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ABSTRACT 

 

 

 Flows in the rivers and open channels are often unsteady non-uniform flows. Due to 

nature of the unsteady varied flows, the hydrodynamic properties of the flows changes in 

different stages of the flows. Therefore, to investigate the characteristics of such unsteady 

varied flows; simple, accurate and efficient numerical and analytical models are developed in 

this research.  

 A one-dimensional depth-averaged model is a convenient tool to resolve the actual 

problems in rivers due to its small computational loads. Concerning this view, a simple one-

dimensional depth-averaged velocity deformation model is developed. The fundamental form 

of the streamwise velocity in a power series of depth is assumed initially, and the coefficients 

of the velocity are evaluated using the unsteady equation of motion. A concise form of the 

friction velocity for unsteady non-uniform flow is then proposed by utilizing the coefficients 

of the power series. The applicability of the model is validated with experimental data over 

smooth and rough beds. The comparisons produced reasonably good agreement between the 

model results and the observed data. Finally, the deformation of velocity at the surface is 

assured by comparing velocity distribution of numerical model with the computational results 

from the Engelund model. 

 The limitations of one-dimensional modeling in evaluation of turbulence 

characteristics are overcome by three-dimensional unsteady Reynolds Averaged Navier 

Stokes (RANS) model. The hydrodynamic properties of unsteady varied flows are examined 

in view of free surface effects by using the standard and non-linear k-ε model. The flow 

properties obtained from 3D modeling followed the same trend in smooth bed case. Although 

some deviations encountered in fewer properties of the flows in high unsteady case, the 

distributions of flow properties for small unsteady case are in good agreement with the steady 

state condition. In rough bed case, the comparisons between the numerical results and the 

experimental data produced much better agreement. The significance of non-linear k-ε model 
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is more pronounced for rough bed case, indicating turbulence characteristics of non-linear k-ε 

model are well compared to the empirical condition than the standard k-ε model.  

 To improve the velocity distributions in depth-averaged modeling, further analysis is 

performed theoretically by using the standard k-ε model. Additionally, to check the effect of 

the damping function in correlation with the wake law; analysis is conducted in uniform flow 

by including and excluding the damping function. The validity of the model is tested using 

numerical results of the finite difference scheme. However, very negligible effects of the 

damping function on velocity distribution are observed. Except on the turbulent kinetic 

energy, the effect of damping function on energy dissipation rate and eddy viscosity is 

observed through the modelled results. Nevertheless, the overall tendencies of the 

distributions are maintained well by the analytical results.  

 With the success of theoretical solution in uniform flow, non-uniform flow analysis is 

conducted by using the standard k-ε model. In this case, the validity of the theoretical model 

is verified in comparisons with the experimental data. Although some deviations observed in 

fewer cases, the distributions of the flow properties are acquired well by the analytical 

solutions. Similar to the uniform flow analysis, in this case also the distribution of kinetic 

energy failed to reproduce the damping effect near the free surface zone. However, the nature 

of the distributions of turbulent kinetic energy, energy dissipation rate and eddy viscosity 

satisfied the conditions of the non-uniform flows. 

 Following the deformation principle from first objective, an analytical solution in 

rapidly varied unsteady flow is performed. Initially the fundamental form of the streamwise 

velocity in a power series of depth is used and the dependency of the coefficients on a spatial 

coordinate are considered. The relations between the coefficients are later derived by using  

2D continuity and momentum equations. These relations are successively utilized into the 

depth-averaged continuity and momentum equations to obtain the set of equations for water 

surface profile analysis. A simple depth-averaged flow model derived based on the 

deformation principle is discussed in comparison with the previous experimental data. 

Although further improvement is necessary, the proposed model reproduced the comparisons 

with the experimental data effectively.  

 In addition to the depth-averaged modeling, the numerical simulation of 3D unsteady 

RANS model by using the standard and non-linear k-ε model is conducted. The comparisons 
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between the numerical and the experimental data showed that the water surface profile 

obtained for non-linear k-ε model is exhibited more local energy dissipations. The 

pronounced effect of non-linearity is observed in streamwise turbulence intensity 

distributions. The vertical distribution of streamwise turbulence intensity for non-linear k-ε 

model reproduced the reasonable agreement with the theoretical data as compared to the 

standard k-ε model. 

 Finally, concerning the relationship between the Froude number and the turbulent 

diffusivity coefficient in a hydraulic jump case, an empirical formula is proposed. From the 

numerical simulation of Boussinesq equation, the applicability of the empirical relationship 

between the Froude number and the proportionality factor is verified. Different types of 

jumps are analyzed to ascertain the water surface profile evaluation. Through these 

assurances, the breaking processes of undular jump and transition from weak jump to strong 

hydraulic jump is confirmed.  
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Chapter 1 

 INTRODUCTION 

 

1.1  Preliminaries 

 Flows in the rivers and open channels are often unsteady non-uniform flows. 

Common examples of unsteady varied flows includes flood flows in rivers and tidal flows in 

estuaries, flows in irrigation channels, headrace and tailrace channel of hydropower plants, 

navigation canals, stormwater systems and spillway operation. Due to nature of the flows the 

flow processes, distributions of suspended load and bed load movements in unsteady varied 

flows are different from the one in steady flows (Song and Graf 1996). The behaviour of the 

flow also changes with the unsteadiness indicating various sediment transport properties to 

be different in the different stages of the flows; that is as rising and falling stages of flood 

flows. Investigations of hydrodynamic properties of the unsteady varied flows are therefore 

necessary to predict the different aspects of the flows. For instance, the distribution of 

velocity and Reynolds stress quantify the suspended load of sediments. On the other hand, 

the bed shear stress is pertinent to determine the sediment threshold and bed load of sediment 

(Dey and Lambert 2005). The examination of these properties is therefore important for 

estimation of sediment transport rate and for designing a stable channel section.  

 Many researchers have conducted turbulence measurements in unsteady open channel 

flows despite the measuring difficulties in near free surface flow zone. The varieties of 

techniques and instruments have been developed so far to measure the turbulence in the 

unsteady varied flows. These instruments are classified into different types according to their 

measurements principles. The descriptions of those instruments and the chronicles of 

turbulence in open channel flows until 1984 are reported in Nezu and Nakagawa (1993). 

From mid 80's onwards contributions from few researchers in turbulence measurements in 
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unsteady varied flows is presented herein. Hayashi et al. (1988) seems to be the first to 

perform experiments by using hot-film anemometer and concluded that the degree of 

turbulence is stronger in the rising stage than in the falling stage. Tu and Graf (1992) also 

measured and analyzed the unsteady flow over rough bed by using micro-propeller to verify 

the applicability of logarithmic and Coles’ wake laws. They evaluated the friction velocity 

using Saint Venant equation and suggested that according to the unsteadiness, a slight 

modification should be taken into consideration while using logarithmic and Coles’ wake 

laws. Song and Graf (1994), on the other hand, used acoustic Doppler velocity profiler 

(ADVP) to study the turbulence characteristics in steady varied flows. Not only in steady 

varied flows but also in unsteady flows over rough bed, Song and Graf (1996) used ADVP to 

obtain the instantaneous velocity profiles. Their experiments investigated thirty-three 

different hydrographs to characterize the flow by unsteadiness parameter and longitudinal 

pressure gradient parameter. Owing to the complications of turbulence measurements in 

unsteady open channel flows, Nezu et al. (1997) conducted the flow measurements over a 

smooth bed simultaneously by using two-component laser Doppler anemometry (LDA) and 

water-wave gauge. Their conclusions were similar to that of Hayashi et al. (1988) except 

very close to the free surface zone. Recently, Bagherimiyab et al. (2010) investigated the 

hydrodynamic aspects of unsteady (accelerating and decelerating) flows over gravel bed 

using acoustic Doppler and imaging methods.  

 Based on the understandings of the basics of the flows theoretical studies have been 

conducted to evaluate some of the characteristics of the unsteady varied flows. For example, 

Song and Graf (1994) proposed theoretical expression for friction velocity, vertical velocity 

and Reynolds stress distribution in non-uniform open channel flows. In addition, Song and 

Graf (1996) developed theoretical expression for vertical velocity and Reynolds stress 

distribution in unsteady flows over rough beds. On the other hand, Dey and Lambert (2005), 

proposed expression for Reynolds stress and bed shear stress on sloping beds in unsteady 

varied flows.  

 These chronologies (though reported only recent studies) indicated that, firstly 

conceptual models were designed based on the experimental investigations and mathematical 

models started playing role in order to distinguish the different features of the flows. In 19
th

 

century, Barre de Saint Venant and Valentin Joseph Boussinesq formulated the basic 
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equations in the form of partial differential equations to represent the hydraulic principles. 

Analytical solutions of these basic equations are nearly impossible due to their non-linearity 

(Chanson 2004). Instead, with the advent of computer technology, numerical techniques are 

used to approximate the solution of these equations.  

 Numerical simulation of unsteady flows in open channel flow is an important, 

interesting and difficult subject in hydraulic engineering. Several researchers contributed 

their efforts to characterize the unsteady flows numerically. For instance, Iwasa et al. (1976) 

conducted the numerical simulation of floods in rivers by means of method of characteristics, 

Lax-Wendroff scheme. Onda et al. (2004) developed simple one-dimensional model for non-

uniform flows including the accelerating and decelerating effects. Recently, numerical 

simulation of flood flows is carried out by Hosoda et al (2010) to reproduce the previous 

flood flows for the case of lack of data at upstream and downstream boundary conditions. 

These all models simulated with the one-dimensional modeling. Moreover, with the 

advancements of numerical methods, numerical simulations in 2D unsteady flows are also 

performed. (Wu 2004; Ahmadi et al. 2009). The availability of supercomputers and the 

increasing popularity of turbulence modeling made the feasibility of computations of 3D 

flow field. (Kimura et al. 2003; Ge and Sotropoulos 2005).  

 These all studies indicated that the investigation of the unsteady varied flows is a 

subject of interest for many researchers. 

 

1.2  Objective and justification of the Study 

 The main objective of this study is to develop simple, accurate and efficient models to 

predict the various characteristics of rivers or open channel flows.   

 According to Steffler and Jin (1993), one-dimensional flow does not exist in the 

nature actually, but equations remain valid provided the flow is approximately one-

dimensional. Concerning this view and because of the small computational load of one-

dimensional model, initial objective of the research is to develop a simple depth-averaged 

model for unsteady varied flows. Reviewing the work of Engelund (1974) in uniform flows 

and Onda et al. (2004) in steady non-uniform flows, the idea of development of simple 

depth-averaged model including the velocity deformation is emerged. The inadequacy of the 

previous models for the evaluation of velocity distributions in unsteady varied flows is a 
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primary concern of this objective. In addition, determination of the general expression for 

friction velocity for unsteady varied flows is an adjacent topic of the study.   

 Although practical depth-averaged model is a powerful tool to resolve actual 

problems in the rivers, it has limitations to predict the 3D turbulent flow field. This lead to 

study the characteristics of unsteady varied flows using 3D unsteady Reynolds Averaged 

Navier Stokes (RANS) model. The advantage of 3D modeling over previous one-

dimensional modeling is that turbulence characteristics of the unsteady flows can be studied 

well by this modeling. Therefore, in order to check the flow field in consideration with the 

free surface effects of unsteady non-uniform flows, numerical simulation of 3D unsteady 

RANS model will be performed in the next objective.  

 The one-dimensional depth-averaged velocity deformation model will be based on 

the Engelund model. The deficiency of Engelund model is that, it is not in compatible with 

the universal logarithmic law of velocity distributions. Thus, even though depth-averaged 

model includes deformation principle, it is not sure that the velocity distributions obtained 

will be in agreement with the logarithmic velocity distributions. To resolve this kind of 

problem it is necessary to modify the depth-averaged model, which further provides the 

assurance of reproduction of hydrodynamic properties of the flows. However, before doing 

so, it is essential to evaluate some properties of the flows analytically. For that purpose there 

will not be any other good choice than using the standard k-ε turbulence model. Therefore, 

for further analysis objective is define to determine the analytical solution of the standard k-ε 

model. Additionally, the effect of damping function on velocity distribution near free surface 

zone will also be analyzed to correlate it with the wake law of the velocity distribution.  

 After analyzing the gradually varied unsteady flows, the next objective of the 

research is to evaluate the rapidly varied unsteady flows. Thus, the objective is set to 

determine the analytical solution of the hydraulic jump. Due to nature of the flow in 

hydraulic jump, it is difficult to determine the water surface profile of the hydraulic jump. 

Only few researchers (for example Madsen et al. 1983) made an attempt to explain the 

characteristics of hydraulic jump analytically. However, their model is based on the turbulent 

closure and hence, little complicated. Rather, this study will plan to use simple depth-

averaged model for evaluation of water surface profile of the jump. Moreover, based on the 
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deformation principle, which will be used in initial objective, the velocity distributions in 

hydraulic jump will be determined analytically.  

 Undular jump is one of the fundamental phenomenons that considered the effect of 

vertical acceleration term. Undular jump and strong hydraulic jump are different in the sense 

that the continuous water surface profile is seen for undular jump. Contrary, because of 

intense mixing and the roller formation the breaking of the water surface is observed for the 

strong hydraulic jump. Thus, concerning the evaluation of water surface profile, the 

Boussinesq equation will be solved numerically in order to characterize the undular jump. 

Finally, numerical simulation will be done to describe the phenomenon of transition of the 

flow from undular jump to the strong hydraulic jump. 

 

1.3  Structure of the Dissertation 

 In this dissertation the characteristics of the unsteady varied open channel flows are 

studied numerically and analytically. The main content of the dissertation are comprised into 

four main chapters followed by the conclusions in the last chapter. The chronological orders 

of the chapters are briefly described below: 

 In Chapter 2, development of one-dimensional depth-averaged velocity deformation 

model is discussed. Initially, the vertical distribution of the streamwise velocity is expressed 

in a power series of depth and the coefficients of the velocity are evaluated using the 

unsteady equation of motion. A concise form of the friction velocity for unsteady non-

uniform flow is then proposed utilizing the coefficients of the power series. The applicability 

of the model is validated with the experimental data over smooth and rough beds. Finally, the 

deformation of velocity at the surface is assured by comparing the velocity distribution of 

numerical model with the computational results of the Engelund model.  

 After analyzing one of the main feature of the hydraulics in previous chapter, all other 

characteristics of the unsteady varied flows are explained using 3D unsteady RANS model in 

Chapter 3. Similar to one-dimensional modeling, two experimental cases; smooth and rough 

beds are used for the comparisons. Beginning with the descriptions of RANS modeling, 

numerical results obtained by using the standard and non-linear k-ε model are compared with 

each other and with the experimental data as well.  
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 Chapter 4 described an analytical solution of the standard k-ε model. It is well known 

that, the damping effect of the turbulence near the free surface affects the eddy viscosity 

distribution indicating parabolic shape. Therefore, to examine the effect of such damping 

function also on the velocity distribution, analysis is conducted in uniform flow by including 

and excluding the damping function. The validity of the model is tested using numerical 

results of the finite difference scheme. The investigations of turbulence characteristics of the 

uniform open channel flow is not enough, because the flow encountered in the river/open 

channel is often non-uniform flow. Thus, to characterize the non-uniform flow, an analytical 

solution of the standard k-ε model for non-uniform flow is also developed in a successive 

step. Similar to the uniform flow case, the effect of damping function is also considered in 

the analysis. The validity of the theoretical model is then checked in comparisons with the 

experimental data. 

