T
p̂ = cos β and ξ̂× p̂ = sin β · k̂, ε̃b = εb/p > 0 and ν̃ = ν/p ≥ 0.

From the domain of φ, cosφ ̸= 0.

If sinφ ̸= 0, both term of [{sin(θ − β) + ν̃ sin θ}(cos γ − cosφ cos θ)− ε̃b sin θ] in Eq.

(3.39) and term of [{cos(θ − β) + ν̃ cos θ}(cos γ − cosφ cos θ)− ε̃b cos θ] in Eq. (3.40)

must become zero at a certain value of θ. However, such a solution of θ exists only

when β = 0, 2π and ν̃ = 0, which conflicts with the assumption that ξ ∦ p.

If sinφ = 0, then φ = 0, which leads to cosφ = 1. Therefore, Eq. (3.40) is

automatically satisfied. In the end, Eq. (3.39) reduces to

[sin(θ − β) + ν̃ sin θ](cos γ − cos θ)− ε̃b sin θ = 0 (3.41)
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Assume that the constraint is effective (ν ≥ 0) at the optimal point, then cos θ = cos γ

from φ = 0 and G = 0. But the condition can not satisfy Eq. (3.41) as long as ε̃b > 0.

Therefore, substituting ν = 0 into Eq. (3.41),

sin(θε − β)(cos γ − cos θε)− ε̃b sin θ
ε = 0 (3.42)

determines the optimal θ, denoted by θε. The qualitative property of Eq. (3.42) and

the uniqueness of the solution are explained later in this section. Based on Eqs. (3.34)

and (3.42) and φ = 0, ûε
mdj is given as

ûε
mdj = (sin θε cot β − cos θε)ξ̂ − sin θε csc βp̂ (3.43)

Case in which ξ ∥ p

Take ẑ as an arbitrary unit vector vertical to ξ̂. Introduce a control-space frame

o − {I,J ,K}, where o is the zero point of the control, and I = −ξ̂, K = ẑ, and J
completes the setup. As u expressed in polar coordinated (u, θ, φ), Eq. (3.36) reduces

to

∂Hε
mdj + νuG

∂θ
= 0 ⇒

cosφ sin θ[{(ξ̂
T
p̂) + ν̃}(cos γ − cosφ cos θ)− ε̃b] = 0 (3.44)

∂Hε
mdj + νuG

∂φ
= 0 ⇒

sinφ cos θ[{(ξ̂
T
p̂) + ν̃}(cos γ − cosφ cos θ)− ε̃b] = 0 (3.45)

Note that Eqs. (3.44) and (3.45) have the same factor of [{(ξ̂
T
p̂)+ν̃}(cos γ−cosφ cos θ)−

ε̃b] and cosφ ̸= 0 from the domain of φ. Assume that the constraint is effective (ν ≥ 0)

at the optimal point, then G = (cos γ − cosφ cos θ) = 0. But the condition can not

satisfy Eqs. (3.44) and (3.45) simultaneously as long as ε̃b > 0. Therefore, ν = 0.

If ξ̂
T
p̂ = 1, then cos γ − ε̃b ≜ cos γ′, ε̃p > 0, and γ′ > γ. Therefore, [(ξ̂

T
p̂)(cos γ −

cosφ cos θ)− ε̃b] ̸= 0, and cosφ sin θ = sinφ cos θ = 0. In this case, from the domain of

θ and φ, θε = φε = 0 or ûε
mdj = −p̂ is the solution. Moreover, in this case, the form of

ûε
mdj can be merged to the form for the case in which ξ ∦ p. In fact, taking the limit

β → 0 or ξ̂ → p̂ in Eq. (3.43),

ûε
mdj = lim

β→0
−sin θε − sin(θε − β)

β

β

sin β
p̂ = − cos θε · 1 · p̂ = −p̂ (3.46)

where θε = 0.

If ξ̂
T
p̂ = −1, then Eq. (3.44) and (3.45) can be satisfied when cosφ cos θ = cos γ+

ε̃b < 1 or θ = φ = 0. Compare the Hamiltonian values of these two regions. When
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cosφ cos θ = cos γ+ ε̃ < 1, substitute this equation into the Hamiltonian of Eq. (3.32):

H̃/(pu) = −ε̃b log
ε̃b

1− cos γ
+ cos γ + ε̃b < 1 (3.47)

where H̃ = Hε
mdj − Lj(u) + εu log u(1 − u) − λTAx. When θ = φ = 0, in the same

manner,

H̃/(pu) = 1 (3.48)

As a result, Eq. (3.47) always has a smaller Hamiltonian than Eq. (3.48). Therefore,

for the case in which ξ ∥ p, optimal θ and φ cannot be uniquely identified, but satisfy

cosφε cos θε = cos γ + ε̃b < 1 (3.49)

Putting the cases 1 and 2 together, the optimal direction ûε
mdj is summarized as

follows:

ûε
mdj(θ, φ) =(sin θε1 cot β − cos θε1)ξ̂ − sin θε1 csc βp̂, ξ̂ ∦ p̂ or ξ̂

T
p̂ = 1

− cosφε
2 cos θ

ε
2ξ̂ − cosφε

2 sin θ
ε
2(ẑ × ξ̂) + sinφε

2ẑ, ξ̂
T
p̂ = −1

(3.50)

where θε1 ∈ [0, γ) satisfies Eq. (3.42), (θε2, φ
ε
2) satisfies Eq. (3.49), ξ̂

T
p̂ = cos β, ξ̂× p̂ =

sin β, and ξ̂
T
ẑ = 0.

In the following, Eq. (3.42) is explained in a little more detail. This equation

can be solved explicitly by transforming the equation to a quartic equation of χ =

sin θε ∈ [0, sin γ) and using the Ferrari formula (Burnside and Panton, 2005). For the

domain of θε ∈ [0, γ), a unique solution is found when β ̸= 0, π, β > 0, and ε̃b > 0.

However, because of the complexity of the analytical form, it is easier to use numerical

computation methods such as the Newton-Raphson method to find θε ∈ [0, γ) (Saaty

and Bram, 1981). Based on the form of Eq. (3.42), the qualitative nature is easily

found. By adding εbFb to Jε
mj, û = −p̂ is not always satisfied. Instead, the smoothing

approach leads to another interesting property whereby three vectors ûε
mdj, ξ̂, and p̂

are coplanar when ξ ∦ p. When ε̃b = εb/p → ∞, θε → 0, which means that u becomes

parallel to −ξ. On the other hand, when ε̃b → 0, θ → β, which means û approaches

−p̂ if β ≤ γ, and θ → γ, which means ûε
mdj approaches the boundary side of the

inequality constraint of Eq. (3.12) near −p if β > γ. In the latter case, the thrust

angle constraint is activated. In the former case, on the other hand, the constraint

is not activated and the property û = −p̂ is maintained reasonably. This extremal

property is completely consistent with the results reported by Sukhanov and Prado

(Sukhanov and Prado, 2007, 2008), where the optimal thrust is directed along the

projection of Lawden’s primer vector onto the boundary restricting the control set.
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3.4.3 Derivation of Modified Optimal Magnitude ∥uε
mdj∥

Since the optimal direction ûε
mdj is given in Eq. (3.50), the optimal magnitude uε

mdj

from Eq. (3.37) is obtained, which yields an expression that can be extended to Eq.

(3.24). First, in (Pε
md1), define the extended primer vector norm and switching function

as follows:

p̃(f) = −pT ûε
mdj + εb log[b(ξ̂, û

ε
mdj)] (3.51)

ρ̃sw(f) = 1− p̃(f) (3.52)

Based on the properties of ûε
mdj in Eq. (3.50) and εbFb in Eq. (3.29), p̃ ≥ 0. Then,

using ∂L1(u)/∂u = 1, Eq. (3.37) reduces to

ρ̃sw − εu
1− 2u

u(1− u)
= 0 (3.53)

which has the same form as Eq. (3.23). Therefore, uε
md1 also has the same form as Eq.

(3.24).

uε
md1 =

2εu

ρ̃sw + 2εu +
√

ρ̃2sw + 4ε2u
(3.54)

When εb = 0, ρ̃sw = ρsw, and the solution of Eq. (3.54) of (Pmd1) naturally reduces to

the solution of Eq. (3.24) of (Pm1). As in the case of (P ε
md1), Eq. (3.37) can be solved

for the case of (P ε
md2) (See Appendix A). Thus, by introducing εbFb, the formulation

of the smoothed optimal controller uε
mdj can be derived in order to deal with (Pε

mdj)

and this form is shown to be a natural extension of the one with only the magnitude

constraint in (Pε
mj).

In addition, the explicit forms of the optimal control for (Pmd1) and (Pmd2) are

given as follows:

û∗
mdj =

−p̂, β ≤ γ

(sin γ cot β − cos γ)ξ̂ − sin γ csc βp̂, β > γ
, j = 1, 2 (3.55)

u∗
md1 =


1, ρsw = 1 + pT û∗

md1 < 0

0, ρsw > 0

w ∈ [0, 1], ρsw = 0

(3.56)

u∗
md2 =

−pT û∗
md2, −pT û∗

md2 ≤ 1

1, −pT û∗
md2 > 1

(3.57)

In order to obtain a more comprehensive understanding of the results, Fig. 3.2

shows the derived optimal magnitude uε
mdj, the direction ûε

mdj, and the corresponding
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barrier functions εuFu and εbFb. Note that uε
md1 and uε

md2 have the same barrier

function εuFu. Here, the polarities are appended to β and θε. In addition, γ is set to

π/2, for example. Figure 3.2 shows that the optimal uε
m1, u

ε
m2, and θε become steep

and saturated as ε approaches +0.

Figure 3.3 shows the Hamiltonian Hε
mdj contour when −ξ(f, r) and −p(f) at a

certain f are frozen. Cases a) and b) are typical two cases for β < γ and β > γ, where

γ is set to π/3, for example. Since ξ ∦ p, three vectors uε
mdj, −ξ, −p are coplanar.

In Case a), which corresponds to the case in which the direction constraints are not

activated, the optimal θε approaches β as ε → 0. On the other hand, in Case b), which

corresponds to the case in which the direction constraint is activated, the optimal θε

approaches γ as ε → +0. As shown in Fig. 3.2, uε
mdj is a single extremal point in Hε

mdj,

and ∇2Hε
mdj ≥ 0. In addition, Hε

mdj approaches +∞ when u approaches the constraint

boundary due to barrier functions. Therefore, uε
mdj must be a global minimum. The

proof of ∇2Hε
mdj ≥ 0 is given in Appendix B.
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β < γ, b) β > γ.

3.4.4 The Costate Differential Equation

The costate differential equation has the same form as (Pε
md1) and (Pε

md2) because Lj(u)

is independent of the state x. In both cases, the costate differential equation yields

−λ′ =
∂Hε

mdj

∂x
=

∂εbFb[u, ξ]

∂x
+ A(f)Tλ (3.58)

Consider two cases, namely, the case in which ξ is independent of the state x and the

case in which ∂(εbFb)/∂x = 0. Thus, the costate differential equation of Eq. (3.58) is

exactly the same as Eq. (3.26). When ξ = r, Eq. (3.58) reduces to

−λ′ =
∂Hε

mdj

∂x
=


εb

r̂T û+ cos γ
· 1
r

[
−û+ (r̂T û)r̂

]
O2×1

+ ATλ (3.59)

Since, in the next section, the case in which ξ = r will be primarily considered, the

results of Eq. (3.59) are applied to the numerical simulations.

3.5 Numerical Results

For numerical simulations, a Keplerian orbit of the target of semimajor axis A0 =

Re + hc km is considered, in which hc = 500 km, the radius of the Earth Re, and
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Table 3.2: Constants and common parameters.

Constants Values Constants Values

Re 6378.136 km αmax 0.002 m/s2

µ 398,601 km3/s2 m 500 kg

hc 500 km Fmax 1 N

n 1.1068×10−3 rad/s

T 5,677 s

the gravitational constant of the Earth µ are given. Then, the period of this orbit is

T = 5677 s, and the orbital rate n = 1.1068 × 10−3 rad/s is considered (see Table

3.2). In addition, αmax = 0.002 m/s2 is considered to be the maximum acceleration of

control, which corresponds to the case in which a chaser of mass m = 500 kg has a 1-N

actuator, i.e., Fmax = 1 N.

In this section, for reference, the obtained optimal controller and trajectory with

an analytical formulation in (P2) are compared. Problem (P2) has been solved explic-

itly based on the circular Hill’s equation. For example, Scheeres solved problem (P2)

using the generating function method (Scheeres, D.J., Park, C. and Guibout, 2003),

and Palmer solved problem (P2) by the Fourier series expansion approach (Palmer,

2006). In the present chapter, a more general formulation to deal with the elliptic

dynamics derived by Cho (Cho et al., 2009), as summarized in Appendix C, is used for

comparison.

3.5.1 Proposed Smoothing Process in Circular Orbit

First, the proposed smoothing process is explained in order to demonstrate the validity

of the new smoothed solution with respect to the reconfiguration problem. Consider

the circular orbit of the target (e = 0) and two periodic relative orbits, which have

initial and final states x0 and x1, respectively, as the boundary conditions of the chaser

satellite:

x0 = [0km, 16.0km, 0km, 8.85428m/s, 0m/s, 0m/s]T

x1 = [0km, −8.0km, 0km, −4.42710m/s, 0m/s, 0m/s]T

where the first three values of each vector refer to the position, and the other values

indicate the velocity of the chaser satellite. In addition, the transfer time tf = t1 − t0

is set to 2T =11353.9 s. Figure 3.4 shows the solution in (Pm1) and (P2). The solver

for the TPBVP used here is bvp5c from Matlab R⃝, which provides a C1-continuous
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Table 3.3: Total fuel-consumption ∆V for (Pε
md1) varying with ε and for (Pm1) and

(P2) in example case A.

Problem ∥∆V ∥ m/s

(Pε
md1) ε = 1 13.9508

ε = 0.1 11.6493

ε = 0.01 10.1686

ε = 1× 10−3 9.8961

ε = 1× 10−4 9.8823

ε = 5× 10−5 9.8851

(Pε
m1) ε = 5× 10−5 7.5495

(P2) Analytical solution 9.4633

solution that is fifth-order accurate uniformly in [f0, f1]. The iterative solution for

(Pm1) is successfully generated as a bang-off-bang structure. The analytical solution

given by Eq. (C.1) is also plotted for reference in Fig. 3.4. The analytical solution and

the results of the shooting methods for (P2) are completely overlapped. The directions

relative to −r, denoted by θ is very large. On the other hand, Fig. 3.5 shows the

smoothing process when solving (Pε
md1) while varying ε = εu = εb from 1 to 5× 10−5.

Here, γ is set to π/3. The control magnitude and direction are always satisfied by the

constraints. Specifically, the magnitude profile approaches the bang-off-bang shape

and the relative angle becomes saturated up to the constraint angle. Table 3.3 shows

the total fuel consumption, ∆V . ∆V decreases as ε decreases. ∆V in (Pε
md1) when

ε = 5× 10−5 is 16.6% larger than ∆V in (Pε
m1).

3.5.2 In-plane Transfer in the Eccentric Orbit Case

Next, consider the eccentric orbit of the target (e = 0.3) and two periodic relative orbits

that have initial and final states x0 and x1, respectively, as the boundary conditions

of the chaser satellite:

x0 = [1.0km, 0km, 0km, 0m/s, −3.8122m/s, 0m/s]T

x1 = [0.5km, 0km, 0km, 0m/s, −1.9061m/s, 0m/s]T

which are also periodic orbit states without control (Ichikawa and Bando, 2009), and

the transfer time is set to T = 5677 s. Figure 3.6 shows the solution for (Pε
md1) and

(P2), and Fig. 3.7 shows the solution for (Pε
md2) and (P2). The control angle limitation

γ is set to π/3. In both cases, the thrust angle is efficiently suppressed within γ.
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Table 3.4: Total fuel-consumption ∆V for (Pε
md1) and (Pε

md2) with ε = 5 × 10−5 and

for (P2) in example case B.

Problem ∥∆V ∥ m/s

(Pε
md1) ε = 5× 10−5 3.34393

(Pε
md2) ε = 5× 10−5 4.46839

(P2) Analytical solution 0.38887

Figure 3.8 shows that the proximity of the target is magnified in the cases of (Pε
md1)

and (Pε
md2). As shown in Figs. 3.6c) and 3.7c), when the direction condition is not

applied, θ is coincident with β, which means that u is parallel to −p. On the other

hand, when the direction condition is applied, θ is saturated with γ, and then β is over

θ = γ. Table 3.4 shows the total fuel consumption, ∆V . ∆V of Pε
md1 and Pε

md2 become

one digit larger than that of P2, although the control angle becomes suppressed within

the direction constraint.

When the barrier terms εuFu and εbFb are introduced to deal with (Pmd2), there is

an important difference with the case of (Pmd1). For (Pm1), the control norm is bang-

bang and so the use of smoothing techniques is mandatory. In the case of (Pm2), the

norm of the control is continuous and smoothing techniques are not mandatory from

the numerical point of view. The associated shooting function is sufficiently smooth

and Newton’s method can be used without any problem. The use of barrier functions

in the case of (Pm2), simply allows to build a sequence of unconstrained problems, the

solutions of which converge to the solution of problem (Pm2). So, the introduction of

barrier terms allows to build a practical algorithm in case of (Pm2) but not to face with

important numerical difficulties as in the case of problem (Pm1). Nevertheless, when

introducing the thrust direction constraint, the thrust direction can be discontinuous

(even for the L2-problem so for (Pmd2)) and the use of barrier functions is numerically

justified.

3.5.3 Three-dimensional Transfer in the Circular Orbit Case

Finally, consider the reconfiguration problem, including out-of-plane motion. The fol-

lowing boundary conditions of the chaser satellite are considered:

x0 = [−8.0km, 0km, 13.8564km, 0m/s, 17.7086m/s, 0m/s]T

x1 = [−4.0km, 0km, 6.9282km, 0m/s, 8.8543m/s, 0m/s]T

and the transfer time is set to 2T = 11353.9 s. Figure 3.9 shows the solution for

(Pε
m1) and (P2). Solution θ in the unconstrained case exceeds 100◦ in some parts of
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Table 3.5: Total fuel consumption ∆V for (Pε
md1) and (Pε

m1) with ε = 5× 10−5 and for

(P2) in example case C.

