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General Introduction 
 

 

 

 

1. Structuralization of Materials 

  
 Chemistry is the art of manipulating bonds, interactions, and arrangements of 

atoms in a controlled and reproducible fashion. A wide variety of chemical reactions 

allows us to precisely design the molecular structures. In contrast, chemistry is now 

evolving away from the manipulation of individual molecules and toward the control of 

complex systems like living cells or materials. This evolution toward complexity bridges 

molecular chemistry and macroscopic science, thus opening a way for further 

development of molecular-based materials. 

 The properties of solid-state materials are determined by two structures across 

different length scales, chemical and macroscale structures. The chemical structures 

(individual molecular structures or arrangement of molecules) determine their inherent 

properties. In addition to the properties originating from chemical structures, the 

macroscale structures (size, morphology and structural hierarchy) often endow further 

properties with the materials. In particular, nanomaterials and photonic crystals are 

representative examples, in which macroscale structures significantly contribute to their 

properties. Downsizing the metallic compounds into nanometer-scale produces a band 

gap energy, so-called quantum effect,1 and leads to characteristic optical2 and electronic 

properties.3 In another case, the periodic nanostructures affect the propagation of 

electromagnetic waves and result in the characteristic optical properties.4-5 These 

phenomena are strongly depends on the macroscale structures of materials rather than the 

chemical structures. As seen in the examples provided above, control of macroscale 

structures of materials expands the range of practical applications and opens a way for 

new scientific areas. 

Considerable effort has been devoted to the development of method to design the 

macroscale structures of a variety of materials. The solid-state materials can be 

remodeled in two main ways through bottom-up chemistry and top-down engineering 
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strategies. The bottom-up approaches involve ordinary chemical synthesis, template 

synthesis and assembly of the materials. On the other hand, laser, heating or mechanical 

processing methods are categorized into the top-down approaches. Both approaches can 

be applied to materials, if the materials are strong enough to endure harsh conditions of 

top-down approaches. In general, molecular materials comprising of weak chemical 

bonds, are often not stable under such harsh conditions of top-down approaches. In that 

sense, chemical approaches are the promising way to design both of chemical and 

macroscale structures of molecular materials. 
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2. Porous Coordination Polymers 

 
 The discovery of new solid-state materials has been considered as one of most 

critical factors in developing science and technology. In recent years, inorganic-organic 

hybrid materials, which composed of metal ions as connectors and organic ligands as  

linkers, have been emerged as a new class of porous solids, so-called porous coordination 

polymers (PCPs) or metal organic frameworks (MOFs). PCPs have been extensively 

studied not only for the scientific interest but also for the commercial interest in their 

applications for molecular storage,6-8 separation,9-10 catalysis,11-13 polymerization,14 and 

chemical sensing15-16. The remarkable progress of PCPs as functional materials is mainly 

due to the fact that compared to other conventional microporous materials (zeolites and 

activated carbons), PCPs are rationally designed based on the modifications of organic 

ligands and variation of coordination geometries. Therefore, these prominent features 

enables to precisely design the channel structures, pore sizes, and pore surface 

functionalities (Figure 1). 

 

 

 

 

Figure 1. Porous coordination polymers (PCPs) 
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The inherent properties of PCPs are basically dominated by the chemical 

structures: pore size, pore surface functionality and framework topology. In that context, 

considerable effort has been devoted to synthesis of new compounds and evaluate these 

molecular-based properties at the early stage of this research field. In contrast, the 

macroscale structure is also one of crucial factors to sophisticate the properties, 

especially for separation efficiency, catalytic activity, and adsorption kinetics.17-18 

Furthermore, the morphology and size of PCPs strongly influenced on the cooperative 

phenomena such as magnetic transition19 and structural transformation.20 (Figure 2) 

 

 

Figure 2. Macroscale structured PCP 

 

The well-designed macroscale architectures of PCPs are generated from the 

assembly of individual components (metal ions and organic ligands). Firstly, the 

molecular structures of individual organic ligands are designed and the proper metal ions 

are chosen. Secondly, the organization of metal centers by connecting them with organic 

linkers leads to the construction of crystalline microporous frameworks. Thirdly, the 

spatial control of this crystallization process results in the macroscale architectures of 

PCPs. This structural hierarchy from individual components to the macroscale 

architectures can be divided into three structural classifications (Figure 3). 
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Primary structure: metal ions and molecular structures of organic ligands 

The molecular structures of organic ligands can be precisely designed. 

The pore surface functionality, pore size and framework geometry are 

manipulated by  chemical modification on organic ligands and careful choice of 

metal ions. 

 

Secondary structure: crystalline microporous framework composed of metal 

ions and organic ligands 

The self-assembly of metal ions and organic ligands results in 

construction of crystalline coordination frameworks. The coordination number 

of metal ions and molecular structures of organic ligands potentially determine 

the framework structures. 

 

Ternary structure: Macroscale architectures of PCP crytals 

The control of the crystal morphology, spatial position or assembly of 

crystals enable to construct macroscale structures such as membranes,21-22 

hollow particles,23 three-dimensional superstructures24 and hybrid particles.25-27 

 

 

 

Figure 3. Structural hierarchy from individual components to macroscale strucuresof 

PCPs 
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The huge amount of accumulated knouledge in molecular chemistry and crystal 

engineering allows for designing the individual framework structures and crystalline 

particles; however, the development of methods to control the macroscale structures of 

PCPs are required in order to further sophisticate this material. Since PCPs are 

comprising of weak coordination bonds, top-down approaches including laser, heating 

and mechanical processing methods are often not suitable for fabricating the macroscale 

structures of PCPs. To control the macroscale structures of PCPs, three bottom-up 

approaches could be employed; chemical synthesis, templating and crystal assembly 

(Figure 4). 
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3. Macroscale structuraliztaion of PCPs 
 

Since PCPs are comprising of weak coordination bonds, top-down approaches 

including laser, heating and mechanical processing methods are not versatile method to 

fabricate the macroscale structures. Thus, three kinds of bottom-up approaches can be 

employed to design the macroscale structures of PCPs, chemical synthesis, templating 

and crystal assembly (Figure 3) 

 

 

Figure 4. Three bottom-up approaches for macroscale structured PCPs 

 

3.1 Chemical Synthesis 

 

 Controlling the size or morphology of PCP crystals have attracted much 

attention due to the size-dependent characteristics for a variety of applications, including 

catalysis, spin-crossover, biomedical imaging, and drug-delivery. Several distinct 

approaches have recently been undertaken by exploring the possibility of controlling the 

shape and size of PCP crystals. 

  

·Additives 

  One way to control the crystal size is adding functional molecules,28-29 which 
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influence on the coordination equilibrium. Such additives like polymers and 

monofunctional molecules coordinate to metal ions or stabilize the precursors during 

nucleation or growth processes, consequently, the crystal size and morphology of PCPs 

are well controlled. For instances, uniform-sized PCP nanocrystals are fabricated; 

so-called coordination modulation method;29 by altering the coordination equilibrium at 

the crystal surface during the growth process, through competitive interactions 

originating from a capping additive (modulator) with the same chemical functionality as 

the framework linker. 

 

·Confined crystallization 

Another technique for the preparation of nanocrystals is to spatially confine the 

crystallization. Water-in-oil,30 or reverse microemulsions31 are highly tailorable systems 

that consist of nanometer-sized water droplets stabilized by a surfactant in a 

predominantly organic phase. The micelles in the microemulsion essentially serve as 

“nanoreactors” that spatially restrict the particle formation. Thanks to the confinement of 

crystallization, the uniform-sized particles are obtained. 

 

·Instrument-assisted reaction 

Furthermore, some apparatus such as microwave and ultrasonicator are utilized 

for controlling the crystallization. The microwave-32 and ultrasound-assisted methods33 

allow for the synthesis of nanocrystals. However, the size, shape and dimensionality of 

the nanocrystals are often not precisely controlled by using these methods. Hence, 

ultrasound-assisted methods combining with microemulsion has been developed to 

prevent the formation of amorphous coordination polymer particles.34 The 

microwave-assisted conditions with coordination modulation method35 is also a 

promising way to prepare the uniform-sized crystals with keeping the crystallinity. 

 

3.2 Templating 

 

 One of key principles to fabricate macroscale architectures is to control the 

spatial positions of the materials. Thus, spatial control of PCP crystals is traditionally 

performed by using templates, which induce the crystallization or support the 

architectures of deposited crystals. The increasing number of reports that focus on the 

processing of PCPs into thin films, two-dimensional patterns and spheres accounts for 

the significance of their integration into directly applicable materials. 
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·Solid substrate 

The methods to prepare well-defined crystalline layers on a given substrate 

enable to integrate the PCPs into functional devices. Roland Fischer and his co-workers 

firstly reported the immobilization of MOF-5 thin film on a gold substrate.36 Nowadays, 

the methodologies to synthesize PCP films on substrates are well developed37-38 and the 

film thickness and channel orientations can be precisely controlled.39 This development 

enabled fabrication of PCPs on electronic devices such as microcantilever,40 Fabry-Pérot 

interference41 and quartz crystal microbalance,42 leading to PCP-based sensors. In 

addition to the device applications, the gas separation efficiency of PCP thin film is 

intensively studied.43-44 

 

·PCP surface 

PCPs also offer the opportunity of being utilized as molecular-based crystalline 

substrates for the assembly of functional molecules on their surfaces. By employing this 

features, second PCPs can be grown on the crystal surface of core PCPs through epitaxial 

growth, forming core-shell type PCPs.25-27 Such heterogeneous structured PCPs enable 

multifunctionality even when two contradictory properties are combined, such as small 

and large pore sizes providing a simultaneous size selectivity and storage.45 

 

·Other materials 

Other templates, polymer particles46 microdroplet,23 or metaloxide can be also 

utilized to create the macroscale structures. The formation of PCPs on the sphere 

templates and the elimination of the templates resulted in hollow PCPs. More 

complicated 3D templates enable the 3D structures of PCPs. In particular, 3D ordered 

macoprous structures endows the resulting materials with an additional optical element 

or improve the separation efficiency.47-48 Furthermore, the formation of PCPs on the 

surface of other materials often gives core-shell type hybrid particles, for instances, 

metallic nanoparticles as a core and PCP as a shell. 

 

3.3 Assembly 

 

A wide variety of methods to design the crystal shapes and morphologies are 

developed. Challenges related to making the complex structures using PCP crystals as 

building blocks emerged. PCP superstructures offer even greater variety of 

nano/microscale systems than individual PCPs and enable investigations of collective 

behavior/properties. Some pioneering researches on PCP crystals assemblies came out 
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recently.49-50 The assembled structures of PCP crystals will likely facilitate integration 

with microscale technologies such as sensor devices or stimuli-responsive optoelectronic 

materials. 
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4. Survey of this Thesis 

 
 The purpose of this thesis is to establish methods to fabricate the macroscale 

structures of PCPs. The templating methods were employed to create the core-shell, 

hollow and membrane structures of PCPs. 

 

Chapter 1 describes the fabrication of a core-shell PCP by epitaxial growth. 

All crystal surfaces of the core crystal, [Zn2(bdc)2(dabco)]n, was covered by the shell 

crystal, [Cu2(bdc)2(dabco)]n  (bdc = 1,4-benzenedicarboxylate, dabco = 

1,4-diazabicyclo[2,2,2]octane). Synchrotron X-ray diffraction measurements unveiled 

the structural relationship between the shell and core crystal, where in-plane rotational 

epitaxial growth compensates the difference in lattice constant (Figure 4). 

 
Figure 4. Heterometallic core-shell type PCP 

 

Chapter 2 describes the fabrication of sandwich type crystal; 

[Zn2(ndc)2(dabco)]n  as the core crystal and [Zn2(ndc)2(dpndi)]n  as the second crystal, 

(ndc = 1,4-naphthalenedicarboxylate, dabco = 1,4-diazabicyclo[2,2,2]octane, dpndi = 

N,N’-di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxydiimide). The secondary crystal 

growth at the {100} surfaces of the core crystal was prohibited because of the mismatch 

of molecular lengths between dabco and dpndi. The second crystal, [Zn2(ndc)2(dpndi)] is 

grown only at the {001} surfaces that consists of the common component, ndc (Figure 5). 

 

Figure 5. Heteroligand sandwich type PCP 
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Chapter 3 describes the heterostructured PCP crystal fabricated using epitaxial 

growth simultaneously process two contradictory porous functions, size selectivity and 

high storage. The framework is grown using small pores as a shell around the isoreticular 

core framework, which has large pores on the micrometre scale for a single crystal. The 

core/shell crystal not only perfectly extracted the linear petroleum molecule of 

hexadecane (cetane) from a mixture with its branched isomer isocetane, even when the 

cetane was present at a very low concentration (1 wt %), but also showed improved 

accumulation of the molecules in its pores (Figure 6). 

 

Figure 6. Selective storage of alkane isomers based on core-shell PCP 

 

Chapter 4 describes the synthesis of a core-shell type PCP: [Zn2(adc)2(dabco)]n  

as the core crystal and [Zn2(abdc)2(dabco)]n  as the shell crystal (adc = 9,10-anthracene 

dicarboxylate, dabco = diazabicyclo[2.2.2]octane, abdc = 2-amino-1,4-benzene 

dicarboxylate). After the formation of the core-shell structure, a free carboxyl group was 

embedded in the shell crystal via heterogeneous acylation of amino groups with succinic 

anhydride to enhance the selectivity for N,N-dimethylaniline (DMA). The shell crystal 

allowed the core crystal to selectively accommodate DMA, thus leading to turning on 

intense exciplex emission by the formation of excited state between anthracene moiety 

and DMA (Figure 7). 

 

Figure 7. Guest-responsive fluorescence based of core-shell PCP 
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Chapter 5 describes hybridization of two-dimensional (2D) PCP: 

[Zn2(NO2-ip)2(dpndi)]n  as the core crystal and [Zn2(NO2-ip)2(bpy)]n as the shell crystal 

(NO2-ip = 5-nitroisophthalate, dpndi = 

N,N’-di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxydiimide, bpy = 4,4’-bipyridyl,). 

Whereas the epitaxial growth on the core crystal leads to a sandwich type PCP, the ligand 

replacement nearby surface of the core crystal results in a core-shell type PCP (Figure 8). 

 
Figure 8. Hybridized 2D PCPs for modulating gate-opening pressure 

 

Chapter 6 describes a new phenomenon, in which the macropore is formed 

inside the crystal synchronized with the generation of solid-solution type PCPs. As a 

result, a box-shaped architecture consisting of solid-solution type PCP is synthesized. 

The ligand excahnge results in the converistion of framework topology from 

not-interpenetrated to interpenetrated structures. The interpenetration stabilizes the 

framework and improve the uptake amount of CO2, furthermore, the hollow structure 

enhances the diffusion kinetics of CO2. This penomenon is derived from the differences 

in the transported amounts of two organic ligands during dissolution of pre-existing PCP 

and crystallization of a new solid-solution PCP (Figure 9). 

 

Figure 9. Synchronic transformation across chemical and macroscale structures 
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Chapter 7 describes the synthesis of a series of 

1,1’-ferrocenedicarboxylate(Fcdc)-based 2D PCPs by incorporating different diamine 

coligands, [Zn(Fcdc)(bpy)]n, [Zn(Fcdc)(bpb)]n and [Zn(Fcdc)(bpy)]n, (dpb = 

1,4-di(pyridin-4-yl)benzene, dpndi = 

N,N’-di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxydiimide),. The compounds 

immobilized on electrodes, exhibited reversible redox reactions, arising from ferrocenyl 

moiety (Figure 10). 

 

Figure 10. Redox reaction of PCP membranes 

 

Chapter 8 describes the integration of flexible PCPs with quartz crystal 

microbalance (QCM), creating hybrid gas sensor. Since the guest uptake leads to weight 

gain of the PCPs, depositing flexible PCPs onto QCM, in which the mass change is 

converted to a change of oscillation frequency, enables the quantitatively detect specific 

molecules. The crystal orientation was controlled and the diffusion of organic vapor was 

clearly enhanced, thus leading to quick response to the organic vapor by the change of 

oscillation frequency of QCM (Figure 11). 

 

Figure 11. PCP/QCM hybrid sensor 
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Chapter 1 
 

Heterogeneously Hybridized Porous Coordination Polymer 

Crystals: Fabrication of Heterometallic Core–Shell Single 

Crystals with an In-Plane Rotational Epitaxial Relationship 

 

 

 

 

 

Abstract 
 Porous coordination polymers (PCPs) or metal–organic frameworks (MOFs) 

have attracted considerable attention due to their wide variety of scientific and 

technological applications, such as adsorption, separation, and catalysis. Over the past 

decade, the chemical functionalization of PCP framework scaffold has been intensively 

studied to improve their properties. The promising strategy to develop the PCP property 

is to integrate several framework structures, thus several functions, into one crystal – so 

called, hybridized PCP crystals. This class of hybridized PCP crystals allows for 

systematically tuning the framework composition of both metal ions and designed 

organic ligands, which especially influences the spatial configuration of crystals and 

their structural relationship, leading to the novel porous property that single PCP 

framework never achieves. Here we demonstrate fabrication of a core-shell porous 

coordination polymer crystal at the single-crystal level by epitaxial growth in solution. 

All crystal surfaces of the core crystal, [Zn2(bdc)2(dabco)]n (1), was covered by the shell 

crystal, [Cu2(bdc)2(dabco)]n (2) (bdc = 1,4-benzenedicarboxylate, dabco = 

1,4-diazabicyclo[2,2,2]octane). Synchrotron X-ray diffraction measurements unveiled 

the structural relationship between the shell crystal and the core crystal, where in-plane 

rotational epitaxial growth compensates the difference in lattice constant. 
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Introduction 

 
 The formation of interfaces between two solid phases is of great significance in 

the development of new materials, because mechanical and electronic properties of 

materials are strongly influenced by distorted interfacial structures, leading to properties 

that differ from those of the individual phases. Moreover, properties of porous materials, 

such as gas sorption and guest-molecule accommodation, should also correlate with the 

interfacial structure of such materials, because guest molecules (adsorbates) first 

encounter the surface of the porous materials. Hence, the affinity of porous materials for 

guest molecules can be tuned by modifying the surface structure.1 Porous coordination 

polymers (PCPs), or metal–organic frameworks (MOFs), are an interesting class of 

crystalline porous materials, as it is possible to design their framework topologies and 

pore sizes and the functionality of the pore surfaces.2-6 Recent progress of the 

“post-synthetic approach” allows for the pore-surface functionalities (on the inner 

surfaces of materials) to be altered after the lattice is constructed.7-16 On the other hand, 

functionalization of PCP outer surfaces is a great challenge, but it is a promising 

methodology not only for modification of the porous properties but also for the addition 

of a new function to the PCP without changing the characteristic features of the PCP 

crystal itself,17 resulting in the fabrication of multifunctional PCPs. One way to decorate 

the crystal surfaces of a PCP is to hybridize the core PCP crystal with a different shell 

crystal by epitaxial growth at the single-crystal level, thus creating core-shell PCP 

heteroepitaxial crystals. Such a lattice match promises pore connections at the interface 

between crystals, where the modified crystal structure should influence the mobility and 

diffusion of adsorbates. Such fabrication of hybridized PCP single crystals in the 

nanometer or micrometer regime also allows for utilization of these materials in 

biological systems and as sensors in electronic devices.17-23 Although a few pioneering 

synthetic studies on the hybridization of extended coordination structures have been 

reported,24-27 structural determination at the interfaces is not yet known, most likely 

because of the lack of a methodology, despite its significance for the design of new 

materials. Herein, we demonstrate the first synthesis of core–shell PCP single crystals by 

epitaxial growth; the structural relationship between the shell and the core was 

determined using surface X-ray diffraction analysis. The key to success is to choose 

excellent candidates for epitaxial growth, such as the [M2(dicarboxylate)2(N-ligand)]n 

series of PCP frameworks, wherein three components, namely the metal ions, 

dicarboxylate layer ligands, and bidentate nitrogen pillar ligands, can be varied without 

changing the original tetragonal topology (Figure 1).24-36 A variety of isoreticular 
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tetragonal frameworks with similar unit cell parameters are available. The heterometallic 

system chosen for hybridization consists of different metal ions with the same organic 

ligands: [Zn2(ndc)2(dabco)]n
32 (1) as the core crystal and [Cu2(ndc)2(dabco)n

35 (2) as the 

shell crystal (ndc = 1,4-naphthalene dicarboxylate, dabco = 

1,4-diazabicyclo[2.2.2]octane). Note that 1 can be grown as a single crystal with cubic 

morphology at a scale of hundreds of micrometers, but 2 gives only microcrystalline 

powder. Therefore, synthesis of the reverse composition is essentially impossible. To 

elucidate the growth process of the core crystal 1, faceindex analysis was carried out 

using single-crystal X-ray diffraction. The tetragonal framework appears as a right 

rectangular prism crystal with (100), (100), (010), (010), (001), and (001) faces. The four 

(h00) and (0k0) surfaces can be end-capped by the layer carboxylic acid groups, whereas 

the two remaining (00l) surfaces are terminated by the nitrogen pillar ligands. These 

ligands can be used as coordination sites to grow the shell crystal. 