 In Chapter 5, the derivation of a simple depth-averaged flow model considering the 

deformation principle of velocity is explained. Similar to the one-dimensional model in 

Chapter 2, in this case also, the fundamental form of the streamwise velocity in a power 

series of depth is used. However, in this chapter additional dependency of the coefficients on 

a spatial coordinate is considered. The relations between the coefficients are later derived by 

using the two-dimensional continuity and momentum equations. These relations are then 

successively utilized into the depth-averaged continuity and momentum equations in order to 

obtain the water surface profile and velocity distribution of the hydraulic jump. The obtained 

model results are then discussed in comparisons with the previous experimental results. 

Additionally, the numerical simulation of hydraulic jump using 3D unsteady RANS model 

are also discussed. Likewise in Chapter 3, both the standard and non-linear k-ε model are 

used for the simulation. The computed results of the 3D model are verified in comparisons 

with the previous experimental data.  

 Following the continuous profile of the strong hydraulic jump, in Chapter 6, the 

numerical simulations for different types of jumps are performed. The strong hydraulic jump 

can be evaluated numerically without considering the vertical acceleration term in 

Boussinesq equation. However, in order to achieve the water surface profile of the undular 

jump, vertical acceleration term needs to take into consideration in Boussinesq equation. The 

numerical simulations are performed by including the proposed relationship of the Froude 
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number and the proportionality factor of turbulent diffusivity coefficient. Finally, by 

reviewing the previous studies, the transition of the flow from undular jump to the strong 

hydraulic jump is explained through the numerical analysis.  
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Chapter 2 

 ONE-DIMENSIONAL VELOCITY 

DEFORMATION MODEL FOR UNSTEADY 

FLOWS 

 

2.1  Preliminaries  

 In natural rivers, the effect of unsteadiness plays an important role during the flood 

events. Various characteristics of the flow changes with the flood flow during its rising and 

falling stages. Therefore, an investigation of velocity distribution is essential to understand 

the hydrodynamic characteristics of unsteady flows in rivers. A one-dimensional depth-

averaged model is a convenient way to resolve the actual problems in rivers due to its small 

computational load. The basic idea behind it is to assume the velocity distribution over the 

entire depth and to determine the bed shear stress by using the momentum equation. 

 Engelund (1974) proposed a theory to describe the bed topography and main features 

of hydraulics in meander bends with movable beds. Based on the study of Engelund (1974), 

Onda et al. (2004) developed simple one-dimensional model for steady non-uniform flows 

including the accelerating and decelerating effects. Their model and also the Engelund 

(1974) model did not account for the unsteadiness. Numerical simulation of flood flows was 

also carried out by Hosoda et al (2010). They used one-dimensional depth-averaged model to 

reproduce the previous flood flows for the case of lack of data at upstream and downstream 

boundary conditions. However, their model is tested to only the idealized flood flow. 

 Thus, to understand the characteristics of such unsteady flows, the aim of this chapter 

is to develop a simple depth-averaged velocity deformation model and to propose a concise 



Chapter 2.   ONE DIMENSIONAL VELOCITY DEFORMATION MODEL FOR UNSTEADY FLOWS 

 

10 

 

form of friction velocity formula. The applicability of the model is validated by using the 

experimental data over smooth and rough beds. The results obtained from the proposed 

model are also compared with the computational results of the Engelund model (EM). 

 

2.2  Model Formulation 

2.2.1  Velocity distribution  

 Engelund (1974) assumed that the velocity distribution along a depth follows the 

defect law that describe one of the main feature of the hydraulics. The model is derived on 

the basis of the Boussinesq approximation of the constant eddy viscosity  in the equation of 

motion. Thus, 

  
dy

du





 ;  hu*  , and 077.0     (2.1) 

where  = Reynolds or turbulent shear stress;  = mass density of fluid; u = time-averaged 

streamwise velocity; y = vertical distance;  = coefficient (= 0.077); and h = flow depth. 

Engelund model is valid only for a steady uniform flow in a wide channel. Thus, to simulate 

an unsteady flow, the effect of unsteadiness of the flow in the model is incorporated.  

 Initially, for one-dimensional flow, the fundamental form of the distribution of 

streamwise velocity along vertical is expressed as a power series of dimensionless depth as 

   4

4

3

3

2

210  uuuuu
U

u
      (2.2) 

 where U = depth-averaged velocity; 0u , 1u , 2u , 3u , 4u  = coefficients;  and  = y/h. The 

graphical representation of unsteady flow is shown in Fig. 1. 

 The continuity equation is 

        0









y

v

x

u
      (2.3) 

where v = time-averaged vertical velocity; and x = streamwise distance. Integrating Eq. (2.3) 

from bottom to the free surface, the vertical velocity obtained as the form of a power series 

of streamwise velocity. That is 

          


d
x

u
hd

v
v  







      (2.4a) 
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Figure 2.1. Sketch of unsteady flow 
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 Thus the vertical velocity is  
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The hydrostatic pressure p and its streamwise gradient are expressed as 

    ( )cosp g h y                             (2.5a)
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where g = gravitational acceleration; and  = angle made by the streamwise slope with the 

horizontal. 

 To include the effect of unsteadiness in the model and to determine the coefficients of 

power series, the expressions in Eqs. (2.1), (2.2), (2.4c) and (2.5b) are substituted into the 

equation of motion in x-direction.  
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Rearranging the terms to the different power of , the following equation is obtained: 
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 The expression for the  coefficients of power series are evaluated by sorting out the 

terms with similar power of  . This procedure is used to determine the coefficients 2u  and 

3u  as 
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 However, 0u  is defined by the expression of the bottom velocity and 1u  is described 

by using the definition of the bottom shear stress. So,  

    
U

u
ru *
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U

u
u


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1                (2.10) 

The coefficient 4u  is determined by assuming the zero shear stress at the free surface. Thus, 
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 By using this zero gradient condition at the free surface and from the expression of 

the coefficients, the vertical distribution of streamwise velocity can be determined once the 

friction velocity is known.  
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2.2.2  Friction velocity 

 The friction velocity estimation is essential in turbulence research because its value 

represents the velocity scale of mean velocity and turbulence (Nezu et al. 1997). There are a 

few methods to determine the friction velocity. The well-known methods are estimation of 

friction velocity from fitting a logarithmic law or Clauser method, momentum equation, and 

the measured Reynolds shear stress profiles. Nezu et al. (1997) proposed a new approach for 

determination of friction velocity by using measured velocities in the viscous sublayer. 

However, in the present model, the objective is set to develop the concise form of friction 

velocity, including the effect of non-uniformity and unsteadiness in the flows. To do so, 

initially by the definition of depth-averaged velocity, that is 
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 Substituting the expression of the coefficients into the above equation and then 

simplifying, a quadratic equation of  Uu /*  is obtained as 
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where *u  = friction velocity; and *r  = coefficient of bottom and friction velocity. 

 The principal terms, as indicated in Eq. (2.13), play a main role in the steady-uniform 

flows. On the other hand, other terms play a role during the unsteady non-uniform flows. 

Thus, the friction velocity for steady-uniform flows is determined by solving the principal 

terms. Contrarily, to predict the friction velocity for the unsteady flows, it is necessary to 

consider the non-uniformity and unsteadiness of the flows. Keeping that in view, the 

relationship for the friction velocity determined for the steady uniform flows from the 
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principal terms is included in the other terms. The whole equation is then rearranged and 

simplified to obtain the concise expression for the friction velocity *u  as 
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 The friction velocity represented in the formulation is valid for the steady-uniform 

flows and the unsteady non-uniform flows as well. 

 

2.2.3  Computational Condition 

 During the simulation of unsteady flows, sine hydrograph for the discharge is given at 

the upstream end, and depth is fixed at the downstream end as a boundary condition. The 

value of the coefficient *r  is adjusted until the base flow discharge is obtained as an initial 

condition. The depth-averaged equation is later solved by including the effect of vertical 

distribution of streamwise velocity in the momentum equation. Thus, 
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 Four experimental cases, two for smooth bed with large and small unsteadiness 

parameters, as defined by Nezu et al. (1997) and another two for rough bed (Song and Graf 

1996; Tu and Graf 1992) are simulated. The hydraulic conditions along with *r  value for 

four experimental cases are tabulated in Table 2.1. For all simulations, x and t are set to be 

0.05 and 0.01, respectively.  

 

Table 2.1. Hydraulic parameters considered during the simulation 

Case Slope Td (Sec) Qb (m
3
/s) Qp (m

3
/s) hb (m) *r  

NZ1 0.00167 60 0.005 0.0154 0.0405 7.67 

NZ2 0.00167 120 0.005 0.0158 0.041 7.451 

SG 0.003 52 0.0585 0.0891 0.11 9.152 

TG 0.002 55 0.022 0.0121 0.09 5.385 

Note - Td is duration from base flow discharge to peak flow discharge; Qb is base flow 

discharge; Qp is the peak flow discharge and hb is the base flow depth. 

 

2.3  Results 

2.3.1  Smooth Bed Case  

2.3.1.1  Bed shear stress 

 The friction velocity represented by Eq. (2.14) is used to determined the bed shear 

stress, 2

*uw   . However, for the experimental cases, the friction velocity is estimated by 

using the logarithmic law. The bed shear stress is then normalized by the mean bed shear 

stress, and plotted against normalized time for two cases, NZ1 (large unsteadiness parameter) 

and NZ2 (small unsteadiness parameter) as illustrated in Fig. 2.2. Depth hydrograph 

 bhhh   (depth versus time) for these cases are also depicted in Fig. 2.2. Similar to the 

experimental results, the normalized bed shear stress increases with an increase in time in the 
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rising stage attaining a peak value before the peak depth occurs and decreasing 

monotonously in the falling stage. It leads to the various sediment transport properties to be 

higher in rising stage than falling stage. This difference of the bed shear stress between the 

rising and the falling branches, as reported by Nezu et al. (1993), is responsible for the loop 

characteristics against the depth. The maximum value of normalized bed shear stress 

decreases with a decrease in the unsteadiness parameter. The unsteadiness parameters 

resulted from numerical (Num) simulation along with the experimental unsteadiness 

parameters are tabulated in Table 2.2. 
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Figure 2.2. Normalized bed shear stress w  against time )T/T(t d .  a) Case NZ1; b) Case 

NZ2 ( measuring point at x =7 m in 10 m long flume) 

 

 

Table 2.2. Unsteadiness parameter (X 10
-3

) 

Case Num  Model Experiment 

NZ1 1.066 0.95 

NZ2 0.708 0.52 

 

 



Chapter 2.   ONE DIMENSIONAL VELOCITY DEFORMATION MODEL FOR UNSTEADY FLOWS 

 

17 

 

2.3.1.2  Loop Characteristics 

 The distribution of streamwise velocity for three representative regions of flows, wall, 

intermediate and free surface regions, are compared with the experimental data. The 

streamwise velocity, u, normalized by the maximum mean velocity, umax, is plotted against 

normalized depth for the above mentioned regions (Fig. 2.3). The variation of the normalized 

streamwise velocity with normalized depth for wall and intermediate regions exhibits the 

loop characteristics, as is observed in the experiments. Although the variation in the 

intermediate region shows small departure, the loop characteristics in the wall region is in 

good agreement with the experimental data. The resulting velocity of the Num model in the 

rising stage is higher than that in the falling stage. Like experiments, the Num model shows 

the thickness of the loop increases with an increase in the unsteadiness parameter.  

 The loop characteristics in the free surface region observed in experiments showed an 

8-shaped loop caused by a probable effect of the surface wave fluctuations, but the Num 

model could not produce an 8-shaped loop at the free surface region. This could be resulted 

from the lack of the generation of fluctuations because of incorporation of additional stresses. 

These additional stresses are provided from the fluid flow but not from the turbulence of the 

flow.  

 

2.3.1.3  Velocity deformation 

 The main aim of the present study is to verify the velocity deformation in the vicinity 

of the free surface caused due to unsteadiness and non-uniformity of the flow. For that reason, 

the vertical distribution of streamwise velocity obtained from the Num model is compared 

with the uniform flow velocity distribution of Engelund model (EM), EMU , as depicted in 

Fig. 2.4. Both the distributions are well comparable in the lower region; however, in the outer 

region, the distribution of velocity obtained from the Num model departs from that obtained 

from the Engelund model. This deformation occurs as a result of the unsteadiness and non-

uniformity of the flow in the Num model. 

 



Chapter 2.   ONE DIMENSIONAL VELOCITY DEFORMATION MODEL FOR UNSTEADY FLOWS 

 

18 

 

u/u
max


h

/
h

p

0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

Num

Expt

a) CASE : NZ1

Wall Region

     u/u
max


h

/
h

p

0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

Num

Expt

b) CASE : NZ2

Wall Region

 

u/u
max


h

/
h

p

0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

Num

Expt

a) CASE : NZ1

Intermediate Region

     u/u
max


h

/
h

p

0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

Num

Expt

b) CASE : NZ2

Intermediate Region

 

u/u
max


h

/
h

p

0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

Num

Expt

a) CASE : NZ1

Free Surface Region

     u/u
max


h

/
h

p

0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

Num

Expt

b) CASE : NZ2

Free Surface Region

 

Figure 2.3. Loop characteristics of streamwise velocity for three representative  

sections. a) Case NZ1; b) Case NZ2 



Chapter 2.   ONE DIMENSIONAL VELOCITY DEFORMATION MODEL FOR UNSTEADY FLOWS 

 

19 

 

  The temporal change of difference of velocity between Num and EM model at the 

surface is normalized by the friction velocity and compared with the experimental data for 

both the cases, as shown in Fig. 2.5. For the experimental case, the distribution is calculated 

using the logarithmic law with wake parameter  considered as 0.1 for steady flow (Steffler 

et al. 1985; Kirkgoz 1989). The distribution does not agree well with the experimental data 

because the velocity distribution of the Num model is not compatible with the logarithmic 

law. The model is derived from the Engelund model that, itself, is not compatible with the 

logarithmic law. Therefore, only the pattern of the distribution is similar to the experimental 

data with the peak values of the normalized velocity that attains before the full depth reaches 

and the maximum value at the peak decreases with a decrease in the unsteadiness parameter.  
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Figure 2.4. Comparison of vertical distribution of streamwise velocity with Engelund Model. 

a) Case NZ1; b) Case NZ2 
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Figure 2.5. Normalized Velocity   */ uUUU EM  against time t  in the surface region.  

a) Case NZ1; b) Case NZ2 
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2.3.2  Rough Bed Case  

 To check the compatibility of the model for the flows over a rough bed, two 

experimental conditions, as mentioned previously, are used. The details of the distribution 

with the cases of the large and the small unsteadiness parameters are explained in the 

succeeding subsections.  