Problem ∥∆V ∥ m/s

(Pε
md1) ε = 5× 10−5 9.89213

(Pε
m1) ε = 5× 10−5 9.90005

(P2) Analytical solution 11.56308

the interval. Figure 3.10 shows the solution for (Pε
md1) and (P2). The control angle

limitation γ is set to 95◦. The thrust angle is suppressed within γ. It is found that

thrust direction is hard to be small with the same boundary condition. In the present

chapter, the boundary condition for the initial and final positions, the velocity, and the

transfer time are fixed determinately. In the future, the authors intend to investigate

how to decrease γ and ∆V for various boundary condition. Table 3.5 shows the total

fuel consumption, ∆V . ∆V of Pε
md1 is rarely different from that of (Pε

m1). In this case,

the solution of (Pε
md1) is shown to be more beneficial than that of (Pε

m1) and (P2) in

terms of both the control angle and the total fuel consumption.

3.6 Conclusions

The present chapter treated the satellite formation and reconfiguration problem under

constraints on the control magnitude and direction. A necessary condition of the op-
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timal controller under these constraints was first derived using a sequential smoothing

method, in which a sequence of unconstrained optimal control problems is solved ac-

cording to Pontryagin’s minimum principle by introducing multiple barrier functions to

the original performance index. By introducing the proposed additional barrier func-

tion concerning the constraints on the control direction, the derived equations for the

necessary condition with respect to optimal control magnitude and direction became

decoupled, thereby facilitating their solution. The solutions converged toward to the

solution of the original problem and strictly satisfied the treated constraints as the

perturbation coefficients of the barrier functions approached zero. Optimal controllers

were successfully formulated in the L1- and L2-norm problems, and both solutions

for the optimal control direction had the same form. These solutions are a natural

extension of the solution with only the magnitude constraint. As the perturbation

coefficients of the barrier functions approach zero, the smoothed optimal controller

approaches the boundary of the inequality constraint near Lawden’s primer vector,

while the control, the primer, and the admissible direction vectors are coplanar. This

extremal property is completely consistent with the result that the optimal thrust is

directed along the projection of the primer vector onto the boundary of the restricting

set. Numerical simulations demonstrated that the sequential optimal controller with

such a mixed-constraint was obtained by solving the two-point boundary value prob-

lem with the shooting method in such an non-coplanar circular orbit and a coplanar

eccentric orbit. In addition, the control angles of the derived solutions were confirmed

to be suppressed within the control direction constraint.



Chapter 4

Satisficing Control Theory

4.1 Introduction

In the following chapters, a new nonlinear control scheme is applied to the problem of

satellite rendezvous trajectory planning. Constraints are placed on the thrust angle so

as to align the thrust direction with the relative position vector as closely as possible.

The control scheme is based on the concept of satisficing. This section explains the

concept and the fundamental properties. ”Satisficing” is a blended word combining

”satisfy” with ”suffice”. The following definitions of satisficing in Wikipedia are:

• ”Aiming to achieve only satisfactory results because the satisfactory position is

familiar, hassle-free, and secure, whereas aiming for the best-achievable result

would call for costs, effort, and incurring of risks.”

• ”Optimization where all costs, including the cost of the optimization calculations

themselves and the cost of getting information for use in those calculations, are

considered.”

• ”A decision-making strategy that attempts to meet criteria for adequacy, rather

than to identify an optimal solution. A satisficing strategy may often be (near)

optimal if the costs of the decision-making process itself, such as the cost of

obtaining complete information, are considered in the outcome calculus.”

Satisficing is a parameterization of universal formulas, which is first derived using

the notion of satisficing decision theory (Goodrich et al., 1998; Stirling, 2003). The

basic idea involves defining two utility functions that quantify the benefits and costs of

an action. The ”selectability” function was chosen as the distance from the predicted

state at the next time instant to the origin, while the ”rejectability” function was cho-

sen as proportional to the control effort. The resulting control strategy is reminiscent

41
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of MPC (Curtis and Beard, 2001). Since then, by linking the ”selectability” function

to a CLF, closed-loop asymptotic stability is ensured (Curtis and Beard, 2002a, 2004),

and provides complete parameterization as a generalization of the input-to-state stabi-

lizing (ISS) version of Sontag’s formula (Sontag, 1989) and Freeman and Kokotovic’s

mini-norm approach (Freeman and Kokotovic, 1996). CLF-based satisficing can be

modified to parameterize a large class of inverse-optimal (Krstić and Deng, 1998) con-

trollers, which always possess desirable gain margins (Curtis and Beard, 2002b, 2004).

In (Curtis, 2003, 2005), the constrained stabilizing control value set was proposed in

terms of the polytopes-shaped constraint boundary set. The input constraint was first

considered in CLF using satisficing theory and the idea was then applied to a practical

problem by Ren and Beard (Ren and Beard, 2004), whereby only control magnitude

constraints were treated.

In this chapter, we summarize the concept and fundamental properties of the sat-

isficing. The results in this chapter are mainly based on (Curtis and Beard, 2002b,

2004). Moreover, the interesting relationship between the Sontag’s formula, Min-norm

formula and HJB equation are based on (Primbs, 1999). We extend these results in

the case of a more general performance index and time-varying nonlinear system.

4.2 Concept of Satisficing

Consider the affine nonlinear time-varying system

ẋ = f(t,x) + g(t,x)u (4.1)

where x ∈ Rn, f : Rn → Rn, g : Rn → Rn×m and u ∈ Rm. We will assume

throughout this paper that f and g are locally Lipschitz functions and that f(0) = 0.

The satisficing scheme involves choosing a control Lyapunov function (CLF) that

allows the optimal control input history to be solved. First of all, define the CLF as

follows:

Definition 4.2.1 (Curtis and Beard, 2002b) C2 function V (t, x) : R+×Rn → R

is said to be a control Lyapunov function (CLF) for the affine nonlinear time-varying

system Eq. (4.1) with input constraints u ∈ U ⊂ Rm if V is positive-definite, radially

unbounded, and if

inf
u

V̇ = inf
u

{
∂V

∂t
+

(
∂V

∂x

)T

(f(t,x) + g(t,x)u)

}
< 0 (4.2)

for all x ̸= 0.
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Throughout this thesis, denote the partial derivative with a subscript: Vt ≜ ∂V /∂t

and Vx ≜ ∂V /∂x, where Vt is a scalar and Vx is assumed to be a column vector

respectively. The satisficing paradigm calls for the definition of two utility functions:

the selectability function ps(t,u,x), and the rejectability function pr(t,u,x) (Stirling,

2003). In addition, define b(t,x) ∈ (0,∞) to be the selectivity, or boldness, index .

Define the satisficing set as follows (Goodrich et al., 1998; Curtis and Beard, 2004):

Definition 4.2.2 (Curtis and Beard, 2004) The satisficing Set Sb(t,x) is defined as

the set of control values, such that the selectability times the selectivity index exceeds

the rejectability, i.e.

Sb(t,x) =

{
u ∈ Rm : ps(t,u,x) >

1

b(t,x)
pr(t,u,x)

}
(4.3)

In other words, the satisficing set is the set of all pointwise control values where

the instantaneous benefits of applying that action outweigh the instantaneous costs. If

for each x, ps(t,u,x) is a concave function of u and pr(t,u,x) is a convex function of

u, then Sb(t,x) is a convex set (Curtis and Beard, 2004).

Note that we only require convexity in u and not x. Therefore, we do not impose

any convexity restrictions on the system, but only on the incremental measures of

benefit and cost.

We will associate the notion of selectability with stability, and that of rejectability

with instantaneous cost. In particular, let

ps(t,u,x) = −Vt(t,x)− V T
x (t,x)(f(x) + gu) (4.4)

where V is a CLF. Note that stabilizing control values make ps(u,x) positive. We

choose the rejectability criterion to be

pr(t,u,x) = l(t,x) + uTRu+ 2xTNu (4.5)

where R(t,x) = RT (t,x) > 0 is a positive-definite matrix function whose elements are

locally Lipschitz and l : Rm → R is a locally Lipschitz non-negative function. For

pr > 0,

pr(t,u,x) = [l(t,x)− xTNR−1NTx] + (u+R−1NTx)R(u+R−1NTx) > 0 (4.6)

The second term is always non-negative. The first term is non-negative if

lN ≜ l(t,x)− xTNR−1NTx > 0
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Note that ps is a linear function in u and is hence concave in u. Additionally, pr is

convex in u. For these choices of ps and pr the satisficing set becomes

Sb(t,x) =

{
u ∈ Rm : −Vt − V T

x (f + gu) >
1

b
(l + uTRu+ 2xTNu)

}
(4.7)

which is guaranteed to be a convex set.

The following theorem completely characterizes the satisficing set for the particular

selectability and rejectability functions chosen previously.

Theorem 4.2.3 If ps(t,u,x) = −Vt(t,x)− V T
x (t,x)(f(x) + gu) and pr(t,u,x) =

l(t,x) + uTRu+ 2xTNu, then the satisficing set Sb(t,x) at (t,x) is nonempty if and

only if the design parameter b(x) satisfies the inequality

b(t,x)ωN + lN − b(t,x)2

4
pTR−1p < 0 (4.8)

Furthermore, if the inequality Eq. (4.8) holds true, then Sb(t,x) ⊂ Rm can be

described as a perfect parametric form by introducing a new design parameter ν (Curtis

and Beard, 2004)

Sb(t,x) =

{
−R−1

(
b

2
p+NTx

)
+R−1/2ν

√
b2

4
pTR−1p− bωN − lN : |ν| < 1

}
≜ {−σ1(t,x, b) + σ2(t,x, b) · ν : |ν| < 1} (4.9)

where p = gTVx, ωN = Vt + V T
x f − V T

x gR−1NTx and lN = l − xTNR−1NTx.

Note that this formula provides a mapping from the open unit ball (ν is a free

parameter whose only constraint is that it lies in the unit ball) to the satisficing set.

Note also that when p = 0, the satisficing set is well-defined and given by

Sb(x) =
{
−R−1NTx+R−1/2ν

√
−bωN − lN : |ν| < 1

}
The proof of Theorem depends upon the following lemma, which provides a gen-

eralization of the quadratic formula. The following lemma is proven in (Curtis and

Beard, 2004).

Lemma 4.2.4 If A = AT > 0, then the set of solutions to the quadratic inequality

ξTAξ + dTξ + c < 0

where ξ ∈ Rs, is nonempty if and only if

1

4
dTA−1d− c > 0
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and is given by

ξ = −1

2
A−1d+ A−1/2ν

√
1

4
dTA−1d− c

where ν ∈ {ξ ∈ Rs : ∥ξ∥ < 1}.

Proof of Theorem 4.2.3: The satisficing set is given by

Sb(t,x) =

{
u ∈ Rm : −Vt − V T

x f − V T
x gu ≥ 1

b
l +

1

b
uTRu+

1

b
2xTNu

}
=

{
u ∈ Rm : uT

(
R

b

)
u+ (gTVx +

1

b
2NTx)Tu+ (Vt + V T

x f +
1

b
l) ≤ 0

}
The theorem therefore follows from Lemma with A = R/b, d = gTVx + 2NTx/b, and

c = (1/b)l + Vt + V T
x f . □

The theorem shows that the selectivity index b(t,x) plays a critical role in the size

of Sb(t,x). The next lemma shows that for each x ̸= 0, b can always be chosen such

that the satisficing set is nonempty. Toward that end, define

b =


2

(
ωN +

√
ω2
N + lN · pTR−1p

pTR−1p

)
, if p ̸= 0

lN
−ωN

, if p = 0

(4.10)

Lemma 4.2.5 If V is a CLF for system Eq. (4.1), b is given by Eq. (4.10), and

Sb is given by Eq. (4.9), then for each x ̸= 0

1. b(t,x) ≥ 0

2. b > b(t,x) implies that Sb(t,x) ̸= ϕ

3. if l : Rn ⇒ R+ satisfies the property

(gTVx ̸= 0 and ωN = 0) ⇒ lN > 0 (4.11)

then b(t,x) is locally Lipschitz on Rn\0.

Proof of Lemma 4.2.5: If p = 0, then since V is a CLF, ωN = Vt + V T
x f −

V T
x gR−1Nx < 0, therefore, inequality (4.8) is satisfied if and only if

lN + bωN < 0

⇐⇒ b >
lN

−ωN

≥ 0
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If gTVz ̸= 0, then inequality (4.8) is satisfied if and only if

b2 −
(

4ωN

pTR−1p

)
b−

(
4lN

pTR−1p

)
> 0

⇐⇒
(
b−

(
2ωN

pTR−1p

))2

>

(
2ωN

pTR−1p

)2

+

(
4lN

pTR−1p

)
Restricting attention to positive solutions, this inequality is true if and only if

b > 2

(
ωN +

√
ω2
N + lN · pTR−1p

pTR−1p

)
which clearly exceeds or is equal to zero.

To show that b(x) is locally Lipschitz on Rn\0, we follow the arguments used in

(Krstić and Deng, 1998) to show the continuity of Sontag’s formula. Following their

arguments, we show that the function

ϕ(a, c, l) =

− l
a
, if c = 0 and a < 0

2a+2
√
a2+lc

c
, elsewhere

is smooth (C∞) on the set P = {(a, c, l) ∈ R3|l ≥ 0 and c ≥ 0 and (c = 0 ⇒ a < 0)

and ((c ̸= 0 and a = 0) ⇒ l > 0)}.
Define the function

F (a, c, l, p) = l + pa− 1

4
p2c

which is smooth on P in all its arguments. By direct substitution, it is straightforward

to show that F (a, c, l, ϕ(a, c, l)) = 0 for all (a, c, l) ∈ P . If c = 0, then

∂F (a, c, l, ϕ(a, c, l))

∂p
= a

which is strictly less than zero since V is a CLF. If c ̸= 0, then

∂F (a, c, l, ϕ(a, c, l))

∂p
= −

√
a2 + lc

which, by Eq. (4.11), is nonzero on P . Therefore, by the implicit function theorem,

ϕ(a, c, l) is smooth on P . Since ωN , p
TR−1p, and lN are locally Lipschitz on R2\{0},

b = ϕ(ωN ,p
TR−1p, lN) is also locally Lipschitz on R2\{0}. □

4.3 Relation to Sontag’s Formula and Pointwise Min-

norm Solution

This section provides an explanation of the relationship between Sontag’s formula

(Sontag, 1989), Freeman and Kokotovic’s min-norm controls (Freeman and Kokotovic,
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1996), and ISS-satisficing controls. It will be shown that the pointwise min-norm

control parameterizes a line in Rm for any fixed x, and that a point on this line cor-

responds to Sontag’s formula. ISS-satisficing parameterizes a half space in Rm which

contains a line corresponding to the min-norm controls as well as all control values

with components in the null space of gTVx.

4.3.1 CLF a substitute for the value function: Sontag’s for-

mula

Perhaps the most important formula for producing a stabilizing controller based on

the existence of a CLF was introduced in (Sontag, 1989) and has come to be known as

Sontag’s formula. We will consider a slight variation of Sontag’s formula (which we will

continue to refer to as Sontag’s formula with slight abuse). As described in (Freeman

and Kokotovic, 1996), Sontag’s formula for input-to-state stability is given by

uSontag =


−R−1

[
ωN +

√
ω2
N + lN · pTR−1p

pTR−1p
p+NTx

]
, if p ̸= 0

−R−1NTx, if p = 0

(4.12)

Note that this formula corresponds to a point in Rm that lies within the range space

of p = gTVx; uSontag = −R−1[βp+NTx] with

β =
ωN +

√
ω2
N + lN · pTR−1p

pR−1p
>

ωN

pR−1p
(4.13)

Since Sontag’s formula is continuous and ISS with respect to V , it is also a satisficing

control (Curtis and Beard, 2002a). Seen alternatively, Eq. (4.9) can be made equal

to the ISS version of Sontag’s formula when R = I, N = O, l = pTp, ν = 0, and

b(x) = b(x).

Figure 4.1 shows the point corresponding to Sontag’s formula in a snapshot of a

two-dimensional control space at a fixed state. The values in the figure are as follows:

ωN = −2, l = 4, R = I2×2, N = [I2×2 O2×2]
T , x = [1 − 0.5 0 0]T and gTVx = [1 1]T .

Optimality, Sontag’s formula and level curves

Below, we unravel some key connections between level curves of the value function

V ∗ and Sontag’s formula Eq. (4.12). It is shown that Sontag’s formula, in essence,

uses the directional information supplied by a CLF, V , and scales it properly to solve

the HJB equation. In particular, if V has level curves that match those of the value

function, then Sontag’s formula produces the optimal controller (Freeman and Primbs,

1996; Primbs, 1999).
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Define V ∗(t0,x0) to be the minimum of the performance index taken over all ad-

missible trajectories (x(t),u(t)) where x starts at (t0,x0):

V ∗(t0, x0) = min
u

∫ ∞

t0

(l(t,x) + 2xNu+ uTRu)dt

s.t. ẋ = f(t,x) + g(t,x)u

x(t0) = x0

Using the principle of optimality yields one form of the so-called Hamilton-Jacobi-

Bellman equation

−V ∗
t = min

u

{
[l(t,x) + 2xNu+ uTRu] + V ∗T

x [f(t,x(t)) + g(t,x(t))u(t)]
}

(4.14)

The boundary condition for this equation is given by V ∗(t,0) = 0, ∀t > 0 where

V ∗(t,x) must be positive for all (t,x) (since it corresponds to the optimal cost which

must be positive). The indicated minimization is performed, leading to a control law

of the form

u∗ = −R−1

(
1

2
gTV ∗

x +NTx

)
(4.15)

Substitute Eq. (4.15) back into Eq. (4.14), and solve the resulting HJB equation

−V ∗
t = V ∗T

x f − V ∗T
x gR−1NTx− 1

4
V ∗T
x gR−1gTV ∗

x + l − xTNR−1NTx (4.16)

for V ∗(t,x).

Now, assume that V is a CLF for the system (4.1). For the sake of motivation,

assume that V possesses the same shape level curves as those of the value function V ∗.