 
Figure 1. (a) The schematic illustration of the series of frameworks, 

[M2(dicarboxylate)2(N-ligand)]n. The crystal structure of 1; (b) the view from a axis, and 

(c) the view from c axis. The naphthalene moieties are disordered due to the symmetry. 
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Results and Discussion 
 

The hybridization of two frameworks into one single crystal has been 

successfully achieved by a simple solvothermal synthesis; pieces of single crystals of 1 

were put into a solution of CuSO4·5H2O, 1,4-naphthalene dicarboxilic acid, and dabco in 

toluene/methanol (1:1), and the solution was heated to 393 K. The core–shell crystals 

(1/2) were obtained as light greenish cubic crystals in 93% yield. Figure 2a shows an 

optical microscopy image of the sliced single crystal of 1/2. The colorless core crystal is 

surrounded by the greenish shell crystal. Each part of the core–shell crystal was analyzed 

by microscopic attenuated total reflectance (ATR) IR spectroscopy. The characteristic 

carboxylate asymmetric stretching frequencies of 1/2 (core: 1633 cm-1, shell: 1621 cm-1) 

resemble those of 1 (1629 cm-1) and 2 (1621 cm-1), respectively. The lower absorption 

energy of zinc-coordinated carboxylate relative to copper-coordinated carboxylate can be 

explained by the strength of carboxylate coordination; copper is coordinated more 

strongly than zinc.37-38 Note that the multiple absorption bands around 800 cm-1, which 

can be assigned to the out-of-plane CH bending vibration modes and the ring bending 

mode of the naphthalene moieties of ndc,39 exhibit a trend similar to the carboxylate 

stretching (Figure 2b–d): quadruple bands for the core and 1; triplet bands for the shell 

and 2. Both the core crystal (1) and the shell crystal (2) have the same tetragonal space 

group (P4/mmm) and similar unit cell parameters (a = 10.921(1), c = 9.611(1) for 1, and 

a = 10.8190(3), c = 9.6348(6) for 2), which differ enough, especially along the a axis, to 

distinguish the shell crystal from the core crystal and to allow investigation of the 

structural correlation between them. Synchrotron X-ray measurements for film structural 

analysis were, therefore, performed using a four-circle diffractometer at beamline 

BL13XU for surface and interface structures, SPring-8. 
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Figure 2. a) The optical microscopic image of the sliced core/shell crystal, 1/2. b) The 

infrared spectrum by microscopic attenuated total reflection (ATR) measurement of the 

colorless part of 1/2, c) the greenish part of 1/2, d) the power sample of 1, and e) the 

powder sample of 2. 

 

A hybridized core–shell crystal of 1/2 with a size greater than 200 m and a shell 

crystal thickness greater than 20 m  was fixed on a glass surface with the a axis normal 

to the glass surface, and diffractions were recorded using an X-ray beam with a size of 15 

× 30 mm2. The –2 scan of 1/2 from the initial position ( = 90°) provided two sharp 

peaks assigned to h00 Bragg peaks, and a scan of the rotation angle around the [100] 

direction (the  scan) at the 110 Bragg position gave two sharp peaks assigned to the 110 

and 110 Bragg peaks (Figure 3a–c). These diffraction peaks indicate that the shell crystal 

of 1/2 is a single crystal. This finding indicates, surprisingly, that growth of the copper 

shell crystal (2) as a single crystal on the surface of the zinc core crystal (1) was 

supported despite the fact that the copper shell crystal had only been obtained previously 

as a powder. 

The structural relationship between the core crystal and the shell crystal at the 

interface is more evident at the (001) surface, because the diffractions from the two 

crystals are observed simultaneously. Note that the (001) surface of the tetragonal space 

group can be recognized as the quadratic lattice shown in Figure 1 c, because the a and b 

lattice constants are the same. The hybridized crystal (1/2) was mounted with the c axis 

normal to the glass surface. While the –2 scan gave the 00l Bragg peaks, characteristic 

triplet peaks were observed periodically every 90° in the scan of rotation angle around 

[001] (the f scan) at the 101 position (Figure 3d–f). Corresponding to the model in the 
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reciprocal lattice space (Figure 4a), the k scan at the 101 position and the h scan at the 

011 position also gave triplet peaks (Figure 4b–c). Each central peak of the triplet can be 

assigned to the 101 and 011 Bragg peaks of the core crystal (1), whereas the two side 

peaks are assigned to diffraction from the shell crystal (2). This situation arises because 

the refined 2 angles of the side peaks (2side = 8.1864–8.1997) are significantly larger 

than those of the central peaks (2central = 8.1136–8.1170), which coincides with the fact 

that the lattice constant a of 2 is smaller than that of 1. 

 

 

Figure 3. The reciprocal lattice space corresponding to the rotational scan, (a) around the 

[100] direction, and (d) around the [001] direction. The -2 scan of the core/shell 

crystal (1/2) immobilized on the glass substrate at the initial position ( = 90º), (b) with 

the a axis orientation, and (e) with the c axis orientation. The scan of the rotation angle, 

(c) around the [100] direction (the  scan), and (f) around the [001] direction. 
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Table 1. The refined angles of 2, χ, and  at the 100, and 110 Bragg positions of the 

core crystal, 1, and the core/shell crystal, 1/2 for the a axis orientation, and at the 001, 

101, and 011 Bragg position of 1/2 for the c axis orientation. 

 

Crystal Bragg 
position 

2   
(Δ)[a] 

1 
(a oriented) 

100 5.2733 90.286 — 
110 7.4616 44.914 0 

1/2 
(a oriented) 

100 5.3140 87.957 — 
110 7.5181 45.656 -0.117 

1/2 
(c oriented) 

001 6.0194 89.753 — 

 101central 8.117 47.634 0.8620 
 101side1 8.1989 47.1202 12.5533 

(11.6913) 
 101side2 8.1902 46.9784 -10.6010 

(11.4630) 
 011central 8.1136 47.5630 -87.9900 
 011side1 8.1997 47.0458 -100.2938 

(12.3038) 
 011side2 8.1864 46.8704 -76.8410 

(11.1490) 

[a] The difference of the  angle of the side peak from the central peak, Δ = |side - 

central|. 

 

The difference in  angle of the side peak and the central peak (Δ) is interpreted 

as rotation of the shell crystal lattice by Δ with respect to the [100] direction of the core 

crystal lattice (Figure 4d). The result that two side peaks emerge with the central peaks, 

separated by similar values of Δ in the k and h scans (Δ = 11.5 ± 0.1 at the 101 position 

and Δ = 11.7 ± 0.6 at the 011 position), implies that two Miller domains of the shell 

crystal (2) are grown epitaxially on the (001) surface of the core crystal (1) while 

maintaining the in-plane rotational angleΔ.40,41 Interestingly, the average of the 

rotational angles (Δ av=11.7) reflects the angle between the [100] direction and the √26 

direction of the quadratic lattice (Δ = 11.3). Because the lattice constant of the shell 

crystal is significantly smaller than that of the core crystal, the (√26 × √26) structure of 

the shell (001) surface matches the (5 × 5) structure of the core crystal. Hence, in-plane 

rotational epitaxial growth can compensate for the difference in the lattice constants. 

Such rotational crystal growth evidently does not occur at the (100) surface, because the 

lattice constant for the [001] direction of the shell crystal is not very different from that 

of the core crystal, which is also evident from the lack of peak separation observed in the 

crystal oriented along the a axis. Thus, the lattice of the shell crystal matches that of the 

core crystal along the [100] direction by near-matched epitaxy. 



26 
 

 

Figure 4. (a) The view from the [001] direction of the reciprocal lattice space. The k scan 

at the 101 position and the h scan at the 011 position are indicated as red lines. (b) The k 

scan at the 101 position. (c) The h scan at the 011 position. (d) The schematic model of 

the structural relationship between the core lattice and the shell lattice on the (001) 

surface. The green circles indicate the commensurate lattice points between the core 

lattice and the shell lattice. Two miller domains of the shell crystal are grown on the 

(001) surface of the core crystal with keeping the relative angle (Δave = 11.6518), which 

is corresponding to the √26 direction of the (001) surface. The offset shows the chemical 

structure of the (001) surface. 
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Conclusion 

 
 These results open the way for the fabrication of hybridized PCP crystals by 

epitaxial growth in solution and, moreover, for the determination of the structural 

relationship between the shell crystal and the core crystal by surface X-ray diffraction. 

The surfaces of the core PCP crystal support the growth of a single-shell crystal, which 

was otherwise obtained only as a microcrystalline powder in the bulk. Two other layer 

and pillar ligands are exchangeable in this hybridization system, and functional organic 

ligands can be introduced. Careful choice of components should allow us to control and 

design the in-plane rotational angles. The next stage of progress is to correlate the 

interfacial structure and the function, especially the adsorption properties, which can be 

strongly influenced by the interfacial structure. Such rotational domain growth of a PCP 

crystal on the surface of the PCP core crystal apparently can work as a filter or a sieve 

for separation of guest molecules. Moreover, these properties originate from the 

formation of the interface between two PCP crystals so that the PCP framework itself can 

be still modified to fabricate multifunctional PCPs. 
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Experimental Section 

 

The syntheses of individual compounds 131 and 235 were prepared according to 

literature procedures. 

 

Synthesis of the hybridized crystal, 1/2 

The stocked reaction solution of 2 was prepared as CuSO4·5H2O (21.0 mg, 8.41 

× 10-2 mmol), ndc (18.2 mg, 8.42 × 10-2 mmol), and dabco (4.67 mg, 4.16 × 10-2 mmol) 

in the mixed solvent (2.5 mL of toluene and 2.5 mL of methanol). Dozens of the core 

crystals (the sizes about 200 × 200 × 100 μm3) of 1, were put into 4 mL of the stocked 

reaction solution, then, the reaction mixture was heated up to 393 K for 48 hours. After 

cooling, the greenish hybridized crystals (1/2) were harvested. 

 

Microscopic infrared spectroscopy 

The spectra were measured both by a Nicolet 6700 (Thermo Fisher Scientific 

Inc.) with a infrared microscope, Nicolet Continuμm, and by a FT/IR 6200 (JASCO) with 

a infrared microscope, IRT-3000. The attenuated total reflection attachment (ATR) was 

used for the measurement. Whereas the powder samples of 1 and 2 were measured to 

obtain their individual spectra, the sliced single crystal sample of 1/2 was investigated 

for hybridization. The prism of ATR attachment was separately put on the core part and 

the shell part, and then each spectrum was observed. 

 

Synchrotron X-ray measurements for film-structural analysis 

The measurements were performed with a four-circle diffractometer having , , 

θ, and 2θ circles at beamline BL13XU for surface and interface structures, SPring-8. The 

desired crystal in DMF solvent was picked up just before the measurement, and then 

fixed on the glass substrate with double-faced adhesive. The measurement was carried 

out under Helium gas condition. In such a condition, guest DMF molecules were most 

likely accommodated in pores of the PCP crystal. 

 

Powder X-ray diffraction measurement 

The powder sample of compound 2 was sealed in a silica glass capillary (0.4 mm 

inside diameter). Diffraction pattern with good counting statistics was measured by the 

synchrotron radiation powder X-ray diffraction experiment with the large 

Debye-Scherrer camera and imaging plate as detectors on the BL02B2 beam line at 

SPring-8.42 The diffraction pattern was obtained with a 0.01° step. 
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Structure Determination 

The structure determination was performed using a high brilliance synchrotron 

powder diffraction data. The pattern was indexed by using the indexing program 

DICVOL91.43 A good quality unit cell refinement was obtained by using the 

structure-less Le Bail fitting method.44 The peak shape was modeled by a Split-Pearson 

function. The structure refinement was performed by Rietveld method with RIETAN 

software.45,46 Soft constraints about bond angles and bond distances was adapted 

throughout the refinement. Hydrogen atoms were placed at calculated position and their 

parameters were not refined. Crystallographic data for 1: C15H12CuNO4, M = 333.81, λ = 

0.80081 Å, tetragonal, space group P4/mmm (no. 123), a = 10.8190(3), c = 9.6348(6) Å, 

V = 1127.76(9) Å3, Z = 4, T = 298 K, 2θmin = 2.50 °, 2θmax = 30.0 °, step size 0.01 °, 

number of reflections = 125, Rwp = 0.0367, RI = 0.0105. CCDC-260861 contains the 

supplementary crystallographic data for this paper. These data can be obtained free of 

charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 
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Chapter 2 
 

A Block PCP Crystal: Anisotropic Hybridization of Porous 

Coordination Polymers by Face-Selective Epitaxial Growth 

 

 

 

 

 

Abstract 
 Porous coordination polymers (PCPs) or metal organic frameworks (MOFs) have 

many attracting functions such as gas adsorption, separation, and catalytic activity. One 

way to develop such porous materials is to integrate several functions into one crystal, 

thus to create a core/shell type PCP crystal. Here we demonstrate a fabrication of the 

fabrication of sandwich type crystal; [Zn2(ndc)2(dabco)]n (1) as the core crystal and 

[Zn2(ndc)2(dpndi)]n (3) as the second crystal, (ndc = 1,4-naphthalenedicarboxylate, 

dabco = 1,4-diazabicyclo[2,2,2]octane, dpndi = 

N,N’-di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxydiimide). This is because that the 

secondary crystal growth at the {100} surfaces of the core crystal that consist of ndc and 

dabco was prohibited because of the mismatch of molecular lengths between dabco and 

dpndi. The second crystal 3 could be only grown at the {001} surfaces that only consists 

of the common component, ndc. 
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Introduction 

 
 The assembly of well-designed organic ligands with metal ions offers crystalline 

framework solids, so-called porous coordination polymers (PCPs) or metal–organic 

frameworks (MOFs), wherein the geometry and directional coordination interaction 

dominate the topology of the resulting infinite framework architectures.1–3 In addition to 

such a molecular component system, higher order organization of materials can be 

achieved by using the crystal itself as another assembly component.4 Thus, as in block 

copolymers, each individual crystal acts as a chemically distinct component to fabricate 

‘‘block PCPs’’, in which different framework structures are hybridized at the single 

crystal level (Scheme 1).5 Because the intrinsic void space in the framework system 

makes PCPs an intriguing class of porous materials,6–11 the connection of distinct PCP 

crystals with characteristic pore surface functionalities promises to improve the porous 

properties and create multifunctional PCPs. 

 

 
Scheme 1. The schematic illustration of a block PCP concept. 

 

 Recently, we illustrated a ‘‘PCP-on-PCP’’ (or ‘‘MOF-on-MOF’’) concept and 

succeeded in the fabrication of hybridized heterometallic core–shell PCP crystals by 

epitaxial growth.5 The molecular assembly of components to grow the shell crystal was 

successfully performed on the surfaces of core crystals.12-18 Here, we show that 

face-selective hybridization of single PCP crystals leads to the fabrication of 

sandwich-type block PCPs, where only two surfaces of a rectangular prism crystal were 

used selectively as substrates for epitaxial growth of the second PCP crystal. Surface 

X-ray diffraction proved the epitaxy of the second crystal grown on the core crystal, 

which implies connection of one-dimensional channels with different pore functionalities. 

A series of tetragonal porous frameworks, [M2(dicarboxylate)2(N ligand)]n (Fig. 1a),19-27 
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wherein the dicarboxylate layer ligands link the dimetal clusters into 2-D square lattices 

which are further connected through the nitrogen pillar ligands at the lattice points, is a 

good scaffold with which to investigate anisotropic hybridization of PCPs. Their single 

crystal morphology is a rectangular prism, reflecting the tetragonal crystal system. 

Whereas four crystal surfaces denoted as {100} have rectangular lattices comprising one 

layer ligand and one pillar ligand, {001} surfaces with square lattices based only on layer 

ligands appear on the remaining two surfaces. Here, we targeted the {001} surface for 

growth of the second crystal because choosing the same layer ligand both in the core PCP 

and the second PCP does not require the lattice distances in the [001] direction to match, 

thus allowing free usage of the pillar ligand. To differentiate between the pore surface 

functionalities of the core PCP and the second PCP, aliphatic 

1,4-diazabicyclo[2.2.2]octane (dabco) and aromatic 

N,N’-di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxydiimide (dpndi) were used as the 

pillar ligands, respectively (Fig. 1b): [Zn2(ndc)2(dabco)]n 21 (1) as the core crystal and 

[Zn2(ndc)2(dpndi)]n (2) as the second crystal (ndc = 1,4-naphthalene dicarboxylate). 

 

 

 

Figure 1. (a) Schematic illustration of the series of frameworks 

[M2(dicarboxylate)2(N-ligand)]n. (b) Schematic illustration of anisotropic epitaxial 

growth of the second framework, 2, on the core framework, 1. 
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Results and Discussion 
 

The anisotropic hybridization of two frameworks into a single crystal was 

successfully achieved by a simple solvothermal synthesis; pieces of single crystals of 1 

were put into a solution of Zn(NO3)2･6H2O, 1,4-naphthalene dicarboxylic acid, and 

dpndi in DMF, and the solution was heated to 353 K for two days. The hybridized 

crystals (1/2) were harvested after cooling at room temperature. The optical microscopic 

image (Fig. 2a) of 1/2 clearly demonstrated that the orange crystal of 2 grew on only two 

surfaces of the colorless crystal of 1, leading to the formation of BAB-type block PCPs 

with the core crystal A between second crystals B. Each part of the hybridized crystal 

was identified as the respective framework structure by microscopic attenuated total 

reflectance (ATR) infrared spectroscopy (Fig. 2b–e). The characteristic sharp peaks of 

the core crystal A correspond to those of 1. On the other hand, the broad features of the 

second crystal B resemble those of 2. The broadness of the peaks most likely arises 

because of the presence of two species (ndc and dpndi) whose naphthalene and carbonyl 

peaks overlap. The spectral similarity of the second crystal to 2 suggests that the second 

framework of 2 successfully grew on the core framework of 1. 

 

 

 

Figure 2. (a) The optical microscopic image of the hybridized crystal, 1/2.  (b) The 

infrared spectrum by microscopic attenuated total reflection (ATR) measurement of the 

orange part of 1/2, crystal B, (c) the single crystal sample of 2, (d) the colorless part of 

1/2, crystal A, (e) the single crystal sample of 1. 
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Both crystals have the same tetragonal space group, P4/mmm, and very similar 

unit cell parameters in the a axes (a = 10.921(1) for 1 and 10.906(2) for 2). However, the 

c axes of the unit cell parameters are significantly different (c = 9.611(1) for 1 and 

22.456(4) for 2), which enables determination of the structural parameters between the 

core crystal A and the second crystal B. Synchrotron X-ray diffraction measurements for 

film structural analysis were, therefore, performed using a four-circle diffractometer at 

beamline BL13XU for surface and interface structures, SPring-8. A block PCP crystal of 

1/2 with a size larger than 200 m and a second crystal with thickness larger than 50 m 

was fixed on a glass surface with the configuration illustrated in Fig. 3a, and diffraction 

data were recorded using an X-ray beam with a size of 1 × 1 m2. The –2 scan of 1/2 

from the initial position (χ = 90°) provided two sharp 00l peaks fromboth crystal A and 

B: the 002 Bragg peak for crystal B at 2 = 5.1261 and the 001 Bragg peak for crystal A 

at 2 = 5.9461. The observation of 00l Bragg peaks simultaneously from both crystal A 

and B directly suggests that the epitaxial growth of crystal B only occurs at the {001} 

surfaces of the core crystal A and the growth of crystal B occurs in the direction of the c 

axis with the Zn–N ligand coordination mode. Since pillar ligands with different lengths 

(dabco for 1 and dpndi for 2) were used for the crystal hybridization, the secondary 

growth at the {100} surfaces of the core crystal A that consist of one layer ligand and one 

pillar ligand was significantly prohibited because of the lattice mismatch. The lattice 

constants of the c axes (c = 9.611(1) for 1 and 22.456(4) for 2) are different enough to 

obtain diffraction positions of each crystal in the hybridized crystal, which enables us to 

investigate the structural relationship between them. 