 

2.3.2.1  Distribution of Hydraulic Variables 

 Temporal distribution of the hydraulic variables with experimental data for the less 

unsteadiness case is presented in Fig. 2.6 (Song and Graf 1996); and that for the high 

unsteadiness case is plotted in Fig. 2.7 (Tu and Graf 1992). All hydrographs under the case of 

the less unsteadiness are in good agreement with the experimental data, but under the case of 

the high unsteadiness, the numerical values are underestimated. This is attributed to the 

setting of a constant depth, as the downstream boundary condition dampens the depth 

causing maximum velocity at the peak discharge than on the experimental curve. However, 

in both the cases, the peak of friction velocity is obtained first, and then, the maximum value 

of average velocity and discharge appears in succession. The peak value of the depth is 

attained in the end indicating the loop rating curve for flood flows. 
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Figure 2.6a. Time variation of discharge and depth hydrographs for SG case 
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Figure 2.6b. Time variation of averaged and friction velocity hydrographs for SG case 
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Figure 2.7a. Time variation of discharge and depth hydrographs for TG case 
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Figure 2.7b. Time variation of averaged and friction velocity hydrographs for TG case. 
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2.3.2.2  Time variation of streamwise velocity 

 Time variations of streamwise velocities over entire depth are shown in Fig. 2.8 

(Song and Graf 1996) and 2.9 (Tu and Graf 1992). In Fig. 2.8, computed values show less 

friction due to the *r  value selected for the model. Hence, at the wall region, the horizontal 

velocity overestimates the experimental data, but in the intermediate region, the distribution 

is similar to that obtained in the experiments. Further, up in the region, the values are 

underestimated and at the free surface, it again matches with the experimental data indicating 

full development of the flow caused due to inclusion of additional stresses. (Note - for more 

visibility Num and Expt distribution of velocity at y = 5.77cm; y = 7.76cm and y = 9.75cm 

are shifted from its original position by subtracting 10, 7, and 3 units, respectively).  

 For the case of the large unsteadiness parameter, as shown in Fig. 2.9, the Num model 

shows a close agreement with the experimental data. The velocity near the bottom is well 

comparable with the experimental data, except at the peak, where the velocity attains slightly 

higher value than the experimental data. Superimposing both the figures for respective cases 

indicates that the velocity in the vicinity of the free surface arrives at the peak values earlier 

than that near the bed because of a probable effect of the friction. 
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Figure 2.8. Time variation of streamwise velocity over entire flow depth for SG case 
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Figure 2.9. Time variation of streamwise velocity over entire flow depth for TG case 
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2.3.2.2  Velocity Distribution and Deformation 

 The velocity profiles for the equivalent depth during the rising and the falling stages 

for both the cases are depicted in Fig 2.10. Here, only two distributions for each case are 

presented. The corresponding hydraulic variables for an equivalent depth are tabulated in 

Tables 2.3 and 2.4. For the case of high unsteadiness, the velocity variation for equal 

averaged velocity, in the rising and the falling stages, with the corresponding hydraulic 

parameters are shown in Fig. 2.11 and tabulated in Table 2.5. As mentioned previously, for 

the case of the small unsteadiness parameter, the velocity distribution at the wall region is not 

comparable with the experimental data. During the passage of a flood flow to the peak time, 

the distribution of velocity obtained from the Num model comes closer to the experimental 

data and departs thereafter during the falling stage. However, the case of the high 

unsteadiness shows a reasonably good comparison with the experimental data. Similar to the 

experiment, the distribution of velocity during the rising stage shows a higher value than the 

falling stage. 
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Figure 2.10a. Distribution of streamwise velocity for equivalent depth for SG case 
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Figure 2.10b. Distribution of streamwise velocity for equivalent depth for TG case 
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Table 2.3. Numerical and experimental hydraulic variables for SG case 

T (sec) Expt h (cm) Num  h (cm) Expt *u  (cm/s) Num *u (cm/s) 

1 11.3 11 6.55 6.55 

133 11.3 11 6.54 6.62 

41 12.1 12.17 7.75 7.56 

99 12.1 12.35 6.71 6.80 

55 13.2 13.19 8.06 7.88 

85 13.2 13.28 7.16 7.29 

65 13.7 13.61 7.94 7.86 

73 13.7 13.66 7.67 7.70 

 

 

Table 2.4. Hydraulic variables for equivalent depth for TG case 

T 

(sec) 

Experiment Numerical 

h(cm/s) 
U 

(cm/s) 

Q 

(l/s) *u (cm/s) h(cm/s) 
U 

(cm/s) 

Q 

(l/s) *u (cm/s) 

27 14.6 69.1 60.7 8.0 13.6 67.6 55.6 6.6 

105 14.6 59.1 52.3 3.8 12.6 49.0 37.1 5.1 

31 16.3 74.4 72.9 8.3 14.7 75.5 65.2 7.4 

95 16.3 67.9 67.4 4.6 14.5 60.8 50.8 6.3 

37 18.9 84.3 95.9 8.4 16.4 85.5 79.4 8.3 

79 18.9 79.2 90 5.8 17.8 82.2 83.4 8.3 

43 20.5 93.2 114.9 7.7 17.8 92.6 92.1 9.1 

59 20.5 89.2 111 6.1 19.6 97.6 108.2 9.6 
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Figure 2.11. Distribution of streamwise velocity for equal averaged velocity for TG Case 
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Table 2.5. Hydraulic variables for equivalent velocity for TG case 

T 

(sec) 

Experiment Numerical 

h(cm/s) 
U 

(cm/s) 

Q 

(l/s) *u (cm/s) h(cm/s) 
U 

(cm/s) 

Q 

(l/s) *u (cm/s) 

19 11.2 55.1 37.2 7.0 11.5 51.5 38.6 5.1 

107 14.3 55.1 49.2 3.6 12.3 47.2 35.5 5.0 

25 13.7 66.0 54.4 7.8 13.0 63.4 51.0 6.2 

97 16.2 66.0 64.0 4.3 14.0 58.2 47.4 6.0 

33 17.1 78.5 80.7 8.4 15.3 79.1 70.0 7.7 

81 18.7 78.5 87.9 5.7 17.5 79.7 79.2 8.0 

39 19.7 87.8 103.9 8.3 16.8 88.2 83.9 8.6 

67 20.1 87.8 106.3 5.8 19.4 94.0 103.3 9.3 

 

 Additionally, the distribution of the velocities for each 20 s apart, for the case of the 

high unsteadiness, is illustrated in Fig. 2.12. It shows somewhat lower velocity than that in 

the experiments at the beginning of flow and when returning to the base flow. On the other 

hand, at the peak time of flow, the distribution is in good agreement with the experimental 

data. The representative hydraulic parameters for such a case during the rising and the falling 

branches are given in Table 2.6. 
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Figure 2.12. Velocity profiles each 20 seconds apart for TG Case 
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Table 2.6. Numerical and experimental hydraulic variables for TG case 

T 

(sec) 

Experiment Numerical 

h(cm/s) 
U 

(cm/s) 

Q 

(l/s) *u (cm/s) h(cm/s) 
U 

(cm/s) 

Q 

(l/s) *u (cm/s) 

21 12.2 60.6 44.5 7.3 12.0 55.3 42.5 5.4 

41 20.1 90.5 109.3 8.0 17.3 90.5 88.1 8.8 

61 20.7 88.9 110.7 6.0 19.6 97.1 107.8 9.6 

81 18.7 78.2 87.9 5.7 17.5 79.7 79.2 8.0 

101 15.5 62.8 58.6 4.0 13.2 53.3 41.5 5.6 

 

 The deformation of the velocity distribution in these cases is also verified by 

comparing the velocity distributions obtained by the Num model and with those by Engelund 

model, as shown in Fig. 2.13. In Fig. 2.13(a), for more visibility and to avoid the overlapping, 

the distributions at t = 0.5 and 1.5 are shifted little bit from their original position by adding 

0.03 to former and subtracting 0.05 from the latter, respectively. As mentioned previously, 

instead of vertical turbulence intensity, the additional stresses, which are formed because of 

the correlation of the time-averaged vertical and streamwise velocities, are incorporated in 

the present model. These additional stresses in the Num model results in the vertical 

distribution of streamwise velocity to depart from the uniform flow velocity distribution 

obtained from the Engelund model (EM) UEM. The deviation between the models in the 

vicinity of the free surface is apparent, indicating that the deformation increases with an 

increase in unsteadiness of flows. This is, in turn, related to the value *r  selected for the 

particular case. It means that if the *r  value increases, then the unsteadiness decreases and 

vice versa. 
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Figure 2.13. Comparisons of vertical distribution of streamwise velocity with Engelund 

Model. a) Case SG; b) Case TG 

 



Chapter 2.   ONE DIMENSIONAL VELOCITY DEFORMATION MODEL FOR UNSTEADY FLOWS 

 

37 

 

2.4  Summary 

 One-dimensional depth-averaged velocity deformation model for unsteady open 

channel flows has been developed. The comparison of Num model with the experimental 

data and the computational results of Engelund model enable the conclusions of the 

following aspects: 

The bed shear stress evaluated by using the friction velocity formula reaches a 

maximum value earlier than the peak depth. The maximum value of normalized bed shear 

stress increases with an increase in unsteadiness of the flows. 

The thickness of the loop characteristics of the streamwise velocity over smooth bed, 

similar to the experiments, increases with an increase in unsteadiness parameter. This is also 

similar for the rough bed case, indicating the distribution of streamwise velocity in the rising 

stage is higher than that in the falling stage for the equivalent depth. 

Similar to the experiments, the velocity near the free surface zone attains a maximum 

value earlier than the velocity near the wall. 

Additional shear stresses incorporated into the model are responsible for the 

deformation of velocity between the Num model and EM model. The deformation between 

the models increases with an increase in unsteadiness and decreases with a decrease in 

unsteadiness. This is, in turn, analogous to the value of the coefficient *r  selected for the 

model, which has major influence on the deformation. Thus, if the value of the *r  decreases, 

then the unsteadiness increases and vice versa. 

 The concise form of the friction velocity formula including the unsteadiness and non-

uniformity of the flow, produces reasonable results with the experimental data. This suggests 

that the present model is adequate for the unsteady flows over the smooth bed and rough bed 

as well. 
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Chapter 3 

 THREE-DIMENSIONAL UNSTEADY RANS 

MODEL FOR OPEN CHANNEL FLOWS 

 

3.1  Preliminaries 

 Turbulence (sometimes) designated as having complexity in time and space. This 

phenomenon is ubiquitous, occurs because of instabilities in a flow. From engineering point 

of view some quantitative properties of turbulent flow, such as the average forces on a 

surface and its distribution, the degree of mixing between two incoming streams of fluid; are 

important to examine (Ferziger and Peric 1999). Therefore, various techniques and 

instruments have been developed to identify the physical description of open-channel 

turbulence/flows experimentally. The methods of turbulence measurements are categories 

into point or probe measurements and flow visualization techniques. The descriptions of the 

techniques and chronicle of turbulence measurements in open-channel flows are provided in 

Chapter 1. 

 In Computational Fluid Dynamics (CFD), the solution of any fluid problem requires 

the solution of the general equations of fluid motion, the continuity and Navier Stokes 

equations. Because of the complexity of the turbulence measurements in the fluid flows, 

numerical investigation of turbulent flows is achieved by averaging out all of the 

unsteadiness of the turbulence. On averaging, the nonlinearity of the Navier-Stokes equations 

generates the additional set of terms, the Reynolds stresses, which need to model in order to 

close the equations. This ensemble or time averaged form of Navier Stokes equations are 

called as Reynolds Averaged Navier Stokes (RANS) equations. The approximation, which 

prescribes the Reynolds stress tensor and turbulent scalar fluxes in terms of the mean 
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quantities, are considered in order to derive a closed set of exact equations. These 

approximate representations of the Reynolds stresses in the Reynolds equations in terms of 

known or calculable quantities are known as turbulence modeling (Launder 1972).  

 The Reynolds Averaged Navier Stokes (RANS) type turbulence models are feasible 

for complex engineering flows, due to its less computational time in comparisons with Large 

Eddy Simulation (LES) and Direct Numerical Simulation (DES) modeling. Although, there 

is controversy on the physical meaning of RANS equations, the unsteady RANS approach 

has been used in computations of unsteady flows (Kimura et al. 2009). Recently, three-

dimensional URANS model simulations for hydraulic engineering flows have gained the 

popularity. The 3D hydrodynamic model solves the unsteady RANS equations in conjunction 

with a suitable turbulence model (Ge and Sotropoulos 2005). For instance, Chrisohoides et al. 

(2003) solved the URANS model in relation with k-ω turbulence model. On the other hand, 

Kimura et al. (2003) used k-ε model for the predictions of flows around bluff bodies.  

 Even though URANS have advantage to simulate more complex flow field, such as 

flows with large-scale coherent structure; in present Chapter 3D URANS model is applied to 

simple open channel flow over smooth and rough beds. The purpose of using 3D URANS 

model is to check the flow field in consideration with the free surface effects of open channel 

flow. In previous chapter, one-dimensional depth-averaged model is developed for unsteady 

flows. However, it is not enough to reproduce the hydrodynamic characteristics of open 

channel flows. Thus, to study the hydrodynamic behavior of the unsteady flows, 3D URANS 

model is applied for unsteady flows over smooth and rough beds. Both the standard and no-

linear k-ε models are used for this purpose. Similar to the one-dimensional model, the 

characteristics of 3D URANS model is checked in comparisons with the experimental data of 

Nezu et al. (1997) and Song and Graf (1996). 

 

3.2  Unsteady Reynolds Averaged Navier Stokes model 

 The basic equations of k-ε model employed for unsteady incompressible flows are 

provided by following the coordinate system for three-dimensional open channel flow as 

depicted in Fig. 3.1. 
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 ε - equation - 

 





































jjj

j

ji

j

j

x

D

xk
C

x

U
uu

k
C

x

U

t











2

21     (3.4) 

where, ix , jx = the spatial coordinates, jU , ju = time-averaged and turbulent velocity 

components, respectively, p = averaged pressure, ρ = density of the fluid, k = averaged 

turbulent kinetic energy, ε = averaged turbulent energy dissipation rate, D = eddy viscosity 

coefficient, ν = kinematic viscosity and k ,  , Cε1, Cε2 are model constants whose standard 

values are 0.1k ; 3.1 ; 44.11 C ; 92.12 C . 
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Figure 3.1. Coordinate system for 3D open channel flow 
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3.3  Turbulence Model 

 It is already mentioned in the section 3.1 that, to close the RANS equations Reynolds 

stresses must correlate with the mean velocity components. This closure problem is the most 

essential but difficult in the turbulent research. Thus, it leads to the study of turbulence 

closure model in CFD. In k-ε turbulence closure the Reynolds stress tensors, evaluated by the 

constitutive equations are derived from Boussinesq eddy viscosity concept. Based on the 

linearity of the model, the model can apply to the flows which does/ or does not take into 

account the anisotropy of the Reynolds stresses.  