Even though in general V would not be the same as V ∗, this does imply a relationship

between their gradients. We may assert that there exists a scalar function λ(t,x) such

that V ∗
t = λ(t,x)Vt and V ∗

x = λ(t,x)Vx for every (t,x) (i.e. the gradients point in

the same direction at every point). In this case, the optimal control can be written in

terms of the CLF V ,

u∗ = −R−1

(
1

2
gTV ∗

x +NTx

)
= −R−1

(
λ(t,x)

2
gTVx +NTx

)
(4.17)

Additionally, the HJB equation can be used to determine λ(t,x) by substituting V ∗
t =

λ(t,x)Vt and V ∗
x = λ(t,x)Vx into the HJB equation Eq.(4.14)

−λVt = λV T
x f − λV T

x gR−1NTx− λ2

4
V T
x gR−1gTVx + l(x)− xTNR−1NTx (4.18)
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This is a quadratic equation in λ. Solving for λ and taking only the positive square

root gives

λ =


2

(
ωN +

√
ω2
N + lN(x)pTR−1p

pTR−1p

)
, if p ̸= 0

lN(x)

−ωN

, if p = 0

(4.19)

Substituting this value into the control u∗ given in Eq. (4.17) yields uSontag Eq. (4.12).

In this case, Sontag’s formula will result in the optimal controller.

4.3.2 Pointwise min-norm controllers

Given a CLF, V > 0, by definition there will exist a control action u such that V̇ =

Vt+V T
x (f +gu) < 0 for every (t,x). In general there are many such u that will satisfy

Vt + V T
x (f + gu) < 0. One method of determining a specific u is to pose the following

optimization problem (Freeman and Kokotovic, 1996):

Pointwise Min-Norm

minimize l(t,x) + uTR−1u+ 2xTNu (4.20)

subject to Vt + V T
x (f + gu) ≤ −α(t,x) (4.21)

where α(t,x) is some continuous, positive-definite function satisfying Vt + V T
x f ≤

−α(t,x) whenever gTVx = 0, and the optimization is solved pointwise (i.e. for each

(t,x)). This formula pointwise minimizes the control energy used, while requiring that

V be a Lyapunov function for the closed-loop system and decrease by at least α(t,x)

at every point. The resulting controller can be solved for off-line and in closed form.

In (Freeman and Kokotovic, 1996), it was shown that every CLF V is the value

function for some meaningful cost function. In other words, it solves the HJB equation

associated with a meaningful cost. This property is commonly referred to as being

”inverse-optimal”. Note that a CLF V does not uniquely determine a control law

because it may be the value function for many different cost functions, the formulation

of each which may always produce one of these inverse-optimal control laws.

To intuitively understand why pointwise min-norm controllers possess such strong

connections to HJB equations, let us reconsider the optimization in Eq. (4.20), but this

time use a Lagrange multiplier to deal with the constraint inequality (4.21). Hence,

we can write the Lagrangian for the problem as

L(u, λ) = l + uTRu+ 2xTNu+ λ[Vt + V T
x (f + gu) + α]

where λ is the Lagrange multiplier (required to be positive, etc., in accordance with

the Kuhn-Tucker conditions (Kuhn and Tucker, 1961)). Lagrangian duality tells us
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that optimizing u should minimize the Lagrangian. Furthermore, we can exploit the

fact that adding or subtracting terms to the Lagrangian that do not contain u will not

affect the solution. So, we will subtract the term λα to obtain

−λVt = min
u

{
l + uTRu+ 2xTNu+ λV T

x (f + gu)
}

which is identical to the HJB equation (4.14) except with V ∗
t and V ∗

x replaced by λVt

and λVx respectively. Furthermore, by performing the minimization, we find that the

resulting state feedback is of the form

uα = −R−1

(
λ

2
gTVx +NTx

)
This is identical to the relationship used to derive Sontag’s formula. Hence, we see that

pointwise min-norm formulas resemble Sontag’s formula in that they substitute λVx

for the true gradient of the value function V ∗
x . The only difference is that pointwise

min-norm controllers can use a different criterion to select the scaling λ. This degree

of freedom is basically contained in the choice of α. Therefore, we can view pointwise

min-norm formulas as a generalization of Sontag’s formula.

We now explicitly derive the parameter α(t,x) that generates Sontag’s formula in

the pointwise min-norm formulation. Let us assume that the solution to the above

pointwise min-norm problem results in Sontag’s formula. It should be clear that for

p ̸= 0, the constraint will be active, since u will be reduced as much as possible.

Knowing that u will turn out to be Sontag’s formula results in the following value for

α:

−α = Vt + V T
x (f + guα)

= Vt + V T
x f + V T

x g[−R−1(
λ

2
gTVx +NTx)]

= ωN − λ

2
pTR−1p

Freeman and Kokotovic’s pointwise min-norm formula (Freeman and Kokotovic,

1996) can be written to provide input-to-output stability as follows:

uFK =

−R−1

[
ωN + α

pR−1p
p+NTx

]
, if p ̸= 0

−R−1NTx, otherwise

(4.22)

which can be seen as a generalization of Sontag’s formula. Indeed, the pointwise min-

norm control subsumes Sontag’s formula by introducing the positive-definite scalar

function α, which parameterizes all ISS controls within the range space of gTVx. By
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choosing α =
√

ω2
N + lN · pTR−1p, Sontag’s formula is recovered. The region parame-

terized by the min-norm formula is shown as a solid line in Fig. (4.1). The min-norm

is clearly ISS and is thus guaranteed (by Theorem 17 in (Curtis and Beard, 2002a) )

to be an ISS-satisficing control. The min-norm control values lie in S at every state as

shown in Fig. 4.1.

When b > b, the line where min-norm control values lie crosses the satisficing set

boundary circle. By equating uFK Eq. (4.22) and the explicit control form in Sb Eq.

(4.9), α at the crossing points can be obtained:

αmax, min(b) = pTR−1p

[
1

2
b± pTR1/2p

||p||3

√
b2

4
pTR−1p− bωN − lN

]
− ωN (4.23)

where αmax (αmin) takes the sign plus (minus). Apparently, uFK ∈ Sb for αmin < α <

αmax. When b = b, αmax, min are reduced to α =
√
ω2
N + lN · pTR−1p which is the

choice for Sontag’s formula.

As explained above, control Lyapunov functions are best interpreted in the context

of Hamilton-Jacobi-Bellman equations, especially a variation of Sontag’s formula that

naturally arises from HJB equations and furthermore is a special case of a more general

class of CLF-based controllers known as pointwise min-norm controllers.

Additionally, Eq. (4.9) can be thought of as a generalization of the input-to-state

form of both Sontag’s formula and Freeman and Kokotovic’s min-norm formula. The

satisficing approach subsumes both Sontag’s formula and the min-norm formula by

completely parameterizing the entire region of the control space that renders Vt +

V T
x (f + gu) negative for an arbitrary non-zero state. The region of control space

parameterized by the satisficing approach is the shaded region shown in Fig. 4.1. Note

that it differs pointwise from Freeman and Kokotovic’s min-norm solutions in that

satisficing permits a component of the control to be orthogonal to gTVx thus offering

maximal freedom for the control designer to choose a high performance controller that

is guaranteed to be ISS with respect to V .

4.4 Illustrative Example

Consider the problem of rendezvous to try the satisficing method. A Keplerian orbit

of the target of the semimajor axis A0 = Re+hc km is considered, in which hc = 5, 000

km, the radius of the Earth Re, and the gravitational constant of the Earth µ are given.

The chaser flies around at 3,413.4 km in an eccentricity axis (eccentricity is 0.3). We
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consider the in-plane relative dynamic equation

x̄′(τ) = f(x̄) + gū(τ) (4.24)

f(x̄) = Ax̄+ f2(x̄)

g = B

and

A =


0 0 1 0

0 0 0 1

3 0 0 2

0 0 −2 0

 , B =


0 0

0 0

1 0

0 1



f2(x̄) = B

 −3x̄−
(
1

σ
+ x̄

)(
1

σ3R̄3
− 1

)
−ȳ

(
1

σ3R̄3
− 1

)


where R̄ = [(1/σ + x̄)2 + ȳ2]1/2. f(x̄) and g(x̄) are locally Lipschitz functions and

f(0) = 0. The derivation of the equation and the mean of physical parameters are

explained in Chapter 6.

In the system, (A,B) is controllable. Let Q be a symmetric, positive semi-definite

matrix such that (A,
√
Q) is observable, let R be a symmetric positive-definite matrix,

and let P be the symmetric positive-definite solution to the Riccati equation

ATS + SA+Q− SBR−1BTS = 0

(A,B) controllable implies that V (x) = xTSx is a CLF for system Eq. (4.24) since

inf
u

V̇ = inf
u
{−xTQx+ xTSB(BTSx+ 2u)} < 0

for all x ̸= 0. In this example, we set Q = I4×4 and R = I2×2 (Note that N = O4×2

and Vt = 0).

Figure 4.2 shows the rendezvous trajectories of the closed-loop system using four

different controllers. The portrait in Fig. 4.2a corresponds to the LQR controller,

while that in Fig. 4.2b corresponds to Sontag’s formula. It may be desirable in some

applications to have high-gain, which can be achieved by judicious choices of b(x) and

ν. The portrait in Fig. 4.2c shows the response to satisficing control with

b(x) =
3

2
b(x)

ν = 0
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It is interesting to note, that since b(x) increases the gain in the direction of R−1gTVx,

the direction of the Eigen spaces are retained in the nonlinear region. The direction

of the Eigen spaces can be shaped by the function ν. In the plot in Fig. 4.2d, b(x)

is chosen similarly to the plot in Fig. 4.2c, but ν is chosen to maximize the rate of

decrease along the function W (x) = xTx, i.e.

min
ν

Ẇ = min
ν

2xT ẋ = min
ν

[2xTf + 2xTg(−σ1 + σ2ν)]

=⇒ ν = − σ2g
Tx

||σ2gTx||

4.5 Conclusions

The main result of this chapter is the development of input-to-state satisficing as

a tool to construct nonlinear controllers. The satisficing set is defined point-wise,

and includes all control values whose benefits exceed cost. By defining benefits and

costs in terms of control Lyapunov functions, both local and global properties of the

system are addressed. One way of looking at satisficing is that it bridges the gap

between local and global concerns; it is built upon comparison of instantaneous cost

with instantaneous benefit, but by defining the benefit of a control action in terms of

a CLF this local decision inherits global consequences. This satisficing set of control

values is completely parameterized by two selection functions b and ν. If these selection

functions are continuous and satisfy the constraints b > b and ||ν|| ≤ 1, then the

resulting control strategy globally input-to-state stabilizes the system. Satisficing was

shown to completely parameterize the class of continuous controls which render the

closed-loop system input-to-state stable with respect to a known CLF V . This result

was illustrated graphically in Fig. 4.1. It was noted that many CLF-based ’universal

formulas’ ignore control values that are pointwise orthogonal to the vector −gTVx, and

the relationship between the satisficing approach and Sontag’s formula and Freeman

and Kokotovic’s min-norm formula was illustrated.
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Figure 4.2: Rendezvous trajectories under the control of a) LQR, b) Sontag’s formula,

c) satisficing #1, and d) satisficing #2.





Chapter 5

Novel Nonlinear Rendezvous

Guidance Scheme under

Constraints on Thrust Direction

5.1 Introduction

In this chapter, a rendezvous problem under control constraints that may be imposed in

actual missions is considered. In particular, this chapter treats the condition that the

chaser’s thrust direction relative to the target’s direction is constrained. The basic ob-

jective is to drive the chaser vehicle to rendezvous with the target under a small thrust

angle condition and to minimize fuel consumption using a stable feedback controller

without solving a numerical optimization problem.

This chapter proposes a new approach that considers constraints on thrust angle

based on optimal feedback control to introduce a general linear quadratic regulator

(LQR), in which the performance index in state and control is designed to align the

thrust direction to the relative position vector. A modal analysis method is used to de-

termine the design parameters to make the final thrust angle small. The initial thrust

angle can be estimated easily from the optimal control and rendezvous start phase. The

transient rendezvous phase, however, may not guarantee the constraints on the thrust

direction. For the transient phase, this chapter proposes a novel method to guarantee

closed-loop stability under constraints on the thrust angle. Based on a ”satisficing”

theory proposed by Curtis and Beard (Curtis and Beard, 2002b, 2004) that can de-

liver a parametric set of stable control inputs, the optimal control designed by modal

analysis and contour plots is projected onto a stable domain defined by a candidate

control Lyapunov function (CLF). The control applying the satisficing method to the

rendezvous problem with control direction constraints is first considered in Ref. (Mi-
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tani and Yamakawa, 2010). In addition, this chapter shows that choosing the candidate

CLF generated by solving the Riccati equation for the general performance index easily

makes the thrust angle at the final phase small and analytically predicted. In addition,

the design process to select parameters to maintain a small-magnitude thrust angle is

clarified. The proposed method assumes active rendezvous, involving communication

between target and chaser so that chaser’s relative states to the target is well estimated.

5.2 Rendezvous with Practical Constraints

5.2.1 Equations of Relative Motion

Consider a satellite subject to the gravitational force of the Earth and control input

(Fig. 5.1). Then, the equation of motion is given by Newton’s equation

R̈ = − µ

R3
R+ u (5.1)

where R is the position vector of the satellite from the center of the Earth, µ is the

gravitational parameter of the Earth, R = |R|, and u is the control acceleration. Let

the orbit of the target be eccentric, which is given by

R0 =
p

1 + e cos θ
(5.2)

where R0 = |R0|, R0 is the position vector of the target, p = A0(1−e2) is the semilatus

rectum, A0 is the semimajor axis, e is the eccentricity of the orbit, and θ is the true

anomaly. The period of the orbit is T = 2π(A3
0/µ)

1/2, and the orbital mean motion,

which is the average of the orbit rate θ̇, is n = (µ/A3
0)

1/2. It is known that (Wie, 1998)

R̈0 −R0θ̇
2 = − µ

R2
0

(5.3)

R0θ̈ + 2Ṙ0θ̇ = 0 (5.4)

θ̇ =

(
µ

p3

)1/2

(1 + e cos θ)2 (5.5)

Introduce a rotating right-hand reference frame o− {i, j,k}, where o is the center

of mass of the target, i is in the radial direction, j is in the flight direction, and k is

outwards of the orbit plane. Let r be the position vector of the chaser relative to the

target, and set r = xi+yj+zk. Then the position vector of the chaser is R = R0+r,

and the linearized Eqs. (5.3-5.5) at the origin are given by

ẍ− 2θ̇ẏ − θ̈y − (θ̇2 + 2
µ

R3
0

)x = ux (5.6)

ÿ − 2θ̇ẋ− θ̈x− (θ̇2 − µ

R3
0

)y = uy (5.7)

z̈ +
µ

R3
0

z = uz (5.8)
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which are referred to as Tschauner-Hempel (TH) equations (Yamanaka and Ankersen,

2002).

Introduce (x̄, ȳ, z̄) = 1/R0(x, y, z) and replace independent variable t by θ, then

Eqs. (5.6) and (5.7) are transformed respectively into

(1 + e cos θ)(x̄′′ − 2ȳ′)− 3x̄ = ūx (5.9)

(1 + e cos θ)(ȳ′′ + 2x̄′) = ūy (5.10)

where the differentiation with respect to θ is denoted by ′, and (ūx(θ), ūy(θ)) =

(R2
0/µ)(ux, uy) (Ichikawa and Bando, 2009). The state-space form of Eqs. (5.9) and

(5.10) is

x̄′ = Ā(θ)x̄+
1

ρ
Bū, x̄(θ0) = x̄ (5.11)

where x̄ = [x̄ ȳ x̄′ ȳ′]T , ū = [ūx ūy]
T , θ0 = θ̄(τ0), ρ = 1 + e cos θ, and

Ā(θ) =


0 0 1 0

0 0 0 1

3/ρ 0 0 2

0 0 −2 0

 , B =


0 0

0 0

1 0

0 1

 (5.12)

If the target’s orbit is circular (i.e. e = 0), then θ = nt, R0 = A0, ρ = 1. Equa-

tions (5.9) and (5.10) yield non-dimensional Hill-Clohessy-Wiltshire (HCW) equations

(Clohessy and Wiltshire, 1960)

x̄′′ − 2ȳ′ − 3x̄ = ūx (5.13)

ȳ′′ + 2x̄′ = ūy (5.14)

and the state-space form is given by

x̄′ = Ax̄+Bū (5.15)

where

A =


0 0 1 0

0 0 0 1

3 0 0 2

0 0 −2 0

 (5.16)

After this section, the bars over x and u are dropped and the subscript a′ is replaced

by ȧ. For convenience, Table 5.1 shows the conversion from nondimensional quantities

to dimensional ones. Notice that nondimensional time corresponds to true anomaly θ.

θ must be converted to mean anomaly M to get dimensional time t. In the same table,

h and tp represent angular momentum of the target and time of perigee respectively.
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Table 5.1: The conversion from nondimensional quantities to dimensional ones.

Physical Nondimensional Dimensional quantity

quantity quantity 0 ≤ e < 1 e = 0

(circular case)

Time θ (1/n) ·M(θ) + tp (1/n) · θ + tp

Position x̄ R0 · x̄ A0 · x̄
Velocity x̄′ (h/p)(ρx̄′ − ρ′x̄) nA0 · x̄′

Control acceleration ū (µ/R2
0) · ū n2A0 · ū

Target

Chaser

x

y

R

0

R

r

Eccentric 

Target Orbit

Earth

X

Y

θ

PerigeeApogee

Figure 5.1: Relative motion between chaser and target.
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5.2.2 Description of Free Trajectory

The section states analytical solution of free motion trajectory. Periodic (i.e. non-

drifting) orbit is often chosen as a station-keeping orbit because of the collision avoid-

ance safety. In Section 5.6, some examples of rendezvous problem which start from a

periodic orbit are examined. Including e ̸= 0, free trajectory without control can be de-

scribed using Yamanaka-Ankersen’s state transition matrix (Yamanaka and Ankersen,

2002)

x(θ) =


s c 2− 3esJρ 0

(1 + 1/ρ)c −(1 + 1/ρ)s −3ρ2Jρ 1

ṡ ċ −3e(ṡJρ + s/ρ2) 0

−2s −2c+ e −3(1− 2esJρ) 0

K

≜ ϕ(θ)K (5.17)

whereK = [K1 K2 K3 K4]
T is constant, s = ρ sin θ, c = ρ cos θ, and Jρ(θ) =

∫ θ

θ0
(dθ/ρ2).