The scan of rotational angle around [001] (the  scan) at the 101 Bragg position 

of the core crystal A, 1, gave two peaks at  = 0.0001 ± 0.0391 from the 101 position and 

at  = 89.9931 ± 0.0081 from the 011 position (Figure 4a). Two diffraction peaks with a 

90 difference implies the square lattice structure (a = b) of {001} surfaces of 1. Similar 

to the  scan of 1, two peaks at the same  angles ( = 0.0131 ± 0.0451 and 90.0041 ± 

0.1311) were observed in the  scan at the 101 and 011 Bragg position of the second 

crystal B, 2 (Figure 4b), respectively. The identical  angles between crystals A and B, as 

illustrated in the reciprocal lattice space (Figure 4c), indicate that the second crystal was 

grown epitaxially on the core crystal with a perfect lattice match at the {001} surfaces of 

both crystals (a = 10.921(1) for 1 and 10.906(2) for 2). Unlike the reported core–shell 

crystal with a heterometallic system,5 [Cu2(ndc)2(dabco)]n on [Zn2(ndc)2(dabco)]n (1), 

where in-plane rotational epitaxial growth compensates for the difference (ca. 0.1 Å ) in 

lattice constants at the {001} surface, the negligible difference in lattice constants here 

(ca. 0.015 Å ) promises the pore connection as shown in Scheme 1. 
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Figure 3. (a) The schematic illustration of configuration of a block PCP crystal, 1/2, on a 

glass substrate for synchrotron X-ray diffraction measurements. (b) The -2 scan of the 

block PCP crystal immobilized as illustrated in Fig. 3a at the initial position (χ = 90°). 

Two peaks assigned to the 002 Bragg peak for crystal B, 2, (2 = 5.126°) and the 001 

Bragg peak for crystal A, 1, (2 = 5.946°) were obtained simultaneously in the same 

scan. 
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Figure 4. (a) The scan of rotational angle around the [001] direction (the  scan) of the 

core crystal A, 1 and (b) of the second crystal B, 2. (c) The reciprocal lattice space 

corresponding to the  scan. 
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Conclusion 

 
 In conclusion, we have demonstrated that face-selective epitaxial growth of a 

second PCP crystal on a core PCP crystal with a tetragonal system, leading to a block 

PCP crystal, can be achieved by using matching lattices on the specific surfaces. By 

using the same layer ligand for crystal hybridization, epitaxial growth on two {001} 

surfaces of the core crystal no longer requires the use of a pillar ligand with the same 

lattice constant, thus a variety of pillar ligands is available for use, with the possibility of 

a pore connection at the interface. This methodology will open the way for fabrication of 

a multifunctional PCP where several porous properties are integrated into a single crystal. 

For instance, the crystal array illustrated in Scheme 1 can be recognized as ‘‘a crystal 

factory’’ when sorption, separation, and reaction properties are integrated in A, B, and C 

crystals, respectively. 
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Experimental Section 

 

Materials 

Dehydrated DMF, 1,4-naphthalene dicarboxylic acid (ndc), and Zn(NO3)2·6H2O 

were purchased from Wako Pure Chemical Industries. 1,4-diazabicycro[2,2,2]octane 

(dabco) was purchased from TCI. All chemicals were used without further purification. 

The syntheses of N,N’-di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxydiimide (dpndi),28 

and [Zn2(ndc)2(dabco)]n (1),21 were prepared according to literature procedures. 

Synthesis of 2 ⊃ Solvents. The solution of Zn(NO3)2·6H2O (6.1 mg, 0.020 mmol), ndc 

(4.4 mg, 0.020 mmol), and dpndi (4.2 mg, 0.010 mmol) in 4 mL DMF were heated up to 

373 K for 2 days. After cooling, the reaction solution was left at room temperature for a 

few days. The orange crystals were harvested. Elemental analysis calcd. for 

C73.5H83.5N12.5O20.5Zn2 {[Zn2(ndc)2(dpndi)]･8.5DMF}n: C, 55.15; H, 5.26; N, 10.99, 

Found: C, 54.95; H,5.25; N,11.15. 

 

Synthesis of hybridized crystal, 1/2. 

Dozens of the core crystals (the size about 200 × 300 × 300 mm3) of 1, were put 

into 4 mL of the reaction solution for 2 as Zn(NO3)2·6H2O (6.1 mg, 0.020 mmol), ndc 

(4.4 mg, 0.020 mmol), and ndi (4.2 mg, 0.010 mmol) in 4 mL DMF, then, the reaction 

mixture was heated up to 353 K for 2 days. After cooling, the reaction solution was left at 

room temperature. The two-color (colorless and orange) hybridized crystals (1/2) were 

obtained. 

 

Microscopic IR measurement 

Infrared spectra were measured by a FT/IR 6100 with a infrared microscope 

IRT-5000 (JASCO). The attenuated total reflection attachment (ATR) was used for the 

measurement. Elemental analysis was carried out with a Thermo Finnigan EA1112. 

 

Single crystal X-ray crystallographic analysis 

The single crystal of 2 ⊃ DMF was mounted in glass capillary. X-ray data 

collection (6.4 < 2θ < 55º) was conducted at 223K on Rigaku AFC10 diffractometer 

Mo–Kα radiation (λ = 0.7105 Å) with Rigaku Saturn CCD system. The structures were 

solved by a direct method (SHELXL) and expanded using Fourier techniques. All 

calculations were performed using the crystal clear crystallographic software package 3.8 

of Rigaku. The crystallizing solvents (DMF molecules) were severely disorderd and 

could not be satisfactorily localized. All non-hydrogen atoms except for those of 
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disorderd solvent molecules were refined anisotropically. Hydrogen atoms of ndc 

severely disorderd and could not be satisfactorily localized. Hydrogen atoms except for 

those of ndc, were added at their geometrically ideal positions and refined isotropically. 

Crystal data for 2･8.5DMF: C48H24N4O12Zn2, tetragonal, space group P4/mmm, (no. 123), 

a = 10.906 (2) Å, c = 22.456 (4) Å, V = 2670.8 (9) Å3, Z = 1, T = 223 K. ρcalcd = 0.609 

gcm-3, μ(MoKα) = 0.478cm-1, 1839 reflections measured, 1325observed (I > 2.00σ(I)) 99 

parameters; R1 = 0.0916, wR2 = 0.0748, GOF = 0.912. 

 

Synchrotron X-ray measurement for film-structural analysis 

The measurements were performed with a four-circle diffractometer having , , 

θ, and 2θ circles at beamline BL13XU for surface and interface structures, SPring-8. The 

hybridized crystal,1/2, was picked up just before the measurement, and then fixed on the 

glass substrate with the orientation where orange part of 1/2 was parallel to the glass 

substrate by double-faced adhesive. The measurement was carried out under Helium gas 

condition. In this condition, guest DMF molecules were most likely accommodated in 

pores of the PCP crystal. The θ-2θ scan at the initial position (χ = 90º) was carried out to 

determine the orientation of hybridized crystals. Only 00l Bragg peaks of from both 1 

and 2 were observed. The 00l Bragg peaks simultaneously observed from 1 and 2 in the 

same scan suggest that the epitaxial growth of 2 occurs at (001) surfaces of 1. The angles 

of , χ, θ and 2θ were moved to a desired Bragg position where diffractions were 

recorded. A scan of the rotation angle around the [001] direction (the  scan) at the 101 

and 011 Bragg position from 1 gave two sharp peaks assigned to the 110 and 110 Bragg 

peaks. In the same way, two peaks at the same  angles as 1 were observed, and assigned 

to the 101 and 110 Bragg position of 2. This result indicates that the (001) surface of 2 

perfectly matches to the (001) surfaces of 1 at the crystal-crystal interfaces. 
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Chapter 3 
 

Sequential Functionalization of Porous Coordination Polymer 

Crystals 

 

 

 

 

 

Abstract 
 A wide variety of potential organic linkers in porous coordination polymers 

(PCPs) allows these materials to exhibit versatile porous properties such as adsorption, 

separation, catalysis and sensing. The integration of several organic molecules can yield 

multifunctional porous materials in which various components sequentially fulfill their 

respective porous functions. However, the general synthetic protocol of PCPs, in which 

several types of ligands are simply assembled by metal ions, leads to a single-phase 

material that is unable to perform the sequential tasks. Here, we show that 

heterostructured PCP crystal fabricated using epitaxial growth simultaneously process 

two contradictory porous functions, size selectivity and high storage. The framework is 

grown using small pores as a shell around the isoreticular core framework, which has 

large pores on the micrometre scale for a single crystal. The core/shell crystal not only 

perfectly extracted the linear petroleum molecule of hexadecane (cetane) from a mixture 

with its branched isomer isocetane, even when the cetane was present at a very low 

concentration (1 wt %), but also showed improved accumulation of the molecules in its 

pores. 
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Introduction 

 
 Chemists fabricate multifunctional materials by integrating two or more distinct 

chemical functionalities into a single platform. This structural complexity allows the 

design of materials that possess contradictory properties. These materials have integrated 

properties that conventional singlephase materials can never achieve.1 The key to this 

integration is arranging the chemical functionalities at the desired positions within the 

material. Organic polymer chemistry has shown that the spatial arrangement of 

functionalities determines the resulting properties, with a homogeneous distribution 

resulting in a mixed and a heterogeneous distribution leading to the formation of a 

separated phase. Whereas random copolymers with several chemical functionalities 

display functions that are different from their original ones, block copolymers that 

partition the chemically distinct phases lead to the coexistence of individual properties.2 

Herein, we introduce heterogeneity into hybridization systems of coordination polymers 

to fabricate multifunctional porous materials that synergistically exhibit two 

contradictory porous properties. 

Porous coordination polymers (PCPs), or metal–organic frameworks (MOFs), 

form three-dimensional molecular skeletons consisting of organic spokes and inorganic 

nodes.3-6 PCPs are an intriguing class of porous crystalline materials in which the 

properties can be modulated simply by altering the chemical functionalities on the 

organic spokes.7-19 The porous properties can be controlled by introducing appropriate 

substituents. Pore size is affected by ligand bulkiness,20 specific chemical affinity is 

affected by hydrogen bonding,21 and reactivity is affected by the isolation or exposure of 

the reactive site.22 The porous functions of PCPs can be broadly divided into two classes 

based on different length scales. Spatial function, such as storage or size selectivity, 

originate from the space surrounded by the framework scaffold, where the arrangement 

of chemical functionalities dominates the function. In contrast, local functions, such as 

reactivity or catalytic activity, arise from the chemical structure of components, such as 

open metal sites23 or reactive organic sites.24 

Although local functions can be integrated into a mixed homogeneous phase of 

PCPs using several organic linkers, homogeneous integration alters spatial functions 

owing to the random arrangement of organic linkers.25, 26 One way to overcome this issue 

is to prepare heterogeneous structures containing bimodal pore networks. The simple but 

sequentially arranged hybridization of single PCP crystals affords control over the 

sequence of individual spatial functions. Such heterogeneous structured PCPs enable 

multifunctionality even when two contradictory properties are combined (Figure 1), such 
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as small and large pore sizes providing a simultaneous size selectivity and storage. Large 

cavities are essential to achieve a high storage capacity but accept any guest molecule, 

thus sacrificing size selectivity. To overcome this limitation, a platform could be 

designed containing both crystal A (small aperture) and B (large cavity) for separation 

and storage, respectively. 

One of the most promising applications of PCPs is gas and liquid separation 

using column packing materials27-29 or separation membranes.30 Although these 

separation systems exhibit excellent performance with dynamically flowing mixtures, 

there is also a need to separate one substrate from a mixture under static conditions, such 

as for biological systems or in a fuel tank. The extraction of byproducts, impurities, or 

toxic substances in these sorts of system requires a single material that can be used for 

the sequential separation and accumulation of the extracted product. 

Herein, the fabrication of a single-crystal extractor based on PCPs with 

core–shell heterostructures is presented in which the storage container is the core crystal 

and the size separation filter is the shell crystal. The design of isoreticular frameworks 

with organic ligands of different sizes allows the connection of pores at the interfaces 

between the two PCP crystals by epitaxial growth. We demonstrate the crystal extractor 

using the extraction of cetane (n-hexadecane) from its branched isomer, isocetane 

(2,2,4,4,6,8,8-heptamethylnonane), both of which are important molecules in diesel 

fuels.31-32 Even at a low concentration of cetane (<1%), the sequentially hybridized PCP 

crystals only extract cetane from the mixture, which allows it to accumulate in the large 

pores of the core container. 
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Figure 1. Porous coordination polymer crystal hybridization for sequential 

functionalization systems. 
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Results and Discussion 
 

A series of three-dimensional PCPs, {Zn2(dicarboxylate)2(dabco)}n,33-36 gives a 

single micrometer-scale crystal with a well-defined cuboid morphology in which the 

dicaroboxylate layer ligands link to the zinc paddlewheel clusters to form 

two-dimensional square lattices connected by dabco pillar ligands at the lattice points 

(dabco=1,4-diazabicyclo-[2.2.2]octane). The single-crystalline nature is essential for 

achieving sequential growth of the second crystal on the crystal surface. As the 

significant differences in pore sizes and surface areas between the core and shell crystals 

leads to the fabrication of the crystal extractor, we selected {Zn2(bdc)2(dabco)}n 34 (1) as 

the core framework (bdc=1,4-benzene dicarboxylate; pore sizes 7.5  7.5 Å2 along the c 

axis, 5.3  3.2 Å2 along the a and b axes; micropore volume 0.75 cm3 g-1) and 

{Zn2(adc)2(dabco)}n 36 (2) as the shell framework (adc = 9,10-anthracene dicarboxylate; 

pore sizes 1.7  1.7 Å2 along the c axis, 4.5  2.7 Å2 along the a and b axes; micropore 

volume 0.31 cm3 g-1). This system is shown in Figure 2. 

Two frameworks were successfully hybridized into one crystal by a simple 

solvothermal synthesis.37 Pieces of single crystals of 1 were placed into a solution of 

Zn(NO3)2·6H2O, 9,10-anthracene dicarboxylic acid, and dabco in 

N,N-dimethylformamide (DMF), and the solution was heated to 393 K for three days. 

The core–shell crystals (1/2) were harvested after cooling to room temperature. 

Because both crystalline phases are colorless, it is inherently difficult to 

distinguish between the two phases using an optical microscope; therefore, we used a 

confocal laser scanning microscope (CLSM) with anthracene fluorescent emission as a 

probe to determine the three-dimensional configuration of the core–shell crystals. 

Horizontally sliced CLSM images at two different focal points are shown in the Figure 3 

Whereas the image slice from the focal point at the bottom of the crystal showed 

fluorescence across the whole surface, the image slice from the focal point at the middle 

of the crystal gave an image with fluorescence on only four sides of the crystal (Figure 4 

a). The CLSM images at different focal points indicated that the shell crystals of 2 

covered all the surfaces of the core crystal 1. 

We also used microscopic laser Raman spectroscopy (MLRS) to examine 

core–shell crystals mechanically sliced at the middle of the crystal. As shown in Figure 

3c–f, mapping according to characteristic Raman signals corresponding to the core and 

shell framework (colored red and green, respectively, in Figure 4b) supported the 

formation of a core–shell crystal with microscopically abrupt interfaces. The Raman 

mapping measurement indicated that the shell crystals was several tenths of a micrometer 
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in thickness. The molar ratio of the core framework to the shell framework was 

determined to be 8:2 by 1H-NMR spectroscopy of core–shell crystals that had been 

decomposed with hydrochloric acid (Figure 5). Furthermore, synchrotron X-ray 

diffraction measurements for film structural analysis revealed that the hybridization of 

two frameworks into one crystal with pore connections at the crystal interfaces had been 

achieved (Figures 6). 

 

 
Figure 2. (a) A series of frameworks, [M2(dicarboxylate)2(diamine)]n, The crystal 

structure of (1) viewed along (b) the b axis and (c) the c axis. The structure of (2) viewed 

along (d) the b axis and (e) the c axis. 
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Figure 3. Schematic representations of the core/shell crystal and the CLSM and 

transmission images at z = A, z = B and z = C. 

 

 

Figure 4. (a) The horizontally sliced CLSM image at the focal point at the middle of the 

crystal (b) The Raman mapping for the mechanically sliced core/shell crystal at the 

middle of the crystal. The Raman spectra obtained (c) from a single crystal of (1), (d) the 

core part of (1/2), (e) a single crystal of (2) and (f) the shell part of (1/2). The arrows 

indicate the characteristic Raman signal corresponding to (1) and (2) that were used for 

the mapping in (b) 
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Figure 5. 1H-NMR spectrum of degassed core/shell crystal (1/2). 
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Figure 6. The reciprocal lattice space corresponding to the rotational scan, (a) around the 

[100] direction, and (b) around the [001] direction. The θ-2θscan of the core/shell 

crystal (1/2) on the glass substrate at the initial position ( = 90º), (c) with the a axis 

orientation, and (d) with the c axis orientation. The scan of the rotation angle, (e) around 

the [100] direction (the  scan), and (f) around the [001] direction. 
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We tested the accessibility of the guest petroleum molecules to the core crystal 

though the shell crystal. Thevguest-free core–shell crystals of 1/2 were separately 

immersed into either cetane or isocetane for a week. After filtration and drying, the 

MLRS technique was used to detect the characteristic signals of petroleum molecules 

inside the core crystal in the range 2600–3100 cm-1 38 (Figure 7). The Raman signal of 

cetane was observed when the excitation laser was focused at the core crystal, which 

suggested the successful travel of cetane through the pores of the shell framework and 

the crystal interfaces (Figure 7e, g). In contrast, no Raman signal indicative of isocetane 

was detected in either the core or shell crystals (Figure 7 f, h). This result indicates that 

the shell crystal restricts the adsorption of isocetane. When a single crystal of 2 was 

immersed into isocetane, no Raman signal was observed either (Figure 7d). Therefore, 

the bulkier branched isocetane was blocked by the steric effect of the small aperture of 2. 

Note that this blocking indicated that there was no cracks or defects in the shell crystal 

that isocetane can pass through. 

 

Figure 7. The Raman spectra obtained from the single crystal of 1 immersed in (a) cetane 

and (b) isocetane, from the single crystal of (2) immersed in (c) cetane and (d) isocetane, 

from the core portion of (1/2) immersed in (e) cetane and (f) isocetane, and from the shell 

portion of (1/2) immersed in (g) cetane and (h) isocetane. The red points in the core/shell 

crystal of (1/2) indicates the point at which the Raman laser is focused. 
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The preference for adsorbing cetane over isocetane was demonstrated by 

immersing single crystals of 1 and 2 and a core–shell crystal of 1/2 into a mixture of 

cetane/isocetane (1:1). After filtration and drying, these crystals were decomposed by 

hydrochloric acid and the adsorption ratio was determined by gas chromatography-mass 

spectrometry (GCMS; Figure 8). Branched isocetane (with a retention time of 2.72 min) 

was eluted from the GC column before its linear isomer cetane (with a retention time of 

3.98 min). Whereas the large pores of 1 barely discriminated between these isomers, the 

small pores of 2 accumulated only the linear cetane molecules. The core–shell crystal 

also selectively adsorbed cetane owing to the small aperture of the shell crystal. When 

the cetane/isocetane ratio was decreased to 1:10 and 1:100 (Figure 9, and Figure 11a, 

respectively), the adsorption of isocetane in 1 increased. In contrast, the crystal of 2 and 

the core–shell crystal 1/2 maintained their selective adsorption of cetane. 

 

 

Figure 8. GC-MS spectra showed the ratio of cetane and isocetane adsorbed by 1, 2, and 

1/2 at cetane/isocetane mixture ratios (1:1). 
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Figure 9. GC-MS spectra showed the ratio of cetane and isocetane adsorbed by 1, 2, and 

1/2 at cetane/isocetane mixture ratios (1:10). 