 

3.3.1  Standard k-ε model 

  In the standard k-ε turbulence model, the anisotropy of the Reynolds stresses does not 

take into account. Thus, the linear constitutive equation for the Reynolds stress tensor is  
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3

2
      (3.5) 

  
i

j

j

i
ij

x

U

x

U
S









 ; 




2k
cD       (3.6) 

where,  c  is the coefficient of eddy viscosity ( 09.0c ). 

 

3.3.2  Non-linear k-ε model 

  The shortcoming of the standard k-ε turbulence model for the flows, which induced 

secondary currents, is overcome by introducing the non-linear term in the constitutive 

equation. 
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 The last terms in the constitutive equation are equivalent to the following formula 

with strain and rotation tensors proposed by Pope (1976) and Gatski and Speziale (1993). 
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where strain and rotation parameters are defined as, 
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 For the coefficients of non-linear quadratic term,  321 ,, CCCC   Kimura and 

Hosoda (2003) used following constant values for the incompressible flow around bluff 

bodies. 

  4.01 C ;        02 C ;  13.03 C     (3.11) 

 

3.4  Free surface calculation 

 In open channel, presence of free surface influences the turbulence of the flow. 

Therefore, the calculation of free surface in the turbulence research is foremost important 

thing. There are several methods available to track the free surface in turbulent flow region, 

such as Marker and Cell (MAC), Volume of fluid method (VOF), Cubic Interpolation 

method (CIP). However, in the present study the Density Function method (DFM) is used to 

evaluate the free surface. 

 

3.4.1  Density function method 

 In order to identify the free surface between liquid-gas interfaces, following density 

function is introduced.  
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     (3.12) 

 By definition, F should be unity at any point occupied by fluid and zero elsewhere. 

Because air and water phases are modeled as a single fluid with varying properties (i.e. 

density, viscosity etc.) dynamic conditions in terms of stresses at the interface between the 

air and water are not necessary. Rather the dynamic conditions satisfy automatically. The 

relations between the fluid properties and density function are given as 

     GasLiquid FF   1      (3.13) 

     GasLiquid FF   1      (3.14) 
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 The density function is solved in conjunction with the pressure field using SOLA 

algorithm. This does not cause sharp interface between the air and water, instead the value of 

F changes continuously between the value for air and water at the free surface.  

 

3.5  Discretization of the basic equations 

 The basic equations are discretized using finite volume method on a staggered grid 

with the MAC method. The arrangement of hydraulic variables on a full-staggered grid is 

shown in Fig. 3.2. In the momentum equation, first order upwind scheme is applied to the 

convection terms and central differencing is used for the diffusion terms. However, for  k-ε  

equations hybrid central upwind scheme is utilized. The equations are discretized in fully 

explicit form. To suppress the time level indexing on pressure and to solve the equations 

implicitly at each time step SOLA algorithm is used to calculate the pressure field. Finally, 

the second order Adams Bashforth scheme is used for time integration of each equation. 

 

3.6  Computational condition 

 Two different experimental cases, smooth bed and rough bed case are analyzed using 

both linear and non-linear turbulence model. For both the cases sine hydrograph for the 

discharge is given as an inlet condition, this in turn provided the velocity as an initial 

condition at the upstream end and depth is held constant at the downstream end as a 

boundary condition. The numerical grids considered for smooth bed case are 05.0x ; 

016.0y  and 002025.0z . On the other hand, for rough bed case these are set as 

05.0x ; 06.0y  and 0054.0z . For both the simulations, t  is set to be 0.001. The 

details of the hydraulic parameters are already presented into Table 2.1 of Chapter 2. 
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Figure 3.2. Arrangement of hydraulic variables on full staggered grid 

 

3.7  Results and Discussions 

3.7.1  Smooth Bed Case 

3.7.1.1  Bed shear stress 

 The temporal variation of normalized bed shear stress and depth hydrograph is 

plotted along with the experimental data, as shown in Fig. 3.3. The distributions obtained by 

using the standard k-ε model and non-linear k-ε model are plotted for two smooth bed cases 

(NZ1 and NZ2). Here, for both the simulations, the friction velocity is evaluated by 

Manning's formula. This is further used to determine the bed shear stress. The Num results 

from both the models are in good agreement with the experimental data. In comparisons with 

the one-dimensional model (as described in Chapter 2), the distribution is in good agreement 

with the experimental data. The deviation of the Num results, as observed in previous 

case/model is much reduced in the present case, especially for case NZ2. The overall 

distribution of the bed shear stress shows a similar tendency of attainment of peak value 

before the peak depth occurs. The comparisons of case NZ1 and NZ2 indicates that, 

maximum value of the bed shear stress is decreases with a decrease in unsteadiness 

parameter. 
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3.7.1.2  Loop characteristics 

 The distribution of mean velocity, the longitudinal and vertical component of 

turbulence intensity and turbulence shear stresses are plotted for two cases (NZ1 and NZ2) 

by using the standard and non-linear k-ε model. As depicted in Figs. 3.4(a)-3.5(c), three 

representative sections of the flow depth; wall region (y/hb = 0.05), intermediate region (y/hb 

= 0.59) and free surface region (y/hb = 1.13) are considered for the comparisons. Near wall 

region, both the models illustrated deviation for turbulence component from that of the 

experimental data. This is possibly due to the wall function values employed during the 

simulations. On the other hand, in the intermediate region the distributions are in good 

agreement with the experimental data. The numerical results of two models is distinguished 

from the turbulence intensity comparisons in the intermediate region, indicating that, non-

linear k-ε model is in good agreement with the experimental data as compared to the standard 

k-ε model.  
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Figure 3.3a. Temporal distribution of bed shear stress for smooth bed: Case NZ1 
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Figure 3.3b. Temporal distribution of bed shear stress for smooth bed: Case NZ2 
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Figure 3.4a. Loop characteristics of averaged velocity U; turbulence intensities u', v' and 

Reynolds stress -u'v'  near wall region: Case NZ1 
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Figure 3.4b. Loop characteristics of averaged velocity U; turbulence intensities u', v' and 

Reynolds stress -u'v'  in intermediate region: Case NZ1 
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Figure 3.4c. Loop characteristics of averaged velocity U; turbulence intensities u', v' and 

Reynolds stress -u'v'  near free surface region: Case NZ1 
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Figure 3.5a. Loop characteristics of averaged velocity U; turbulence intensities u', v' and 

Reynolds stress -u'v'  near wall region: Case NZ2 
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  Figure 3.5b. Loop characteristics of averaged velocity U; turbulence intensities u', v' and 

Reynolds stress -u'v'  in intermediate region: Case NZ2 
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  Figure 3.5c. Loop characteristics of averaged velocity U; turbulence intensities u', v' and 

Reynolds stress -u'v'  near free surface region: Case NZ2 
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 Though free surface calculations performed precisely using damping function method, 

in this case also not even a single model could reproduced an 8-shaped loop at the free 

surface. It is difficult to predict the reason of lack of generation of such distribution, because 

there is no concrete reason of production of 8-shaped loop described into the experiments.   

 The characteristic of velocity and turbulence distributions indicates loop property 

against depth variation, which implies, the turbulence is larger in the rising stage than the 

falling stage for the same flow depth. The comparisons of two cases also showed that the 

thickness of the loops of mean velocity and turbulence are decreases with the decrease in 

unsteadiness parameter.  

 

3.7.1.3  Turbulence intensity 

 The non-dimensional form of horizontal turbulent intensity along a depth for different 

duration is plotted in rising and falling stage, as illustrated in Fig. 3.6 (Case NZ1). Along 

with the standard and non-linear k-ε models, the empirical curve (blue line) for steady flow is 

also shown in the Fig. 3.6. Similarly, vertical turbulence intensities for both the models are 

shown in Fig. 3.7(a) for rising stage and in Fig. 3.7(b) for falling stage. Near wall region, 

turbulence intensities deviated from both the experimental and empirical curve, however near 

the free surface region, they are in close agreement with the empirical curve. Similar to the 

experiments, the tendency of being isotropic at the vicinity of the surface is observed, when 

two components of turbulence intensities are compared with each other.   

 The non-dimensional forms of the turbulence intensities for NZ2 case are depicted in 

Figs. 3.8 and 3.9. The distribution of horizontal turbulence intensity for high unsteady flow 

(Case NZ1) shows higher values as compared to the steady uniform flow. Contrary, for less 

unsteady flow (Case NZ2), the distributions shows lower values as compared to the steady 

uniform flow.  

 Nezu et al., (1994) and Song and Graf (1996) reported that the distributions of 

turbulence intensities in unsteady flows are nearly equivalent to the one in steady uniform 

flow. This kind of tendency is observed clearly for vertical turbulence intensity in case NZ2. 

In this case, the non-linear k-ε model produced good agreement with the empirical curve in 

comparison to the standard k-ε model.  
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Figure 3.6a. Vertical distribution of horizontal component of turbulence intensity  

in rising stage: Case NZ1. 
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Figure 3.6b. Vertical distribution of horizontal component of turbulence intensity  

in falling stage: Case NZ1. 
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Figure 3.7a. Vertical distribution of vertical component of turbulence intensity  

in rising stage: Case NZ1. 
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Figure 3.7b. Vertical distribution of vertical component of turbulence intensity  

in falling stage: Case NZ1. 
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Figure 3.8a. Vertical distribution of horizontal component of turbulence intensity  

in rising stage: Case NZ2. 
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Figure 3.8b. Vertical distribution of horizontal component of turbulence intensity  

in falling stage: Case NZ2. 
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Figure 3.9a. Vertical distribution of vertical component of turbulence intensity  

in rising stage: Case NZ2. 
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Figure 3.9b. Vertical distribution of vertical component of turbulence intensity  

in falling stage: Case NZ2. 
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3.7.1.4  Reynolds shear stress 

 The distributions of Reynolds shear stress normalized by local friction velocity are 

exhibited in Fig. 3.10 for Case NZ1 and in Fig. 3.11 for Case NZ2. As mentioned before, due 

to wall function values, much deviation is observed near the boundary for case NZ1 in both 

rising and falling stage. On the other hand, the distributions of Reynolds shear stress for case 

NZ2 are in good agreement with the empirical curve. This imply the findings of Nezu et al. 

(1997) that, irrespective of the time phase of unsteady flow the Reynolds stresses are in good 

agreement with the linear curve. It is also seen from both the cases that, in depth varying 

zone the Reynolds stresses are matching well with the empirical curve. This in turn validate 

the fact proposed by Nezu et al.(1997) that, the Reynolds stresses normalized by their 

respective local friction velocity are not affected significantly by the unsteadiness of the flow. 
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Figure 3.10a. Vertical distribution of dimensionless Reynolds shear stress  

in rising stage: Case NZ1. 
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Figure 3.10b. Vertical distribution of dimensionless Reynolds shear stress 

in falling stage: Case NZ1. 
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Figure 3.11a. Vertical distribution of dimensionless Reynolds shear stress  

in rising stage: Case NZ2. 
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Figure 3.11b. Vertical distribution of dimensionless Reynolds shear stress 

in falling stage: Case NZ2. 

 



Chapter 3.   THREE DIMENSIONAL UNSTEADY RANS MODEL FOR OPEN CHANNEL FLOWS 

 

62 

 

3.7.2  Rough Bed Case 

3.7.2.1  Hydrographs 

 During the passage of flood flow, time variations of hydraulic parameters are plotted 

for the standard and non-linear k-ε models. The comparison of depth and discharge 

hydrographs (Fig. 3.12) shows overestimation of the values in comparisons with the 

experimental data. Though the distribution of friction velocity underestimated the values, 

(see Fig. 3.13) the temporal distribution of velocity is in good agreement with the 

experimental data. Compared to the standard k-ε model, the non-linear model exhibited the 

tendency similar to the experimental case, where peak of friction velocity is obtained first 

and the peak of averaged velocity and discharged obtained in succession. The peak of depth 

hydrograph attained at the end, indicating the loop rating curves for flood flows.  
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Figure 3.12. Temporal variation of discharge and depth hydrographs 
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Figure 3.13. Temporal variation of averaged velocity and friction velocity hydrographs 

 

 

3.7.2.2  Time variation of streamwise velocity 

 The temporal distributions of point velocity along different depths are plotted in Fig. 

3.14. The respective depth of the flow is also included into the figures. Here, to avoid 

overlapping and for more visibility for distinction between numerical and the experimental 

results, the distributions of velocity at y = 5.77cm, y = 7.76 cm and y = 9.75cm are shifted 

from their original position by subtracting 35, 25 and 10 units, respectively. Fig. 3.14 shows 

that, near wall region and at the free surface, the numerical distributions are little lower than 

the experimental curves. On the other hand, the distributions of point velocities are in good 

agreement in the inner region of the flow. It is evident from the figure that, likewise the 

experiments, the peak value of the velocities near the bed attained later than the peak value of 

the velocity near the free surface.  
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Figure 3.14a. Time variation of point velocity along the depth (in inner region) 
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Figure 3.14b. Time variation of point velocity along the depth (in outer region) 
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3.7.2.3  Vertical distribution of streamwise and vertical velocity 

 The vertical distributions of streamwise velocity for equivalent depths during rising 

and falling branch are depicted in Figs. 3.15a-3.15d. The notation in the figures, NL1 stands 

for the standard and NL2 represents non-linear k-ε model. It is seen from the depth 

hydrograph that, during the passage of flood flows the peak value of depth is little higher 

than the experimental curves. Because of that the velocity profile for both the models 

indicated higher peak compared to the experiments. The overall comparisons of the velocity 

distributions are in good agreement with the experimental data. These distributions also 

implied that, the velocity in the rising stage is larger than the corresponding velocity in the 

falling stage. 

 Contrary to the streamwise velocity distribution, the distribution of vertical velocity is 

little deviated from the experimental data for certain depths. (see Figs. 3.16a-3.16d). 

Especially for non-linear k-ε model, the distribution near the peak discharge and when 

reaching to the base flow discharge, the vertical velocity is not able to reproduce reasonable 

comparison. During the intermediate stage, however, the comparisons with the experimental 

data are reasonably good. The distributions of vertical velocity for the standard k-ε model are 

in good agreement with the experimental data.  
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Figure 3.15a. Vertical distribution of streamwise velocity for an equivalent depth (11.3 cm) 
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Figure 3.15b. Vertical distribution of streamwise velocity for an equivalent depth (11.9 cm) 
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Figure 3.15c. Vertical distribution of streamwise velocity for an equivalent depth (13.5 cm) 
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Figure 3.15d. Vertical distribution of streamwise velocity for an equivalent depth (14.0 cm) 
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Figure 3.16a. Distribution of vertical velocity for an equivalent depth (11.3 cm) 
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Figure 3.16b. Distribution of vertical velocity for an equivalent depth (11.9 cm) 
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Figure 3.16c. Distribution of vertical velocity for an equivalent depth (13.5 cm) 
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Figure 3.16d. Distribution of vertical velocity for an equivalent depth (14.0 cm) 
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3.7.2.4  Turbulence intensity 

 Similar to the smooth bed case the vertical distributions of turbulence intensities are 

plotted for rough bed case to check the turbulence characteristics over rough bed. As 

exhibited in Figs. 3.17 and 3.18, the horizontal and vertical components of turbulence 

intensities are normalized by local friction velocity and plotted against the flow depth. All 

figures are depicting the distributions of turbulence intensities for an equivalent depth 

extracted from the rising and falling stages of the flow. For the sake of comparison, the 

vertical distributions of turbulence intensities for uniform flow over rough bed are also 

depicted in the same figures. It is already mentioned in the smooth bed case that, the 

distributions of turbulence intensities in unsteady flows are similar to the one in uniform flow. 