If x(θ0) is specified, K is given by K = ϕ−1(θ0)x(θ0), where

ϕ−1(θ0) =
1

1− e2


−3(s/ρ)(1 + e2/ρ) 0 c− 2e −s(1 + 1/ρ)

−3(c/ρ+ e) 0 −s −c(1 + 1/ρ)− e

3ρ+ e2 − 1 0 es ρ2

−3e(s/ρ)(1 + 1/ρ) 1− e2 ec− 2 −es(1 + 1/ρ)


θ=θ0

.(5.18)

The solution x(θ) is periodic if and only if K3 = 0. The parameter K4 gives a trans-

lation of y, and hence we set K4 = 0 for simplicity. Therefore, when (x0, y0), θ0

and e are given, the conditions K3 = K4 = 0 specifies (ẋ0, ẏ0) uniquely. In the spe-

cial case where the target’s orbit is circular, a periodic trajectory that starts from

(x0, y0) = r0(cosφ0/2,− sinφ0) is reduced to

x(θ) = [r0 cos(θ − θ0 + φ0)/2, −r0 sin(θ − θ0 + φ0), y(θ)/2, −2x(θ)]T (5.19)

where φ0 (0 < φ0 < 2π) is the initial phase angle. In numerical simulations, r0 is set

to be 1 for simplicity.

5.2.3 Control Direction Constraints

Consider the problem that a chaser at time t0 and in the initial state x0 is guided

towards the target. The terminal time is free. The thrust direction, which represents

the angle between the direction vector toward the target −r and the control direction

vector u, is constrained within the angle ±α (0 ≤ α ≤ π) from the view of the chaser

in the direction away from the target. Notice that the direction of control input u is
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opposite to the direction of injection −u. This condition can occur when the direction

of injection is restricted because of the thrust plume or when the direction of control

with the thrusters fixed on the chaser is restricted because the target must be visible

in the FOV of the chaser’s camera while the chaser moves safely toward the target.

Figure 5.2 illustrates this condition. The definition of the thrust angle and control

input constraints are given by

|δ| ≤ α (5.20)

|δ| ≜ arccos(−uT · r/ |u| · |r|) (5.21)

α

α

r

Chaser

Vehicle

Target

Vehicle

x

y

1

d

θ

2

d

Admissible 

thrust 

direction 

region

Figure 5.2: Constraints on the thrust direction.

5.3 Optimal Control Including Control Direction

Constraints

In this section, we formulate a suboptimal guidance control toward the target under

constraints on thrust direction to show the design problem of the LQR weight parameter

and initial state of the chaser vehicle. We use modal analysis to show that the thrust

angle can be maintained within some constant angle if the initial state meets a certain

condition. For a given initial state, parameter design methods are shown to meet the

constraints on thrust direction at the initial rendezvous point and final approach phase.

First, consider the case where the target’s orbit is circular. Section 5.5 explains the

extension and limitation of the case where the target’s orbit is eccentric.
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5.3.1 Optimal Feedback Control Law

First, formulate suboptimal control problems with the constraints on thrust direction

by including the effect of the control constraints in a performance index. Then consider

the more general performance index of the well-known LQR problem (Bryson and Ho,

1975)

J =

∫ ∞

0

(xTQx+ uTRu+ 2xTNu)dt (5.22)

where Q, R, and N are weight matrices and the following parameter settings are

considered

Q = diag(qr, qr, qv, qv) (5.23)

R = I2×2 (5.24)

N = λα

[
I2×2

O2×2

]
(5.25)

In×n is n×n identity matrix, On×n is n×n zero matrix. qr, qv, λα ≥ 0 are independent

design parameters in the performance index Eq. (5.22). If λα = 0 is set, the integrand in

Eq. (5.22) becomes a narrow definition of quadratic form. To transform the integrand,

the following expression is used

xTQx+ uTRu+ 2xTNu

= xT


qr − λ2

α 0 0 0

0 qr − λ2
α 0 0

0 0 qv 0

0 0 0 qv

x+ (u+ Cλαx)
T (u+ Cλαx) (5.26)

where

Cλα ≜ λα · C =

[
λα 0 0 0

0 λα 0 0

]
(5.27)

The term (u+Cλαx)
T (u+Cλαx) represents the effect of maintaining the angle between

−r and u in the expression of quadratic form. In other words, this means that the

physical significance of turning the thrust direction to a direction toward the target is

included in the penalty function. Optimal feedback control that minimizes Eq. (5.22)

is easily obtained by

u∗ = −Kx (5.28)

K = R−1(BTS +NT ) (5.29)
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where K is the state-feedback gain and S is the unique nonnegative solution of the

algebraic Riccati equation (ARE)

ATS + SA− (SB +N)R−1(BTS +NT ) +Q = 0 (5.30)

and the closed-loop Ac = A−BK is stabilized if and only if

• The pair (A, B) is stabilizable.

• R > 0 and Q−NR−1NT > 0.

• (Q−NR−1NT , A−BR−1NT ) has no unobservable mode on the imaginary axis.

If these conditions are satisfied, Ac is stabilized and state-feedback control u = −Kx

minimizes the quadratic performance function of Eq. (5.22). Because (A, B) and

(Ā(θ), B) are controllable in the HCW equations Eq. (5.15) and TH equations Eq.

(5.11) respectively (Shibata and Ichikawa, 2007; Bando and Ichikawa, 2009; Ichimura

and Ichikawa, 2008), in addition to the condition qr, qv, λα ≥ 0, the design parameters

must satisfy the condition

qr − λ2
α ≥ 0 (5.31)

5.3.2 Modal Analysis

When using optimal control Eq. (5.28), consider by modal analysis how the thrust

angle changes to set design parameter qr, qv, λα. When reassigning the poles of Ac

with optimal state-feedback control, eigenmodes divide into two groups: slowly damped

modes and highly damped modes. Because highly damped modes become zero when

they approach the target, slowly damped modes mainly determine the thrust angle at

the final approach phase. Such a final thrust angle |δ|∞ can be obtained as follows:

If the eigenvalue of the most slowly damped mode has only a real part, let it and

the eigenvector be λs, vs respectively. The final x is

x = Cse
λstvs (5.32)

where Cs is the integral constant, which depends on the initial state. Therefore, the

trajectories become tangent to the slow eigenvector vs as they approach the origin

(Khalil, 2002). By substituting Eq. (5.32) into Eq. (5.28), the control input is then

u = −KCse
λstvs (5.33)
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By substituting Eqs. (5.32) and (5.33) into Eq. (5.21), |δ| approaches the constant

thrust angle |δ|∞ as the vehicle converges on the target

|δ|∞ = arccos

[
vT
s C

TKvs

|Cvs| · |Kvs|

]
(5.34)

Meanwhile, if the eigenvalue of the most slowly damped mode has an imaginary part,

let the eigenvalue and eigenvector be α + jω, w1 + jw2, α, ω ∈ R1, w1, w2 ∈ R4,

respectively. The final x is

x = C1x1(t) + C2x2(t) (5.35)

where C1, C2 are also integral constants that depend on the initial state, and

x1(t) = eαt(cosωtw1 − sinωtw2) (5.36)

x2(t) = eαt(sinωtw1 + cosωtw2) (5.37)

In this case, thrust angle |δ|∞ oscillates with frequency ω/2π. By substituting Eq.

(5.35) into Eq. (5.21), maximum thrust angle |δ|∞,max is

|δ|∞,max = max
ωt=ωt1, ωt1+π/2

arccos

(
zTCT

wKwz

|Cwz| · |Kwz|

)
(5.38)

z(ωt) = [cosωt, − sinωt]T (5.39)

ωt1 = − arctan

(
2b

a− c

)
/2 (5.40)[

a b

b c

]
= CT

wKw +KT
wCw (5.41)

where Cw = [Cw1 Cw2], and Kw = [Kw1 Kw2]. In either case, |δ|∞ does not depend

on integral constants. This means the thrust angle at the final approach phase is

independent of the initial state value.

In general, all modes can be excited according to the initial state and the thrust

angle in the transient phase can be large. To avoid such a condition, a simple idea

is that initial velocity can be determined for a certain initial position to excite only

modes that maintain a small-magnitude thrust angle. If increased velocity direction

to get such an initial velocity satisfies the constraints on thrust direction, it is possible

to rendezvous with the target with a small thrust angle during the entire flight after

performing an impulsive ∆V at the initial point to kill other ”undesired ”modes.

If the eigenvalue of the most slowly damped mode has only a real part, final tra-

jectory approaches Eq. (5.32) and a pair of (Cs, φ0) exist in such a way that the initial

state has the form

x0(φ0) = Csvs (5.42)
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Eq. (5.42) has a one-dimensional subspace for each eigenvalue, so some initial positions

will work in such a mode for rendezvous.

If the eigenvalue of the most slowly damped mode has an imaginary part, the initial

state is written in modal form

x0 = [w1 w2 w3 w4] · [C1 C2 C3 C4] (5.43)

Therefore, the required initial velocity for any initial position r0 = [x0, y0]
T can be

achieved and remain only in the slowly damped mode[
ẋ0

Mk

ẏ0
Mk

]
=

[
w3,k w3,k+1

w4,k w4,k+1

]
·

[
w1,k w1,k+1

w2,k w2,k+1

]−1 [
x0

y0

]
, k = 1, 2 (5.44)

where wi,j is the ith component of the eigenvector wj. In this case, the velocity given

by Eq. (5.44) can be obtained for any initial position because the state vector has a

two-dimensional subspace for the imaginary mode and its own conjugate mode. Initial

velocities determined by Eq. (5.44) approach the target within thrust angle |δ|∞,max

as calculated in Eq. (5.38) for each mode. The necessary direction and magnitude of

∆V to change from an arbitrary initial velocity to the required initial velocity given

by Eq. (5.44)

∆v =

[
ẋ0

Mk

ẏ0
Mk

]
−

[
ẋ0

ẏ0

]
(5.45)

Using this equation, the direction and magnitude of the initial impulsive thrust angle,

|δ|impulse
0 , which defines the angle between the ∆v vector and −r vector, is calculated

for any initial state.

However, when the direction of impulse cannot satisfy the constraints on thrust

direction or ∆v in Eq. (5.45) is too large to be admissible, a second idea is that

the initial state can be chosen so that the thrust angle at the initial phase becomes

small. The initial thrust angle for any initial state can be easily calculated from Eq.

(5.21) once the design parameters q, λα are fixed. It still holds true that the thrust

angle at the final approach phase is maintained within Eqs. (5.34) or (5.38) because

the choice of initial start point has no effect on |δ|∞,max. In this case, however, the

thrust angle at the transient phase possibly overshoots constraint angle α. To improve

this problem, our proposed method to maintain a small-magnitude thrust angle at the

transient phase is explained in the next section.

5.4 Satisficing Method

A control parameter design approach and suboptimal feedback control making the

thrust angle small at the initial and final phases is derived. However, it is not guar-
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anteed that this method makes the thrust angle small from start to finish. To solve

this problem, a satisficing method is used to satisfy rigidly the constraints on thrust

direction. CLF-based satisficing is a complete parameterization of asymptotically sta-

bilizing control laws given a valid CLF for the closed-loop system (Curtis and Beard,

2002b, 2004). This method can achieve stabilized and robust control. Consider that

the quadratic form Lyapunov function, which is derived from the unique nonnegative

solution of solving Eq. (5.30) from the performance index Eq. (5.22) is used as a

candidate CLF. Satisficing control can stabilize a system regularly. However, in the

transient phase, the constraints on thrust direction are not necessarily guaranteed. In

this phase, this chapter proposes that the thrust control input in the satisficing set is

derived from the projection of optimal feedback control parallel to the borderline of the

stable area. This method has the tendency of making a large input, but a continuous

input profile from optimal control can be available from the satisficing set. Because

this proposed method is based on the optimal control considered in the previous sec-

tion, it is still expected that the highly damped mode decays and the slowly damped

mode remains until the final phase. Therefore, at the final phase the control returns to

optimal and satisfies the constraints on thrust direction, as explained in the previous

section.

5.4.1 Concept of Satisficing

This section briefly reviews the concept of satisficing. According to Definition 4.2.1,

we define the CLF as follows:

inf
u

V̇ = inf
u

{
∂V

∂t
+

(
∂V

∂x

)T

(f(t,x) + g(t,x)u)

}
< 0 (5.46)

for all x ̸= 0.

If such a CLF exists, the satisficing subset Sb(t,x) is defined as follows:

Sb(t,x) =

{
u ∈ Rm : −Vt − V T

x (f + gu) >
1

b
(l + uTRu+ 2xTNu)

}
(5.47)

From Theorem 4.2.3, the satisficing set Sb(t,x) at (t,x) is nonempty if and only if

design parameter b(x) satisfies the inequality

b(t,x)ωN + lN − b(t,x)2

4
pTR−1p < 0 (5.48)

Furthermore, if the inequality Eq. (5.48) holds true, then Sb(t,x) ⊂ Rm can be
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described as a perfect parametric form by introducing new design parameter ν:

Sb(t,x) =

{
−R−1

(
b

2
p+NTx

)
+R−1/2ν

√
b2

4
pTR−1p− bωN − lN : |ν| < 1

}
≜ {−σ1(t,x, b) + σ2(t,x, b) · ν : |ν| < 1} (5.49)

where p = gTVx, ωN = Vt + V T
x f − V T

x gR−1NTx and lN = l − xTNR−1NTx.

When considering the target’s orbit as circular, as an example, the system Eq.

(5.15) is a linear time-invariant system, and f = Ax, g = B and (A,B) are controllable.

Therefore, when taking Q = QT ≥ 0 and R > 0, such that (A,Q1/2) is observable, the

Riccati equation

ATS + SA− (SB +N)R−1(BTS +NT ) +Q = 0 (5.50)

has a unique nonnegative solution S = ST > 0, and the quadratic form

V = xTSx (5.51)

becomes a CLF for the linear time-invariant system Eq. (5.15) since

V̇ = (Ax+Bu∗)TSx+ xTS(Ax+Bu∗)

= xT (−SBR−1BTS −Q+NR−1NT )x < 0 (5.52)

for all x ̸= 0, where the condition Q − NR−1NT > 0 for a positive integrand in the

performance index Eq. (5.22) for all x ̸= 0 is used. When employing this CLF and

setting design parameter l(x) = xTQx, inequality Eq. (5.48) reduces to a simple form

b(x) ≥ 1 (Curtis and Beard, 2004). Choose design parameters b(x) = 1, according to

Eq. (5.49), to obtain

S1(x) = {−R−1(BTS +NT )x} (5.53)

for all x ̸= 0. This is the optimal control Eq. (5.28) to minimize the performance

index Eq. (5.22). As a result, Sb(x) represents the control input subspace expanding

to nonlinear control input of states to stabilize the system.

Next, the concept of satisficing is graphically explained. The time derivative of the

CLF is

V̇ =

(
∂V

∂x

)T

(Ax+Bu)

= a− bTu < 0 (5.54)

where

a =

(
∂V

∂x

)T

Ax = 2xTSAx (5.55)

b = −BT

(
∂V

∂x

)
= −2BTSx (5.56)
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Therefore, a satisficing set that has a CLF Eq. (5.51) can be defined as

Sb(x) = {u ∈ R2 : a− bTu < − 1

b(x)
[xT uT ]

[
Q N

NT R

][
xT

uT

]
}

≜ {u ∈ R2 : ps(u,x) < −pr(u,x)/b(x)} (5.57)

As shown in Fig. 5.3, Sb(x) is the subset including control inputs, which decrease the

CLF regularly by pr(u,x)/b(x) and represent an inner subset of the ellipsoid, which

has a center −σ1 and major and minor axis eigenvalues of the σ2 matrix. The satisficing

set becomes an optimal control u∗ when b = 1 as explained above, which corresponds

to σ2 = O2×2. u
∗ is included in Sb(x) set for all b ≥ 1 as made apparent in Definition

4.2.2. When b approaches infinity, Sb approaches a half plane in the control input

space, which has a linear borderline, a− bTu = 0, with a normal vector, b Eq. (5.56).

Therefore, a stable half plane that regularly decreases the CLF can be described as

S∞(x) = {u ∈ R2 : a− bTu < 0} (5.58)

That is to say, the stability of the system continues to be guaranteed by projecting

along the borderline a−bTu = 0 and such a generated vector is in a certain satisficing

set with a certain b ≥ 1. However, the satisficing definition means that a system tends

to become unstable with a large b because decreases of V become small and the control
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input becomes large. The satisficing theorem also shows that control setting b = 1

is a unique one and decreases the CLF the most. The next section explains how to

generate a control that meets the input constraints using these facts.

5.4.2 Satisficing with Control Direction Constraints

After selecting Eq. (5.51) as a candidate CLF, consider the constraints on thrust

direction. A subset of the control input constraints UC(x) ⊂ R2 is described from Eq.

(5.20) as

UC(x) = {u ∈ R2 : arccos(−uT · r/|u| · |r|) ≤ α} (5.59)

Figure 5.4 shows both subsets S∞ and UC at the same time. Subset S∞ ∩ UC denotes

a favorable control subspace, which satisfies inf V̇ < 0, and the constraints. The

condition under which subset S∞ ∩ UC is nonempty is

(−r)T · u∗ > |r| · |u∗| · cos(π/2 + α) (5.60)

If condition Eq. (5.60) is satisfied for all x ̸= 0, a new control input û near u∗ using

Eq. (5.28) is proposed

û(x) = u∗ + kb⊥ (5.61)

From a geometry point of view, this corresponds to the projection of optimal control

to UC along the satisficing boundary of S∞ by vector b⊥. However, when the boundary

of S∞ and line segment OP2 are parallel, b(x) becomes too large and the system tends

to become unstable. To avoid such a situation, when the angle between the two lines

reaches δmargin, the control input is set to 0. Additionally, if condition Eq. (5.60) is

not satisfied for ∃x ̸= 0, the input control is set to 0

ũ(x) =

{
u∗ + kb⊥ , S∞ ∩ UC ̸= ϕ

0 , S∞ ∩ UC = ϕ
(5.62)

Whether condition Eq. (5.60) is satisfied or not for all x ̸= 0 depends on thrust angle α.

In the case of π/2 < α ≤ π, as shown in Fig. 5.5 right, S∞ ∩ UC is always nonempty,

whatever the relation between r and b is. Therefore, the candidate CLF V of Eq.

(5.51) is valid. On the other hand, when the thrust angle is 0 < α ≤ π/2, as shown in

Fig. 5.5 left, S∞∩UC may be empty with a certain relation between r = (x, y)T and b.