 

The storage capacity of cetane in the core–shell crystal of 1/2 was elucidated by 

thermogravimetric (TG) analysis. Because the weight loss of both the guest petroleum 

molecules and dabco39 from the framework occurred from 250–330 C, the weight loss 

from the guest molecules was calculated by subtracting the contribution of dabco from 

the total weight loss (Figure 10 and Table 1). For the 1:100 mixture of cetane/isocetane, 

the amount of cetane adsorbed in the core–shell crystal was estimated to be 26.9 wt%, 

which was twice that in the shell crystal of 2 (10.0 wt%; Figure 11b). This significant 

improvement in the cetane storage capacity arose from the large pore volume of the core 

framework of 1. In contrast, the single crystal of 1 alone showed no selective adsorption, 

and both cetane (6.9 wt%) and isocetane (24.5 wt%) accumulated in its pores. Thus, 

covering the core crystal with the thin shell crystal is the key to the combination of 

selectivity for cetane and high storage capacity. 
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Figure 10. TG analysis showing the weight loss of alkane and dabco, from room 

temperature to 330 °C, followed by framework combustion 

 
Table S1. The cetane storage amount of 1, 2 and 1/2 at the cetane/isocetane mixture ratio 

(1:100) 

 Host (g/mol) a (wt%) y (wt%) 

1 571.15 44.9 31.4 

2 771.39 23.1 10.0 

1/2 612.20 40.3 26.9 
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Figure 11. (a) The selective adsorption of cetane over isocetane from mixtures with a 

cetane :isocetane ratio of 1:100 was determined by GC-MS. The core/shell crystal only 

accumulated cetane (bottom) due to the small pores of the shell crystal of (2) (middle), 

which was in contrast to the preferential adsorption of isocetane by crystals of (1) (top). 

(b) The amount of cetane stored in (1), (2) and (1/2) when using a (1:100) mixture of 

cetane/isocetane. 
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Conclusion 

 
 In conclusion, we have succeeded in sequential functionalization of PCP crystals 

by fabricating core–shell type heterostructures that exhibited size selectivity owing to the 

small aperture of the shell framework and high storage capacity owing to the large pore 

volume of the core framework. This successful integration of two contradictory spatial 

functions into one crystal was enabled by the heterogeneous arrangement of chemical 

functionalities on one basic framework skeleton. This first example of a multifunctional 

PCP crystal will enable further integration of other porous properties. 
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Experimental Section 

 

Materials 

Anhydrous DMF, Zn(NO3)2·6H2O, dabco, n-hexadecane, 

2,4,4,6,8,8-heptametylnonane, n-hexane, and aqueous hydrochloric acid were purchased 

from Wako Pure Chemical Industries. 9,10-anthracenedicarboxylic acid (H2adc) was 

prepared according to a previously published procedure.40 

 

Synthesis 

Compound 1 was prepared according to previously published procedures.34 The 

reaction solution for 2 was prepared from Zn(NO3)2·6H2O (0.100 mg, 0.336 mmol), adc 

(0.089 mg, 0.336 mmol), and dabco (0.019 mg, 0.167 mmol) in DMF (4 mL). Dozens of 

single crystals of 1 were added to a 4 mL reaction solution. The reaction mixture was 

then heated to 393 K and maintained at that temperature for 3 days. After cooling, the 

coreless hybridized crystals of 1/2 were harvested. 

 

Cnfocal Laser Scanning Microscopy 

The core–shell crystals (1/2) were immersed into DMF solvent and placed on a 

glass substrate. The fluorescence images at different depths were obtained by a FV1000 

microscope (Olympus) with a semiconductor laser at 370 nm, and fluorescent emission 

was collected in the 400–430 nm range 

 

Microscopic Laser Raman Spectroscopy 

The Raman spectra were measured by a LabRAM HR-800 spectrometer (Horiba 

Jobin Yvon Ltd.) with a semiconductor laser at 785 nm. The single crystal samples of 1, 2, 

or 1/2 were placed on the glass substrate. 

 

Gas chromatography mass spectrometry 

Gas chromatography mass spectrometry (GC-MS) was performed using a 

SHIMADZU QP2010 with a DB-5MS capillary column (length 30 m, film thickness 0.25 

mm, Agilent Technologies). The following conditions were employed: electron energy 70 

eV, scan range from m/z 50 to 276 in 0.5 s, ion source temperature 200 C, transfer line 

temperature 200 C, injector temperature 300 C, column temperature 200 C for 5 min, 

and He carrier gas flow rate 0.51 mL min-1. The crystals, which were immersed in the 

cetane/isocetane mixture, were decomposed by aqueous hydrochloric acid and all alkane 

molecules were extracted by n-hexane solvent. After the extraction, the adsorption ratio 
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of cetane/isocetane was analyzed by GC-MS. 

 

Thermogravimetric Analysis 

Thermogravimetric (TG) analyses were performed using a Rigaku Thermo plus 

TG 8120 apparatus in the temperature range between 303 K and 773 K in a N2 

atmosphere and at a heating rate of 10 K min-1 

 

Synchrotron X-ray Diffraction 

Synchrotron X-ray measurements were performed with a four-circle diffractometer 

having , χ, θ, and 2θ circles at beamline BL13XU for surface and interface structures, 

SPring-8. An X-ray beam (50 × 50 μm2) was incident on the sample. Si-PIN photo-diode 

and Oxford scintillation detectors were used for the measurement. The core-shell crystal 

(1/2) with a size over 300 μm was fixed on the glass substrate with double-faced 

adhesive. The measurement was carried out under Helium gas condition. For each sample, 

the θ-2θ scan at the initial position (χ = 90º) was carried out to determine the orientation 

of the crystal, either the a axis orientation or the c axis orientation, and then the angles of 

, χ, θ, and 2θ were moved to a desired Bragg position where diffractions were recorded. 
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Chapter 4 
 

Targeted Functionalisation of a Hierarchically-Structured 

Porous Coordination Polymer Crystal Enhances its Entire 

Function 

 

 

 

 

 

Abstract 
A core-shell type porous coordination polymer (PCP) crystal has been 

synthesized: [Zn2(adc)2(dabco)]n (1) as the core crystal and [Zn2(abdc)2(dabco)]n (2) as 

the shell crystal (adc = 9,10-anthracene dicarboxylate, dabco = diazabicyclo[2.2.2]octane, 

abdc = 2-amino-1,4-benzene dicarboxylate). After the formation of the core-shell 

structure, a free carboxyl group was embedded in the shell crystal via heterogeneous 

acylation of amino groups with succinic anhydride to enhance the selectivity for 

N,N-dimethylaniline (DMA). The shell crystal allowed the core crystal to selectively 

accommodate DMA, thus leading to turning on intense exciplex emission by the 

formation of excited state between anthracene moiety and DMA. 
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Introduction 

 
 As being particularly implemented in the field of biochemistry such as enzymes, 

antibodies and biological membranes, chemical modification to a distinct component in 

complex system impacts on the rest and even sophisticates the function of entire 

system.1-2 This is because the overall function is dictated by synergistic collaboration of 

all the components. In that context, we applied this prominent feature to hybrid porous 

materials to stimulate the emergence of new applications.  

 Porous coordination polymers (PCPs) or metal-organic frameworks (MOFs)3-9 

have been intensively studied due to a wide variety of the applications such as 

adsorption,10-12 separation,13-14 catalysis15-16 and chemical sensing.17-19 Most recently, we 

demonstrated that the synergistic collaboration between distinct parts in a core-shell PCP 

determine its entire property: selectivity at the shell crystal and high storage capacity at 

the core crystal.20 Considering the features of such complex systems, the 

functionalization on specific targeted part in the core-shell PCPs will improve the 

performance of entire system. 

 Because guest species are obliged to pass through the shell crystal before 

accessing the core crystal, the targeted functionalization on the shell crystal definitely 

affects the overall porous property of the hybrid crystal system. Here, we introduce 

amino group only into the shell crystal that can react with carboxyl group by PSM. 21-24 

Such modification allows for the conversion of pore-surface property and totally changes 

the propensity of guest affinity. The introduction of the fluorescent unit into the core 

crystal for detection of the quantity of guest molecules in the pores allows us to visualize 

the molecular selectivity induced by PSM (Figure 1). 

 

Figure 1. Schematic illustration of targeted functionalization. 
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Results and Discussion 
 

A series of three-dimensional PCPs, [Zn2(dicarboxylate)2(dabco)]n,25-28 gives 

single crystals with a well-defined morphology, in which the dicarboxylate layer ligands 

link to the zinc paddlewheel clusters to form two-dimensional square lattices connected 

by dabco pillar ligands at the lattice points (dabco = 1,4-diazabicyclo[2.2.2]octane), as 

shown in Figure 2a-b. We selected [Zn2(adc)2(dabco)]n
28 (1) as the core framework (adc 

= 9,10-anthracene dicarboxylate) and [Zn2(NH2-bdc)2(dabco)]n (2) as the shell 

framework (NH2-bdc = 2-amino-1,4-benzenedicarboxylate). For a successful 

hybridization by epitaxial growth two frameworks should have same coordination 

geometry.29-30 However, the crystal structure of 2 has not yet been reported. Prior to the 

synthesis of the core-shell crystal, we successfully grew a single crystal of 2 and 

determined that the crystal structure would suit to hybridization.  Two frameworks were 

then hybridized into one crystal. Single crystals of 1 were put into a reaction solution of 

Zn(NO3)2•6H2O, 2-amino-1,4-benzenedicarboxylic acid and dabco in 

N,N-dimethylformamide (DMF), and the solution was heated at 60 ºC. The shell crystal 

of 2 was grown on the core crystal. The core-shell crystals were harvested after cooling 

to room temperature.  

 Prior to the PSM reaction in the core-shell PCP (1/2), the single crystal of 2 was 

modified using a heterogeneous acylation of its pendant amino groups with succinic 

anhydride, giving rise to a single crystal of p2 (PSM modified 2 is denoted as p2).22 We 

used 1H-NMR technique to determine the conversion ratio of the amino group as 52% 

(Figure 2). Although each pore of 2 contains two reactive amino groups, succinic 

anhydride reacted with one out of two amino groups. This is because the pore size of 2 

limits to the accommodation for one succinic acid and the second reaction is sterically 

restricted. In the same manner, the PSM reaction in the core-shell crystal (1/2) was 

carried out, giving rise to a PSM modified core-shell PCP (1/p2). 

 The optical microscopic image (Figure 3c) of 1/p2 clearly showed that the core 

crystal of 1 surrounded the colorless shell crystal of p2 and the PSM reaction did not 

significantly damage the core-shell crystal. Each part of the hybridized crystal was 

identified as the respective framework structure by microscopic laser Raman 

spectroscopy (MLRS) (Figure 3d–h). The Raman signals of the core and shell crystal 

correspond to those of 1 and p2. The spectral correspondence suggests the formation of 

core-shell crystals of 1/p2. 
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Figure 2. 1H-NMR spectra of a) 2 and b) p2. Red, blue and black circles are assigned to 

p2, 2 and DMF, respectively. The results suggest 52 % of NH2-groups was reacted with 

succinic anhydride. 

 

Figure 3. (a) The crystal structure of , [M2(dicarboxylate)2(diamine)]n, viewed along the 

a axis, (b) c axis. (c) The optical microscope image of the core-shell crystal 1/p2. (d) The 
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microscopic laser Raman spectroscopic measurement of the core crystal of 1/p2, (e) the 

shell crystal of 1/p2, (f) the single crystal of p2, (g) the single crystal of 2, (h) the single 

crystal of 1. 

The elucidation of the structural relationship between the core and shell 

frameworks was accomplished by synchrotron X-ray diffraction measurements using a 

four-circle diffractometer at beamline BL13XU for surface and interfacial structures, 

SPring-8. As we observed the sharp and single diffraction peaks at the 110 and 1-10 

Bragg positions with 180º periodicity and at the 101, 011, -101, and 0-11 Bragg positions 

with 90º periodicity, the shell crystal of 2 grew epitaxially on both the {100} and {001} 

surfaces (Figure 4) and the single crystallinity of the shell crystal was maintained even 

after the PSM reaction. These results suggest the pore connection at the crystal interface 

between two frameworks. 

 

Figure 4. (a) The crystal structure of [M2(dicarboxylate)2(diamine)]n, viewed along the a 

axis, (b) c axis. (c) The optical microscope image of the core-shell crystal 1/p2. (d) The 

microscopic laser Raman spectroscopic measurement of the core crystal of 1/p2, (e) the 

shell crystal of 1/p2, (f) the single crystal of p2, (g) the single crystal of 2, (h) the single 

crystal of 1. 
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 To examine the effect of PSM on the guest preference, N,N-dimethylaniline 

(DMA) and benzene were chosen as guest molecules for the following two reasons: (a) 

both are aromatic molecules but possess different chemical functionalities, which are 

suited to investigation of the selectivity based on chemical affinity; (b) the core crystal 

detects the accommodation of DMA by fluorescence based on the exciplex formation 

between anthracene unit (electron accepter) and DMA (electron donor).31-32 The 

preference for adsorbing DMA over benzene was demonstrated by immersing single 

crystals of 1, 2, p2 and the core-shell crystals of 1/2, 1/p2 into a mixture of 

DMA/benzene (1:1). After filtration and drying, these crystals were decomposed by 

hydrochloric acid and the adsorption ratio was determined by gas chromatography-mass 

spectrometry (GC-MS) (Table1). Whereas 1 and 2 barely discriminated between these 

aromatic molecules, p2 preferentially adsorbed DMA molecules most likely due to the 

interaction between free carboxyl group being hung on the pore wall and adsorbed DMA 

(Figure 5). The red shift of carbonyl stretching vibration (from 1704 cm-1 to 1682 cm-1) 

implied the interaction between free carboxyl group and DMA.33 Unfortunately, peak 

shift of DMA was not clear in IR spectra, because the most characteristic peaks of DMA 

overlapped with the peaks of p2. However, the results of IR and GC-MS suggested that 

the embedded carboxyl group contributed to the selective adsorption of DMA most likely 

through the interaction between carboxyl group from the pore surface and tertiary amine 

from DMA. Although the core-shell crystal (1/2) did not show selectivity for these 

molecules, the PSM-modified core-shell crystal (1/p2) selectively adsorbed DMA. 

Furthermore, the strong Raman signal of DMA was detected in the core part of 1/p2, 

which indicated the selective accommodation of DMA in the core part (Figure 6).34 

These results suggested that the functionalization of the shell crystal induced the 

selective accommodation of DMA even in the core crystal. 

 

Table 1. Adsorption ratio of the single crystals of 1, 2, p2 and the core/shell crystals of 

1/2, 1/p2 soaked in mixtures (DMA/benzene). 

ratio 

 

compound 

1:1 

1 53:47 

2 42:58 

p2 82:18 

1/2 39:61 

1/p2 80:20 
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Figure 5. (a) Attenuated total reflection IR spectra of p2 with benzene, (b) with DMA, 

(c) degassed p2, (d) DMA. Blue shift of CO vibration in free COOH group was observed 

in p2 with DMA. 

 

 
Figure 6 The Raman spectra obtained from (a) the core part of 1/p2, (b) 1 immersed in 

the mixture, (c) DMA and (d) benzene. The red points in the core-shell crystal of 

indicates the point at which the Raman laser is focused. The arrows indicate the 

characteristic Raman signal of DMA. 
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The fluorescent property of the core-shell crystal of 1/p2 was elucidated by confocal 

laser scanning microscopy (CLSM) technique (Figure 7a). Prior to the analysis of the 

core-shell crystal of 1/p2, each fluorescent spectra of 1 with DMA and benzene were 

obtained using CLSM, green and blue dot lines, respectively, as shown in Figure 7b. 

Whereas 1 with benzene showed the fluorescence of anthracene unit, 1 with DMA 

showed highly efficient quenching in the fluorescence of monomeric anthracene and a 

new broad emission band in the range from 400 to 700 nm. The emission with large 

Stokes shift represents a photoinduced CT complex, an exciplex between the host 

anthracene unit and the guest DMA molecules.28 The single crystals of 1 immersed in the 

mixture simultaneously showed broad exciplex emission (from 400 to 700 nm) and 

monomeric anthracene fluorescence (420 nm). In contrast, the fluorescent spectra from 

the core-shell crystal (1/p2) that was immersed in the mixture mainly showed exciplex 

fluorescence. The maximum intensity of the exciplex emission in the core crystal is 1.9  

0.3 times stronger than the single crystal of 1 itself (Figure 7b). The stronger fluorescent 

intensity can be interpreted as the higher population of DMA in the core crystal as the 

consequence of selective filtering at the shell crystal. Thus, enhancement of guest 

selectivity of the shell crystal improves the intensity of the guest-responsive fluorescence 

of the core-shell crystal. 

 

 

Figure 7. (a) The horizontally sliced CLSM image at the focal point at the middle of the 

core-shell crystal 1/p2 (lower) and single crystal of 1 (upper) immersed in the mixture 

for two days. (b) fluorescent spectra obtained using CLSM of 1 in DMA (green dot),  1 

in benzene (blue dot), 1/p2 in the mixture (red) and 1 in the mixture (black). The 

excitation wavelengths is 405 nm. 
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Conclusion 

 
  In conclusion, we demonstrated that functionalization only of the shell 

crystal sophisticated the function of the core-shell PCP crystal. The PSM-modified 

core-shell PCP crystal accumulated large amount of DMA over benzene and exhibited 

intense exciplex fluorescence. This example of further functionalization of 

hierarchically-structured PCP crystal will enable us to create a wide variety of 

multifunctional PCPs. 
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Experimental Section 

 

Materials 

Zn(NO3)2•6H2O, 2-amino-1,4-benzenedicarboxylic acid (H2abdc), 

1,4-diaza[2.2.2]bicyclooctane (dabco), succinic anhydride, N,N-dimethylformamide  

(DMF), methanol (MeOH), N,N-dimethylaniline and benzene were purchased from Wako 

Pure Chemical Industries. 9,10-anthracene dicarboxylic acid (adc) was prepared 

according to the literature procedures.35 

 

Synthesis of 1 

The solution of Zn(NO3)2•6H2O (125 mg, 0.420 mmol), H2adc (110 mg, 0.414 

mmol), and dabco (23.8 mg, 0.213 mmol) in 25 mL DMF/MeOH  (DMF : MeOH = 1 : 

1) was stirred for several hours. After the white tiny crystals were removed by filtration, 

the transparent solution was diluted  four times with DMF/MeOH. The solution was 

heated up to 333 K for 2 days. After cooling, the crystals were harvested. 

 

Synthesis of 1/2 

The solution of Zn(NO3)2•6H2O (104 mg, 0.35 mmol), H2abdc (73 mg, 0.40 

mmol), and dabco (72 mg, 0.64 mmol) in 10 mL DMF was stirred for several hours. After 

the white precipitates were removed by filtration, the dozens of well-dispersed single 

crystals of 1 were put into the solution. The solution was heated up to 333 K for 4 days. 

After cooling, the crystals were harvested. 

 

Post-synthetic modification of 1/2 

Post-synthetic modification was performed according to the literature 

procedures.36 Dozens of the core/shell crystal (1/2) was put in a container with succnic 

anhydride dissolved in CHCl3. After the sample was allowed to stand for two days, the 

crystals were washed with CHCl3 then soaked in pure CHCl3 for 3 days, with fresh 

CHCl3 added every day. After the soaking, the crystals were stored in the last CHCl3 

solution until being analyzed. 

 

Synthesis of single crystal of 2 

The solution of dabco (0.56 mg, 0.005 mmol) dissolved in 2 mL toluene was 

slowly layered on the solution of Zn(NO3)2•6H2O (2.98 mg, 0.01 mmol) and H2abdc 

(1.82 mg, 0.01 mmol) dissolved in 2 mL DMF, where a mixture of DMF/toluene (1:1) 

was placed  between two layered solutions. The brown cuboid crystals suitable for 
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single crystal X-ray analysis were obtained after three month. Elemental analysis calcd. 

for C31H47N7O11Zn {[Zn(abdc)(dabco)]･(DMF)3}n: C, 45.16; H, 5.746; N, 11.89, Found: 

C, 44.86; H, 5.47; N, 11.97. 

 

Characterization methods 

The compounds were characterized with X-ray diffraction (XRD), microscopic 

laser Raman spectroscopy, synchrotron XRD, thermogravimetry (TG) and elemental 

analysis. Powder X-Ray diffraction (XRD) studies were performed using a Rigaku 

diffractometer with Cu Kα radiation (λ = 1.5418 A°). The Raman spectra were measured 

by a LabRAM HR-800 spectrometer (Horiba Jobin Yvon Ltd.) with a semiconductor 

laser at 785 nm. TG measurements were carried out by Thermo plus EVO II. Elemental 

analysis was carried out on a Flash EA 1112 series, Thermo Finnigan instrument. Single 

crystal X-ray diffraction measurements were made on a Rigaku AFC10 diffractometer 

with Rigaku Saturn CCD system equipped with a rotating-anode X-ray generator 

producing multi-layer mirror monochromated MoKα radiation. 