This kind of behavior is more pronounced in this case as compared to the smooth bed case. 

Though little deviation encounters during some phases of the horizontal turbulence 

intensities, the distributions of vertical turbulence intensities are in consistent with the steady 

uniform flows. Nevertheless, the tendency of being isotropic at the free surface in depth 

varying zone is seen by superimposing the distributions of two components of turbulence 

intensities. In this case, also, besides the standard k-ε model, the non-linear k-ε model 

produced close agreement with the steady uniform flow curves.   

 

3.7.2.5  Reynolds shear stress 

 Reynolds stresses are non-dimensionalised by respective local friction velocity and 

plotted against the normalized depth, as shown in Figs. 3.19. These distributions are also 

exhibits the Reynolds stress profile for an equal water depth that corresponds to the rising 

and falling branch of the unsteady flow. Comparatively, the Reynolds stress distribution in 

rough bed case is in close agreement with the empirical curve of uniform flow. For an equal 

water depth, the behavior of the distributions of Reynolds stress shows larger values in rising 

stage than the falling stage. Nevertheless, the overall distributions of normalized Reynolds 

stresses are almost similar to that of uniform flow curve. This again confirms the findings of 

Nezu et al. (1997). In this case also, the clear comparisons of numerical results with the 

linear curve in depth varying zone indicated the insignificance of unsteady flow on the 

normalized Reynolds stresses.   
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Figure 3.17a. Vertical distribution of horizontal turbulence intensity for an equivalent depth 
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Figure 3.17b. Vertical distribution of horizontal turbulence intensity for an equivalent depth 
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Figure 3.17c. Vertical distribution of horizontal turbulence intensity for an equivalent depth 
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Figure 3.17d. Vertical distribution of horizontal turbulence intensity for an equivalent depth 
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Figure 3.18a. Distribution of vertical turbulence intensity for an equivalent depth 
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Figure 3.18b. Distribution of vertical turbulence intensity for an equivalent depth 
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Figure 3.18c. Distribution of vertical turbulence intensity for an equivalent depth 
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Figure 3.18d. Distribution of vertical turbulence intensity for an equivalent depth 
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Figure 3.19a. Vertical distribution of Reynolds stress for an equivalent depth 
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Figure 3.19b. Vertical distribution of Reynolds stress for an equivalent depth 

 



Chapter 3.   THREE DIMENSIONAL UNSTEADY RANS MODEL FOR OPEN CHANNEL FLOWS 

 

76 

 

 

y/h
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

NL1_t = 55 s
NL2_t = 55 s
Expt_t = 55 s
NL1_t = 85 s
NL2_t = 85 s
Expt_t = 85 s
Uniform Flow-u'v'


u

2

*

 

Figure 3.19c. Vertical distribution of Reynolds stress for an equivalent depth 
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Figure 3.19d. Vertical distribution of Reynolds stress for an equivalent depth 
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3.8  Summary 

 Three-dimensional Unsteady Reynolds Averaged Navier Stokes model is used for the 

simulations of free surface open channel flow over smooth and rough bed. The performance 

of the standard and non-linear k-ε model is checked in comparison with the experimental data. 

The behavior of the model is discussed considering the smooth bed case in first section. The 

temporal distributions of the bed shear stress are employed initially to characterize the effect 

of unsteadiness of the flow. Following the distributions of wall shear stress, the loop property 

of the velocity, horizontal and vertical turbulence intensity and Reynolds stresses are 

compared to analyze again the effect of unsteadiness of the flow. The distributions of 

turbulence intensities and Reynolds stresses are then plotted for rising and falling stages to 

check the behavior of the distributions in comparisons with the uniform flow.  

 After discussing the characteristics of the hydraulic variables over smooth bed, the 

model is applied for rough bed case in subsequent section. Similar to the smooth bed case, 

the hydraulic variables for rough bed case are compared with the experimental data. Begin 

with the discussions of hydrographs for the hydraulic variables, the distributions of point 

velocities for different depths and the characteristics of distributions of streamwise and 

vertical velocity are explained in rising and falling stages. Finally, the characteristics of 

vertical distribution of normalized Reynolds stresses are discussed in rising and falling stages 

of the flows. Through the comparisons of numerical and experimental results, it is obvious 

that, the numerical results of non-linear k-ε model are in good agreement with the 

experiments as compared to the standard k-ε model. However, this tendency is more 

pronounced for rough bed case.   
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Chapter 4 

 ANALYTICAL SOLUTION OF k - ε MODEL  

FOR UNIFORM AND NON-UNIFORM FLOWS 

 

4.1  Preliminaries 

 It is already described in the previous chapter that, in order to derive the close sets of 

equations, some approximations are considered in the Reynolds equation. These 

approximations are then leads to the study of turbulence modeling. Turbulence modeling 

involves different levels of approximations, such as algebraic models, one-equation models, 

two-equation models and Reynolds stress models. Amongst all two-equation models have 

more advantage that they are independent on algebraic length scale and can be applied to 

more complex flow fields.  

 Two equation models are based on determination of two scales; time/velocity scale 

and length scale, which is extracted from two independent variables. Numbers of different 

two equation models have been proposed over the years grounded on these assumptions. (For 

example, k-ε model by Launder and Spalding 1974; k-ω model by Wilcox 1988; k-t model by 

Speziale et al. 1990). Amongst the most popular two-equation model is k-ε model. The 

standard k-ε model solves the transport equation for turbulent kinetic energy, k, which 

determines the velocity scale while an equation for the turbulence dissipation rates, ε, 

determines the length scale. In early 80's Rodi (1980) began to apply k-ε model to the 

hydraulic problems. Subsequently, the applicability of k-ε model is verified by various 

researchers in turbulent flows by using 2-D (Elkaim et al. 1992) and 3-D flows (Kimura and 

Hosoda 2003). 
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 Not only numerical and experimental works but theoretical studies have also been 

performed to characterize the turbulence of the flow. Most of the approaches had been made 

towards the construction of the one-point turbulence model by using two-point closure 

theories (Yoshizawa 1994). Takemitsu (1990), on the other hand performed an analytical 

study of the standard k-ε model. The study reproduced an asymptotic solution and five model 

constants are determined reasonably by using the experimental data. However, the solution 

showed an ill-posed behavior of the standard k-ε model because of the presence of divergent 

terms in the second order solution. To avoid the mathematical ill-posed behavior of the 

model, he further suggested the delicate adjustments of the model constants. 

 To overcome this difficulty; as we have also been facing the same difficulty before 

we come across to Takemistu's (1990) research, an effective analytical solution for the 

standard k-ε model is proposed. The primary concern of the research is to improve the 

velocity distribution for depth-averaged model that failed to reproduce well by the Engelund 

model as described in Chapter 1. Along with the velocity distribution, to evaluate the 

additional flow properties analytically, the theoretical solution for uniform flow by using the 

standard k-ε model is developed.  

 As the damping effect of the turbulence near free surface reduces the vertical 

fluctuations; the distribution of eddy viscosity indicates the parabolic shape. Thus, to check 

the effect of such damping function also on the velocity distribution the analysis is conducted 

using the standard k-ε model by including and excluding the damping function. After 

successful reproduction of the distributions in uniform flow, similar analysis is performed for 

the non-uniform flow. The validations of the analytical results are assured by using the 

numerical results of finite difference scheme, experimental results of Song and Graf (1994) 

and the empirical results of Nezu (1977). 

 

4.2  k-ε Model 

The basic equations for incompressible fluid flows are: 

Momentum equation - 

 
2

2
1

j

i

j

ji

i

i

j

iji

x

U

x

uu

x

p
g

x

UU

t

U



























    (4.1) 

 



Chapter 4.   ANALYTICAL SOLUTION OF k-ε MODEL FOR UNIFORM AND NON-UNIFORM FLOWS 

 

81 

 

The transport equation for turbulent kinetic energy is given as: 
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and an equation for turbulent dissipation rate is 
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where, ix , jx = the spatial coordinates, jU , ju = time-averaged and turbulent velocity 

components, respectively, p = averaged pressure, ρ = density of the fluid, k = averaged 

turbulent kinetic energy, ε = averaged turbulent energy dissipation rate, D = eddy viscosity 

coefficient, ν = kinematic viscosity and k ,  , Cε1, Cε2 are model constants whose standard 

values are 0.1k ; 3.1 ; 44.11 C ; 92.12 C . 

 By using the Boussinesq approximation, eddy viscosity is defined as a proportionality 

factor between the Reynolds stresses and the mean strain rate. On dimensional reasoning it is 

estimated by employing the turbulent or mean scales. 
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where, U = time-averaged streamwise velocity, *u  = friction velocity;   = angle made by the 

streamwise slope with the horizontal and c  = constant whose value is equal to 0.09. 

 

4.3  Uniform flow 

4.3.1  Analytical solution by excluding the damping function 

 For steady uniform flow (as depicted in Fig. 4.1), the equation of turbulent kinetic 

energy k and turbulent energy dissipation rate ε takes the form, 

 

k-equation - 

          0

2

































y

kD

yy

U
D

k
      (4.5) 

 

 



Chapter 4.   ANALYTICAL SOLUTION OF k-ε MODEL FOR UNIFORM AND NON-UNIFORM FLOWS 

 

82 

 

 

y

x

h U

V



 

 Figure 4.1. Schematic illustration of uniform flow 
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 To derive an analytical solution for steady uniform flow, the equations for turbulent 

kinetic energy and dissipation rate are non-dimensionalise by the following variables. 

hy / ; kkk  ;   ; UUU   

where, dash indicate the non-dimensional value and δ at the base indicate the value at the 

wall function;  y is the vertical coordinate and h is the flow depth. 

 Assuming the local equilibrium between generation and dissipation at first grid point 

the wall function values are evaluated as 
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*u ;  and    3.5//ln **   uuU  

 The non-dimensional form of Eqs. (4.4), (4.5) and (4.6), are obtained after 

simplification. These are 

Reynolds equation - 
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ε -equation - 
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4.3.2  Functional form 

 To begin with the functional form of k, ε and U, initially, a well known form of the 

power series of η is considered for all three variables. The coefficients of all the series are 

then evaluated by solving the Eqs. (4.7), (4.8) and (4.9). But due to the interdependency of 

the coefficients on each other, the solution of the equations was diverted from its distribution. 

This led to consider the different trials, such as assume some coefficients are to be zero. 

Different combination of the assumption did not solve the problem of divergence. Rigorous 

trial for the solution of the equations did not yield the satisfactory results, thus the functional 

form for the variable is reconstructed. The new functional form of the turbulent energy 

dissipation rate was based on the empirical relationship of Nezu and Nakagawa (1993). This 

new functional form of ε guaranteed the distribution of ε. This time the functional form of k 

kept same, on the other hand, to satisfy the Reynolds equation (Eq. 4.4), the logarithmic law 

is incorporated into the power series of U. This idea bound the two distributions (ε and U), 

that after solution provided the satisfactory profiles for k and ε only. The distribution of 

velocity did not produce the reasonable comparison with the logarithmic velocity distribution. 

This was also pointed out by Takemitsu (1990). So, just as to get the acceptable distribution 

of the velocity, the wall functions values are changed from their original value. It is because 

Nezu and Nakagawa (1987) already reported that, the distribution of the standard k-ε model 

deviates from the semi-theoretical curve proposed by Nezu (1977), especially near the wall. 

This assumption improved the distributions of k, ε and U. However, the distributions 

obtained were not compatible with the proposed semi-theoretical curves. In addition, the 

distribution of eddy viscosity showed the parabolic shape; validating the functional form of ε 

and logarithmic distribution of velocity. But this conflict with the theme built already on 

inconsideration of damping function in the model. That means, even if the damping function 

is not included into the model, nature of the functional form (considered) still produce the 

parabolic shape of eddy viscosity distribution. The distribution supposed to show the 
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exponential type of curve (here exponential type of curve means only the nature of the curve 

is exponential, but in actual, it is not the exponential curve), indicating constant eddy 

viscosity at the water surface after exclusion of the damping function. If expected profile for 

eddy viscosity is sought for, again due to interdependency of the coefficients, small change 

in eddy viscosity profile distort the velocity distribution. Therefore, to overcome this 

difficulty, adjustment in the model constants, especially for the values of Cε1, Cε2 and κ 

(kappa) are performed. Surprisingly through this delicate adjustment reasonable results could 

obtained. But because we do not want to violate the initial objective of the research, as to 

find the effect of damping function on velocity distribution without changing the model 

constant, this idea also dropped. Keeping that in view, some more trials were performed by 

changing the functional forms of the variables. After prolonged failure, the best functional 

form, which is satisfying the equations, is chosen as follows. 

           
5
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210 11111  aaaaaaU          (4.10) 

           
5
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210 11111  bbbbbbk          (4.11) 

           
5

5

4

4

3

3

2

210 11111  cccccc          (4.12) 

 Substituting these functional forms into Eqs. (4.7)-(4.9), three sets of equations are 

obtained. These equations are then transformed into the linear equations by extracting out the 

different orders of η' (=1- η). Rearranging the linear equations, the values for the coefficients 

of power series are then obtained as:  

0
th

 order:   

01 a ;   01 b ;   01 c ; 

1
st
 order: 

   2

002 2Abca  ;  where, 
hu

Uk
cA

2

*

2









             (4.13) 

   
2

0

2

0

3

22

2
2b

c

kc

h
b k





 ; 
3

0

3

0
23

22

2
2b

c
C

kc

h
c 



 


  ;           (4.14) 

2
nd

 order: 

03 a ;   03 b ;  03 c ; 

 

 



Chapter 4.   ANALYTICAL SOLUTION OF k-ε MODEL FOR UNIFORM AND NON-UNIFORM FLOWS 

 

85 

 

3
rd

 order: 

     2

020224 44/ bbbaAca              (4.15) 
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
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
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          (4.17) 

4
th

 order: 

05 a ;   05 b ;  05 c ; 

5
th

 order: 

    2

0

2

2240220446 6248/ bbabbabbaAca             (4.18) 
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     (4.20) 

 The values of all the coefficients can be evaluated once 0a , 0b  and 0c  values are 

known. Thus, to determine all these initial values, it is necessary to assume at least two 

values and third value can be calculated. Therefore, 0a  and 0c  values are assumed first and 

all the coefficients are expressed again in terms of 0a , 0b  and 0c . Using the boundary 

condition at the wall, the functional form of k becomes 

          
5

5

4

4

3

3

2

210 111111   bbbbbb       (4.21) 

 Substituting all new expressions of coefficients into Eq.(4.21) and by using Newton 

Raphson method 0b  value is evaluated. All other coefficients are then determined using these 

values of 0a , 0b  and 0c . Here, only functional form of k fulfils the boundary condition but 
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the functional forms of ε and U are not satisfying at the boundary. Therefore, to meet these 

requirements at the wall and to get the required averaged velocity, additional higher order 

coefficients for ε and U are determined by using the boundary conditions at the wall. They 

are 

          86

6

4

4

2

208 11111    aaaaa           (4.22) 

          86

6

4

4

2

208 11111    ccccc           (4.23) 

 This procedure does not violate the formulation because all initial values ( 0a , 0b  and 

0c ) are  sensitive to each other. Therefore, best selection of two values produce the required 

averaged velocity and satisfy all the functional forms at the boundary. By using all the 

known values of the coefficients of power series, the distributions of the turbulent kinetic 

energy, turbulent energy dissipation rate, velocity distribution and eddy viscosity can 

successfully be reproduced for the uniform flow in absence of the damping function. 