Then, the candidate CLF V of Eq. (5.51) is not guaranteed as a valid CLF. Numerical

validation on whether to converge stably to the origin is examined in Section 5.6.
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5.5 Rendezvous with Eccentric orbit

The proposed method is also applicable when the target’s orbit is eccentric. This

section explains the method.

5.5.1 Optimal Feedback Control Law

In the case of an eccentric orbit, the problem that minimizes the performance index

Eq. (5.22) becomes time varying. Yet the formation problem for Eq. (5.22) can be

solved essentially in the same way as for the HCW equations. In fact, the feedback

control is

ũ∗ = −R−1

(
1

ρ
BT X̃(θ) +NT

)
x̃ (5.63)

where X̃(θ) is the periodic stabilizing solution of the differential Riccati equation (DRE)

−X̃ ′ = ÃT X̃ + X̃Ã+ CTC −
(
1

ρ
X̃B +N

)
R−1

(
1

ρ
BT X̃ +NT

)
(5.64)

which has a unique nonnegative 2π-periodic stabilizing solution X̃(θ) (Ichikawa and

Katayama, 2001).

5.5.2 Modal Analysis

With the feedback law Eq. (5.63), the system becomes linear non-homogeneous, and

has a closed-loop form Āc = Ā(θ)−BK(θ). General solutions have the form

x(θ) = Φ(θ, θ0)x(θ0),Φ(θ0, θ0) = I4×4 (5.65)

which represents a four-dimensional vector subspace. This linear operator Φ(θ, θ0) is

referred to as the state transition matrix. It is known that the state transition matrix

differential equation must satisfy

Φ̇(θ, θ0) = Āc(θ)Φ(θ, θ0), Φ(θ0, θ0) = I4×4 (5.66)

Thus, in the worst-case scenario, Eq. (5.66) can be solved numerically to determine

Φ(θ, θ0). However, when the eccentricity e approaches 0,
∫ θ

θ0
Āc(θ1)dθ1 and Āc(θ) be-

come commutative. Then Φ(θ, θ0) reduces to (Schaub and Junkins, 2003)

lim
e→0

Φ(θ, θ0) = exp

[∫ θ

θ0

Āc(θ1)

]
dθ1 (5.67)

This solution is identical to the solution in the HCW equations. In this way, the thrust

angle estimated in the circular orbit case can be applicable to the eccentric orbit case,

which has e ≪ 1.
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5.5.3 Satisficing Method

In the case of an eccentric orbit, the system Eq. (5.11) is linear time-varying, f =

Ā(θ)x, g = B and (Ā(θ), B) is controllable for all θ. Moreover

Ṽ (θ,x) = x̃T X̃x̃ (5.68)

is a CLF in the system Eq. (5.11). Differentiate Eq. (5.68) with respect to θ

Ṽ ′ =
∂Ṽ

∂θ
+

(
∂Ṽ

∂x̃

)T

x̃′

= ã(θ)− b̃
T
(θ) · ũ < 0 (5.69)

where

ã = x̃T X̃ ′x̃+ 2x̃T X̃Ā(θ)x̃ (5.70)

b̃ = −2

ρ
BT X̃x̃ (5.71)

Therefore, the subspace of the satisficing set that has a CLF Eq. (5.68) can be defined

S̃∞(θ, x̃) = {ũ ∈ R2 : ã(θ)− b̃(θ)T · u < 0} (5.72)

Likewise, the subspace of S̃∞(θ, x̃) is a half plane in the control space and the boundary

is described as a straight line ã(θ) − b̃(θ)T · u = 0 which has a normal vector b̃ Eq.

(5.71). The method to generate a control that satisfies both stable space and the

constraints and projects optimal control along the boundary of S̃∞ is also applicable

in Section 5.4.2.

5.6 Numerical Simulation

5.6.1 Circular Orbit Case with Initial Periodic Orbit

This section examines the efficiency of the proposed method. Two parameter setting

cases — qr = q, qv = 0, called case 1 and qr = qv = q, called case 2 — are examined.

Parameter Setting Case 1 : qr = q, qv = 0

First, examine a trajectory of eigenvalues when varying the parameters q, λα. Figure

5.6 shows the trajectory of the eigenvalues when varying parameter q. The left and right

figures show the case of λα = 0,
√
0.9q respectively. In this parameter setting case, all

the eigenvalues become complex, excluding the points where the eigenvalues degenerate.
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For all parameters, λ1 and the conjugate complex λ̄1 become slower modes, so the λ1, λ̄1

modes become dominant as they approach the origin. As previously mentioned, when

eigenvalues are complex, |δ|∞ oscillates at ω angular frequency. Figure 5.7 shows the

contour plot of the maximum thrust angle at final phase |δ|∞,max using Eq. (5.38)

when varying q, λα in the mode of λ1, λ2, respectively. Figure 5.7 shows that |δ|∞,max

becomes smaller for fixed q when a larger λα is set. This fact confirms the efficiency

of introducing the λα parameter to the quadratic performance index. Especially, if the

λ1 mode is dominant, a smaller |δ|∞,max can be set for any q when λα is set closer to

the boundary (dotted line) q = λ2
α. Note that convergence becomes much slower as it

approaches q = λ2
α because q = λ2

α corresponds to no penalty of position error in the

meaning of the performance index. As for the λ2 mode, a small |δ|∞,max can be set

only when q is large and λα is close to the dotted line q = λ2
α. Therefore, the λ1 mode

has more favorable characteristics than the λ2 mode.
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Figure 5.6: Trajectory of closed-loop pole assignment in the case qr = q, qv = 0 (Left:

λα = 0, Right: λα =
√
0.9q).

Consider the case of the initial state of the chaser before rendezvous when it

is in a periodic (i.e. non-drifting) relative orbit. In this case, examine whether

the rendezvous, in which only each mode remains, is possible. Figure 5.8 shows

the contour plot of the necessary magnitude and direction to −r of the impulsive

maneuver. These contours depict the magnitude and thrust angle δ between −r

and the necessary impulsive maneuver under the condition that rendezvous starts at

x0(φ0) = (cosφ0/2,− sinφ0, y0/2,−2x0), (0 ≤ φ0 < 2π) from Eq. (5.19) and varying

design parameter q from 10−3 to 103. The initial distance from the origin does not
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affect the δ profile because of the definition of δ and feedback control. Therefore, the

initial distance from the origin is normalized to 1. Instead, the distance from the origin

uses the scale of parameter q. For example, the outmost dotted line of the ellipsoid

represents δ with q = 103 when varying the initial phase φ0 of rendezvous. One views

the impulsive maneuver’s magnitude contour plot likewise. Figure 5.8 shows that if q is

small, a trajectory that makes the thrust angle small can be possible using the λ1 mode;

whereas, the initial impulsive maneuver direction is over 60◦. On the other hand, if q is

large, the impulsive maneuver direction is also over 60◦ using the λ2 mode. Therefore,

if thrust angle α is approximately 60◦, it is possible to satisfy the constraints. However,

if α is smaller than 60◦, such a trajectory is impossible, as it excites the single mode

by the impulsive maneuver, which satisfies the constraints when the initial state is in

periodical orbit in the parameter setting case. Figures 5.9 and 5.10 show examples of

the rendezvous trajectory of modes 1 and 2, respectively. In Fig. 5.9a the chaser’s

initial periodical orbit before control is shown with a dotted line and the rendezvous

start point with an impulsive maneuver is shown with a triangle. Without control, the

chaser rounds the target periodically since the initial condition satisfies a non-drifting

relative orbit. In addition, the velocity vectors before and after the impulsive maneu-

ver are shown. A solid line shows the trajectory profile after rendezvous start. Figure

5.9 shows the profiles of relative position r after an impulsive maneuver in Fig. 5.9b,

control u in Fig. 5.9c, and thrust angle δ in Fig. 5.9d. Control mode, initial condition

and design parameters are listed in Table 5.2.

Next, consider a rendezvous trajectory design example to choose q, λα to satisfy

the constraints without the killing mode. Figure 5.11 (following the same convention

as Fig. 5.8 shows the contour plot of thrust angle δ between −r and u∗ at the initial

rendezvous state x0(φ0)(0 ≤ φ0 < 2π) when varying design parameter q from 10−3 to

103. It is possible to set the initial thrust angle to below 10◦ for any q, as shown in

Fig. 5.11.

Figure 5.12a shows an example of a designed rendezvous trajectory, setting the

design parameters q = 1, λ =
√
0.9q, thrust constraint α = 30◦, and start rendezvous

point φ0 = 120◦. In Fig. 5.12a the chaser’s initial periodical orbit before control is

shown with a chain line and the rendezvous start point with an impulsive maneuver is

shown with a triangle. A solid line and a dotted line show the trajectory profiles with

the satisficing control Eq. (5.62) and optimal control Eq. (5.28), respectively. Figure

5.12 shows the profiles of the candidate CLF Eq. (4.14) in Fig. 5.12b, control u in Fig.

5.12c, and thrust angle δ with controls Eqs. (5.62) and (5.28) in Fig. 5.12d. The figure

shows that the constraints on thrust direction are satisfied in a rigorous manner using

the proposed control, which in turn uses the satisficing method; whereas, the thrust
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angle becomes larger than α at the transient phase using optimal control. In addition,

δ at both the initial and final state is maintained as estimated from Figs. 5.11 and 5.7.

Parameter Setting Case 2 : qr = qv = q

Here, examine the case of setting qr = qv = q. Figure 5.13 shows the trajectory

eigenvalues when varying parameter q. The left and right figures show λα = 0,
√
0.9q,

respectively. In time, mode λ2 can have two different real solutions for λα ̸= 0. Figure

5.14 shows the contour plot of the maximum thrust angle at final phase |δ|∞,max using

Eqs. (5.34) and (5.38) when varying q, λα in the mode of λ1, λ2 and λ3, respectively.

The figure shows that the thrust angle at the final phase is over 90◦ in the λ1 mode.

The positional relationship of each mode when varying q in Fig. 5.14 shows that the

relationship between the sizes of the real part of the eigenvalue is reversed. Therefore,

λ1, λ̄1 modes become slowly damped modes if around q = 0.01; whereas, λ1, λ̄1 modes

become highly damped modes if around q = 1. Therefore, q should not be set to such

a small value that the λ1 mode becomes a slowly damped mode in this case.

Examine rendezvous trajectory remaining in a single mode. Designing ∆V using

the λ1 mode has no usefulness because the thrust angle at the final phase in this mode

becomes large for any q. Using the λ2 mode, the thrust angle can be designed to be

small if λα is set larger and q is set for the eigenvalue to become real. Figure 5.15 shows

the example trajectory to meet these parameter conditions. The parameter is set to q =

1, λα =
√
0.9q. The magnitude of the initial impulsive maneuver direction is almost

the same as that of the initial periodical orbit and the thrust angle becomes about 70◦.

After that, the thrust angle always becomes almost 0 to the target. Figure 5.16 shows

that designing the rendezvous trajectory can be possible using the satisficing control

to maintain a small-magnitude thrust angle if q is set larger. There is a span during

which generated control becomes zero because thrust angle δ is over the constraint α

at the transient phase, but after that the trajectory stabilizes. The case qr = qv = q

has a favorable characteristic in that it approaches the target quickly compared to the

case qr = q, qv = 0. Additionally, the tangential direction to approach is the direction

of the eigenvector vs’s positional components, as shown by Eq. (5.32).

Result of Comparing Case 1 and 2

Table 5.3 sums up the result of comparing cases 1 and 2. As shown in the previous

section, in case 1, the λ1 mode becomes dominant as it approaches the origin for any

q, λα and |δ|∞ of λ1 mode can be set to be small for any q. On the other hand, in case 2,

|δ|∞ of λ1 mode becomes large for any q, λα. Setting q ∼ 1 can only meet the condition
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c) input u, and d) thrust angle δ [◦]. Parameter setting qr = q = 10, qv = 0, λα =
√
0.9q, φ0 = 180◦.



80
Chapter 5. Novel Nonlinear Rendezvous Guidance Scheme under Constraints on

Thrust Direction

← y alongtrack

x
 r

ad
ia

l 
→

0

10

log10(q)

3 2 1 0 −1 −2 −3

-60 -50
-40

-30

-20

-10

Figure 5.11: Initial δ [◦] with optimal control when the initial state is in a periodic

relative orbit.

that λ2, λ3 become a slowly damped mode and |δ|∞ become small. However, case 2

has favorable characteristics in that it approaches the target quickly. In the following

subsection, the case of an eccentric orbit and more concrete design parameters are

explained regarding case 1.

5.6.2 Eccentric Orbit Case with Initial Periodic Orbit

Figure 5.17 shows the case of an eccentric orbit with e = 0.3. In this simulation,

parameter setting case 1: qr = q, qv = 0 is selected and design parameters are set to

q = 0.1, λ =
√
0.95q, α = 30◦. The initial rendezvous state is chosen as (x0, y0) =

(0.5, 0) and θ0 = 0. Using Eq. (5.17), the free trajectory is shown in Fig. 5.17 by the

dotted line. As stated in section V, the optimal control Eq. (5.63) and the CLF Eq.

(5.68) are used for the satisficing control Eq. (5.62). Thrust angle at the final position,

which is not predicted analytically if e cannot be approximated by e ≪ 1, however,

is found to be maintained practically if λα is set larger. The chaser also approaches

stably to the target and the constraints on thrust direction are always satisfied in the

case of an eccentric orbit.
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in candidate CLF, c) input u, and d) thrust angle δ. Parameter setting qr = q =

0.1, qv = 0, λα =
√
0.9q, φ0 = 120◦, α = 30◦.
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Figure 5.15: a) Rendezvous trajectory remaining only λ2 or λ3 mode, b) Profiles in

position r, c) input u, and d) thrust angle δ. Parameter setting qr = qv = 0.1, λα =
√
0.9q, φ0 = 130.05◦.
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in candidate CLF, c) input u, and d) thrust angle δ. Parameter setting qr = qv =
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√
0.9q, φ0 = 60◦, α = 60◦.
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Table 5.2: Summary of control mode, initial condition and design parameters in exam-

ples.

Figure Control mode Initial condition Design parameters

case 1: (qr, qv) = (q, 0)

case 2: (qr, qv) = (q, q)

5.6.1 Circular orbit case, e = 0, x0 = x(φ0) = (cosφ0/2,− sinφ0, y0/2,−2x0)

5.9 Leaving φ0 = 180◦ case 1: q = 10, λα =
√
0.9q

λ1, λ̄1 mode

5.10 Leaving φ0 = 180◦ case 1: q = 10, λα =
√
0.9q

λ2, λ̄2 mode

5.12 Satisficing φ0 = 120◦ case 2: q = 0.1, λα =
√
0.9q

with α = 30◦

5.15 Leaving φ0 = 130.05◦ case 2: q = 0.1, λα =
√
0.9q

λ2 or λ3 mode

5.16 Satisficing φ0 = 60◦ case 2: q = 10, λα =
√
0.9q

with α = 60◦

5.6.2 Eccentric orbit case, e = 0.3, x0 = x(θ0) = ϕ(θ0) · [K1 K2 0 0]T

5.17 Satisficing (x0, y0) = (0.5, 0), case 1: q = 0.1, λα =
√
0.95q

with α = 30◦ θ0 = 0◦

Table 5.3: Result of comparing cases 1 and 2.

case 1 (qr = q, qv = 0) case 2 (qr = qv = q)

mode 1 |δ|∞ mode 2 |δ|∞ mode 1 |δ|∞ mode 2,3 |δ|∞
q < 0.1 slow small fast large slow large fast small

q ∼ 1 slow small fast large fast large slow small

q > 10 slow small fast small fast large slow large
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Figure 5.17: a) Rendezvous trajectories with satisficing and optimal control, b) Profiles

in candidate CLF, c) input u, and d) thrust angle δ. Parameter setting qr = q =

0.1, qv = 0, λα =
√
0.95q, θ0 = 0, α = 30◦, e = 0.3.
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Table 5.4: |δ|, eigenfrequency ω, J , ∆V , |u|max and convergence time Tconv for qr =

q, qv = 0, λα =
√
0.9q, φ0 = 180◦.

q λα |δ|min - |δ|max [◦] ω/2π J ∆V |u|max Tconv

0.01
√
0.9 · q 10.2 - 32.9 0.188 0.0137 1.34 0.0869 95.9

0.1
√
0.9 · q 11.2 - 30.1 0.226 0.0700 2.00 0.316 48.6

1
√
0.9 · q 12.6 - 26.9 0.298 0.261 3.03 0.886 26.7

10
√
0.9 · q 14.0 - 24.1 0.425 0.522 4.11 1.82 14.2

100
√
0.9 · q 15.4 - 22.0 0.647 2.56 6.50 5.10 6.77

Table 5.5: |δ|, eigenfrequency ω, J , ∆V , |u|max and convergence time Tconv for qr =

1, qv = 0, λα =
√
ηq, 0 ≤ η < 1, φ0 = 180◦.

q λα |δ|min - |δ|max [◦] ω/2π J ∆V |u|max Tconv

1
√
0 · q 66.5 - 113 0.253 0.856 0.860 0.993 6.56

1
√
0.3 · q 39.8 - 77.8 0.281 0.597 1.18 0.961 9.16

1
√
0.5 · q 31.2 - 63.2 0.288 0.494 1.41 0.942 11.9

1
√
0.7 · q 22.8 - 47.6 0.294 0.390 1.81 0.919 15.3

1
√
0.9 · q 12.6 - 26.9 0.298 0.261 3.03 0.886 26.7

5.6.3 Performance Index, Delta-V, and Maximum Accelera-

tion Comparison

To study how to choose the design parameters, tendencies of J, ∆V, |u|max by varying

q, λα are examined. Table 5.4 shows the effects varying q, with λα =
√
0.9 · q are set.

J, ∆V, |u|max become large when q is large and the LQR problem is narrowly defined.

Convergence times become faster and the maximum thrust angle becomes smaller when

q is larger. Table 5.5 shows the effects of varying λα and fixing q. λα = 0 corresponds

to a usual LQR problem. In this case, the thrust angle at the final phase is 113◦.