 

Physical measurement 

The fluorescence images and spectra were obtained by a FV1000 microscope 

(Olympus). The fluorescent images were obtained by a FV1000 microscope (Olympus) 

with a semiconductor laser at 405 nm and fluorescent emission was collected in the 

500-550 nm range. Gas chromatography-mass spectrometry (GC-MS) was performed 

using a SHIMADZU QP2010. IR measurement was performed by Thermo Scientifi 

Nicolet iS5 FT-IR. 

 

Structure Determination 

X-ray data collection (5º < 2θ < 55º) was conducted at 223K on Rigaku AFC10 

diffractometer Mo-Kα radiation (λ = 0.7105 Å) with Rigaku Mercury CCD system. The 

structures were solved by a direct method (SIR92) and expanded using Fourier 

techniques. All calculations were performed using the CrystalStructure crystallographic 

software package 4.0 of Rigaku. The crystallizing solvents (DMF molecules) were 

severely disordered and could not be satisfactorily localized. All non-hydrogen atoms 

except for those of disordered solvent molecules were refined anisotropically. Hydrogen 

atoms severely disordered and could not be satisfactorily localized. Crystal data for 

2solvent: C31H47N7O11Zn, tetragonal, space group P4/mmm, (no. 123), a = 10.9681(9) 

Å, c = 9.7190(10) Å, V = 1169.19(19) Å3, Z = 1, T = 223 K. calcd = 0.854 gcm-3, 

(MoKα) = 1.054 cm-1, 1147 reflections measured, 923 observed (I > 2.00σ(I) 42 
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parameters; R1 = 0.0815, wR2 = 0.3022, GOF = 1.177. These data can be obtained free of 

charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. (CCDC number: 867374) 

 

Synchrotron X-ray measurement for film-structural analysis 

The measurements were performed with a four-circle diffractometer having , , 

 and 2 circles at beamline BL13XU for surface and interface structures, SPring-8. The 

hybridized crystal, 1/p2, was picked up just before the measurement, and then fixed on 

the glass substrate with the orientation where orange part of 1/p2 was parallel to the glass 

substrate by double-faced adhesive. The measurement was carried out under Helium gas 

condition. 
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Chapter 5 
 

Programmed Crystallization via Epitaxial Growth and Ligand 

Replacement towards a Hybridized Porous Coordination 

Polymer 

 

 

 

 

 

Abstract 
 Two-dimensional (2D) porous coordination polymer (PCP) crystals have been 

hybridized through epitaxial growth or ligand replacement: [Zn2(NO2-ip)2(dpndi)]n (1) as 

the core crystal and [Zn2(NO2-ip)2(bpy)]n (2) as the shell crystal (NO2-ip = 

5-nitroisophthalate, dpndi = N,N’-di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxydiimide, 

bpy = 4,4’-bipyridyl). Whereas the epitaxial growth on the core crystal leads to a 

sandwich type PCP, the ligand replacement nearby surface of the core crystal results in a 

core-shell type PCP. 
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Introduction 

 
 Porous coordination polymers (PCPs) or metal-organic frameworks (MOFs) are 

an intriguing class of crystalline materials due to a wide variety of porous properties such 

as gas storage,1-3 separation,4-5 catalysis6-7 and polymerization.8 These porous properties 

are basically dominated by the framework structures, pore structure, chemical affinity 

and reactive site. In contrast, the creation of hierarchical structures of PCPs, such as 

membrane, macroporous architectures and hybrid PCPs, further sophisticate the porous 

properties and provide new applications. 

 In that context, the methods to fabricate well-designed architectures have been 

developed by spatial control of the crystallization process. The control of the 

crystallization process is traditionally performed by heterogeneous nucleation on 

templates. This basic approach was employed to fabricate two-dimensional 

membrane,9-11 three-dimensional architectures12-13 and heterogeneously hybridized 

particles.14-15 PCPs also offer an opportunity of being utilized as crystalline templates for 

the crystallization of another PCP on their surfaces. This characteristic feature enable to 

fabricate hybridized PCP crystals through epitaxial growth.16-17 

 The crystal surface of PCPs is rather dynamic in solutions due to the 

coordination equilibrium, where the organic ligands and solvent molecules compete to 

terminate the surfaces.18-19 Thus, the organic ligands nearby the crystal surfaces can be 

replaced by other ligands with the same chemical functionality. The ligand exchange 

around the crystal surfaces will also result in the formation of another PCP on the 

original PCP, thus leading to heterogeneously hybridized PCP. In both approaches, 

epitaxial growth and ligand replacement, the crystallization of second PCP was spatially 

programmed by the surface of the template PCP. 

 Herein, we demonstrate the synthesis of hybridized PCP through epitaxial 

growth and ligand replacement. As we demonstrated in previous studies, a sandwich type 

hybrid PCP (S-1/2) was synthesized by epitaxial growth.20 In contrast, a core-shell type 

hybrid PCP (C-1/2), in which all the surfaces are surrounded by the second PCP, was 

obtained by ligand replacement (Figure 1). We usually employed two-steps solvothermal 

reaction in order to hybridize different PCPs by epitaxial growth. The second 

solvothermal reaction often gives the pure-phased compound. The ligand replacement 

approach would generate a hybrid PCP with restricting the formation of pure-phased 

compounds. 
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Figure 1. Two approaches, epitaxial growth and ligand replacement, towards hybridized 

PCPs. 
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Results and Discussion 
 

A series of two-dimensional frameworks, [M(isophthalate)(diamine)]n, is an 

excellent candidate, wherein three components, namely the metal ions, V-shaped layer 

ligands, and diamine pillar ligands, can be varied without changing the original 

framework topology.21-23 Coordination frameworks of 

{[Zn(NO2-ip)(dpndi)]•(DMF)0.5(MeOH)0.5}n (1solvents) and 

{[Zn(NO2-ip)(bpy)]•(DMF)0.5(MeOH)0.5}n (2solvents) were synthesized via the 

solvothermal reaction of Zn(NO3)2•6H2O, NO2-ip and bpy or dpndi in a DMF/MeOH 

solution (NO2-ip = 5-nitroisophthalate, dpndi = 

N,N’-di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxydiimide, bpy = 4,4’-bipyridyl,). As 

shown in Figure 2a, the Zn ion have a distorted octahedral N2O4 geometry, being 

coordinated by two diamine molecules at the axial positions, one chelating carboxylate of 

NO2-ip and two other monodentate caroboxylate of NO2-ip in the equatorial plane. The 

coordination of NO2-ip ligands to the Zn ions constructed one-dinemensional (1D) chain 

structure, followed by the linkage of the adjacent chains through diamine in the axial 

positions, leading to the formation of two-dimensional (2D) sheets. The 2D sheets are 

alternatively interdigitated, forming 1 and 2, as shown in Figure 2b-c. 

  

 

Figure 2. Crystal structures of (a) the 1D chain structure composed of Zn ions and 

NO2-ip, and the sheet structure of (b) 1 and (c) 2. Gray, blue, red, and purple are C, N, O 

and Zn, respectively. The hydrogen atoms and guest molecules are omitted for clarity. 
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 As we demonstrated before, the hybridization of these two frameworks into one 

single crystal has been successfully achieved by a simple solvothermal synthesis; pieces 

of the single crystal of 1 (50 m) were put into a DMF solution of Zn(NO3)2•6H2O, 

5-nitroisophthalic acid and bpy, and the solution was heated to 393 K. The hybrid 

crystals (S-1/2) were harvested after cooling to room temperature. The optical 

microscopic image (Figure 3a) of S-1/2 clearly demonstrated that the shell crystal of 2 

grew on only two surfaces of the core crystal of 1, leading to the formation of a sandwich 

type hybrid PCP. Each part of the hybridized crystal was identified as the respective 

framework structure by microscopic laser Raman spectroscopy (Figure 3b–e). The 

characteristic peaks of the core and shell crystals correspond to those of 2 and 1. The 

result suggests that the second framework of 2 successfully grew on the core framework 

of 1. 

Both crystals have the same 1D chain structures comprising of Zn ions and 

NO2-ip. However, the distances between 1D chains are significantly different due to the 

difference in the length of dpndi and bpy, which enables easy determination of the 

structural parameters between the core and shell crystal. Synchrotron X-ray 

measurements for film-structural analysis were, therefore, performed using a four-circle 

diffractometer at beamline BL13XU for surface and interface structures, SPring-8. The 

hybridized core-shell crystal of S-1/2 with a size over 50 m and a shell crystal thickness 

over 5 m was fixed on a glass substrate with the configuration illustrated in Figure 3f, 

and diffractions were recorded at a desired Bragg position using an X-ray beam with the 

size of 1 × 1 m2. The -2 scan of S-1/2 at the top of the crystal provided only one 

sharp peak assigned to 01-1 Bragg peak of the shell (2), which is parallel to the direction 

of bpy pillar ligands. In contrast, the -2 scan of S-1/2 at the middle of the crystal gave 

one strong peak assigned to 40-2 Bragg peak of the core (1) and two weak peaks assigned 

to 60-2 Bragg peak of the shell (1) and 01-1 Bragg peak of the core (2), respectively 

(Figure 3g-j). All the observed peaks are nearly parallel to the pillar ligands, bpy and 

dpndi. This result suggested that the shell crystal of 2 was epitaxially grown on the core 

crystal of 1 along pillar direction. 
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Figure 3. (a) The hybrid crystal (C-1/2) (b) The Raman spectra of shell part, (c) core part, 

(d) 2, and (e) 1. (f) The schematic illustration of configuration of the hybrid crystal 

(C-1/2) on a glass substrate for synchrotron X-ray diffraction measurements. (g) The 

-2 scan of shell part, and (h) core part. The simulation XRD patterns of (i) 2, and (j) 1. 

 

The core-shell type hybrid PCP (C-1/2), where all the surfaces are covered by 

second PCP, was synthesized via ligand replacement from dpndi to bpy. The powder 

crystals of few micrometers (1) were immersed in the stoked solution of bpy and stirred 

for 12 hours at room temperature. The X-ray diffraction measurements on the hybrid PCP 

(C-1/2) suggested the existence of both of 1 and 2 in the powder samples (Figure 4a-e). 

The molar ratio of dpndi to bpy was determined to be 7:3 by 1H-NMR measurement of 

the hybrid crystals (C-1/2) that had been decomposed with hydrochloric acid. 

Whereas 2 can adsorb iodopropane, the small pores of 1 does not accommodate 

iodopropane. The hybrid crystals (C-1/2) were soaked in idopropane to detect the 

location of 2 by scanning electron microscopy with energy dispersive X-ray spectroscopy 
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(SEM-EDX). After soaking and drying, the spatial distribution of iodine in the crystals 

were mapped by SEM-EDX. As shown in Figure 4f-g, iodine are localized at the edges of 

a crystal, suggesting that the edge of core crystal of 1 is converted to 2 via ligand 

exchange from dpndi to bpy. This method does not achieve the anisotropic growth of 2 as 

well as epitaxial growth does. Although the distances between 1D chains are different 

due to the difference in the length of dpndi and bpy, all the crystal surfaces of 1 was 

surrounded by 2, forming a core-shell type structure. 

 

Figure 4. (a) PXRD of hybrid crystal (C-1/2), (b) 2, (c) 1, (d) simulation of 

as-synthesized 2, and (e) 1. (f) SEM image of hybrid crystal (C-1/2). The red line 

indicates the measurement line of EDX, (g) Line profile for intensity of Zn and I, (h) 

mapped intensity of Zn, and (i) I. 
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Since the hybrid crystals (C-1/2) suitable for adsorption measurements were 

harvested, the adsorption experiments on 1, 2 and hybrid crystals (C-1/2) were performed 

for CO2, N2, and O2, as shown in Figure 5. 1 and 2, does not adsorb O2 and N2 at 77 K, 

but adsorbs CO2 at 195 K with gate-opening process. As previously reported, the 

gate-opening adsorption of 2 is due to the structural transformation from closed phase to 

open phase. 1 also shows step-wise adsorption of CO2 probably because of the structural 

transformation. The sorption profile of hybrid PCP (C-1/2) for CO2 is sum of those of 1 

and 2. The uptake amount of C-1/2 is nearly same as physical mixtures of 1 and 2. This 

result suggested that both of 1 and 2 in hybrid PCP (C-1/2) maintained permanent 

porosity and the guest molecules reached to core of 1 through the shell of 2. 

 

Figure 5. Adsorption isotherms of CO2 for 1 (blue), 2 (black), C-1/2 (red) and physical 

mixture of 1 and 2. Closed and open symbols show adsorption and desorption, 

respectively. 
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Conclusion 

 
 In summary, we have demonstrated the crystal hybridization of two-dimensional 

PCPs by epitaxial growth and ligand exchange. The sandwich type hybrid PCP was 

synthesized by epitaxial growth. In contrast,  the core-shell type hybrid PCP, in which 

all the surfaces are covered by the second PCP, was obtained by ligand replacement. 

These results suggested that ligand replacement as well as epitaxial growth are one of 

good methods to fabricate hybridized PCPs. 
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Experimental Section 

 

Materials 

Zn(NO3)2•6H2O, N,N-dimethylformamide (DMF), methanol (MeOH) and 

idopropane were purchased from Wako Pure Chemical Industries. 5-nitroisophthalic acid 

(NO2-ipH2) were purchased from acid Sigma-Aldrich, Inc. 4,4’-bipyridyl (bpy) were 

purchased from Tokyo Chemical Industry. 

N,N’-di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxydiimide (dpndi) was prepared 

according to the literature procedures. 

 

Synthesis of single crystals of 1  

The suspension of dpndi (42.0 mg, 0.10 mmol) in MeOH (2 mL) was slowly 

layered on the top of the solution of Zn(NO3)2•6H2O (29.7 mg, 0.10 mmol), NO2-ipH2 

(21.1 mg, 0.10 mmol) in DMF (2mL). The solution was heated at 70 C for 1 day. After 

cooling, yellow crystals were harvested. Elemental analysis calcd. for C34H20.5N5.5O11Zn 

{[Zn(NO2-ip)(dpndi)]•(DMF)0.5(MeOH)0.5}n: C, 54.63; H, 2.76; N, 10.31, Found: C, 

53.86; H, 3.09; N, 10.98. 

 

Synthesis of powder crystals of 1 

The solution of Zn(NO3)2•6H2O (118.8 mg, 0.4 mmol), NO2-ipH2 (84.4 mg, 0.4 

mmol) and bpy (168 mg, 0.4 mmol) in 20 mL DMF was stirred for several hours. The 

dozens of well-dispersed single crystals of 1 were put into the solution. The solution was 

heated up to 393 K for 3 hours by microwave (Initiator, Biotage). After cooling, the 

powder crystals were harvested. 

 

Synthesis of hybrid single crystal, 1/2  

The solution of Zn(NO3)2•6H2O (59.4 mg, 0.2 mmol), NO2-ipH2 (42.2 mg, 0.2 

mmol) and bpy (31.2 mg, 0.2 mmol) in 10 mL DMF was stirred for several hours. The 

dozens of well-dispersed single crystals of 1 were put into the solution. The solution was 

heated up to 353 K for several days. After cooling, the crystals were harvested. 

 

Synthesis of hybrid powder crystals, 1/2  

The solution of bpy (15.6 mg, 0.1 mmol) in 100 mL DMF was stirred for several 

hours. The powder crystals of 1 (7.47 mg, 0.01 mmol) were put into the solution and the 

solution was stirred for 12 hours. 
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Characterization methods 

The compounds were characterized with X-ray diffraction (XRD), microscopic 

laser Raman spectroscopy, synchrotron XRD, thermogravimetry (TG), 1H-NMR and 

elemental analysis. Powder X-Ray diffraction (XRD) studies were performed using a 

Rigaku diffractometer with Cu Kα radiation (λ = 1.5418 Å). The Raman spectra were 

measured by a LabRAM HR-800 spectrometer (Horiba Jobin Yvon Ltd.) with a 

semiconductor laser at 785 nm. TG measurements were carried out by Thermo plus EVO 

II. Elemental analysis was carried out on a Flash EA 1112 series, Thermo Finnigan 

instrument. Single crystal X-ray diffraction measurements were made on a Rigaku 

AFC10 diffractometer with Rigaku Saturn CCD system equipped with a rotating-anode 

X-ray generator producing multi-layer mirror monochromated MoKα radiation. 

 

Structural determination of as-synthesized and degassed 1 

X-ray data collection (5º < 2 < 55º) was conducted at 223K on Rigaku AFC10 

diffractometer Mo-Kα radiation (λ =  0.7105 Å) with Rigaku Mercury CCD system. The 

structures were solved by a direct method (SIR92) and expanded using Fourier 

techniques. All calculations were performed using the CrystalStructure crystallographic 

software package 4.0 of Rigaku. The crystallizing solvents (DMF and MeOH molecules) 

were severely disordered and could not be satisfactorily localized. All non-hydrogen 

atoms except for those of disordered solvent molecules were refined anisotropically. 

Hydrogen atoms severely disordered and could not be satisfactorily localized. 

Crystal data for 1solvent: C64H30N10O20Zn2, monoclinic, space group C2/c, (no. 

15), a = 31. 110 (9) Å, b = 10.192(3) Å, c = 22.095(6) Å,  = 93.938(4), V = 6990(4) Å3, 

Z = 4, T = 223 K. calcd = 1.391 gcm-3, (MoKα) = 0.769 cm-1, 8009 reflections measured, 

6499 observed (I > 2.00σ(I) 433 parameters; R1 = 0.0603, wR2 = 0.1868, GOF = 1.101.
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Chapter 6 
 

Multilength-Scales Structuralization Emerged from One 

Reaction 

 

 

 

 

Abstract 

 
 The fabrication of macroscale structures with controlling the formation of porous 

coordination polymers (PCPs) is a critical challenge for developing separation systems, 

heterogeneous catalysts or ion/electron transport. Here, we discover a new phenomenon, 

in which the macropore is formed inside the cuboid crystal synchronized with the 

generation of solid-solution type PCPs. As a result, a box-shaped architecture consisting 

of solid-solution type PCP is synthesized. The chemical alteration of organic ligands 

converts framework topology from not-interpenetrated to interpenetrated structures with 

maintaining the coordination geometry. The interpenetration stabilizes the degassed 

phase of framework and improve the uptake amount of CO2. Furthermore, the hollow 

structure enhances the diffusion kinetics of CO2. This structuralization across chemical 

and macroscale structures is derived from the differences in the diffusion rates of two 

organic ligands during dissolution of pre-existing PCP and crystallization of 

solid-solution PCP. 
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Introduction 

 
 A central challenge in material chemistry is to fabricate exquisite macroscale 

architectures comprising of desired compounds. This is because the properties of 

solid-state materials are determined by two structures across different length scales: 

chemical and macroscale structures.1-2 The chemical structure determines the inherent 

properties of materials, while the macroscale structure is a crucial factor for their 

applications. As often seen in metallogical phenomena such as topotactic 

transformation3-4 or nanoscale Kirkendall Effect,5-7 the macroscale architectures can be 

fabricated accompanied with the formation of target compounds. These phenomena are 

promising methods for fabricating well-designed architectures with desired metallic 

compounds; however, such phenomena have not been discovered in molecular materials 

composed of weak chemical bonds. 

Porous coordination polymers (PCPs) or metal-organic frameworks (MOFs) are 

an intriguing class of crystalline materials due to a wide variety of porous properties such 

as gas storage,8-9 separation,10-11 catalysis12-13 and conductivity.14-15 These inherent 

porous properties are basically dominated by the chemical structures: pore size, pore 

surface functionality and framework topology. Therefore, considerable effort has been 

devoted to synthesize new compounds and evaluate these molecular-based properties at 

the early stage of this research field. In contrast, the macroscale structure is also one of 

crucial factors to sophisticate the properties, especially for separation efficiency, 

catalytic activity, and adsorption kinetics.16-18 The fabrication of well-designed 

architectures of PCPs is traditionally achieved by controlling the crystallization process 

on templates; dispersed particles,19-20 substrates21-24 and three-dimensional (3D) 

superstructures.25 These templates give fascinating opportunities to design the 

macroscale structures; however, such templating methods often lead to undesired 

chemical structures of PCPs. 