 

4.3.3  Analytical solution by including the damping function 

 It is already reported that the damping effect of turbulence near the free surface 

reduce the vertical fluctuations and length scale causing the parabolic shape of eddy viscosity 

(Jobson and Sayre 1970; Nakagawa et al. 1979). Therefore, to model these effects, the 

damping function is introduced into the standard k-ε model. The damping function given by 

Hosoda (1990) is: 

            




















 


1exp1)(

5.1

s

s

s
k

h
Byf ; Consider, 

5.1

s

s

k

h
BB


          (4.24) 

where,  s  and sk  indicate the values at the free surface and constant B is equal to 10.  

 To incorporate this function into the analysis it is expressed in Taylor’s expansion as 

            55443322 1
120

1
1

24

1
1

6

1
1

2

1
1)(   BBBBByf s      (4.25) 

where, B' is determined from the boundary condition at the wall. That is 

          01
120

1
1

24

1
1

6

1
1

2

1
11

55443322    BBBBB   (4.26) 

Inclusion of damping function into eddy viscosity definition, it is represented as 
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    
 /)( 2kcyfD s              (4.27) 

 Substituting this form of eddy viscosity into Eqs. (4.4)-(4.6) and after simplifications, 

new form of theses equations are obtained as: 

Reynolds equation - 

     



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
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ε -equation - 
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
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 Some of the different terms of k, ε and Reynolds equations are expanded in the 

following manner 

       42

23140

3

2130

22

12010

2

0

2 222222  bbbbbbbbbbbbbbbk    (4.31) 
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       4

2

2

1

2

203104

2
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    
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 All these expressions are necessary to express the terms into simpler and in 

consolidated form. For example, 1
st
 term on the right hand side of Eq. (4.31) can be 

expressed as 2

0k (0
th

 order term of 2k ), 2
nd

 term as 2

1k (1
st
 order term of 2k ),  3

rd
 term as 2

2k  

(2
nd

 order term of 2k ) and so on. This means, hereafter suffix for k, ε, U and suffix for 

derivative of k, ε, U with respect to η indicates the terms related to particular order of η'. 

 Following the aforementioned procedure, the coefficients of the power series are 

evaluated as: 
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2
nd

 order: 
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Similarly, 5a , 5b , 5c , 6a , 6b  and 6c  can be expressed.  

 Assuming 0a and 0c  values, 0b value can be determined by using Newton-Raphson 

method. To satisfy the boundary condition at the wall and to obtain the required averaged 

velocity, higher order terms for ε and U are calculated as 

           5

5

4

4

3

3

2

2107 111111    aaaaaaa   

       76

6 11    a              (4.53) 

           5

5

4

4

3

3

2

2107 111111    ccccccc  

       76

6 11    c               (4.54) 

 By using all these new coefficients of power series the distributions of the turbulent 

kinetic energy, turbulent energy dissipation rate, velocity distribution and vertical parabolic 

distribution of eddy viscosity can successfully reproduce for the uniform flow.  

 

4.4  Non-uniform flow 

 Investigation of turbulence characteristics of uniform open channel flow is not 

enough, because the flow encountered in the river/open channel is often non-uniform flow. 

Few attempts have been made so far to study the turbulent characteristics of the non-uniform 

flow. Tsujimoto et al. (1990) seems to be the first to study non-uniform flow over a short 

incline channel in open channel. On the other hand, Song and Graf (1994) conducted the 

measurements for accelerated and decelerated flows using Acoustics Doppler Velocity 

Profiler (ADVP). Based on the experimental investigations, they proposed the theoretical 

expressions for vertical velocity and Reynolds stress. Though the theoretical analysis 

provided the vertical velocity and Reynolds stress distribution in non-uniform flow, their 

formulas are pertained to St. Venant equations and Reynolds equation only. However, in the 

present case, the standard k-ε model is considered to study the turbulence characteristics of 
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non-uniform flow. The schematic of non-uniform flow is presented in Fig. 4.2 and the details 

of the analytical solution are presented in subsequent section. Similar to uniform flow 

analysis, an analytical solution is derived after excluding and including the damping function.  
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Flow

      

u
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x

h
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Flow

 

Figure 4.2. Schematic diagram of decelerated and accelerated flow 

 

 It is necessary to mention here that, the wall function values for non-uniform flow are 

different than those of uniform flow. Thus, the new wall function values are derived for the 

non-uniform flows. The derivation of new wall function values are provided below - 

 In turbulent sublayer, production =  dissipation 

Thus k - equation reduces to, 



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U     (4.55) 

Here, 0




y

k
; 2

*uvu  ; and from log-law 
y

u

y

U


*




; where  = 0.4 (von Karman 

constant). 

 At turbulent sublayer, where y ; above equation becomes 


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 
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

 *2

*

u
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x

k
U ;    implies 

x

k
U

u




 





3

*    (4.56) 

 From the definition of wall function in uniform flow, k  is expressed as 

 cuk /2

*  and friction velocity is represented as
2222

* / hqcucu ff  , fc  is the 

friction coefficient (=0.01). Substituting all these values in Eq. (4.56), it becomes 
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Therefore, new   is given as, 

dx

dh

h

q
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U
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u
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From Reynolds equation k  is expressed as 








c

u
k *      (4.58) 

 Depending on the bed (smooth or rough), the velocity at the bed is determined. In 

present case, rough bed is considered for the comparison. Thus, the velocity near the bed is 

calculated as 

  BrKyuU s   /)(ln 0*      (4.59) 

where, sKy 25.00  , Ks is the equivalent sand roughness ( 50d ) and Br is a constant of 

integration. 

 

4.4.1  Analytical solution by excluding the damping function 

 To make the analysis for non-uniform flow simpler, some of the higher order terms of 

diffusion term are neglected from the equations. Therefore, the equations for steady non-

uniform flow becomes 

Reynolds equation - 
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k- equation - 
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ε -equation - 
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where, vertical velocity is determined by the continuity equation. 
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After coordinate transformation, (x, y) to (x', η), the hydrostatic pressure  

     cosyhgp  ;  is expressed as  
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and the friction velocity is calculated by 
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where   is a momentum coefficient considered as equal to 1. 

 The purpose of neglecting the higher order terms of diffusion term in Eqs. (4.60) - 

(4.62) is just to make the analysis as similar as to that of the uniform flow after excluding the 

non-uniformity. Substituting the functional form of k,   and U into Eqs. (4.60) - (4.62) and 

rearranging and simplifications, the coefficients of power series are evaluated as 
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 order: 
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 It is imply here that, 1a , 1b  and 1c  values are equal to zero.  
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Higher order terms of   and U are determined as  
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 0a , 0b  and 0c  values are evaluated by previous mentioned procedure. From the 

known values of the coefficients, the distributions of the velocity, turbulent kinetic energy, 

turbulent energy dissipation rate and eddy viscosity can be determine for non-uniform flow. 

 

4.4.2  Analytical solution by including the damping function 

 Owing to the importance of the damping function in turbulence research, an 

analytical solution for non-uniform flow by including the damping function is proposed. The 

similar form of the damping function, as reported earlier (Eq.4.25) is considered. The 

dimensional form of the basic equations for the standard k-   model after admitting the 

damping function becomes: 
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Expansion of some of the terms of Eqs. (4.77)-(4.79) are given below 
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 Replacing k,   and U from Eqs. (4.77)-(4.79)  to their respective functional forms 

and by solving the equations by aforementioned procedure, the expressions for each 

coefficients are obtained as follows: 
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Similarly, 4a , 4b , 4c , 5a , 5b , 5c , 6a , 6b  and 6c  can be evaluated.  

 Following the aforementioned procedure of 0a , 0b and 0c  values determination, all 

other coefficients of power series can be calculated. By using the boundary condition at the 

wall higher order terms for ε and U are estimated as 
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       76

6 11    a              (4.93) 
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6 11    c               (4.94) 

 With these new values of the coefficients, the distribution of the turbulent kinetic 

energy, turbulent energy dissipation rate, velocity distribution and vertical parabolic 

distribution of eddy viscosity can be reproduce for non-uniform flow.  
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4.5  Finite Difference Scheme 

 To validate the analytical results of the standard k-ε model, numerical results of finite 

difference scheme are used.  For finite difference method, the unsteady uniform flow 

equations, that is Reynolds equation, k- and ε-equations are simulated in the vertical direction 

(see Fig. 4.3).  
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Figure 4.3. Discretization of cells for Finite difference scheme 

 

 Referring to Fig. 4.3, the discretizations of the basic equations for unsteady uniform 

flow by using finite difference scheme are described as:  
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For  j = N 
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   (4.100) 

 The calculation begins with the wall function values at the boundary as an initial 

condition. With these wall function values calculation proceeds in the vertical direction until 

the steady state is reached. After some iteration, uniform distributions of velocity, turbulent 

kinetic energy, turbulent energy dissipation rate and eddy viscosity are obtained. The 

numerical simulations are conducted for both the cases by excluding and including the 

damping function in the uniform flow.  

 For non-uniform flow, the unsteady non-uniform flow equations are solved by 

aforementioned procedure at a single point, considering the flow is in equilibrium. Two non-
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uniform flows: accelerated and decelerated flows are simulated by including and excluding 

the damping function. The experimental data of Song and Graf (1994) is used for the 

simulation of non-uniform equilibrium flow.    

 

4.6  Results and discussions 

 To ensure the applicability of the analytical study, the numerical results of the finite 

difference scheme, empirical results of Nezu (1977) for uniform flow and the experimental 

data of Song and Graf (1994) for non-uniform flow are used. 

 

4.6.1  Uniform Flow 

 The theoretical distributions of dimensionless velocity by including and excluding the 

damping function (hereafter referred as with and without damping function case) on semi-

logarithmic scale are depicted in Fig. 4.4. The logarithmic law and the results of finite 

difference scheme are also included in Fig. 4.4. The theoretical distribution of velocity is in 

close agreement with the logarithmic law and the finite difference results. The possibility of 

slenderness observed in without damping function case is caused due to inconsideration of 

odd number coefficients in the solutions. Because all values of the coefficients are sensitive 

to each other, small changes in the initial values of the coefficients distort any of the 

distribution. Keeping that in view, two optimum values ( 0a and 0c ) are selected in the initial 

condition. Based on these two optimum values third coefficient ( 0b ) is determined. Thus, 

required averaged velocity is obtained and all the boundary conditions at the wall are 

satisfied.  

 For with damping function case analysis, the distribution is in good agreement at the 

free surface. However, in the inner region it shows little deviation from the logarithmic law 

distribution. Inclusion of higher order terms can remove this discrepancy, but it leads to the 

complexity in the derivation. Therefore, to avoid the complexity only up to seventh order 

terms are included in the derivation.  

 The comparisons of the velocity distributions by including and excluding the 

damping function shows negligible effects of damping function near the free surface zone. 

This implied the validity of the findings of Nezu and Nakagawa (1993). 
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Figure 4.4. Vertical distribution of streamwise velocity ( U vs. /* yuy  ) 

  

 Fig. 4.5 illustrates the vertical distributions of dimensionless turbulent energy 

dissipation rate. Because of the wall function value, empirical curve of Nezu (1977) shows 

lower value at the boundary than the analytical and numerical results. Away from the wall, 

the distributions of numerical results of the finite difference scheme are in good agreement 

with the empirical curve. However, owing to the consistency with the slenderness observed 

in velocity distribution, the theoretical curves are diverted from both the empirical and the 

numerical curve. This in turn indicates bit less energy dissipation rate at some distance above 

the wall. Further away from the wall, distribution is similar to the numerical results. This 

designated the discrepancy is in consistent with that of the velocity profile. The comparisons 

of turbulent energy distributions for with and without damping function case exhibits 

negligible effect of the damping function at the free surface zone. 
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Figure 4.5. Vertical distribution of turbulent energy dissipation rate  

( 3

*/ uh   vs.  ) 

  

 Apart from the velocity and energy dissipation rate, the theoretical distribution of the 

turbulent energy (without damping function case) is nearly in good agreement with the 

numerical result, as shown in Fig. 4.6. Again, in this case wall function value caused the 

empirical curve to show a higher value near the boundary. Incorporation of the damping 

function dampens the vertical fluctuations at the surface causing turbulent energy to be bit 

smaller than the case of without damping function. This can easily be seen from the 

comparisons of the numerical results of the finite difference scheme. On the other hand, 

theoretical model failed to produce the effect of such damping function on turbulent energy 

distribution near the free surface. This is caused due to the influence of B' value considered 

into the damping function. Thus, further improvement in B' calculation may reproduce the 

required distribution of turbulent energy in with damping function case. 
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Figure 4.6. Vertical distribution of turbulent kinetic energy 

( 2

*/ ukk   vs.  ) 

  

 The pronounced effect of the damping function is seen from eddy viscosity 

distribution, as depicted in Fig. 4.7. The effect of the damping function reduces eddy 

viscosity near the free surface and shows the vertical parabolic shape of distribution. It is 

seen from the Fig. 4.7 that, the distribution of eddy viscosity exhibits the deviation near the 

boundary from that of the numerical results and the empirical curve. The possibility of such 

convex shape of the profile near the wall may cause due to the functional form considered. 

This in turn indicates that, the expected parabolic distribution of eddy viscosity can be 

guaranteed, satisfying Reynolds equation if and only if logarithmic law and functional form 

of 1/η for turbulent energy dissipation are considered. However, owing to the asymptotic 

nature of the solution (Takemitsu 1990), the higher order terms could not play well in the 

derivation. This is the reason present functional form employed in the derivation, which lead 

to the convex shape of eddy viscosity near the wall. By changing the wall function value, or 

incorporation of the higher order terms may reduce this propensity near the boundary region.  
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Figure 4.7. Vertical distribution of eddy viscosity 

( */ huDD   vs.  ) 

 

4.6.2  Non-uniform Flow 

 For non-uniform flow, the analytical results are compared with the experimental data 

of Song and Graf (1994). Two different flows conditions; accelerated and decelerated flows 

are selected for the comparisons. Wherever possible, numerical results of finite difference 

scheme are also included. The theoretical distributions of non-dimensional velocity for 

accelerated and decelerated flows are plotted on semi-logarithmic scale, as shown in Fig. 4.8. 