It is found that |δ|max become smaller when λα become larger under the condition of

Eq. (5.31). Fuel consumption and convergence time become larger, whereas, |u|max

is almost the same. Considering these things, the planning procedure to design a

rendezvous trajectory from the actual design criteria are as follows: First, q is chosen

from maximum thrust acceleration |u|max. Next λα is chosen from the trade-off between

thrust angle δ at the final phase and ∆V, Tconv. Using a contour plot, like the one

shown in Fig. 5.11, the initial thrust angle is chosen to be small in the initial phase of

the rendezvous. Figure 5.18 summarizes the proposed procedure for determining the

design parameters.
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1. Determine q from maximum acceleration |u|max using Eqs. (5.28) and (5.29).

|u∗
0(q, λα = 0)| ≤ |u|max =⇒ q# = q

Remark: One can adjust the penalty q for required specifications. If it is

desirable to keep ∆V small, one could take small |u∗
0(q, λα = 0)| for given

|u|max, which gives larger Tconv.

2. Determine λα from thrust constraint α using Eq. (5.38). (see Fig. 5.7)

|δ|∞(q#, λα) ≤ α =⇒ λ#
α = λα

Remark: Given smaller α, which gives larger λα near
√
q, ∆V and Tconv

become larger.

3. If |δ|impulse
0 (q#, λ#

α , ∃φ0) ≤ α and additive |∆V |impulse(q#, λ#
α , ∃φ0) is ad-

missible

(a) Then, determine φ0 parameter to minimize |∆V |impulse(q#, λ#
α , φ0) us-

ing Eqs. (5.44) and (5.45). (See Fig. 5.8)

φ#
0 = argmin

φ0

|∆V |impulse(q#, λ#
α , φ0)

Perform impulsive maneuver ∆v = ẋM1
0 − ẋ0 Eq. (5.45) at phase φ#

0

and optimal control u∗(q#, λ#
α ) Eq. (5.28) right after the impulsive

maneuver.

(b) Else, determine φ0 from thrust constraint α using Eqs. (5.21) and (5.28).

(See Fig. 5.11)

|δ|0(q#, λ#
α , φ0) = arccos(−u∗T

0 · r0/|u∗
0| · |r0|) ≤ α =⇒ φ#

0 = φ0

Perform satisficing control ũ(q#, λ#
α ) Eq. (5.62) at phase φ#

0 .� �
Figure 5.18: Design procedure to determine the design parameters q, λα, φ under the

constraint conditions |u|max, α, ∆V, Tconv.
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5.7 Conclusions

This chapter examined how to maintain a small-magnitude thrust angle based on con-

tinuous optimal feedback control for the problem of satellite rendezvous. Considering

the constraints on the parameters set in the general quadratic performance index, a con-

trol design process was proposed using modal analysis to make the thrust angle small

at the initial and final phases. Using a candidate CLF by solving the Riccati equation

for the performance index considered, a new control applying the satisficing method

was devised to meet the constraints strictly from start to finish. If the limitation angle

is small, the devised control may become null transiently because the candidate CLF

is not a strictly defined CLF. However, this chapter showed that thrust angle can be

practically maintained and the control law leads to convergence at the origin in some

simulations. Extending the theory to an eccentric orbit and time-varying system was

explained and numerical calculations showed effectiveness. Although the application of

two-dimensional plane motion was discussed, this technique can be extended easily to

the design method, including out-of-plane motion. This method can also be applied to

nonlinear control problems and can be extended to multiple control constraints, such

as sensor field of view and sun direction.





Chapter 6

Satisficing Nonlinear Rendezvous

Approach Under Control

Magnitude and Direction

Constraints

6.1 Introduction

The satisficing method was applied to the rendezvous problem with control direction

constraints in the previous chapter. This chapter takes over the main results in the

previous chapter (Mitani and Yamakawa, 2010, 2011). In Chapter 5, a Lyapunov func-

tion for the general linear quadratic regulator (LQR) was chosen as a local constrained

control Lyapunov function (CCLF)(Sznaier et al., 2003). By performing modal analy-

sis in a linear system (Khalil, 2002), the thrust angle in the final convergent phase can

be analytically predicted. The trajectory becomes optimal once the trajectory enters

the invariant set where these constraints are no longer binding. To treat the input con-

straint in the transient phase, a new satisficing set to guarantee closed-loop stability

under input constraints on the magnitude and direction is proposed, inspired by the

idea of a smoothing technique (Bertrand and Epenoy, 2002; Gil-Fernandez and Gomez-

Tierno, 2010). Then, a proposed controller is chosen to minimize a pre-Hamiltonian

from the given set. The proposed controller in the set resembles that in (Mitani and

Yamakawa, 2010) from the perspective of having stability and satisficing constraints,

except magnitude constraint consideration. However, the proposed controller would

be more suitable for the following reasons: firstly, since a local CCLF is chosen for

the value function in the nonbinding case, the proposed controller becomes a unique

optimal control solution where the constraint condition is nonbinding. Secondly, on

91
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the other hand, the proposed controller gives a projection solution onto the input con-

straint set where the constraint condition is binding. The projected controller would

be sub-optimal because it is guaranteed that the projection vector of a negative signed

Lawden’s primer vector onto the constraint boundary is optimal (Sukhanov and Prado,

2007, 2008).

6.2 Problem Statement

6.2.1 Dynamic Equations

Consider two satellites subject to the gravitational force of the Earth, one of which

is flying in a given circular orbit of radius R0 and referred to as a target, and the

other flying nearby is referred to as a chaser. The chaser satellite is equipped with a

continuous-thrust propulsion system and mass changes of satellites due to propellant

usage are not taken into account for analysis. Introduce a rotating right-hand reference

frame o − {R,S,W}, where o is the center of mass of the target, R is in the radial

direction, S is in the flight direction, and W is the direction outward from the orbital

plane. Let r be the position vector of the chaser relative to the target, and let u be

the control acceleration vector. Set r = xR+ yS + zW and u = uxR+ uyS + uzW .

The relative motion of the follower with respect to the target is given by Newton’s

equations of motion as follows (Wie, 1998);

ẍ = 2nẏ + n2(R0 + x)− µ

R3
(R0 + x) + ux (6.1)

ÿ = −2nẋ+ n2y − µ

R3
y + uy (6.2)

z̈ = − µ

R3
z + uz (6.3)

where ȧ is the derivative with respect to time t, µ is the gravitational parameter of the

Earth, n = (µ/R3
0)

1/2 is the orbit rate of the target, and R = [(R0+x)2+y2+z2]1/2. The

out-of-plane motion concerning z is independent of the in-plane motion determined by

x and y. Because the out-of-plane motion is relatively simple, only the in-plane motion

will be discussed. Introducing σ = R2
0αmax/µ, r̄ = (x̄, ȳ) = (x, y)/(σR0) and replacing

the independent variable t by τ = nt, Eqs. (6.1) and (6.2) are transformed into the

affine form:

x̄′(τ) = f(x̄) + gū(τ) (6.4)

f(x̄) = Ax̄+ f2(x̄) (6.5)

g = B (6.6)



6.2. Problem Statement 93

where differentiation with respect to τ is indicated by ′, x̄(τ) = [r̄ r̄′]T ∈ R4, ū(τ) =

u(τ)/αmax ∈ R2 is the normalized control acceleration vector of the chaser at τ , as

expressed in the (R,S,W) frame, ū(τ) satisfies ∥ū(τ)∥ ≤ 1, ∥·∥ denotes the Euclidean
norm, αmax is the maximum control acceleration, and

A =


0 0 1 0

0 0 0 1

3 0 0 2

0 0 −2 0

 , B =


0 0

0 0

1 0

0 1

 (6.7)

f2(x̄) = B

 −3x̄−
(
1

σ
+ x̄

)(
1

σ3R̄3
− 1

)
−ȳ

(
1

σ3R̄3
− 1

)
 (6.8)

where R̄ = [(1/σ + x̄)2 + ȳ2]1/2. The linearized equations around the origin x̄ = ȳ = 0

are given by setting the nonlinear term f2(x̄) to 0, which are known as Hill-Clohessy-

Wiltshire equations. f(x̄) and g(x̄) are locally Lipschitz functions and f(0) = 0.

Hereinafter, all formulations are executed using the nondimensional values obtained

using τ , which corresponds to the mean anomaly of the target. Therefore, the bars

over x and u are not shown in the following sections.

6.2.2 Rendezvous Problem under Control Magnitude and Di-

rection Constraints

Assume that the chaser is in an eccentric orbit Γ = (A0, e) in the inertial frame, where

A0 is the semimajor axis and e is the eccentricity vector. If the X coordinate of the

perigee is A0 − a, then the eccentricity e = ||e|| = a/A0 (Bando and Ichikawa, 2009).

Consider the problem of a chaser at time t0 and in the initial state x0 ∈ Γ being guided

towards the target. The terminal time is free and the thrust direction, which represents

the angle between the direction vector toward the target −r and the control direction

vector u, is constrained within the angle ±γ (0 ≤ γ ≤ π) from the view of the chaser

in the direction away from the target. Notice that the direction of control input u is

opposite to that of injection −u. The thrust angle and control input constraints are

defined by

||θ(u,x)|| ≤ γ (6.9)

where θ is the signed control direction which defined as

−r̂T û = cos θ (6.10)

r̂ × û = sin θW (6.11)
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Combined with magnitude constraint, the constrained input set UC is defined as

UC = {u ∈ R2 : ||u|| ≤ 1, ||θ(u,x)|| ≤ γ} (6.12)

6.3 Satisficing Set Considering Magnitude and Di-

rection Constraints

6.3.1 Description of the Constraint-Satisficing Set

To solve this problem, a satisficing method is used to satisfy rigidly UC Eq. (6.12).

Initially, according to Definition 4.2.1, we define CLF V which is positive definite,

radially unbounded, and

inf
u

V̇ = inf
u

V T
x [f(x) + g(x)u] < 0 (6.13)

for all x ̸= 0. Specifically, if u ∈ UC ⊂ Rm, V (x) is said to be a constrained CLF

(CCLF) (Sznaier et al., 2003). From Definition 4.2.2, we define the satisficing set as

follows:

Sb(t,x) =

{
u ∈ Rm : ps(t,u,x) >

1

b(t,x)
pr(t,u,x)

}
(6.14)

Associate the notion of selectability with stability, and that of rejectability with in-

stantaneous cost. In particular, let

ps(u,x) = −V T
x (x)(f(x) + gu) (6.15)

where V is a CLF. Note that stabilizing control values make ps = −V̇ positive. Choose

the rejectability criterion to be

pr(u,x) =

[
1

2
xTQx+

1

2
uTu+ xTNu

]
+ εmFm(u) + εdFd(u) (6.16)

εmFm(u) = −εm log u(1− u) (6.17)

εdFd(u) = −εdu log[w(r,u)] (6.18)

w(r,u) =
cos θ − cos γ

1− cos γ
(6.19)

where Q = QT is a nonnegative matrix and N matrix satisfies the relation Q−NNT >

0. The first term of Eq. (6.16) is a convex integrand of performance index J in the LQR

problem. Introducing the term xTNu helps make the thrust angle θ small (Mitani and

Yamakawa, 2011). εmFm and εdFd are continuous functions satisfying

εmFm(u) ≥ 0, εm > 0, u ∈ (0, 1) (6.20)

εdFd(u) ≥ 0, εd > 0, w > 0 (6.21)
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If u approaches one or zero and w approaches +0, then εmFm(u) → +∞ and εdFd(u) →
+∞ respectively. Therefore Fm and Fd are referred to as a barrier function for the con-

straints on magnitude and direction respectively (Bertrand and Epenoy, 2002; Mitani

and Yamakawa, n.d.). Adding barrier functions εmFm and εdFd to pr is the first at-

tempt of its kind among the satisficing theory. Note that the new definition of pr is

a convex set of u(u, θ), which are expressed in polar coordinates. Additionally ps is

a linear function in u and is, hence, concave in u. For these choices of ps and pr,

therefore, the satisficing set

Sb(x) = {u ∈ Rm : −V T
x (f + gu)

>
1

b
(
1

2
xTQx+

1

2
uTu+ xTNu− εm log u(1− u)− εdu logw)} (6.22)

is guaranteed to be a convex set.

Although the proposed additional constraint Sb cannot be represented as explicit

parameterization, the Sb contour can be described using a semi-analytic approach.

Define the following variables

c ≜ xTQx/2 + bV T
x f (6.23)

pN ≜ bgTVx +NTx (6.24)

h ≜ 1

2
pT
NpN − c (6.25)

By substituting these to Eq. (6.22) and completing the square

Sb = {u ∈ Rm : −1

2
||u+ pN ||2 + h > −εm log u(1− u)− εdu logw} (6.26)

When a certain fixed direction û is considered, the crossing points uA and uB of the

following two convex and concave curves can be obtained by numerical analysis:

y1 = −1

2
||u+ pN ||2 + h (6.27)

y2 = −εm log u(1− u)− εdu logw (6.28)

Then, u ∈ (uA(û), uB(û)) is a member of Sb. If Equation y1 = y2 has multiple root

solution uA = uB, such a û corresponds to the tangential line of Sb. In addition, there

is a sole point u ∈ Sb which maximizes ps to pr/b, denoted by uε. In other words,

uε is a control input, which is an extremal value of the pre-Hamiltonian function

Hε
b ≜ −bps + pr at instant time.

The control input uε minimizes the following pre-Hamiltonian:

Hε
b = −b(x)ps(u,x) + pr(u,x)

= bV T
x (f + gu)

+

[
1

2
xTQx+

1

2
uTu+ xTNu− εm log u(1− u)− εdu logw

]
(6.29)
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Substituting Eqs. (6.23) and (6.24) to Eq. (6.29), Eq. (6.29) is transformed into

Hε
b =

1

2
uTu+ pT

Nu+ c− εm log u(1− u)− εdu logw (6.30)

The necessary optimality conditions ∂Hε
b/∂u = 0 under the input constraints can be

treated analytically by introducing a polar coordinate u(u, θ). The solutions can be

derived in the same manner as (Mitani and Yamakawa, n.d.).

ûε = (sin θε cot β − cos θε)r̂ − sin θε csc βp̂N (6.31)

θε is the solution to

sin(θε − β)(cos γ − cos θε)− ε̃d sin θ
ε = 0 (6.32)

and uε is the solution to

uε − εu(1− 2uε)

uε(1− uε)
− p̃N = 0 (6.33)

where ε̃d = εd/pN , p̃N = −pT
N û+ εd logw and β is defined as the thrust angle, r̂T p̂N =

cos β, −r̂ × p̂N = sin βW .

Since Hε
b is minimized at u = uε, the condition for Sb ̸= ϕ is guaranteed if and

only if

Hε
b (u

ε) ≤ 0 (6.34)

Therefore, the lower limit of b or b is the solution to

Hε
b (u

ε) = 0 (6.35)

Consider the condition that u ∈ Sb exists for the certain direction û in the case

that b ≥ b is chosen. Since Sb is a convex set, a certain direction û exists such that the

direction is tangential of Sb boundary. It is clear that u, û satisfy the conditions

Hε
b (u, û) = 0 (6.36)

∂Hε
b (u, û)

∂u
= 0 (6.37)

Based on the convexity of Sb, two solutions exist provided b > b. u ∈ Sb exists and if

the direction û between the two solutions û1 and û2 is chosen. Such a direction can

be given as

û =
sû1 + (1− s)û2

||sû1 + (1− s)û2||
, 0 ≤ s ≤ 1 (6.38)
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6.3.2 Comparison between Constraint-free and Constraint- Sat-

isficing Method

In Table 6.1, the differences in parameters between constraint-free satisficing (Curtis

and Beard, 2004) and constraint one are summarized. Constraint-free satisficing cor-

responds to ε = 0, whereupon the condition for Sb ̸= ϕ Eq. (6.34) becomes a quadratic

inequality for b. The lower limit b can be obtained as follows

b =


ω̃ +

√
ω̃2 + p2 · q̃
p2

, if p ̸= 0

q̃

−2ω̃
, if p = 0

(6.39)

where p = gTVx, ω̃ = V T
x f − V T

x gNTx, and q̃ = xT (Q − NNT )x. Furthermore, if Sb

is nonempty, it is given by

Sb =
{
−pN + ν

√
2h : ||ν|| < 1

}
(6.40)

As discussed in Chapter 4, Equation (6.40) provides an explicit formula for control

values which satisfy this condition whenever Sb is nonempty. When b = b, the satis-

ficing set has the input of Sontag’s formula (Sontag, 1989). While the constraint-free

satisficing set has ν as a design parameter, the constraint-satisficing set has û and

u ∈ [uA(û) uB(û)] as design parameters.

Set εm = εd = ε > 0 for simplicity. Figures 6.1a and 6.1b show how to vary Sb

according to selectivity index b = 1, 5 and 100 in the unconstrained case (ε = 0) and the

constraint case (ε = 1× 10−5 and γ = 30◦). Note that nondimensional u is normalized

as 1 through this chapter. It is assumed that CCLF, states at a certain instantaneous

time, b and αmax are all the same. The open white points Pb in Figs. 6.1a and 6.1b

are the controller inputs uε on each b. Initially, in the case without constraints, the

circler radius of Sb set rises with increasing b increases (see Fig. 6.1a). The selectivity

index b plays a critical role in the size of Sb(x). Subsequently, the larger value of b

decreases the curvature of the Sb(x) boundary to approach asymptotically the half-

plane S∞(x) which has the normal vector as −gTVx. Secondly, when input constraints

are considered, the boundary shape of Sb becomes deformed as thus suppressed by the

control input boundary of UC (see Fig. 6.1b). In addition, Sb approaches gradually

a mere intersection between Sb without constraints and the constraint input set UC

decreases as ε. However, the smoothness of the Sb boundary is retained provided

ε > 0. Even if −pN vector steps out of UC , u
ε
b ∈ Sb ∩ UC can be adequately obtained

provided Hε
b (u

ε) ≤ 0 Eq. (6.34) holds true.
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Table 6.1: Comparison between constraint-free Sb (Curtis and Beard, 2004) and pro-

posed constraint Sb.