The lessons from metallurgy suggest that a key to fabricate macroscale structures 

with controlling the chemical structures is employing molecular-based materials as the 

templates. The molecular-based templates can transcribe their chemical and macroscale 

structures to the obtained compounds, thus resulting in the macroscale architectures 

comprising of target compounds. Herein, we discover a new phenomenon in which the 

macroscale architectures are fabricated coupled with the formation of solid-solution type 

PCP (Figure 1). The pre-existing cuboid crystals are transformed into the box-shaped 

architecture via the void formation inside the original crystals. Concurrently with the 

formation of a box architecture, not-interpentrated PCP is converted to solid-solution 
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type interpenetrated PCP with maintaining the original coordination geometry. The 

framework stability was improved due to the interpenetration, enhancing the uptake 

amount of CO2. Furthermore, the characteristic box-shaped structure shortened the 

diffusion path of guest species and accelerated the sorption kinetics. This templating 

method across framework structures and macroscale morphology will be a promising 

way to fabricate well-defined architectures with solid-solution type PCPs. 

 

Figure 1. The schematic illustrations of multiscale structuralization of PCPs. 
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Results and Discussion 

 

PCPs with a three-dimensional structure, [Zn2(ndc)2(bpy)]n
 26-29 (1), in which 

ndc layer ligands link to the zinc paddlewheel clusters to form two-dimensional square 

lattices connected by bpy pillar ligands at the lattice points, was utilized as a starting 

materials (ndc = 1,4-naphthalenedicarboxylate, bpy = 4,4’-bipyridyl) (Figure 2a-b). 

Micrometer-sized cuboid crystals of 1 were put into a solution of H2bdc in DMF (bdc = 

1,4-benzenedicarboxylate, DMF = N,N-dimethylformamide), and the temperature was 

rapidly elevated and kept at 353 K for 30 min by a microwave reactor. After cooling and 

drying, the obtained compounds were observed by scanning electron microscope (SEM). 

The SEM image showed that the assembly of meso-sized crystals (200 nm ) formed a 

cuboid architecture, whose size and morphology are nearly same as the original cuboid 

crystal of 1 (5 × 5 × 10 m3) (Figure 3a-b). The ultrasonication irradiation partially broke 

a side wall of the cuboid architecture and the inner vacant space appeared, suggesting 

that a micrometer-sized box (micro-box) was obtained (Figure 3c-e). The transmission 

electron microscope (TEM) observation of a sliced sample also supported the results of 

SEM observations. The micro-box was embedded in epoxy resin and then sliced using 

the microtome. The TEM image of a sliced micro-box also showed the vacant space 

inside the cuboid architecture (Figure 3f). 
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Figure 2. The crystal structure of 1; (a) the view from b axis, and (b) the view from c 

axis. The crystal structure of S1; (c) the view from b axis, and (d) the view from c axis. 

The crystal structure of degassed S1; (e) the view from b axis, and (f) the view from c 

axis.The naphthalene moieties are disordered due to the symmetry. 
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Figure 3. Electron microscopic observations: (a) 1, (b) micro-box; (c) micro-box after 

ultrasonication, (d) side wall of a micro-box, (e) inner vacant space of a micro-box, (f) a 

micro-box sliced with microtome. 

 

X-ray diffraction measurement (XRD) on micro-box revealed that the 

compound maintained the framework geometry of starting material (1)  (Figure 4). The 

organic components of micro-box decomposed with hydrochloric acid were analyzed by 
1H-NMR. The ratio of dicarboxylates (bdc and ndc) to bpy was 2:1, corresponding to the 

chemical composition of the framework structures, [Zn2(dicarboxylate)2(bpy)]n. Both 

dicarboxylates, bdc and ndc, were detected by 1H-NMR and the ratio of bdc and ndc was 

75:25, which suggested that the original compound of 1 was converted to the 

solid-solution type PCP, [Zn2(bdc)1.5(ndc)0.5(bpy)]n (S1), by ligand exchange (Figure 5). 

We successfully determined the single crystal structure of S1 at as-synthesized and 

evacuated states (Figure 2c-f). Although the coordination geometry of S1 is totally same 

as that of starting material of 1, the not-interpenetrated structure of 1 was converted into 

the interpenetrated structure of S1. The ligand replacement from bulky ndc to simple bdc 

makes enough space for the interpenetration, resulting in the topological transformation 

from 1 to S1 during the formation of macroscale architecture of micro-box. The crystal 

structures of S1 was changed with respond to removal of guest molecules (Figure 2e-f). 

This structural transformation of S1 corresponded to the structural transformation of 

micro-box (Figure 4), which also implied that the micro-box consists of solid-solution 

type interpenetrated PCP (S1). Noted that this structural conversion from 

not-interpenetrated structure (1) to interpenetrated structures (S1) improves the 

framework stability. Although the compound 1 becomes amorphous against guest 
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removal due to the large porosity, micro-box consisting of interpenetrated S1 maintains 

the crystallinity against guest evacuation  (Figure 4). This is because the 

interpenetration induced by ligand alternation from ndc to bdc, stabilizes the framework 

structure. The poor crystallinity of degassed 1 significantly decreased the uptake amount 

of CO2 (40 ml/g); however, the stabilization of the framework structures of S1 improves 

the uptake amount of CO2 (120 ml/g), in spite of smaller pore volume (Figure 6). The 

step-wise uptake at lower pressure probably due to the structural transformation of S1 

was observed. 

 

 

Figure 4. Simulated XRD patterns of 1, S1 and degassed S1. XRD patterns of 1, 

degassed 1 and micro-box and degassed micro-box 
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Figure 5. 1H-NMR spectrum of digested micro-box 

 

 

Figure 6. Adsorption isotherm of 1 and micro-box for CO2 

 

  Furthermore, the adsorption kinetics for CO2 were investigated by real-time 

monitoring of the pressure change after the introduction of CO2 at P/P0 = 0.78 into the 

sample tube. The time dependent uptake (Pt/Pe: Pt is the uptake at time t and Pe is the 
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equilibrium uptake) for CO2 on the microbox and micrometer-sized crystals of S1  is 

illustrated in Figure 7. The result shows the effect of the macroscale structures on the 

kinetics of CO2 uptake; the rate of CO2 sorption for microbox is much faster than that for 

the micrometer-sized crystals of S1. In order to elucidate the sorption kinetics for CO2 

depending on the macroscale structures, we here introduce the double-exponential (DE) 

model for the analyses as described in equation (eq1),30 

 

Pt/Pe = A1{1 - exp(-k1t)} - A2{1 - exp(-k2t)}            (eq1) 

 

where k1 and k2 are kinetic rate constants, with A1 + A2 = 1. This is because 

there can be two kinetic processes each with different diffusion barriers; one is faster 

diffusion at the gas/crystal interface and the other is slower diffusion inside the pores. 

Since the diffusions inside the pores are determined by the framework structures, 

respectively, we attempted the global fitting analysis for CO2 sorption kinetics by 

treating the k2 value as lateral fitting parameters. Kinetic parameters obtained by DE 

model are summarized in Table 1. The A2 contribution (pore diffusion inside crystals) of 

micrometer-sized crystals of S1 for CO2 sorption kinetics significantly increases (A2 = 

0.583), compared with that for the microbox (A2 = 0.315). It is quite reasonable to 

consider that the latter contribution decreases in case of the micro-box, because the 

diffusion path should be shorter. The morphological difference between micrometer-sized 

crystals of S1 and the micro-box influences the CO2 sorption kinetics. Although we also 

demonstrated the single-exponential model that only includes one kinetic rate constant 

for the analyses, the model does not give a satisfactory fit for the normalized 

experimental data. 
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Figure 7. Adsorption kinetics profiles for CO2 (P/P0 = 0.78, 195 K). Sampling rate = 1 s. 

Green: micrometer-sized crystals of S1, red: micro-box (S1), respectively. Corresponding 

fits for the DE model are also shown. 

 

Table 1. DE model fitting parameter for micrometer-sized crystals of S1, micro-box. 

 A1 k1 / 10-1 s-1 A2 k2 / 10-2 s-2 R2 

micro-box 0.700 3.75 0.300 
3.06 

0.998 

m-sized crystal (S1) 0.465 2.51 0.545 0.999 

 

 

To unveil the detailed reaction mechanism of this phenomenon, we carried out 

sets of experiments where the reaction time was systematically varied. The time-course 

experiments on 1H-NMR of digested micro-box suggested that the ndc was quickly 

replaced with bdc and the molar ratio of bdc to ndc reached 75:25 in 4 minutes. The ratio 

(75:25) was maintained till 30 minutes, which suggests that the chemical composition of 

S1 is most stable phase in this replacement condition (Figure 8). The time-course 

experiments on XRD supported that the framework geometry of 

[Zn2(dicarboxylate)2(bpy)]n was maintained during this reaction. The organic 

components in residual solution was also analyzed by 1H-NMR. The molar amount of 

bdc and ndc was calculated by comparing the integration area of methanol (0.1 mmol), 
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bdc and ndc. The transported amount of bdc (from liquid to solid) and ndc (from solid to 

liquid) can be estimated from the calculated molar amount of bdc and ndc. The 

time-course experiments on 1H-NMR of the residual solution showed that the transported 

amount of ndc is always larger than that of bdc (Figure 9). The starting material of 1 was 

dissolved and ndc was eluted to the solution. In the meantime, the crystals of S1 was 

formed on the surface of the original cuboid crystals by employing Zn, ndc and bpy from 

starting materials and bdc from solution. A certain amount of bdc was consumed to form 

the solid solution type PCP of S1. The larger amount of ndc was transported (from solid 

to liquid) than that of bdc during this chemical alternation, leading to the void formation 

inside the material. 

 

 

 

Figure 8. The chronological change in the ratio of bdc and ndc in the solid-state 

compounds 
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Figure 9. The chronological change of transported amount of bdc and ndc. 

 
  This kind of phenomenon also occurred in a millimeter-sized crystal of 1. A huge 

single crystal of 1 (2 × 2 × 1 mm3) was placed in a solution of Zn2(NO3)2•6H2O, H2bdc, 

bpy in DMF, and the solution was kept at 393 K for two days. The upper surface of 

obtained compound (cubic architecture) was manually sliced with a microscopic knife. 

The optical microscopic observation of the sliced sample clearly showed that the 

millimeter-sized cubic crystal was converted to a millimeter-sized box (mil-box) (Figure 

10). To unveil the conversion process from a cubic crystal to a box architecture, the 

reaction was stopped at 1 day and the upper surface of cubic object was sliced. A portion 

of original crystal (1) was still remained inside the box (Figure 10d). Furthermore, 
1H-NMR measurement on digested mil-box was same as S1, 

[Zn2(bdc)1.5(ndc)0.5(bpy)]n  . Since the obtained architecture (mil-box) was enough large 

to investigate the growth direction, surface XRD measurements on mil-box was 

performed. Interestingly, the crystal orientation of mil-box (S1) was totally same as 

single crystals of 1. New crystals of S1 was grown on the template of 1 with maintaining 

the original crystal orientation of 1 (Figure 11). Although we attempted to synthesize the 

mil-box without Zn2(NO3)2•6H2O and bpy, the box architecture was not maintained and 

tiny crystals were obtained. This is probably because the dissolution of template is faster 

than the new crystallization of S1 in the reaction of an oil heater. 
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Figure 10. Optical microscopic observations: (a) 1, (b) mil-box; (c) mil-box sliced with a 

microscopic knife, (d) intermediate state of a mil-box. 

 

Based on the series of experiments, we can propose the reaction process of this 

phenomenon. (a) The cuboid crystals of 1 are dissolved and the components (Zn2+, ndc 

and bpy) are eluted to the solution. (b) S1 was crystallized on the surface of 1 by 

employing Zn2+, ndc and bpy from starting materials and bdc from solution. The original 

coordination geometry and orientation were maintained during this process. (c) More 

amount of ndc was transported from solid to solution and less amount of bdc was 

consumed to form S1. As a result, the voids were formed inside the cuboid crystals. (d) 

Finally, the cuboid crystals of 1 was converted to box architectures of S1 (Figure 12). 

These results demonstrate a new method for designing macroscale architecture 

with controlling the chemical structures of PCPs. The ligand replacements allows for the 

formation of solid-solution type PCP and the differences in transported amount of 

organic ligands creates the box architecture. We applied this phenomenon to another 

framework structure, IR-MOF.31-32 The box architecture of IR-MOF was successfully 

obtained by this phenomenon (Figure 13). We hope that this discovery will give a new 

insight to fabricate the well-designed architectures of PCPs. 
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Figure 11. Simulated XRD patterns of and S1. XRD patterns of 1 and S1, along 

sicarboxylate and bpy directions. 

 

 
Figure 12. Schematic illustration of the structural transformation form the cuboid crystal 

to the box architecture. 
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Figure 13. SEM images of micro-box of IR-MOF. (a) template (MOF-5), (b) micro-box 

before ultrasonication, (c) micro-box after ultrasonication. The dot lines indicates the 

edges of the broken micro-box. 
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Conclusion 

 
 In summary, this work demonstrate that a new phenomenon of PCPs and suggest 

a new method for designing macroscale architecture with solid-solution type PCP. The 

kinetics and spatial coupling between the dissolution of parent PCP and the 

crystallization of solid-solution type PCPs enables the production of box-shaped 

architectures. We believe that the precise control of parent PCPs should permit the design 

of PCP hollow architectures with a great variety of useful geometries. 
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Experimental Section 

 

Synthesis of the single crystals, 1 

Zn(NO3)2•6H2O (72.3 mg, 2.5  10-1 mmol), 1,4-naphthalenedicarboxylic acid 

(54.0 mg, 2.5  10-1 mmol) and 4,4’-bipyridyl (21.0 mg, 1.25  10-1 mmol) were 

dissolved in 5 mL of N,N-dimethylformamide (DMF). The temperature was kept at 80 C 

for two days. After cooling, two-millimeter sized single crystals were harvested. 

 

Synthesis of the powder crystals, 1 

Zn(NO3)2•6H2O (148.5 mg, 5.0  10-1 mmol), 1,4-naphthalenedicarboxylic acid 

(108.0 mg, 5.0  10-1 mmol) and 4,4’-bipyridyl (42.0 mg, 2.5  10-1 mmol) were 

dissolved in 10 mL of DMF. The temperature was kept at 120 C for three hours by 

microwave instrument (Biotage, Initiator). 

 

Synthesis of micro-box 

1,4-benzenedicarboxylic acid (16.6 mg, 1.0  10-1 mmol) was dissolved in 2 mL 

of DMF. The powder crystals of 1 (8.0 mg, 2.0  10-2 mmol) were put into the solution 

and the temperature was kept at 80 C by microwave instrument (Biotage, Initiator). 

 

Synthesis of mil-box 

Zn(NO3)2•6H2O (5.94 mg, 2.0  10-2 mmol), 1,4-benzenedicarboxylic acid (3.32 

mg, 2.0  10-2 mmol) and 4,4’-bipyridyl (1.68 mg, 1.0  10-2 mmol) were dissolved in 1 

mL of DMF. A single crystal of 1 was placed in the stocked solution and the temperature 

was kept at 120 C for two days. After cooling, a two-millimeter sized PCP-Box was 

obtained. 

 

Synthesis of S1 

Zn(NO3)2•6H2O (11.9 mg, 4.0  10-2 mmol), H2bdc (5.3 mg, 3.2  10-2 mmol), 

and H2ndc (1.7 mg, 0.8  10-2 mmol) were dissolved in 2 mL of DMF. 4,4’-bipyridyl (1.6 

mg, 1.0  10-2 mmol) was dissolved in 1 mL of MeOH. 2 mL of DMF solution was put in 

a narrow glass tube. 0.5 mL of the mixture of DMF and MeOH (DMF : MeOH = 1:1) was 

layered on top of the DMF solution, and then 1 mL of MeOH solution of bpy was layered 

on top of the mixture. The stocked solution was kept at 90 °C for two days. 
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1H-NMR on digested mil-box and micro-box 

The dozens of crystals are decomposed in dimethyl sulfoxide-d6 with 

hydrochloric acid. The obtained solution was analyzed by 500MHz 1H-NMR 

(JNM-A500). 

 
1H-NMR on residual solution 

The mixture of 0.3 ml of the residual solution, 0.3 ml of dimethyl sulfoxide-d6 

and 40.6 μl of methanol was analyzed by 500MHz 1H-NMR (JNM-A500). The peaks of 

H2bdc, H2ndc and methanol were fitted by Lorentz function to compare the exact 

integration areas of peaks. 

 

Field-emission scanning electron microscopy (FE-SEM) 

SEM observations were performed with a JEOL Model JSM-7001F4 SEM 

system operating at 15.0 kV. The samples were deposited on carbon tape and coated with 

osmium prior to measurement. 

 

X-ray diffraction measurement (XRD) and surface X-ray diffraction measurement 

(SXRD) 

The samples were deposited on glass substrates. XRD and SXRD patterns were recorded 

by RINT-2000 (Rigaku) and Smart Lab (Rigaku), respectively. 

 

Sorption experiments 

The sorption isotherms of 1 and mil-box (S1) for N2, O2 and CO2 were recorded 

on a BELSORP-mini adsorption instrument from BEL Japan, Inc. Before adsorption 

measurements, the samples were degassed under vacuum at 323 K for 6 h. 

 

Diffusion kinetics 

The sorption kinetics of micrometer-sized S1 and micro-box for N2, O2 and CO2 

were recorded on a BELSORP-18 adsorption instrument from BEL Japan, Inc. The 

pressure value of the sample tube was recorded every 1 second. Before adsorption 

measurements, the samples were degassed under vacuum at 323 K for 6 h. 

 

Structure Determination 

X-ray data collection (5º < 2 < 55º) was conducted at 223K on Rigaku AFC10 

diffractometer Mo-Kα radiation (λ =  0.7105 Å) with Rigaku Mercury CCD system. The 

structures were solved by a direct method (SIR2002) and expanded using Fourier 
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techniques. All calculations were performed using the CrystalStructure crystallographic 

software package 4.0 of Rigaku. 

Crystal data for 1solvent: C34H20N2O8Zn2, tetragonal, space group P4/mmm, 

(no. 123), a = 10.9396(6) Å, c = 14.0640(11) Å, V = 1683.11(19) Å3, Z = 1, T = 223 K. 

calcd = 1.148 gcm-3, (MoKα) = 0.776 cm-1, 1185 reflections measured, 985 observed (I 

> 2.00σ(I) 63 parameters; R1 = 0.0692, wR2 = 0.2315, GOF = 1.158. 

Crystal data for S1solvent: C31H21N3O9Zn2, triclinic, space group P-1, (no. 2), 

a = 10.887(3) Å, b = 10.923(3) Å, c = 14.068(4) Å, V = 1645.1(7) Å3, Z = 2, T = 93 K. 

calcd = 1.434 gcm-3, (MoKα) = 1.513 cm-1, 13134 reflections measured, 7178 observed 

(I > 2.00σ(I) 446 parameters; R1 = 0.0512, wR2 = 0.1835, GOF = 1.098. 

Crystal data for S1: C31H21N3O9Zn2, triclinic, space group P-1, (no. 2), a = 

10.887(3) Å, b = 10.923(3) Å, c = 14.068(4) Å, V = 1645.1(7) Å3, Z = 2, T = 93 K. calcd 

= 1.434 gcm-3, (MoKα) = 1.513 cm-1, 13134 reflections measured, 7178 observed (I > 

2.00σ(I) 446 parameters; R1 = 0.0512, wR2 = 0.1835, GOF = 1.098. 
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Chapter 7 
 

Redox Reaction in Two-Dimensional Porous Coordination 

Polymers Based on Ferrocenedicarboxylates 

 

 

 

 

 

Abstract 
 A series of 1,1’-ferrocenedicarboxylate-based twodimensional porous 

coordination polymers were synthesized by incorporating different diamine coligands. 

These compounds immobilized on electrodes, exhibited reversible redox reactions, 

arising from ferrocenyl moiety. 
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Introduction 

 
 Porous coordination polymers (PCPs), assembled from metal ions and organic 

ligands, are an interesting class of crystalline materials.1-5 They have been extensively 

studied for applications in gas storage,6-8 separation9-11 and chemical sensing.12-15 

Compared with these porous properties, only a few studies on the electronic properties of 

the frameworks have been reported.16-18 The synergetic collaboration between the 

electronic properties of the framework and the intrinsic porous properties has led to new 

applications of PCPs in a wide range of important fields. In particular, a redox active 

PCP may be useful material for electrochemical applications such as ion storage19 or 

electrocatalysis.20 The key to successful implementation is not only to construct the 

redoxactive framework itself, but also to hybridize the framework with an electrode, 

which allows the investigation of redox process in the pores. 