The logarithmic velocity distributions for accelerated and decelerated flow cases are also 

depicted in Fig. 4.8. In the inner region of the flow, the distribution of the velocity for 

decelerated flow is nearly in good agreement with the log-law. However, the distribution of 

velocity in accelerated flow is deviated from the log law distribution. It is because the 

maximum velocity for the accelerated flow is obtained much earlier than the experimental 

case. For decelerated flow, velocity profile is fuller compared to the accelerated flow, 

indicating the attainment of maximum velocity near the free surface. This is also seen from 
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Fig. 4.9, where vertical distributions of streamwise velocity for accelerated and decelerated 

flows are plotted along with the experimental data. The numerical results of finite difference 

scheme are also included into the Fig. 4.9. It is evident from the figure that, the comparisons 

of theoretical results of decelerated flow are in close agreement with the experiment.  

 The inclusion of damping function causes velocity near the free surface for 

decelerated flow to be little higher than the velocity determined without incorporating the 

damping function. However, for accelerated flow no such behaviour is observed for both the 

finite difference and theoretical results.  

 Besides deviation of the streamwise velocity from the experimental data, the 

distribution of vertical velocity is in good agreement with the experimental results. As shown 

in Fig. 4.10, the vertical velocity for the decelerated flow is positive and that for accelerated 

flow is negative. Very small effect of damping function is observed on the vertical velocity 

for decelerated and accelerated flow case. 
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Figure 4.8. Vertical distribution of streamwise velocity for non-uniform flow  

( U vs. /* yuy  )  
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Figure 4.9. Vertical distribution of streamwise velocity in accelerated and decelerated flow 
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Figure 4.10. Distribution of vertical velocity in accelerated and decelerated flow 

 

 Dimensionless forms of the horizontal and vertical components of the turbulence 

intensity are illustrated in Fig. 4.11 and 4.12. The distribution of turbulence intensity for 

uniform flow is also included to analyse the effect of decelerated and accelerated flow. In 

comparison with the uniform flow distribution, the turbulence intensities of decelerated flow 

shows convex shape; while the turbulence intensities of accelerated flow shows concave 

shape of the profile. It is evident from the experimental data that, the wall function values for 
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decelerated flow is larger and for accelerated flow; it is smaller than the uniform flow case. 

Incorporation of new wall function for non-uniform flow as mentioned earlier, could not 

evaluate the expected value at the boundary. Only little decrement in accelerated flow case 

and increment for decelerated flow case is observed with employment of such wall function. 

Thus, clear necessity for derivation of new wall function values is required to reproduce the 

reasonable distributions of the turbulence intensities near the boundary.  

 Incorporation of the damping function produced the convex form of the distribution 

for decelerated flow, however for accelerated flow the distribution is little larger than the 

uniform flow distribution. The effect of damping function did not reduce the turbulence 

intensity near the surface. This is in consistent with the discrepancy observed in the case of 

uniform flow.    
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Figure 4.11. Distribution of streamwise turbulence intensity for non-uniform flow 
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Figure 4.12. Distribution of vertical turbulence intensity for non-uniform flow  
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Figure 4.13. Vertical distribution of turbulent energy dissipation rate for  

non-uniform flow.  ( 3

*/ uh   vs.  ) 
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 The vertical distribution of the turbulent energy dissipation rate by including and 

excluding the damping function for non-uniform flow is exhibited in Fig. 4.13. Depending on 

the nature of the flow, intensity of energy dissipation decreases towards the free surface. This 

in turn indicates that, the turbulent energy is dissipated much for accelerated flow as 

compared to the decelerated flow. The effect of damping function for both the flow cases 

depicted increment in the turbulent energy dissipation near the free surface compared with 

the distribution obtained without damping function.  

 Because of the nature of energy dissipation for non-uniform flow, eddy viscosity 

distribution shows deviation from the uniform flow distribution. Song and Graf (1994) 

reported that, turbulent mixing is damped in accelerated flow and amplified in the 

decelerated flow. Hence, the distribution of eddy viscosity is smaller for accelerated flow and 

larger for decelerated flow in comparison with the uniform flow. Similar tendency is 

observed for theoretical model, even if the damping function is included into the derivation. 

(Fig. 4.14). It is already mentioned that, the nature of the functional form causes propensity 

of eddy viscosity near the wall. This propensity of eddy viscosity near the boundary is clearly 

observed for the accelerated flow case. However, due to interdependency of the distributions, 

deformation in the turbulent energy distribution adjusted the shape of the profile of eddy 

viscosity in decelerated flow case. Nevertheless, the overall tendency of eddy viscosity 

depicted the reduction near the free surface as an effect of the damping function.  

 

4.7  Summary 

 In this chapter, an effective analytical solution for the standard k-ε model is proposed 

for uniform and non-uniform flow. To begin with theoretical model for uniform flow, the 

effect of damping function is included into the derivation. The validity of the analytical 

results are checked in comparison with the empirical results and the numerical results of the 

finite difference scheme. The comparisons showed that the functional forms considered for 

reproduction of the distributions are suitable. These functional forms can reproduce 

reasonable distributions of the velocity, turbulent kinetic energy k, turbulent energy 

dissipation rate ε and eddy viscosity in uniform flow. The introduction of the damping 

function was unable to produce the damping effect on vertical fluctuations. However, 

damping effect reduced the length scale near the free surface and a negligible effect of 
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damping function on velocity distribution is also observed near the free surface. The 

pronounced effect of damping function is seen from the eddy viscosity distribution.  
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Figure 4.14. Vertical distribution of eddy viscosity for non-uniform flow 

 ( */ huDD   vs.  ) 

 

 In addition to the uniform flow analysis to conduct the non-uniform flow analysis, 

non-uniformity is included into the derivation. The results of analytical method are compared 

with the experimental data for accelerated and decelerated flows. The analytical results 

indicated that, the behaviour of the flow velocities; both in longitudinal and vertical direction 

are similar to that of experimental results, with some deviation observed in accelerated flow 

due to earlier attainment of maximum velocity. Owing to the wall function values for non-

uniform flow, turbulence intensities diverted near the boundary compared to the 

experimental results. On the other hand, the nature of the turbulent energy dissipation rate 

and eddy viscosity satisfied the conditions of the flow. The presence of the damping function 

acted well, even with different flow conditions of non-uniform flow. However, inconsistency 
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of the damping function similar to the uniform flow in regards with instability in the model is 

also reported in this case. Therefore, further modifications in the model are necessary to 

overcome this instability. Nevertheless, this analytical solution can be used in depth-averaged 

model to reproduce the flow properties. 
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Chapter 5 

ANALYSIS OF HYDRAULIC JUMP BY 1D 

DEPTH-AVERAGED AND 3D URANS MODEL 

 

5.1 Preliminaries 

 Hydraulic jump is a classical problem cause due to transition of flow from 

supercritical state to subcritical state. The formation of hydraulic jump is characterized by 

intense mixing, air entrainment, energy dissipation, roller formation and change in water 

surface elevation. This characteristic of jump as an energy dissipater is always been a point 

of interest for many researchers. Several studies, both experimental and numerical have been 

conducted so far to clarify the various aspects of the hydraulic jump. 

 After the pioneer work of Bidone (1819), this local phenomenon had been the subject 

of repeated experimental investigation. Bakhmeteff and Matzke (1936), seems to be the 

initial contributor who made the phenomenon of the hydraulic jump clearer. Following their 

study in fluid flow, Rouse et al. (1958) measured the flow pattern of the hydraulic jump in an 

air duct so as to allow greater insight into the phenomenon. These studies were helpful to 

determine the water surface profile, length of the jump and to know the turbulent 

characteristics of the jump (Rouse et al. 1958). However, Chow (1959) determined the 

location of the hydraulic jump formation numerically, and reported that the specific forces of 

both sides of the jump are equal at the point of jump formation.  

 Based on Peregrine and Svendsen's (1978) model, Battjes and Sakai (1981) 

experimentally investigated the turbulence induced by a breaking water surface. Although 

they performed the measurements with the help of Laser Doppler Velocimeter (LDV), the 
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obtained data did not agree to the flow under the jump, because of large depth beneath the 

airfoil.  

 Numerical investigation of the jump has also gained an importance with the advent of 

the computers. Earlier, most of the researchers were considering the hydrostatic pressure 

distribution to solve the St. Venant equations numerically (For example, Abbott et al. 1969; 

Katopodes 1984). However, Basco (1983) showed that the pressure distribution is not 

hydrostatic. He assumed the vertical velocity variation stating zero velocity at the bed to 

maximum at the free surface and proposed Boussinesq equations to include the non-

hydrostatic pressure variations. Numerical studies in one-dimensional flow are then 

performed with the solution of Boussinesq equations (Gharangik et al. 1991). With the 

increase of popularity of turbulence model, some researchers considered the turbulence 

modeling for simulation of the hydraulic jump numerically in 1D or 2D flow. (For instance, 

Chippada et al. 1994; Ma et al. 2001; Zhao et al. 2004). 

 Not only experimental and numerical studies but also theoretical studies of hydraulic 

jumps had been performed by few researchers. Narayanan (1975) in his study, treated plane 

turbulent wall jet as a hydraulic jump in turbulent flow, just like what Rajaratnam (1965) 

showed experimentally. The model based on integral momentum and continuity equations is 

used to calculate the kinematics of mean motion within the jump. By this means, he could 

reproduce the decay of the maximum velocity, variations of the surface velocity, growth of 

the boundary layer and the surface profile of the jump. However, the surface profile obtained 

with this theory showed discontinuity with the experimental data. On the other hand, Madsen 

and Sevendsen (1983) developed turbulent closure model to determine the velocity field and 

the surface profile of bores and hydraulic jumps. For their model, they reduced the turbulent 

closure model in terms of non-equilibrium kinetic energy by expressing the dependency of 

turbulent energy dissipation on a mixing length. Before considering the turbulent closure, 

they subdivided the flow region into turbulent wedge region and potential flow region (see 

Fig. 5.1). In figure 5.1, the region indicating the constant velocity, bounded by thickness a(x) 

is the potential flow region and the flow bounded by thickness b(x) is the turbulent wedge 

region. This helped them to solve the depth-integrated equation for the velocity in the whole 

region because of nonoccurrence of shear stresses explicitly in the momentum equations. 

They showed that the surface profile obtained with the model is in good agreement with the 
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experiment and it is insensitive to the velocity profile. By considering the different values of 

the constant in third order polynomial function of the depth-integrated form of the velocity, 

they could reproduce the good comparison with the measured data. Although, they 

considered the turbulence closure model and depth-integrated form of the velocity, their 

model is bit complicated. That even reproduces reasonable results only when the different 

values for the constant are considered.  

 

1h y
1u

)(0 xu

)(xus

)(xh)(xb

)(xa

 

Figure 5.1. Pictorial representation of Madsen et al. (1983)'s model 

 

 Thus, to develop rather simple model for the determination of the continuous water 

surface profile of the jump, theoretical analyses is performed. Starting from the simple 

analytical solution of the momentum equation with eddy diffusivity term, the effect of bed 

shear stress is introduced for the determination of the profile of the jump. In order to obtain 

the water surface profile and velocity distribution together in hydraulic jump the deformation 

principle is considered in the later part of the analysis. To check the performance of the 

model, experimental data of Bakhmeteff and Matzke (1936), Gharangik et al. (1991) and 

theoretical and experimental data of Madsen et al. (1983) are considered for the comparisons. 

 

5.2  Model analysis using momentum equation with eddy diffusivity term 

 The momentum equation assuming the hydrostatic pressure and including the eddy 

diffusivity term is: 
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where, x = streamwise distance; h = flow depth; U = depth-averaged velocity; θ = angle 

made by the streamwise slope with the horizontal; Dm = eddy diffusivity coefficient; g = 

gravitational acceleration; bx  = bed shear stress;  = mass density of fluids. 

 Using continuity equation,  

    qUh         (5.2) 

and by the definition of bed shear stress, 

    2UC f
bx 



       (5.3) 

Eq. 5.1, can be expressed as, 

    02

2

22
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
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
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dx
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qhD

dx

dh
qD

dx

dh
hgq fmm    (5.4) 

where, horizontal bed is considered. The eddy diffusivity coefficient can be correlated to the 

discharge by similarity function as 

    qDm         (5.5) 

where, α is a proportionality factor.  

 To derive the simple analytical solution for the continuous water surface profile of the 

hydraulic jump, initially, the bed shear stress term is neglected. Thus, Eq. 5.4 is reduced to 

the form given as 

   








 hM

h
gq

qDdx

dh
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      (5.6) 

The momentum flux 0M  is defined as 

2

2

1

1

2

0

h
g

h

q
M         (5.7) 

Transforming Eq. (5.6) into the following form by using 1h , 2h  and 3h  as 

 

     321 hhhhhhA
dx

dh
 ;  where 

2

1 g

qD
A

m

    (5.8) 

 The purpose of incorporating 3h  is to satisfy the equation mathematically, even 

though this depth has completely no effect on the jump.  

 Integrating Eq. (5.8) from critical depth ch  to h , the exact solution for the continuous 

profile of the jump is obtained as  
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where, cx
 
is the location of the critical depth and constants 1a , 2a , 3a  and A  are defined by 

following equations 
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 To check the performance of the analytical method, the water surface profile obtained 

by Eq. (5.9), is compared with the experimental result of Madsen et al. (1983). The hydraulic 

parameters of the experimental data are tabulated in Table 5.1. As shown in Fig. 5.2, 

different values for the coefficient of the proportionality factor α are used to reproduce the 

water surface profile of the jump. However a comparison shows that, the proposed analytical 

method is not able to reproduce the characteristics of surface profile of the jump 

appropriately. That is, though different values of α are considered, sharp increment of water 

depth from upstream depth 1h
 
and gradual lessening of gradient of water surface profile is 

not reproduced by the analytical method. From the definition of turbulent diffusivity 

coefficient, which is *uh  ( *u  is the friction velocity), it is considered that the values of α 

occurred in the range of 0.005 to 0.1. Contrary to these values, the length of the hydraulic 

jump is fit well with the experimental data for α = 1.0. This implies the further necessity to 

review the meaning of eddy diffusivity term. 

 Additionally, the numerical simulation of Eq. 5.4 by using 4
th

 order Runge-Kutta 

method is performed to examine the effect of bed shear stress on water surface profile of the 

jump. The simulations are conducted under the experimental conditions of Gharangik et al. 

(1991) for different Froude number (see Table 5.1 for hydraulic conditions). The calculation 

proceeds by providing the values of water depth and the derivative of water depth as an 

initial condition. The presence of second order ordinary differential equation is responsible 

for two boundary conditions at the upstream end. The experimental depths are not the 

conjugate depths, hence, adjusting the derivative of water depth at the upstream location 
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comply with the experimental depth of water at the downstream end. The results of the 

numerical (Num) simulation for Froude number 4.23, 5.74, 6.65 and 7 are plotted with 

respective experimental data, as shown in Fig. 5.3. In this case also, different values of α are 

considered to obtain the water surface profile of the jump. Here, the coefficient of friction 

velocity is considered as 0.01. All these results justify the existence of continues water 

surface profile of the hydraulic jump passing through the critical depth even if the bed shear 

stress and eddy diffusivity term are included. The comparisons of the water surface profile 

with the experimental data shows that, with the increase of the value of α, the water surface 

profiles of the hydraulic jump come closer to the experimental results. It is also seen from the 

figures that, the Froude number of the hydraulic jump is in directly proportional to α value. 