Item Original Satisficing Constraint-Satisficing

Selectivity, −V T
x (f + gu) −V T

x (f + gu)

ps

Rejectability, 1
2
xTQx+ 1

2
uTu+ xTNu 1

2
xTQx+ 1

2
uTu+ xTNu

pr −εm log u(1− u)− εdu logw

Condition h ≥ 0 Hε
b (u

ε) = 1
2
||uε + pN ||2 − h

for Sb ̸= ϕ −εm log uε(1− uε)− εdu
ε logw ≤ 0

Limit, b
ω̃+

√
ω̃2+p2·q̃
p2

, if p ̸= 0 solution of Hε
b (u

ε) = 0.
q̃

−2ω̃
, if p = 0

Control, −pN + ν
√
2h u · û

u ∈ Sb

Design ν ∈ Rm, ||ν|| ≤ 1 û = sû1+(1−s)û2

||sû1+(1−s)û2||
, 0 ≤ s ≤ 1, ||û|| = 1

Parameters u ∈ [uA(û) uB(û)]

û1, û2; solutions of Eqs. (6.36) and (6.37)

uA, uB; solutions of Eq. (6.36)

Sub-optimal u∗ = −pN (ν = 0) uε = uε · ûε

controller ûε = (sin θε cot β − cos θε)r̂ − sin θε csc βp̂

θε; solution to Eq. (6.32)

uε; solution to Eq. (6.33)
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Figure 6.1: The comparison between a) Sb without constraints and b) Sb with input

constraints, γ = 30◦, ε = 10−5.
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6.4 Proposed Controller from the Constraint-Satisficing

Set

6.4.1 Dual Control using the Satisficing Method

In the previous section, the constraint-satisficing set Sb was defined. If a ”complete”

CCLF that respects the input constraints in all states can be chosen, Sb is nonempty in

all states. Subsequently, the state trajectory converges to the origin when any controller

u(x) ∈ Sb, b ≥ b is chosen. However, such CCLFs are generally extremely hard to

devise. Therefore a local CCLF that respects the input constraints in restricted states

is conventionally taken. In this case, if u(x) ∈ Sb is inappropriately chosen, Sb falls

into an empty set in some states and the state trajectory may not converge to the

origin in the worst case.

Following the cases of success in MPC research, the generalized idea of specify-

ing the terminal state constraint set X, including the origin (Maciejowski, 2002), is

adopted and the controller is designed to have dual modes. The main design concept

involves moving the state into X with one controller and continuously switching to

another controller once the state goes into X. In this concept, the latter controller

must guarantee that the state is stabilized at the origin once the state is included in

X. Generally, it is assumed that all constraints are nonbinding in X, meaning an

unconstrained ordinal controller would be adequate for the latter controller. In this

section, it is shown that the controller uε ∈ Sb has both former and latter control mode

properties if a local CCLF and control parameters are adequately chosen.

First, the quadratic formed Lyapunov function

V (x) =
1

2
xTSx (6.41)

is employed as a local CCLF, where S = ST > 0 is a unique nonnegative solution for

the Algebraic Riccati Equation (ARE)

ATS + SA− (SB +N)(BTS +NT ) +Q = 0 (6.42)

It is justified to choose V Eq. (6.41) as a candidate CCLF for the following lemmas:

Lemma 6.4.1 V(x) Eq. (6.41) is chosen as a local CCLF. The extremal controller

uProj = limε→0 u
ε satisfies the following properties:

1. When the constraint condition is nonbinding, uProj is a state-feedback controller

−pN = −(bBTS +NT )x (6.43)
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Specifically, −pN is an optimal feedback controller that minimizes

J =

∫ ∞

0

1

2
xTQx+

1

2
uTu+ xTNu dt (6.44)

if b(x) = 1 and the system dynamics are linear.

2. When the constraint condition is binding, uProj becomes the projection of −pN

onto the boundary of UC , and is smoothly connected to −pN when no constraint

condition is binding.

Proof: Substituting Eq. (6.41) to Eq. (6.24), −pN reduces to Eq. (6.43) and

uProj = −pN when the constraint condition is nonbinding. As εm and εd approach 0,

the explicit forms of the extremal controller uProj = limε→0 u
ε are given as follows:

ûProj =

−p̂N , β ≤ γ

(sin γ cot β − cos γ)r̂ − sin γ csc βp̂N , β > γ
(6.45)

uProj =

−pT
N ûProj, −pT

N ûProj ≤ 1

1, −pT
N ûProj > 1

(6.46)

Therefore uProj is the projection of −pN vector onto the constraint boundary ∂UC . □
In addition, the following lemma implies that the constraint condition is nonbind-

ing with uProj as ||x|| approaches 0 if the selectivity index b and the weight matrix

parameters Q, N are adequately chosen.

Lemma 6.4.2 (Mitani and Yamakawa, 2011) The following parameter settings are

considered:

Q = diag(q, q, 0, 0) (6.47)

N =

[ √
ηqI2×2

O2×2

]
(6.48)

The values q > 0 and η ∈ [0 1) are independent design parameters in the performance

index Eq. (6.44). Suppose that the controller −pN is used. Given γ ∈ (0, π], there is a

parameter set (q, η, b) such that ||pN || ≤ 1 and the maximum thrust angle ||θ||max < γ

are satisfied when ||x|| approaches 0.
Proof: At first, ||pN || → 0 as ||x|| → 0 because −pN is a state-feedback controller.

For the linear system case, it is shown in Ref. (Mitani and Yamakawa, 2011) that

if a parameter set (q, η, b) is adequately chosen, ||θ||max < γ is satisfied when ||x||
approaches 0. For the nonlinear system, if a parameter set (q, η, b) is adequately chosen

and the feedback controller −pN is used, the state trajectory converges to the origin
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without any binding of the constraints as ||x|| approaches 0 and nonlinearity become

weak (||f2(x)|| → 0). □
When reassigning the poles of the closed-loop with optimal state-feedback con-

trol −pN , eigenmodes divide into two groups: slowly and highly damped modes re-

spectively. During the final approach phase, slowly damped modes mainly determine

||θ||max (Mitani and Yamakawa, 2011). In other words, the state trajectory x converges

to the subspace W spanned by eigenvectors of the slowly damped modes. Define the

subset X ∈ R4 as

X = Xm ∩Xd (6.49)

Xm = {x ∈ R4 : xT (bSB +N)(bBTS +NT )x ≤ km} (6.50)

Xd =

{
x ∈ R4 : x = w +

kd||w||
||w⊥||

w⊥, w ∈ W,w⊥ ∈ W⊥

}
(6.51)

where W⊥ is a complementary set of W (the subspace spanned by eigenvectors of the

highly damped modes, and W ⊕ W⊥ = R4). Clearly, the origin is included in X.

Therefore X is the terminal state constraint set if km(t1), kd(t1) ∈ (0, 1] is adequately

chosen to keep x(t) into X for t > t1.

6.4.2 Superior Efficacy of the Controller

The proposed controller uProj = limε→0 u
ε resembles the authors’ previous proposed

controller considering the input constraint in (Mitani and Yamakawa, 2011). In this

section, the difference and efficacy are briefly explained. In the previous method (Mi-

tani and Yamakawa, 2011), the optimal controller without constraint is projected onto

UC along the half-plane boundary of S∞, meaning the projected controller ũ will be

included in S∞ provided the control magnitude constraint ||u|| ≤ 1 is not imposed on

the system. However, when the boundary of UC is closely parallel to the half-plane

boundary of S∞, the controller input becomes excessive. To avoid this problem, a

controller is not activated in the case where the angle between the boundaries of UC

and S∞ is less δmargin > 0. Conversely, the proposed controller uProj is the projection

of −pN onto the boundary of UC . The magnitude of uProj is sure to be smaller than

that of −pN . Figure 6.2 shows the difference in projection between ũ and uProj on the

control space at a certain instantaneous time.

In addition, the proposed controller would be more suitable for the following rea-

sons: At first, since a local CCLF is chosen for the unconstrained value function in

the nonbinding case, the proposed controller becomes the sole optimal control solution

according to Pontryagin’s Minimum Principle, where the constraint condition is non-

binding. Second, on the other hand, the proposed controller gives a projection solution
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onto the input constraint set where the constraint condition is binding. The projected

controller would be sub-optimal because it is guaranteed that the projection vector of a

negative signed Lawden’s primer vector onto constraint boundary is optimal (Sukhanov

and Prado, 2007, 2008).

Finally, the proposed controller has extensibility for various conditions on input

constraints by selecting the perturbation parameters εm and εd. When εm = εd = 0,

the constraint Sb set is completely identical to the original Sb set that Curtis proposed

in (Curtis and Beard, 2004, 2002a,b). When εm > 0 and εd = 0, the Sb set reduces to

the satisficing set only with magnitude constraint and when εm = 0 and εd > 0, the Sb

set reduces to the satisficing set only with direction constraint. There is no need for

geometric or condition branching consideration, solely the simple calculation of uε.
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Figure 6.2: The difference in projection between ũ and uProj.

6.4.3 Stability Analysis

To generate the controller uProj, the optimal controller −pN is projected orthogonally

to UC and an additional magnitude constraint is considered. Therefore the projected

controller uProj is not necessarily stable from the perspective of Lyapunov stability.

In this section, the stability of the new proposed controller is investigated. uProj in



104
Chapter 6. Satisficing Nonlinear Rendezvous Approach Under Control Magnitude and

Direction Constraints

another form is written as

uProj = −(1− χ) cos∆βR(∆β)pN (6.52)

where

R(∆β) =

[
cos∆β − sin∆β

sin∆β cos∆β

]
(6.53)

and

∆β =


0 if ||β|| − γ ≤ 0

sign(β)(||β|| − γ) if 0 < ||β|| − γ ≤ π/2

sign(β)π/2 if π/2 < ||β|| − γ

(6.54)

χ =


0 if ||pN || cos∆β ≤ 1

1− 1

||pN || cos∆β
if ||pN || cos∆β > 1

(6.55)

Introduced variables (χ,∆β) represent the degrees of deviation of −pN from UC .

Substitute Eqs. (6.43) and (6.52) to the linearized system equation ẋ = Ax, where-

upon the closed-loop system is formed as

ẋ(t) = Ac(χ,∆β)x(t) (6.56)

where

Ac(χ,∆β) = A− (1− χ) cos∆βBR(∆β)(bBTS +NT ) (6.57)

When no constraint is binding, (χ,∆β) = (0, 0), then Ac(0, 0) is the closed-loop matrix

with a controller −pN . The poles of Ac(χ,∆β) represent the stability about the origin

in global x ∈ Rn. It is noted that the optimal controller −pN has 3 controller parame-

ters: the values of LQR weight matrices q, η, and the sensitivity index b(x). For exam-

ple, Fig. 6.3 shows the trajectories of poles of Ac(χ,∆β) where (q, η, b) = (0.01, 0.9, 1)

and χ = 0, varying ∆β from −90◦ to 90◦. Starting from ∆β = −90◦, poles start

at those of A since ∆β = −90◦ corresponds to zero input. From −90◦ to 0◦, slowly

damped modes have negative real parts but highly damped modes have positive real

parts at first. Poles at ∆β = 0 correspond to those of Ac(0, 0), which is Hurwitz.

From 0◦ to 90◦, in contrast, highly damped modes retain negative real parts but the

modes slowly start having positive real parts. Both poles return to the poles of A since

∆β = 90◦ also corresponds to zero input.
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In this manner, examine how the stability region represented for the deviation

parameters (χ,∆β) changes if the control parameters (q, η, b) are changed. It should

be noted that

V̇ = xTS[Ax+ f2(x)− (1− χ) cos∆βBR(∆β)(bBTS +NT )x]

= xTSAc(χ,∆β)x+ xTSf2(x) (6.58)

then Ac(χ,∆β) < 0 → V̇ < 0 if the system is linear. Before the stability region is

investigated, examine the physical meaning of poles in closed form more closely. The

Jordan canonical form of A matrix J and its similarity transformation matrix VJ are

J =


0 1 0 0

0 0 0 0

0 0 −j 0

0 0 0 j

 , VJ =


0 4 −3/2 −3/2

−6 0 3j −3j

0 0 3/2j −3/2j

0 −6 3 3

 (6.59)

Since the relation V −1
J AVJ = J holds, the free trajectory solution after the transfor-

mation ξ = V −1
J x is

ξ = [aξ + bξt, bξ, cξe
−jt, c̄ξe

jt]T (6.60)

where aξ, bξ ∈ R1, and cξ ∈ C1 are integral constants determined by the initial state.

Therefore, this shows that highly damped modes correspond to constant and drift

components, while slowly damped modes correspond to periodic components. Since

highly damped modes converge first, the remaining trajectory tends to be periodic.

Stability dependency of parameter (q, η)

Fixing the controller parameters (q, η, b) and varying the deviation parameters (χ,∆β),

the stability boundary lines between positive and negative real parts of both highly

and slowly damped modes can be drawn respectively on the (χ,∆β) plot. At first,

examine how to change the stability region when (q, η) are parametrically changed and

b is fixed. Figure 6.4 shows the stability boundary lines of both highly and slowly

damped modes in the case of q=0.01, 0.1, 1 and 10. The initial words ”h” and ”s”

in the figure represent highly and slowly damped modes respectively. As q parameter

increases, the region where both eigenmodes have negative real parts narrows.

Figure 6.5 shows the region where both eigenmodes have negative real parts in the

case of q=0.01, 0.1, 1 and 10, which widens with decreasing parameter η. Note that

highly damped modes have negative real parts in the wide region of ∆β = +90◦ side,

as shown in Fig. 6.5, although both mode stabilized regions becomes narrow as η

approaches 1, as shown in Fig. 6.5.
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Figure 6.4: Stabilized limit in the case η = 0.9, and b = 1.
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Figure 6.5: Stabilized limit in the case b = 1 varying η.
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Stability dependency of the selectivity index b

Next, examine how to change the stability region when b is parametrically changed

and (q, η) are fixed. The following lemma is satisfied:

Lemma 6.4.3 For any deviation parameter χ ̸= 1 and ∆β ̸= ±π/2, there is

bS > 0 such that Ac(χ,∆β) is Hurwitz with (q, η) and b > bS. And slowly damped

modes converge to finite poles and highly damped modes diverge to the negative real

axis.

The proof of Lemma 6.4.3 is shown in Appendix D. Figure 6.6 shows the stabilized

region varying b in the case of η = 0.9, q=0.01, 0.1, 1 and 10. As shown in Lemma

6.4.3, the stabilized region is extended with increasing b.
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Figure 6.6: Stabilized limit in the case η = 0.9 varying b.

The final thrust angle dependencies of (q, η, b)

Figure 6.7 shows the maximum final thrust angle ||θ||∞, or ||θ||∞,max using Eq. (38) in

(Mitani and Yamakawa, 2011) when varying (q, η). Each figure corresponds to the case

in the selectivity index b =1, 2, 5, and 10 respectively. The case b = 1 (Fig. 6.7a), in

which optimal control is applied, is essentially identical to Fig. 5.7 in Chapter 5 (Mitani

and Yamakawa, 2011) although only slowly damped modes are shown here. Figure 6.7

shows that ||θ||∞,max declines for fixed q when a larger η is set. However, choosing a

large b is not likely to be a suitable controller design for the meaning of keeping the
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thrust angle small. Actually, as shown in Fig. 6.7, ||θ||∞,max tends to become larger

than that in the case b = 1 for fixed q and η when a larger b is set. Therefore the

b parameter should be set to trade off stability and the final thrust angle. Table 6.2

summarizes the control parameters (q, η, b) dependencies on the stability region and

the final thrust angle.
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Figure 6.7: Estimation of |θ|∞,max (in degrees) as they approach the origin.

Table 6.2: Constants and common parameters.

Parameter Stability region Fig. Final thrust angle Fig.

q(0 → ∞) ↘ (narrow) 6.3 - (depend on η, b) 6.6

η(0 → 1) ↘ (narrow) 6.4 ↘ (small) 6.6

b(0 → ∞) ↗ (wide) 6.5 ↗ (large) 6.6

6.5 Example of Numerical Analysis

For numerical simulations, a Keplerian orbit of the target of the semimajor axis A0 =

Re + hc km is considered, in which hc = 500 km, the radius of the Earth Re, and the

gravitational constant of the Earth µ are given. Accordingly, the period of orbit is

T = 5, 677 s, and the orbital rate n = 1.1068 × 10−3 rad/s is considered (see Table
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Table 6.3: Constants and common parameters.

Constants Values

Re 6,378.136 km

µ 398,601 km3/s2

hc 500 km

n 1.1068×10−3 rad/s

T 5,677 s

αmax 0.02 m/s2

γ 60 deg

6.3). In addition, αmax = 0.02 m/s2 is considered to be the maximum acceleration of

control.

6.5.1 Parameter-setting Case: LQR Control (b = 1)

Consider the problem of rendezvous to try the proposed method. The chaser flies

around at 100 km in an eccentricity axis. Figure 6.8 shows an example of some designed

rendezvous trajectories, setting the design parameters (q, η, b) = (0.01, 0.9, 1), thrust

constraint γ = 60 deg, and start rendezvous point φ0 = 60k (k = 0, · · · , 5) respectively.
In Fig. 6.8, the chaser’s initial periodical orbit before control is shown with a fine dotted

line Ts and the rendezvous start point. A heavy solid line TP and dotted lines TO show

the trajectory profiles with the proposed control uProj Eqs. (6.45) and (6.46), and

optimal control −pN Eq. (6.43), respectively. The chaser approaches to the target

from all start rendezvous points φ0.

In Fig. 6.9, the controllers’ profiles are represented in a rotational frame fixed to

−r(t) direction. These figures facilitate understanding of the proposed control design

concept and its advantage. A gray fan shape denoted by ∂UC represents the boundary

of input constraints on magnitude and direction UC , while a gray dotted periodic curve

denoted by Γu represents the control value of −pN in the initial rendezvous state

x0(φ0) (0 ≤ φ0 ≤ 2π) on a given periodic orbit Γ, where φ0 represents the initial

phase angle. Dotted straight lines represent asymptotic lines for the maximum and

minimum thrust angle amplitude in the final phase ||θ||∞. ||θ||∞ oscillates at angular

frequency ω, which is an imaginary part of eigenvalue in slowly damped modes (Mitani

and Yamakawa, 2011). A dark-gray shape denoted by ∂US represents the boundary

of stabilization, which is described by examining the poles’ stability of closed-loop

Ac(χ,∆β) Eq. (6.57).
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Figure 6.8: Plots of rendezvous trajectories with proposed and optimal control．
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In Figs. 6.9, 3 types of control input trajectories are represented; First, the optimal

controller denoted by uO, which minimizes J without the constraints (a fine solid line).