Although the judicious choice of metal ion and organic linker provides the redox 

activity within PCP frameworks,21-23 the redox reaction often changes the coordination 

environment of metal ions, thus leading to destruction of the framework. One way to 

overcome the issues is to construct the framework with stable ligands for the redox 

reaction. In this context, 1,1’-ferrocenedicarboxylate (Fcdc) is an excellent candidate 

because it contains the stable ferrocene moiety and two carboxylate coordination 

sites.24-26 Some research groups have reported on the syntheses of ferrocene-based 

coordination polymers,27-29 but there are only a few reports of the solid-state 

electrochemical properties of coordination polymers containing the Fcdc ligand.30-31 

Recently we reported on a series of two-dimensional (2D) PCPs, so-called coordination 

polymers with an interdigitated structure (CID), of which the three components, namely 

the metal ions, V-shaped dicarboxylate ligands, and diamine pillar ligands, participate in 

the construction.32-35 Their porous properties and chemical functionalities can be easily 

modulated by varying the components. Although there is a limit to the angle of two 

carboxylates in the V-shaped ligand in the range 118-152, the rotational freedom of the 

ferrocenyl moiety enables the ligand to mimic the V-shape, thus providing CID 

frameworks with stable redox properties. 

Here we report the rational synthesis of ferrocene-based CID frameworks by 

incorporating different diamine pillar ligands. The length of the pillar ligand determines 

the configuration of the 2D sheets, resulting in different thermal stabilities. The 

electrochemical properties were elucidated by the immobilization of these crystals on 

gold electrodes. A coordination framework of {[Zn(Fcdc)(bpy)]•(DMF)0.5(MeOH)0.5}n 

(1solvents) was synthesized via the reaction of Zn(NO3)2•6H2O, H2Fcdc and bpy in a 
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DMF/MeOH solution at 353 K (bpy = 4,4’-bipyridyl). As shown in Fig. 1a and b, the Zn 

ion has a distorted octahedral N2O4 geometry; it is coordinated by two bpy molecules at 

the axial positions, one chelating carboxylate of Fcdc and two other monodentate 

carboxylates of Fcdc in the equatorial plane. The coordination of Fcdc ligands to the Zn 

ions constructed a onedimensional (1D) chain structure as shown in Figure 1a, followed 

by the linkage of the adjacent chains through bpy in the axial positions, leading to the 

formation of a 2D sheet. Alternatively assembled are two types of sheet structures, sheets 

A and B, which are mirror images of each other. It should be noted that the length of bpy 

(7.1 Å) is too short to form the interdigitation because of the bulkiness of the ferrocenyl 

moiety (the distance between cyclopentadienyl rings is 6.8 Å), compared with the phenyl 

ring, seen in the reported CID structure. Therefore, the noninterdigitation between the 

sheets provided 1D channels with a window size of 4.4  6.0 Å2 (Figure 2a-b). 

Elongation of the pillar ligands from bpy to dpb or dpndi created a space 

between the 1D chains and allowed them to form the interdigitation (dpb = 

1,4-di(pyridin-4-yl)benzene, dpndi = 

N,N’-di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxydiimide). These analogous 

frameworks were synthesized by the solvothermal reaction of Zn(NO3)2•6H2O with 

H2Fcdc and dpb or dpndi in a DMF/MeOH solution: 

{[Zn(Fcdc)(dpb)]•(DMF)0.5(MeOH)0.5}n (2solvents) or 

{[Zn(Fcdc)(dpndi)]•(DMF)0.5(MeOH)0.5}n (3solvents), respectively. Although the 

compound 2 formed the alternative assembly of sheet structures as seen in 1, only one 

type of 2D sheet (sheet A) was found in the compound 3. The expansion of the interchain 

distance in 2 and 3 resulting from the incorporation of the longer pillar ligands (dpb (11.4 

Å) or dpndi (15.5 Å)) enables the 2D sheets to form the interdigitation. Whereas the 1D 

channels with a window size of 4.4  4.9 Å2 extend along the c axis in compound 2, the 

1D channels with a window size of 4.8  4.5 Å2 runs along the a axis in compound 

3(Figure 2c-e). 
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Figure 1. Crystal structures of (a) the 1D chain structure composed of Zn ions and Fcdc, 

and (b) the sheet structure of 1. Gray, blue, red, orange, and purple are C, N, O, Fe and 

Zn, respectively. The hydrogen atoms and guest molecules are omitted for clarity. 
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Figure 2. Crystal structures showing (a) the side view, (b) the top view of assembled 

structure of 1solvents, (c) the side view, (d) the top view of assembled structure of 

2solvents, (e) the side view, (f) the top view of assembled structure of 3solvents. 
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Thermogravimetric analysis indicated that 1, 2 and 3 released the guest molecules up to 

200 C (Figure 3). Although 1 started to decompose around 250 C, 2 and 3 were stable 

up to 350 C. The difference in the collapse temperature between 1, 2 and 3 is probably 

because of the interdigitation of the 2D sheets in 2 and 3, which lends further thermal 

stability to the frameworks. 

X-ray powder diffraction (XRD) analysis of the evacuated frameworks was 

carried out to confirm the stability of the open structures in the absence of guest 

molecules. All the compounds retained their crystallinity, as shown in Figure 4. 

Adsorption measurements of ferrocene-based PCPs were performed for CO2, N2, and O2, 

as shown in Figure 5. The adsorption isotherms of all compounds showed a Type I steep 

uptake for CO2 at the low pressure region, indicating the preservation of the ordered 

porous structure, but no eventual uptake for N2 and O2. Generally, PCPs preferentially 

adsorb CO2 over other small gases because of its small kinetic diameter.36 

 

 

 

Figure 3. TG analysis showing the weight loss in 1, 2 and 3  solvents. The observed 

weight loss corresponds to the weight of solvent molecules. 
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Figure 4. Powder X-ray diffraction patterns of as-synthesized, degassed, and simulated 

(a) 1, (b) 2, (c) 3. 
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Figure 5. Adsorption isotherms of gas molecules for (a) 1, (b) 2, (c) 3. Closed and open 

symbols show adsorption and desorption, respectively. 
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To date, the redox properties of coordination polymers containing ferrocenes 

have been reported after either dissolving the crystals in solvent or by depositing the 

crystals on a working electrode. In both cases, however, it is very difficult to elucidate 

the redox property of the framework itself. These methods most likely led to the 

determination of the electrochemical activity of the solute species (soluble oligomers or 

metal complexes).37-38 To overcome this issue and to determine the redox properties of 

the PCPs themselves, we immobilized the crystals of ferrocene-based PCPs on gold 

electrodes. A gold substrate was placed in the reaction solution for four days to grow the 

PCP crystals directly on the surface, in a perpendicular fashion to avoid coating by 

sedimentation.39-41 The substrates were rinsed with DMF and dried in air. The plate-like 

crystals of 1 were densely grown on the electrode surface, whereas the crystals of 2 and 3 

partially covered the substrates (Figure 6). The low solubility of the diamine ligands, dpb 

and dpndi, most likely prevented the dense growth of 2 and 3. 

 

Figure 6. SEM images of a) 1/Au b) 2/Au, c) 3/Au. 
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XRD results of the substrate samples revealed that crystals were preferentially 

oriented on the substrates (Figure 7). The out-of-plane XRD scans of 1 and 3 on the gold 

electrodes (denoted as 1/Au and 3/Au) demonstrated the presence of a preferentially 

oriented crystalline material perpendicular to 020 and 011 respectively. The oriented 

crystal growth of 1 and 3 on the substrates can be explained by the coordination bond of 

carboxylates to the gold atoms. Together with the in-plane data, the PCP crystals of 1 and 

3 were successfully immobilized on the gold electrodes. Compound 2 on the gold 

electrode (denoted as 2/Au) showed rather weak diffraction because of the low 

crystallinity on the substrate. 
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Figure 7. XRD patterns of in-plane diffraction, out-of-plane diffraction, simulation of (a) 

1/Au, (b) 2/Au, (c) 3/Au. 



126 
 

The electrochemical behavior of 1/Au was investigated by cyclic voltammetry 

(CV) in CH2Cl2 solution with 0.1 mol L-1 n-Bu4NBF4 as electrolyte. A reversible redox 

wave was observed at 0.95 V. It was assigned to a Ferrocene/Ferrocenium cation in the 

PCP crystals (Figure 8). Compared with the redox potential of H2Fcdc in n-Bu4NBF4 

solution (0.88 V), that of 1/Au (0.95 V) is shifted to a more positive potential (Fig. 8a 

and Table 1). The reason for this is the electron-withdrawing property of the carboxylates 

from the cyclopentadienyl rings and the coordination bond between carboxylate and Zn 

ions.42 Unfortunately, 2/Au and 3/Au did not show clear CV profiles, probably because 

of the low density of crystals on the electrodes. 

A negative shift of the redox potential was observed (0.78 V) when changing the 

electrolyte from n-Bu4NBF4 to n-Bu4NNO3, which suggests that NO3 forms the stronger 

ion pair with the positively charged oxidized compounds of ferrocenium (Table 1). This 

can be explained by the smaller ionization energy of NO3 resulting in a higher degree of 

ion-pair formation.43-44 

It is interesting that the peak currents show a linear dependence on the square 

roots of the scan rate, as shown in Figure 8b. The linearity in the plots indicates that the 

charge transfer in the redox process is controlled by the diffusion of charges in the PCPs 

as described by the empirical Randles-Sevcik equation.45 Since the PCP crystals are 

immobilized on the electrode surface, the current is most likely limited by the diffusion 

of counteranions in the pores.46 of counteranions in the pores. The present PCP system, 

possessing the accessible porosity, is certainly different from the case of 

ferrocene-incorporated [Cu3(btc)2], in which the electrohopping through the ferrocene 

molecules was dominating its electrochemical reaction.47 The contribution of the solute 

species to the redox reaction could be ignored because there was no dissolution of the 

Fcdc ligands from the framework under the conditions used, as confirmed by the CV 

measurement of the residual solution. Therefore, the redox reaction observed here was 

subsequently attributed to the ferrocene moiety embedded into the framework. 
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Figure 8. (a) Cyclic voltammograms of H2Fcdc and 1 at 100mV/s scan rates. The 

dispersed H2Fcdc in CH2Cl2 was deposited onto the gold electrode. The current intensity 

of H2Fcdc is magnified twice for clarify. (b) Dependence of peak currents on scan rates. 

Closed and open circles show oxidation and reduction, respectively. 

 

Table. 1 Electrochemical data of 1 and Fcdc on an Au substrate at 100mV/s scan rates 

compounds E1/2
[a] 

(V) 

   E[b] 

(V) 

[c] 

(mol cm-2) 

electrolytes 

H2Fcdc 0.88 0.099  n-Bu4NBF4 

1/Au 0.95 0.412 6.82  10-10 n-Bu4NBF4 

1/Au 0.78 0.301 2.09  10-9 n-Bu4NNO3 

[a] The half wave potential, E1/2 = (Eox + Ered)/2. [b] The difference of the oxidation 

potential and reduction potential, E = Eox - Ered. [c] Surface concentration of redox 

active species. 
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Conclusion 

 
 In summary, we have demonstrated the redox reaction of ferrocene-based PCPs 

achieved by creating crystals on gold substrates. Although the crystals are immobilized 

on the substrate, the redox process is controlled by the diffusion of charges. The CV 

results were interpreted as the diffusion of counteranions into the channels. This results 

indicates that Fcdc ligand allows for the incorporation of the redox activity into PCP 

frameworks and opens the way for their use in a wide range of electronic applications. 
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Experimental Section 

 

Materials 

Zn(NO3)2•6H2O, 1,1’-ferrocenedicarboxylic acid (H2Fcdc), 

1,4-diaza[2.2.2]bicyclooctane (dabco), 4,4’-bipyridyl (bpy), N,N-dimethylformamide  

(DMF) and methanol (MeOH) were purchased from Wako Pure Chemical Industries. The 

syntheses of 1,4-di(pyridin-4-yl)benzene (dpb) and 

N,N’-di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxydiimide (dpndi), were prepared 

according to literature procedures.48-49 

 

Synthesis of 1 

The solution of Zn(NO3)2•6H2O (84.8 mg, 0.286 mmol), H2Fcdc (78.3 mg, 0.286 

mmol), and bpy (44.8 mg, 0.286 mmol) in 10 mL DMF/MeOH  (DMF : MeOH = 2 : 1) 

were heated up to 353 K for 2 days. After cooling, the crystals were harvested. Elemental 

analysis calcd. for C24H21.5N2.5O5ZnFe {[Zn(Fcdc)(bpy)] ･ (DMF)0.5(MeOH)0.5}n: C, 

52.78; H, 3.97; N, 6.41, Found: C, 49.58; H, 3.73; N, 6.28. 

 

Synthesis of 2 

The solution of Zn(NO3)2•6H2O (74.3 mg, 0.25 mmol), H2Fcdc (68.5 mg, 0.25 

mmol), and dpb (58.0 mg, 0.25 mmol) in 10 mL DMF/MeOH (DMF : MeOH = 1 : 2) 

were heated up to 373 K for 2 days. After cooling, the crystals were harvested. Elemental 

analysis calcd. for C30H25.5N2.5O5ZnFe {[Zn(Fcdc)(dpb)] ･ (DMF)0.5(MeOH)0.5}n: C, 

57.91; H, 4.13; N, 5.63, Found: C, 53.22; H, 3.77; N, 5.09. 

Synthesis of 3 

The solution of Zn(NO3)2•6H2O (74.3 mg, 0.25 mmol), H2Fcdc (68.5 mg, 0.25 

mmol), and dpndi (105 mg, 0.25 mmol) in 10 mL DMF/MeOH  (DMF : MeOH = 2 : 1) 

were heated up to 353 K for 2 days. After cooling, the crystals were harvested. Elemental 

analysis calcd. for C38H37.5N4.5O9ZnFe {[Zn(Fcdc)(dpndi)]･(DMF)0.5(MeOH)0.5}n: C, 

55.49; H, 4.60; N, 7.66, Found: C, 54.56; H, 3.30; N, 7.89. 

 

Fabrication of 1 on Au substrates 

The stocked reaction solution of 1 was prepared as Zn(NO3)2•6H2O (84.8 mg, 

0.286 mmol), H2Fcdc (78.3 mg, 0.286 mmol), and bpy (44.8 mg, 0.286 mmol) in the 

mixed solvent (6.7 mL of DMF and 3.3 mL of MeOH). A gold substrate was placed in the 

solution and the reaction mixture was heated up to 353 K for 4 days. After cooling, the 

wafers were rinsed with DMF. 
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Fabrication of 2 on Au substrates 

The stocked reaction solution of 2 was prepared as Zn(NO3)2•6H2O (14.9 mg, 

0.05 mmol), H2Fcdc (13.7 mg, 0.05 mmol), and dpb (11.6 mg, 0.05 mmol) in the mixed 

solvent (3.3 mL of DMF and 6.7 mL of MeOH). A gold substrate was placed in the 

solution and the reaction mixture was heated up to 373 K for 4 days. After cooling, the 

wafers were rinsed with DMF. 

 

Fabrication of 3 on Au substrates 

The stocked reaction solution of 3 was prepared as Zn(NO3)2•6H2O (74.3 mg, 

0.25 mmol), H2Fcdc (68.5 mg, 0.25 mmol), and dpndi (105 mg, 0.25 mmol) in the mixed 

solvent (6.7 mL of DMF and 3.3 mL of MeOH). A gold substrate was placed in the 

solution and the reaction mixture was heated up to 353 K for 4 days. After cooling, the 

wafers were rinsed with DMF. 

 

Characterization methods 

The PCP crystals were characterized with X-ray diffraction (XRD), 

thermogravimetry (TG), elemental analysis and IR-RAS. Powder X-Ray diffraction 

(XRD) studies were measured using a Rigaku diffractometer with Cu Kα radiation (λ = 

1.5418 Å). Surface XRD diffraction (SXRD) studies were measured using Rigaku 

SmartLab (λ = 1.5418 Å). TG measurements were carried out by Thermo plus EVO II. 

Elemental analysis was carried out on a Flash EA 1112 series, Thermo Finnigan 

instrument. Single crystal X-ray diffraction measurements were made on a Rigaku 

AFC10 diffractometer with Rigaku Saturn CCD system equipped with a rotating-anode 

X-ray generator producing multi-layer mirror monochromated MoK" radiation. IR-RAS 

measurement was performed by JASCO FT-IR6100. 

 

Physical measurements 

Gas sorption isotherms of N2, O2 and CO2 were recorded on a BELSORP-mini 

volumetric-adsorption instrument from BEL Japan. Cyclic voltammetry (CV) studies 

were carried out with an ALS400B electrochemical analyzer utilizing the three-electrode 

configuration of an Au substrate electrode, a Pt auxiliary electrode and a Ag/AgCl 

reference electrode. The measurements were performed in CH2Cl2 solution containing 

tetrabutylammonium tetrafluoroborate or tetrabutylammonium nitrate (0.1 mol L-1) as 

supporting electrolyte. CV curves were recorded at various scan rates. 
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Structural determinationPhysical measurements 

X-ray data collection (5º < 2 < 55º) was conducted at 223K on Rigaku AFC10 

diffractometer Mo-Kα radiation (λ =  0.7105 Å) with Rigaku Saturn CCD system. The 

structures were solved by a direct method (SIR92) and expanded using Fourier 

techniques. All calculations were performed using the CrystalStructure crystallographic 

software package 4.0 of Rigaku. These data can be obtained free of charge from The 

Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 
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Chapter 8 
 

Crystal Orientation Controls Analyte Detection Kinetics of 

Porous Coordination Polymer Hybrid Sensor with Quartz 

Oscillator 

 

 

 

 

 

Abstract 
 The hybridization of porous coordination polymers (PCPs) with an electronic 

device promises for a great enhancement of chemical sensing. In particular, quartz crystal 

microbalance (QCM) is a good candidate for a delicate electronic sensor into which PCP 

crystals can be integrated. Herein, we successfully immobilize flexible PCPs, 

[Zn(NO2-ip)(bpy)]n (NO2-ip = 5-nitroisophthalate, bpy = 4,4’-bipyridyl), on QCM 

substrates and establish a PCP/QCM hybrid sensor. The crystal orientation was 

controlled by introducing chemical functionality into the surface of QCM substrates. 

Besides the chemical functionality, coordination modulation method was also employed 

to control the crystal orientation. Although the rapid crystal growth by microwave 

heating led to not-oriented crystals, microwave heating with coordination modulator gave 

oriented crystals on a QCM substrate. The effect of crystal orientation on detection 

kinetics of organic vapor (methanol) was analyzed by the environmentally-controlled 

QCM measurements. In case that the one dimensional channel of PCPs was running 

parallel to the direction of gas flow, the diffusion of organic vapor was clearly enhanced, 

thus leading to quick response of QCM sensors to the organic vapor. Prior to evaluating 

detection kinetics, we confirmed that the PCP crystals over 1 m maintain the 

characteristic gate-effect, which enables to distinguish guest molecules. These results 

open a way for the fabrication of the PCP/QCM hybrid sensor device and will clarify a 

way to improve its sensor performance without spoiling original adsorption properties. 



137 
 

Introduction 

 
 Detection and quantification of chemical species is a critical and challenging 

task for biotechnology,1 environmental monitoring2 as well as molecular sensors.3 Most 

chemical sensors have been developed by following the key principle: recognition to 

selectively trap specific molecules and transduction to convert the recognition event into 

a detectable signal.4-5 Therefore, integration of well-developed host-guest systems, which 

selectively capture target molecules, into electronic sensor device is a promising way to 

establish a sophisticated chemical sensor. 

Porous coordination polymers (PCPs) or metal-organic frameworks (MOFs)6-10 

are an intriguing class of materials in which porous properties can be designed by a 

judicious choice of metal ions and organic ligands.11-12 Among a vast number of 

compounds, flexible PCPs have been identified as a unique type of porous material 

because of their structural transformations in response to guest accommodation.13-15 In 

particular, a gate effect occurs when the framework structure changes during the 

adsorption process from a closed form to an open form at a specific vapor pressure, 

so-called gate-opening pressure.16-18 Interestingly, the pressure value totally depends on 

the characteristics of guest molecules.19 In other words, flexible PCPs seems to 

distinguish among molecules by the gate-opening pressure. Therefore, flexible PCPs are 

excellent candidates to be integrated as recognition moiety into electronic sensor devices 

that transduce the recognition event to corresponding readout. 