Second, the proposed controller denoted by uP (a heavy solid line), and finally, the

optimal controller on xP ≜ x(uP ) at instantaneous time denoted by uV ≜ −pN(xP ),

which is the pre-calculated controller before projecting onto UC (a fine chained line). If

the trajectory of uV is inside ∂US, the nonlinear system remains stable for all t ∈ [0∞].

In some cases, such as φ0 = 180◦ and 240◦, however, uV steps over ∂US (a bold line

denoted by L shown in Figs. 6.9d and 6.9e. This fact means that uP with parameters

(q, η, b) satisfies UC but the linearized system has temporally unstable modes for some

short time. However uV reverts to the inside of ∂US again after a period of time and

uP resumes stability.

This mechanism can be explained as follows: the positive side of the instability

region denoted by ’+’ shows the limitation of slowly damped modes as explained in

Fig. 6.4. Since slowly damped modes correspond to periodic moving, the radius of

the chaser’s relative trajectory grows gradually wider. Conversely, highly damped

modes, which correspond to constant and drift moving, decrease so that the property

of reaching ||θ||∞ is still guaranteed for the period of time in question. If the controller

enters the temporary instable zone (V̇ (x) ≥ 0), an input zero controller can be chosen.

In these cases, uP is totally included in the satisficing set S∞ for all time and is

therefore continuous. Even if V̇ (x) ≥ 0 but uP is still chosen, uP returns to the

satisficing set in time. This is because the trajectory becomes periodic to some extent

before reaching the instable zone and therefore −r vector rotates to come back to the

satisficing set before the divergence for the residual constant and drift mode. After all,

Fig. 6.9 shows that the constraints on thrust direction are rigorously satisfied using

the proposed control, whereas the thrust angle exceeds γ at the transient phase using

optimal control. In addition, θ at the final states is maintained as estimated in (Mitani

and Yamakawa, 2011).

Table 6.4 summarizes the performance index J , total Delta-V ∆V , convergence

time T conv at each initial phase angle φ0. Subscripts ”O” and ”P” represent the case

of uO (b = 1) and uP , respectively.

6.5.2 Parameter-setting Case: Sontag’s formula

Choose b = b(x) Eq. (6.39), whereupon uV becomes the input of Sontag’s formula.

The parameters (q, η) are the same as those in the previous section. In this setting case,

uV is guaranteed to be included in S∞ for a nonlinear system. The selectivity index

b converges to 1 (b(x) = 1 in a linear system) by oscillating. Table 6.5 summarizes

the maximum and minimum values of b(x) in addition to J , ∆V , T conv at each φ0.
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Figure 6.9: Plots of proposed and optimal control profiles in rotational coordinate fixed

to −r(t) direction．
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Table 6.4: φ0 [deg], J , ∆V , and T conv. Parameter settings q = 0.01, η = 0.9 and b = 1.

φ0 JO JP ∆VO ∆VP T conv
O T conv

P

0 1.06 1.06 17.0 17.0 63.8 63.8

60 1.03 1.03 15.7 15.7 62.9 62.9

120 0.682 0.682 16.5 16.5 62.0 62.0

180 1.04 1.05 15.8 16.0 61.2 61.2

240 1.03 1.05 14.5 14.9 60.2 60.2

300 0.685 0.684 16.5 16.6 62.0 62.1

Table 6.5: φ0 [deg], J , ∆V , T conv, and b. Parameter settings q = 0.01, η = 0.9 and

b = b(x).

φ0 JO JP ∆VO ∆VP T conv
O T conv

P bmin - bmax

0 1.21 1.20 17.6 17.6 63.8 63.8 0.436 - 2.29

60 1.11 1.11 15.8 15.9 60.4 62.8 0.467 - 2.01

120 0.731 0.731 15.9 15.9 62.0 62.0 0.438 - 2.26

180 1.15 1.14 14.3 14.8 58.7 61.1 0.421 - 1.79

240 1.10 1.08 13.9 14.4 57.8 60.2 0.512 - 1.80

300 0.745 0.746 15.9 15.9 62.0 62.0 0.402 - 2.52

Subscripts ”O” and ”P” represent the case of uO (b = b(x)) and uP , respectively.

Compared to the case b = 1 (Table 6.4), ∆V diminishes by about 2.3 % on average due

to optimization, although ∆V expands slightly at φ0 = 0◦, 60◦. Again, uP is totally

included in the satisficing set S∞ at all times and is therefore continuous.

6.6 Conclusions

In this chapter, the nonlinear rendezvous problem was considered under thrust magni-

tude and direction constraints. A constraint-satisficing scheme was newly proposed by

introducing two barrier functions and it was shown that when the positive coefficients

of both barrier functions approach zero, the constraint-satisficing set smoothly attained

the intersection of the unconstrained satisficing and input constraint sets. A simple

and effective nonlinear controller was proposed with the projected control as a member

of the constraint-satisficing set. By adopting the value function in the constraint-free

case as a constraint control Lyapunov function, and by choosing appropriate weight

matrix parameters, the state trajectory converges to the origin; strictly satisfying the
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input constraint in the final phase. For the proposed controller, linearized stability

analysis was investigated using graphical description plot and used to assist in design-

ing certain practical rendezvous trajectories. It was found that in the case starting

from periodic orbit, the local subspace was widely covered by the region of attraction,

provided highly damped modes were stable.

Although the effectiveness of the proposed design was verified in the nonlinear affine

system, the same satisficing approach can be easily extended to a time-varying system

when the target orbit is elliptic.





Chapter 7

Concluding Remarks

We treated the satellite formation and reconfiguration problem subject to constraints

on control magnitude and direction. Firstly, the necessary condition of the optimal

controller under these constraints was derived using a sequential smoothing method,

in which a sequence of unconstrained optimal control problems was solved according

to Pontryagin’s Minimum Principle by introducing multiple barrier functions to the

original performance index. By introducing the proposed additional barrier function

concerning the constraints on control direction, the derived equations for the necessary

condition with respect to optimal control magnitude and direction became decoupled,

thereby facilitating their solution. The solutions converged toward solving the original

problem and strictly satisfied the treated constraints as the perturbation coefficients

of the barrier functions approached zero. Optimal controllers were successfully for-

mulated in the L1- and L2-norm problems, and both solutions for the optimal control

direction had the same form. These solutions are a natural extension of the solution

with only the magnitude constraint. As the perturbation coefficients of the barrier

functions approach zero, the smoothed optimal controller approaches the boundary of

the inequality constraint near Lawden’s primer vector, while the control, the primer,

and the admissible direction vectors are coplanar. This extremal property is com-

pletely consistent with the result whereby the optimal thrust is directed along the

projection of the primer vector onto the boundary of the restricting set. Numerical

simulations demonstrated that the sequential optimal controller subject to such mixed

constraint was obtained by solving the two-point boundary value problem with the

shooting method in non-coplanar circular and coplanar eccentric orbits. In addition,

the control angles of the derived solutions were confirmed as suppressed within the

control direction constraint.

Secondly, we examined how to maintain a small-magnitude thrust angle based on

continuous optimal feedback control for the problem of satellite rendezvous. Consider-

117
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ing the constraints on the parameters set in the general quadratic performance index,

a control design process was proposed using modal analysis to make the thrust angle

small at the initial and final phases. Using a candidate control Lyapunov function

(CLF) by solving the Riccati equation for the performance index considered, a new

control applying the satisficing method was devised to meet the constraints strictly

from start to finish. If the limitation angle is small, the devised control may become

null transiently because the candidate CLF is not strictly defined. However, this paper

showed that thrust angle can be practically maintained and that the control law leads

to convergence at the origin in some simulations. Extending the theory to an eccentric

orbit and time-varying system was explained and numerical calculations showed ef-

fectiveness. Although the application of two-dimensional plane motion was discussed,

this technique can be easily extended to the design method, including out-of-plane

motion. This method can also be applied to nonlinear control problems and extended

to multiple control constraints, such as sensor field of view and sun direction.

In addition, we took steps to improve satisficing theory under input constraint.

A constraint-satisficing scheme was newly proposed by introducing two barrier func-

tions and it was shown that when the positive coefficients of both barrier functions

approach zero, the constraint-satisficing set smoothly attained the intersection of the

unconstrained satisficing and input constraint sets. A simple and effective nonlinear

controller was proposed with the projected control as a member of the constraint-

satisficing set. By adopting the value function in the constraint-free case as a constraint

control Lyapunov function, and choosing appropriate weight matrix parameters, the

state trajectory converged to the origin; strictly satisfying the input constraint in the

final phase. For the proposed controller, linearized stability analysis was investigated

using a graphical description plot and used to assist in designing certain practical

rendezvous trajectories. It was found that when starting from periodic orbit, the lo-

cal subspace was widely covered by the region of attraction, provided highly damped

modes were stable.

Although the effectiveness of the proposed design was verified in the nonlinear affine

system, the same satisficing approach can be easily extended to a time-varying system

when the target orbit is elliptic.



Appendix A

Solving the L2-norm problem

A.1 Solving (P2) and (Pm2)

First, solving (P2) is much easier than solving (Pm1). The optimal control u2(f) takes

the following form Bryson and Ho (1975):

u∗
2(f) = −p(f) (A.1)

Therefore, there is no bang-off-bang structure, and the magnitude of u2 is p. Next,

consider (Pm2). The control magnitude constraint can also be considered by introduc-

ing εuFu in Eq. (3.20). In order to apply PMP, build first the Hamiltonian function

Hε
m2 defined as follows:

Hε
m2(x(f),u(f),λ(f)) = L2(u) + εuFu + λT (Ax+Bu)

= 1
2
u2 − εu log u(1− u) + λTAx+ pTu (A.2)

The extremal control uε
m2(f) is then given by argmin

u
Hε

m2, f ∈ (f0, f1). In order to

obtain uε
m2(f), applying the Cauchy-Schwartz inequality to Eq. (A.2) yields

Hε
m2 ≥ 1

2
u2 − εu log u(1− u) + λTAx− pu (A.3)

and the equality is obtained when

uε
m2 = −uε

m2 · p̂ (A.4)

where the magnitude uε
m2 ∈ (0, 1) is the solution of

u− εu
1− 2u

u(1− u)
− p = 0 (A.5)

If εu = 0, u = p clearly yields u∗
m2 = −p for Eq. (A.1), which is the solution of

(P2). If εu > 0, Eq. (A.5) becomes a cubic equation with respect to u, and the
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solution uε
m2 ∈ (0, 1) is obtained using the Tartaglia-Cardano formula Burnside and

Panton (2005). Three real roots are derived in order to satisfy u1 < 0 < u2 < 1 < u3.

Therefore, a single root uε
m2 ∈ (0, 1) in Eq. (A.5) exists because the other roots of Eq.

(A.5) do not satisfy u ∈ (0, 1).

A.2 Solving (Pmd2)

Using ∂L2(u)/∂u = u, Eq. (3.37) reduces to

u− εu(1− 2u)

u(1− u)
− p̃ = 0 (A.6)

which is the same equation as Eq. (A.5) except that p is displaced by p̃ Eq. (3.51). If

εu = 0, u becomes simply p̃. If εu ̸= 0, uε
md2 can be also derived as the same manner.



Appendix B

Proof of ∇2Hε
mdj > 0 at u = uε

mdj

The matrix of the second partial derivatives of Hε
mdj, known as the Hessian, is defined

as follows:

∇2Hε
mdj =


∂2Hε

mdj

∂u2

∂2Hε
mdj

∂u∂θ

∂2Hε
mdj

∂u∂φ
∂2Hε

mdj

∂θ∂u

∂2Hε
mdj

∂θ2
∂2Hε

mdj

∂θ∂φ
∂2Hε

mdj

∂φ∂u

∂2Hε
mdj

∂φ∂θ

∂2Hε
mdj

∂φ2

 (B.1)

Since ∇2Hε
mdj exists for all u ∈ D and is continuous on D, Hε

mdj is twice continuously

differentiable on u ∈ D. Hence, the Hessian is a symmetric matrix

∂2Hε
mdj

∂α1∂α2

=
∂2Hε

mdj

∂α2∂α1

, forall α1, α2 = u, θ, φ (B.2)

From Eqs. (3.42) and (3.43),

ûε
mdj =

sin β

sin θ

(
ε̃b

ξ̂
T
û+ cos γ

ξ̂ − p̂

)
(B.3)
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mdj > 0 at u = uε

mdj

In addition, ûθθ = ûφφ = −ûε
mdj, ûθφ = 0, ξ̂

T
ûθ = sin θ, and ξ̂

T
ûφ = 0. Then,

substituting these values into Eq. (B.1), the matrix elements are given by

∂2Hε
mdj

∂u2

∣∣∣∣
uε

mdj

= εu

[(
(1− 2u)

u(1− u)

)2

+
2

u(1− u)

]
> 0 (B.4)

∂2Hε
mdj

∂u∂α

∣∣∣∣
uε

mdj

=

(
− εb

ξ̂
T
û+ cos γ

ξ̂ + p

)T

· ûα = 0 (B.5)

∂2Hε
mdj

∂α2

∣∣∣∣
uε

mdj

= u

(− εb

ξ̂
T
û+ cos γ

ξ̂ + p

)T

· ûαα +
εb(ξ̂

T
ûα)

2

(ξ̂
T
û+ cos γ)2


= u

[
p
sin θ

sin β
+

(pT ûα)
2

εb

]
> 0 (B.6)

∂2Hε
mdj

∂θ∂φ

∣∣∣∣
uε

mdj

= u

(− εb

ξ̂
T
û+ cos γ

ξ̂ + p

)T

· ûθφ +
εb(ξ̂

T
ûθ)(ξ̂

T
ûφ)

(ξ̂
T
û+ cos γ)2

 = 0(B.7)

where α = θ, φ. Therefore,

∇2Hε
mdj

∣∣
uε

mdj

> 0 (B.8)



Appendix C

Analytical unconstraint L2 optimal

solution

This appendix summarizes a general solution to (P2) for dealing with elliptic dynamics

derived by Cho Cho et al. (2009). The analytical solution to (P2) is summarized as

follows:

x(f) = Φ(f)(Φ−1(f0)x(f0) +C−1S(f)S−1(f1)CK) (C.1)

λ(f) = −Ψ(f)S−1(f1)CK (C.2)

u∗
2(f) = bc(f)ΦA(f)S

−1(f1)CK (C.3)

J∗
2 = KTCTS−1(f1)CK (C.4)

where

Φ(f) =

[
ΦA(f)

Φ′
A(f)

]
, Ψ(f) =

[
A2ΦA −Φ′

A

ΦA(f)

]
(C.5)

S(f) =

∫ f

f0

b2c(ν)Φ
T
A(ν)ΦA(ν)dν (C.6)

K = Φ−1(f1)x1 −Φ−1(f0)x0 (C.7)

C = ΨT (f)Φ(f)

= ΦT
A(f)Φ

′
A(f)− (ΦT

A(f)Φ
′
A(f))

T −ΦT
A(f)A2ΦA(f) (C.8)

bc(f) =
R2

0(f)

ρ(f)

αmax

µ
(C.9)
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In addition, Φ(f) is referred to as the fundamental matrix associated with matrix

A(f), which can be written as Yamanaka and Ankersen (2002)

Φ(f) =

[
ΦA(f)

Φ′
A(f)

]
=



s c 0 2− 3esΩ 0 0

(1 + 1/ρ)c −(1 + 1/ρ)s 0 −3ρ2Ω 1 0

0 0 c/ρ 0 0 s/ρ

s′ c′ 0 −3e(s′Ω + s/ρ2) 0 0

−2s −2c+ e 0 −3(1− 2esΩ) 0 0

0 0 −s/ρ 0 0 c/ρ


f

(C.10)

where ρ(f) = 1 + e cos f , s(f) = ρ sin f , c(f) = ρ cos f , and

Ω =
n(t− t0)

(1− e2)
3
2

=

∫ f

f0

dν

ρ(ν)2
(C.11)

Note that K is a constant matrix calculated from a given boundary condition

x(f0), x(f1), f0, and f1, and C is a skew-symmetric constant matrix Carter (1998).

Once the matrix C is determined from Eq. (C.8), the inverse of Φ is readily obtained

by Φ−1 = C−1ΨT . Since the fundamental matrix Φ has already been revealed, the

symmetric matrix S is readily calculated.



Appendix D

Proof of Lemma 6.4.3

If χ ̸= 1 and ∆β ̸= π/2, b′ ≜ b(1−χ) cos∆β → ∞ when b → ∞. Therefore the closed-

loop matrix Ac(χ,∆β) Eq. (6.57) is stabilized as b → ∞ since vector −gTVx = −BTSx

is a stable direction. Then Ac(χ,∆β) approaches

lim
b→∞

Ac(∆β, χ) =

[
O2 I2

−b′R(∆β)S21 −b′R(∆β)S22

]
(D.1)

where S21, S22 = ST
22 ∈ R2×2 are submatrices of S:

S =

[
∗ ∗
S21 S22

]
(D.2)

The characteristic equation of the matrix Eq. (D.1) becomes

|λI2 + b′R(∆β)S22 +
b′

λ
R(∆β)S21| = 0 (D.3)

for λ ̸= 0 where |A| represents determinant of matrix A. Equation (D.3) has two kinds

of asymptotic solutions which satisfy the following equations

|S21|
(
1

λ

)2

+

[∣∣∣∣∣ s31 s34

s41 s44

∣∣∣∣∣−
∣∣∣∣∣ s32 s33

s42 s43

∣∣∣∣∣
](

1

λ

)
+ |S22| = 0 (D.4)(

λ

b′

)2

+ tr [R(∆β)S22]

(
λ

b′

)
+ |S22| = 0 (D.5)

where sij is (i, j) component of S. Equation (D.4) has the finite roots which have no

relation with (χ,∆β). On the other hand, Eq. (D.5) has the roots λ = k(χ,∆β)b′

which diverge to the negative real axis. □
As an example, Fig. D.1 shows the trajectories of poles about Ac(0, 0) varying b

from 1 to infinity. Slowly damped modes converges to finite poles and highly damped

modes diverges to the negative real axis. And Fig. D.2 shows the real part of both

modes in this case. The asymptotic solution for solving Eq. (D.4) and (D.5) are also

shown on the same plots.
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Figure D.1: Trajectories of closed-loop pole assignment in the case (q, η) = (0.01, 0.9)

and (χ,∆β) = (0, 0) varying the selectivity index b from 1 to infinity.
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Figure D.2: Real part of both modes varying b. a) slowly damped modes and b) highly
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lines.
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