 Because the guest uptake leads to the weight gain of PCPs, the deposition of 

flexible PCPs onto quartz crystal microbalance (QCM),20 in which the mass change is 

converted to a change of oscillation frequency, enables to quantitatively detect specific 

molecules.21-23 One of the most important factors for the improvement of chemical 

sensors is the quickness of response to target molecules. Therefore, PCPs on QCM 

substrates should rapidly ad-sorb guest molecules. The most common approach to 

accelerate the guest uptake is to downsize the crystals.24 However, reducing the crystal 

size of flexible PCPs often decreases the crystallinity and weakens the guest recognition 

abilities. 

In case of porous membranes, channel orientations against the direction of gas 

flow is crucial to achieve high separation efficiency.25 This fact suggests that the channel 

orientation influences on the diffusion kinetics in porous thin film. Bearing that in mind, 

one way to accelerate the diffusion kinetics of hybrid sensor with maintaining the 

recognition ability is to deposit a flexible PCP on a QCM substrate with appropriate 

crystal orientation. 
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Herein, we successfully immobilize micrometer-sized flexible PCPs and control 

the crystal orientation on QCM substrates. The proper orientation of PCP crystals 

accelerates analyte detection kinetics. Thus, controlling the crystal orientation of flexible 

PCPs on QCM will give an opportunity to sophisticate the hybrid sensor (Figure 1). We 

also confirmed that the micrometer-sized flexible PCPs maintain the characteristic 

gate-effect. 

 
Figure 1. Orientation-controlled flexible PCPs on a QCM substrate. 
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Results and Discussion 
 

The Effect of Crystal Size on Adsorption Properties 

A series of two-dimensional coordination polymers, 

[M(dicarboxylate)(diamine)]n, so-called coordination frameworks with interdigitated 

structure (CID),26-28 is an excellent candidates for the flexible PCPs. In particular, 

[Zn(NO2-ip)(bpy)]n, (Zn-CID-5), exhibits extremely high guest selectivity due to the 

gate-opening property derived from structural transformation29 (NO2-ip = 

5-nitroisophthalate, bpy = 4,4’-bipyridyl). As shown in Figure 2a and b, the Zn ion have 

a distorted octahedral N2O4 geometry, being coordinated by two bpy molecules at the 

axial positions, one chelating carboxylate of NO2-ip and two other monodentate 

carboxylate of NO2-ip in the equatorial plane. The coordination of NO2-ip to the Zn ions 

constructed one-dinemensional (1D) chain structure as shown in Figure 2a, followed by 

the linkage of the adjacent chains through bpy in the axial positions, leading to the 

formation of two-dimensional (2D) sheet. The 2D sheets are alternatively interdigitated, 

forming Zn-CID-5. As previously reported, the crystal structure of Zn-CID-5 changes 

from an open form to a closed form through the removal of guest molecule.15 Since the 

accommodated guest molecules suppress the twisting of NO2-ip, the guest removal 

induces a reorientation of the interdigitation (Figure 2b and c). The gate-opening 

adsorption is attributed to this structural transformation. 

 

 

Figure 2. Crystal structures of (a) the 1D chain structure composed of Zn ions and 

NO2-ip, and (b) the 2D sheet structure in open form, (c) in closed form. Gray, blue, red, 

and purple are C, N, O, and Zn, respectively. The hydrogen atoms and guest molecules 

are omitted for clarity. 
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Zn-CID-5 was successfully synthesized via microwave reaction of 

Zn(NO3)2•6H2O, H2(NO2-ip) and bpy in a DMF solution. To optimize the synthesis 

condition of Zn-CID-5, we carried out sets of experiments where the temperature and 

reaction time was systematically varied. Firstly, the temperature was varied from 30 C 

to 120 C, keeping the reaction time as 5 min. Whereas unknown peaks (2 = 12.8 and 

16.5) were observed in the compounds prepared at 30 and 40 C, pure-phase of  

Zn-CID-5 was obtained over 50 C, as shown in Figure 3. Although the yield of 

Zn-CID-5 was nearly same in the range from 50 C to 90 C, higher temperature over 

100 C gave high yield of Zn-CID-5. Thus, 120 C is the best condition to obtain large 

amount of pure phase of Zn-CID-5 (Table 1). Secondly, the reaction time was varied 

from 5 to 30 min, keeping the temperature as 120 C. In all the reaction conditions, 

pure-phase of Zn-CID-5 was successfully synthesized (Figure 4). Although longer 

reaction time led to higher yield of Zn-CID-5, the crystals synthesized in 5 min is already 

larger than 2 m (Figure 5a). Such micrometer-sized crystals are not suitable to 

investigate the size effect on adsorption properties of Zn-CID-5. 

 

Figure 3. XRD patterns of compounds under various temperatures: (a) 120, (b) 110, (c) 

100, (d) 90, (e) 80, (f) 70, (g) 60, (h) 50, (i) 40, (j) 30 C and simulation of Zn-CID-5 

(open form). The red circles indicate the unknown peaks. 
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Table 1 The yield of Zn-CID-5 at various temperatures. 

 

Temperature Time Yield Product 

30 C 5 min 9.81 mg - Zn-CID-5 + X 

40 C 5 min 17.7 mg - Zn-CID-5 + X 

50 C 5 min 12.0 mg 15.0 % Zn-CID-5 

60 C 5 min 11.7 mg 14.6 % Zn-CID-5 

70 C 5 min 10.4 mg 13.0 % Zn-CID-5 

80 C 5 min 10.2 mg 12.7 % Zn-CID-5 

90 C 5 min 10.4 mg 13.0 % Zn-CID-5 

100 C 5 min 17.3 mg 21.2 % Zn-CID-5 

110 C 5 min 18.4 mg 23.0 % Zn-CID-5 

120 C 5 min 30.2 mg 37.6 % Zn-CID-5 

 

 

Figure 4 XRD patterns of compounds under various reaction time: (a) 30, (b) 25, (c) 20, 

(d) 15, (e) 10, (f) 5 min, (g) and simulation of Zn-CID-5 (open form). 
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 Thus, we applied coordination modulation method to obtain nanometer-sized 

crystals of Zn-CID-5. We have recently demonstrated this method for the synthesis of 

PCP nanocrystals by altering the coordination equilibri-um at the crystal surface during 

the growth process, through competitive interactions originating from a capping additive 

(modulator) with the same chemical functionality as the framework linker.30-32 A 

monoamine molecule (4-phenylpyridine) was chosen as a modulator for Zn-CID-5. The 

addition of 4-phenylpyridine clearly influenced on the size of resulting crystals (r is 

varied from 1 to 15, where r is defined as the ratio of 4-phenylpyridine to bpy). While 

micrometer-sized crystals (2.0 × 3.5 m2) were obtained when r = 0, nanometer-sized 

crystals (370 × 540 nm2) were obtained when r = 15. As increasing the amount of 

4-phenylpyridine, the crystal size decreased, as shown in Figure 5 and 6. This is probably 

because 4-phenylpyridine competed with bpy during the growth process and inhibited the 

further growth of Zn-CID-5. Although the pure-phase of Zn-CID-5 was successfully 

obtained in all the reaction conditions, the crystal morphology became ill-defined as 

decreasing the crystal size. The XRD peaks of nanometer-sized Zn-CID-5 (r = 15) is 

broader than micrometer-sized Zn-CID-5 (r = 0) (Figure 7). 

 

 

Figure 5.  SEM images of Zn-CID-5 obtained under various conditions; r represents 

the ratio between monoamine: (a) r = 0, (b) r = 1, (c) r = 5, (d) r = 7.5, (e) r = 10, (f) r = 

15. 
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Figure 6. Size distribution of Zn-CID-5 obtained at r = 0 and 15. 

 

 

Figure 7. XRD patterns of compounds under various reaction conditions: (a) r =15, (b) r 

= 12.5, (c) r = 10, (d) r = 7.5, (e) r = 5, (f) r = 1, (g) r = 0, (h) and simulation of 

Zn-CID-5 (open form). 
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 The size-controlled crystals of Zn-CID-5 allowed us to investigate the 

correlation between the crystal size and the sorption behaviors. The adsorption 

experiments for methanol and chloroform were carried out. The methanol adsorption 

isotherm of the conventional micrometer-sized crystals (r = 0) was carried out at 25 C, 

and the characteristic gate-opening adsorption was observed at P/P0 = 0.20 (Figure 10). 

Using an environmentally-controlled XRD system, we determined that this gate-opening 

adsorption is originating from the structural transformation from the non-porous closed 

form to the porous open form in response to methanol accommodation (Figure 8 and 9). 

The structural transformation from the closed form to open form occurred over P/P0 = 

0.2 in the adsorption process and the transformation from open form to closed form 

occurred under P/P0 = 0.05 in the desorption process, which corresponds to the 

gate-opening adsorption and hysteresis in desorption process. 

 

Figure 8. XRD patterns of Zn-CID-5 (r = 0) under various methanol humidity in 

adsorption and desorption process. 
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Figure 9. XRD patterns of Zn-CID-5 (r =15) under various methanol humidity in 

adsorption and desorption process. 

 

 

 We then performed methanol adsorption measurements on the smaller sized 

Zn-CID-5, r = 7.5, 12.5 and 15. As the crystal size decreased, the gradual uptake of 

methanol at low pressure region was observed. While the conventional micrometer-sized 

Zn-CID-5 (r = 0) did not adsorb methanol under P/P0 = 0.2,  nanometer-sized 

Zn-CID-5 (r = 15) adsorbed certain amount of methanol ( 10 mlg-1) This tendency 

suggests that downsizing the crystals leads to the larger external surface area, which 

gives the gradual uptake at low pressure region, so-called surface adsorption.33-34 The 

same tendency was observed in adsorption for chloroform (Figure 11). As previously 

reported, downsizing the crystals weakened the gate-opening property, reducing the 

recognition ability of flexible PCPs. 
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Figure 10.  Adsorption isotherms of Zn-CID-5 obtained under various conditions for 

methanol: r = 0 (blue), r = 7.5 (green), r = 12.5 (orange) and r = 15 (brown). Closed and 

open symbols show adsorption and desorption, respectively. 

 

Figure 11. Adsorption isotherms of Zn-CID-5 obtained under various conditions for 

chloroform: r = 0 (blue), r = 1 (green), r = 5 (orange), r = 12.5 (brown) and r = 15 (red). 

Closed and open symbols show adsorption and desorption, respectively. 
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Flexible PCPs based Hybrid Sensor Device 

Towards integration of Zn-CID-5 into the QCM substrate, gold substrates were 

modified with monolayers of HS(CH2)15COOH.35-36 We anticipated different orientations 

of the crystals, depending on a bare gold or COOH-functionalized SAMs.37-38 The 

substrates were placed as vertical fashion (to avoid precipitation) in the solution of 

Zn(NO3)2•6H2O and H2(NO2-ip) in DMF. The mixture of DMF and ethanol was layered 

on top of the DMF solution, and then solution of bpy in ethanol was layered on top of the 

mixture. The stocked solution was kept at 70 °C for 12 hours. The bundles of plate like 

crystals of Zn-CID-5 (50-100 m) were formed on the substrates as shown in Figure 12. 

The crystals grown on the COOH terminated SAMs were oriented along the [1-1-1] 

direction, while the bare gold substrate induced an orientation along the [100] direction 

(Figure 13). The tilted COOH-terminated SAMs  (the tilted angle of SAMs: 30-40) on 

substrate induces the tilted growth of 1D chain ([100] orientation). In contrast, the 

coordination bond between Au atom and carboxyl group of NO2-ip leads to the growth of 

1D chain perpendicular to the substrate ([1-1-1] orientation), as shown in Figure 13. 

 

Figure 12.  SEM images of Zn-CID-5 on substrates obtained under various conditions: 

(a) solvothermal condition for bare Au, (b) solvothermal condition for SAMs, (c) 

microwave heating without modulator, (d) microwave heating  with modulator. 
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Figure 13.  XRD patterns of Zn-CID-5 on substrates obtained under various 

conditions: (a) solvothermal condition for SAMs ([100] orientation), (b) solvothermal 

condition for bare Au ([1-1-1] orientation), (c) microwave heating  without modulator 

(no orientation), (d) microwave heating with modulator ([010] orientation), (e) 

simulation of Zn-CID-5 (open form). 

 

Although simple solvothermal reaction gave large plate like crystals (50-100 

m), rapid crystal growth by micro-wave heating gave smaller block crystals (5-10  

m), as shown in Figure 12. Noted that the rapid crystal growth gave not-oriented 

Zn-CID-5 on the substrate. We applied coordination modulation method to slow down 

the crystal growth. Microwave heating with the modulator (r = 15) led to the [010] 

orientation of Zn-CID-5 (Figure 13). The nuclei is most likely terminated by monoamine 

molecules (4-phenylpyridine), according to the previous studies.30 The terminating 

ligand of 4-phenylpyridine was replaced with bpy due to the same chemical functionality 

between 4-phenylpyridine and bpy. Thus, the crystals were grown preferentially along 

bpy direction (the [010] direction), as shown in  Figure 13. 

Prior to the evaluation of adsorption properties, the structural flexibility of 

deposited Zn-CID-5 was confirmed by XRD under methanol atmosphere. All the 

as-synthesized crystals on substrates transformed from the open form to a closed form 

through guest removal. The Bragg peaks of 100 (2 = 9.0) and 1-1-1 (2 = 15.2) shifted 

to higher angles because the twisting of carboxylates and leaning of bpy shrank the 

interlayer and innerlayer distances. The Bragg peak of 010 (2 = 9.5) disappeared and a 

new peak   (2 = 8.2) was appeared due to the bending of NO2-ip (Figure 14). The 
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structural transformation from the closed form to an open form occurred over P/P0 = 0.2 

in the adsorption process and under P/P0 = 0.05 in the desorption process, which 

corresponds to the gate-opening adsorption and hysteresis of desorption process of bulk 

samples. These results suggested that all the deposited micrometer-sized Zn-CID-5 

crystals maintain the original structural flexibility. 

 
Figure 14.  XRD patterns of (a) [100], (b) [1-1-1], (c) non-oriented and (d) [010] 

oriented samples under various methanol humidity in adsorption and desorption process. 

 

 In order to clarify the sorption properties of deposited Zn-CID-5, we 

implemented an environmentally-controlled QCM system that controlled the partial 

vapor pressure of volatile organic compounds (VOCs) in helium carrier gas.39 The PCP 

modified QCM substrate (AT-cut, 9 MHz) was activated prior to the measurement 

according to the following protocol; the modified QCM oscillator was soaked into pure 

CHCl3 and then heated in QCM chamber under dry helium gas flow. The amount of 

Zn-CID-5 crystals deposited on QCM substrate was estimated by the comparison of the 

fundamental frequency with the current frequency. 

The vapor adsorption kinetics were investigated by real-time monitoring of the 

frequency change after the introduction of a vapor flow of MeOH at P/P0 = 0.4 into the 

QCM chamber. The time dependent mass uptake (Mt/Me: Mt is the uptake at time t and 

Me is the equilibrium uptake) for methanol vapors on the samples. Figure 15 shows the 
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effect of the crystal orientation on the kinetics of MeOH uptake. The rate of methanol 

sorption for the [100] and [010] oriented crystals was much faster than that of the [1-1-1] 

oriented or not-oriented samples. While the channel of the [1-1-1] oriented sample is 

perpendicular to the substrate, the channels of the [100] and [010] oriented samples run 

parallel to the substrate. Since the organic vapor was injected from the side of sample 

cell, the channels of the [100] and [010] oriented samples face in the direction of gas 

flow. Thus, the [100] and [010] oriented sample quickly adsorbed methanol. Noted that 

the guest uptake of [100] and [010] oriented samples have been completed less than 10 

seconds. 

 

 

Figure 15.  Time dependent MeOH mass uptakes of [1-1-1] orientation (black), [100] 

orientation (green), [010] orientation (blue) and no orientation (red) at P/P0 = 0.4. 
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Conclusion 

 
 In summary, we have successfully controlled the crystal size of 

[Zn(NO2-ip)(bpy)]n (Zn-CID-5) by coordination modulation method and investigated the 

effect of crystal size on sorption properties. The downsizing the crystals under 1 m 

spoiled the characteristic gate-opening properties. Moreover, the micrometer-sized 

Zn-CID-5 crystals were fabricated on QCM substrate with controlling the crystal 

orientation. By the environmentally-controlled QCM system, we have quantitatively 

analyzed the sorption kinetics of Zn-CID-5 on QCM substrates. In case that the channels 

are running parallel to the direction of gas flow, Zn-CID-5 quickly adsorbed organic 

vapors. This result opens the way for the fabrication of the PCP sensor device and will 

clarify the way to improve its sensor performance. 
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Experimental Section 

 

Materials 

Reagents and solvents were purchased from commercial sources and used 

without further purification. 

 

Synthesis of bulk Zn-CID-5 

Zn(NO3)2•6H2O (44.6 mg, 0.15 mmol), 5-nitroisophthalic acid (31.6 mg, 0.15 

mmol) and 4,4’-bipyridyl (23.4 mg, 0.15 mmol) were dissolved in 20 mL of 

N,N-dimethylformamide (DMF). The solution was heated by use of microwave reactor 

(Initiator, Biotage). 

 

Coordination Modulation Method for Zn-CID-5 

Zn(NO3)2•6H2O (89.6 mg, 0.30 mmol), 5-nitroisophthalic acid (63.3 mg, 0.30 

mmol), 4,4’-bipyridyl (46.9 mg, 0.15 mmol) and 4-ohenylpyridine were dissolved in 20 

mL of N,N-dimethylformamide. The solution was heated up to 120 C  for 5 min by 

microwave reactor, Initiator from Biotage. 

 

Adsorption Measurements 

Prior to the measurement, the sample has been soaked in dry methanol for 24 

hours at room temperature, activated under vacuum at 393 K for 4 hours, and the degree 

of residual vacuum was checked to be lower than 5 × 10-2 Pa/min using the “leak check” 

option. The sorption isotherms of CID-5 for methanol, chloroform and hexane at 298 K 

were recorded on a BELSORP-max volumetric adsorption instrument from BEL Japan, 

Inc. 

 

In situ XRD during MeOH Sorption 

The XRD patterns under MeOH were recorded using Smart Lab (Rigaku) 

equipped with a rotating anode Cu Kα X-ray generator. The partial pressure of MeOH 

vapor was controlled by a BEL-Flow vapor control system (BEL Japan). 

 

Preparation of SAMs on Substrates 

COOH-terminated SAMs was prepared by immersing the substrates in a solution 

of mercaptohexadecanoic acid for 1 day. The substrate was removed from the solution, 

thoroughly rinsed with 10 % acetic acid in ethanol. 
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Deposition of CID-5 on Substrates 

Zn(NO3)2•6H2O (5.95 mg, 0.02 mmol) and 5-nitroisophthalic acid (4.39 mg, 

0.02 mmol) were dissolved in 2 mL of N,N-dimethylformamide in a glass vial. The 

substrate was  immersed in the stocked solution. Then, 1 mL of DMF/EtOH (1:1) 

mixture was slowly layered on top of the DMF solution. Finally, 2mL of a EtOH solution 

of 4,4’-bipyridyl (3.12 mg, 0.02 mmol) was slowly layered on top of the DMF/EtOH 

mixture. The solution was heated up to 70 C  for 12 hours. bpy slowly diffused towards 

the bottom layer and CID-5 was crystallized on the substrate. 

 

Microwave-assisted deposition of CID-5 on Substrates 

Zn(NO3)2•6H2O (0.30 g, 1 mmol) and 5-nitroisophthalic acid (0.21 g, 1 mmol) 

were dissolved in 20 mL of N,N-dimethylformamide at room temperature. Then, 10 mL 

of a methanolic solution of 4,4’-bipyridyl (0.16 g, 1 mmol) was added to the previous 

reaction vessel. After stirring to obtain an homogeneous mixture, a gold sub-strate was 

placed standing(to avoid aggregation from gravity) in the solution. The solution was 

heated up to 120 C  for 5 min by microwave reactor, Initiator from Biotage. 

 

Field-Emission Scanning Electron Microscopy 

Scanning electron microscopy (SEM) observations were performed with a JEOL 

Model JSM-7001F4 SEM. 

 

Quartz Crystal Microbalance 

The sorption properties of hybrid QCM sensors for volatile organic compounds 

(VOCs) were investigated by environment-controlled BEL-QCM system. The He carrier 

gas flow was controlled by mass flow controllers with a total mass flow of 100 cm3 min-1. 

The mass of deposited PCP material was estimated by the comparison of the fundamental 

frequency with the current frequency. 
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