In other words, if the Froude number of the hydraulic jump increases, the values of the 

proportionality factor α increases and vice versa. Following the observations of the 

relationship between the Froude number and the proportionality factor, further study is 

required to characterize the weak jump and the strong hydraulic jump. 

 

Table 5.1. Hydraulic parameters of numerical simulation 

Experimental 

case 

Upstream 

depth, 1h  (m) 

Velocity 

1u  (m/s) 
Froude 

Number 

Downstream 

depth, 2h  (m) 

Madsen et al. 0.0728 1.808 1.97 0.175 

Bakhmeteff and 

Matzke 
0.0765 1.720 1.98 0.175 

Gharangik et al. 

0.043 2.737 4.23 0.222 

0.040 3.578 5.74 0.286 

0.024 3.255 6.65 0.195 

0.031 3.831 7.0 0.265 
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Figure 5.2. Analytical solution for water surface profile of hydraulic jump 

 

 So far, analytical solution of Eq. (5.6) and numerical solution of Eq. (5.4) are 

performed to prove the existence of the solution for continuous water surface profile passing 

through the critical depth. However, to validate the condition of Eq. (5.4) analytically, it is 

expressed as  

    )()( 10 xhCxhh f       (5.11) 

where, )(0 xh  is satisfied by analytical solution of Eq. (5.9). It is re-described as 
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 By using Taylor's series, the expansion of )( 0hF around a critical depth is given as 

      
3

03

2

02010 )( cccc hhbhhbhhbxxhF   (5.13) 

 Substituting Eq. (5.11) into Eq. (5.4) and after simplification, following equation is 

obtained.  
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Expressing 1h  using Taylor series as 

      
3
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 Substituting 1h and  000 /)(/1/ dhhdFdxdh   into Eq. (5.14), the relations between 

the coefficients of power series for 1h are derived. That is 
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 These relations shows that, by providing the gradient at the critical depth, i.e. 1  and 

the critical depth ch ; the other coefficients can be calculated. The other two coefficients 

indicate the water depth at the upstream and downstream end. Hence, the surface profile 

passing through the critical depth between two boundaries of jump can be evaluated by using 

the Eq. (5.11).    

 The whole analysis until now is describing the fact that, continuous water surface 

profile can be obtained between the conjugate depths of the hydraulic jump. Of course, the 

nature of the surface profile obtained is based on the eddy diffusivity value selected during 

the calculation. Thus, in order to reproduce the water surface profile of the hydraulic jump 

more accurately, simple depth-averaged model is developed. The formulation of the model is 

based on the concept of velocity deformation, which is similar to the method of the model of 

the unsteady open channel flow described in the 2
nd

 Chapter. The details of the depth-

averaged model evaluation are described henceforth. 
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Figure 5.3. Numerical solution for water surface profile of hydraulic jump 
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Figure 5.4. Schematic diagram of hydraulic jump 
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5.3  Depth-averaged model formulation 

 Referring to Fig. 5.4, the fundamental form of the streamwise velocity is expressed 

by the power series of relative depth as 

  
 4
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 From the continuity equation, the vertical velocity distribution is represented as 
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 Madsen et al. (1983) reported that, the pressure variation has very small effect on the 

horizontal balance. Therefore, for present study the hydrostatic pressure distribution is 

considered. 

                yhgp   cos               (5.20) 

  The steady form of the equation of motion in x-direction is 
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 The shear stress has small influence on the jump height depending on the Froude 

number (see Madsen et al. 1983). Thus for simplicity, and to make the model as similar as to 

the Madsen et al. (1983)'s model, shear stress is neglected from the derivation. Substituting 

Eq. (5.18), (5.19) and (5.20) into the equation of motion, the coefficients of velocity are 

expressed into the form as, 
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here, myD  indicate the eddy diffusivity.  

 It is already mentioned that Madsen et al. (1983), neglected the shear stress so as to 

get the uniform flow velocity in non-turbulent region of the flow. This implies that the 

distributions of velocity are bound by the expression they used in the turbulent wedge. 
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However, further downstream of the jump and near the bed, where non-turbulent region exist, 

the velocity distribution is uniform. Considering these facts, in present analysis the gradient 

of velocity distribution at bed is set to zero by assuming only even terms of power series. In 

other words, due to omission of shear stress term, 1u  and hence, 3u  are found to be zero. 

 The depth-averaged continuity and momentum equations are expressed by using only 

coefficients 0u and 2u  as 
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Defining coefficient X by relation 
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Substituting Eq. (5.27) into the momentum equation (Eq. 5.26) 
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The expression for coefficient X  is given by 
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This expression ensures that X  is always positive between 1h  to 2h . 

 To derive the depth-averaged model consistent with water surface profile equation, 

initially, 2u  is represented by substituting hqU /  as a first approximation for 0u  in Eq. 

(5.22). The second approximation for 0u
 
is then determined from the continuity equation as 
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 The second approximation for 2u is obtained by re-substituting 0u
 
of Eq. (5.30) into 

Eq. (5.22). That is 
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 Because of the singularity observed for gradient of water depth in the first 

approximated solution the second approximations for the coefficients are considered. This 

approximation (Eq. 5.31) is then solved in conjunction with Eq. (5.29) (as shown in Eq. 5.32) 

to determine the water surface profile equation for the hydraulic jump.     
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 Therefore, water surface profile equation obtained by above consideration is 

represented as 

     
3

3232

3

2
232

20

3
2 2

13545

1

2



























x

h
ghqghq

D

q

x

h
ghq

D
hM

h
gq

mymy  

      022
2810

1
4

32232232
2

4























x

h
ghqghqghq

q

Dmy

         (5.33) 

 

5.3.1  Water surface profile of the hydraulic jump 

 The estimation of water depth is carried out from the upstream point where initial 

depth is 1h . Assuming the increment of h , water depth satisfying the Eq. (5.33) is figured 

out. The calculations performed for each x  from upstream to downstream direction.   

 The water surface profile obtained with this case is plotted in Fig. 5.5. The 

experimental data of Madsen et al. (1983) and Bakhmeteff and Matzke (1936) are used for 

the comparisons. For the proportionality factor α = 0.09, the obtained results shows 

reasonable agreement with the experimental data. Although, α = 0.09 is considered as 

reasonable in this study, it is necessary to discuss the appropriateness of value of α. The 

water surface profile exhibits the smooth increment from initial depth 1h  to its consecutive 

depth 2h . However, the length of the jump for the theoretical model is bit smaller than the 

experimental results. Although little discrepancy is observed between the analytical and the 

experimental results in the recirculation zone, the overall tendency of the water surface 

prolife is in good agreement with the experimental data of Madsen et al. (1983).  
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Figure 5.5. Water surface profile of hydraulic jump obtained by depth-averaged model 

 

5.3.2  Velocity distribution in the hydraulic jump 

 The distributions of velocities in consistent with the water depth are compared with 

the experimental and theoretical results of Madsen et al. (1983). The distributions are plotted 

for different depths as shown in Fig. 5.6. In these figures, two different distributions of 

velocities for analytical results are shown. The first distribution is evaluated by considering 

only two coefficients. That is, only coefficient 0u and 2u  are considered. Contrarily, in 

another distribution, higher order coefficient (4
th

 power of  ) is added in order to make zero 

gradient condition for the velocity at the free surface. The comparisons of the velocity 

distributions with the experiments shows that, at upstream and downstream end of the jump 

the depth is constant. Thus, the velocity profile exhibits the constant distribution as an 

averaged velocity. However, in the recirculation zone of the hydraulic jump, the velocity 

deforms and indicates the better agreement with the previous theoretical results. Unlike the 

theory of Madsen et al. (1983), the present analysis described that, the surface profile is 

sensitive to the form of the velocity profiles. Therefore, the assumptions employed for 
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determination of velocity produce reasonable distribution satisfying the continuity equation 

for each velocity profile. From the viewpoint of the accuracy of the distributions, it is 

observed that the deformation of the velocity is achieved well to some extent. Thus, it is 

necessary to improve the model by employing the higher order terms in the formulation. It is 

worth mentioning here that, the model proposed herein does not contain eddy viscosity term 

as a turbulent transfer term as described in section 5.2. Instead, it is considered as a 

momentum transfer term caused due to the deformation of the velocity. However, the relation 

between these two is necessary to be clarified for further understanding.  
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Figure. 5.6a. Velocity distribution for different depths 
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Figure. 5.6b. Velocity distribution for different depths. 
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5.4  Numerical simulation of hydraulic jump by using 3D URANS model 

 In this section numerical simulation of hydraulic jump by using 3D unsteady RANS 

model is described. The detail description of the model is already presented in Chapter 3. 

Hence, only computational condition and the numerical results of the hydraulic jump are 

depicted here. 

 

5.4.1  Computational conditions 

 For numerical simulations of the hydraulic jump by using both the standard and non-

linear k-ε model, the experimental condition of Madsen et al. (1983) is used. The numerical 

grids for the whole domain are set as 05.0x ; 03.0y  and 00728.0z . For both the 

simulations, t  is set to be 0.000005. For inlet boundary condition constant discharge is 

provided at the upstream end. This in turn provided the supercritical velocity as an initial 

condition for all time steps. For downstream boundary condition subcritical depth is held 

constant. Numerical simulations are conducted until the steady state of the hydraulic jump is 

obtained.  

 

5.4.2  Results and discussions 

 The results of the numerical simulations of hydraulic jump are compared with 

Bakhmeteff and Matzke (1936) and Madsen et al. (1983)'s experimental data.  

 

5.4.2.1  Water surface profile 

 The water surface profiles of the hydraulic jump obtained by 3D URANS model 

considering both the standard and non-linear k-ε model are plotted in Fig. 5.7a. The 

experimental data of Bakhmeteff and Matzke (1936) and Madsen and Sevendsen (1983) are 

also depicted in Fig. 5.7a. The corresponding vector diagrams of both the models are 

depicted in Fig. 5.7b and Fig. 5.7c. The surface profile obtained for the standard k-ε model is 

in reasonable agreement with the experimental data. Contrary, the surface profile of the non-

linear k-ε model is less steep than the experiments; indicating that the flow is not as steady as 

the one obtained by using the standard k-ε model. Madsen and Sevendsen's (1983) already 

stated that, the surface elevation is in proportional to the local energy dissipation. This, in 
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turn express that, for non-linear k-ε model the energy dissipation is much smaller than the 

experiments. Hence, the profile is not in good agreement with the experimental data.  

 

5.4.2.2  Vertical distribution of streamwise velocity  

 The vertical distributions of non-dimensional streamwise velocity are plotted at 

different depths by referring to the experimental data (Fig. 5.8). In this case, theoretical 

results of Madsen et al. (1983) are also included for the sake of comparisons. The 

distributions of streamwise velocity are in close agreement with the theoretical results in the 

former part of the recirculation zone of the hydraulic jump. Though the measured data is 

little scattered, theoretical and hence numerical results are within the experimental reach; 

satisfying the continuity equation for each velocity profile. In the latter part of the 

recirculation zone, the measured data is in good agreement with the numerical results of both 

the models. This indicates the overall tendencies of the velocity profiles obtained from the 

standard and non-linear k-ε models are reproduced well within the accuracy of experiments.  
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Figure 5.7a. Water surface profile obtained by 3D URANS model 
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Figure 5.7b. Vector diagram of hydraulic jump obtained by the standard k-ε model 

 

x (m)
0 1 2

0

0.05

0.1

0.15

0.2

0.25

h (m)

Non-linear k -  Model

 

Figure 5.7c. Vector diagram of hydraulic jump obtained by non-linear k-ε model 
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Figure 5.8a. Vertical distributions of streamwise velocity for different depths 
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Figure 5.8b. Vertical distributions of streamwise velocity for different depths 
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5.4.2.3  Streamwise turbulence intensity 

 In Fig. 5.9, the vertical distributions of non-dimensional streamwise turbulence 

intensity component are illustrated along with the theoretical results of Madsen et al. (1983). 

For this particular case, three different curves of theoretical results are used for the 

comparisons. These three curves are obtained because of different values for coefficient 'A' 

are considered. Here, 'A' is the coefficients of third order polynomial considered in the theory 

of Madsen et al. (1983). Three different values of that coefficient indicate the effect of shear 

stress in the formulation. For instant, value A=2, corresponds to zero shear stress at the water 

surface. For values, less than 2 indicates the non-zero values of shear stress at the free 

surface. This is because Madsen et al. (1979) already reported that, in highly turbulent region 

of the surface roller, shear stresses are non-zero at the local mean water level. Accordingly, 

values 1.4 and 1.0 are selected for the comparisons. 

 For numerical results, two curves for each model (standard and non-linear k-ε model) 

are plotted.  These curves indicates two different locations (x = 1.2 m and x =1.6 m) within 

the reach of recirculation zone. In Madsen et al. (1983)'s theoretical analysis, it is not 

mentioned clearly that, at which location the distribution is drawn. Additionally, it is already 

mentioned that they divided the flow region into the turbulent flow region and the potential 

flow region part. Therefore, the analytical results are plotted only for the turbulent region 

part and not for the potential flow region part. Although, it is possible to calculate the 

thickness of the potential flow region through their theory, it is not sure that this thickness 

also represents the potential flow region for the numerical simulation. Nevertheless, for the 

sake of comparisons in numerical results, the turbulent flow regions are decided with the help 

of their analysis. As shown in Fig. 5.9, convex shape near the bottom is still observed for the 

standard k-ε model. However, for non-linear k-ε model, in the later part of the recirculation 

zone (where x =1.6 m), the distribution shows similar tendency as like the theoretical results. 

Apart from the water surface profile and velocity distribution, the difference between the 

standard and the non-linear k-ε model is more visible in this case. In other words, the 

characteristic of streamwise turbulence intensity is reproduced well by the non-linear k-ε 

model as compared to the standard k-ε model. 
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Figure 5.9. Vertical distribution of streamwise turbulence intensity 

 

5.5  Summary 

 In this chapter, a simple theoretical model for determination of water surface profile 

and velocity distribution is developed in successive steps providing the existence of the 

solution. Additionally, the numerical simulations of the hydraulic jump by using the 3D 

URNAS model are also discussed. 

 Initially, the performance of the proposed analytical solution is analyzed by 

comparing the results with the previous experimental and theoretical results. Begin with the 

analytical solution of the momentum equation with eddy diffusivity term; the exact solution 

for water surface profile of the hydraulic jump is derived. In addition to the eddy diffusivity 

term, bed shear stress is also included into the momentum equation and it is solved 

numerically to get the water surface profile of the jump. Finding out the deficiency of those 

previous methods, a simple depth-averaged model is then proposed. The analytical solution 

obtained by the depth-averaged model satisfied the findings of the previous studies indicating 
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the reasonable agreement of the water surface profile with the experimental data. The 

assumptions employed for the velocity distribution also provided reasonably good agreement 

with the previous studies. However, further improvement is required to obtain the better 

comparison.  

 In the later part of this chapter, 3D URANS model is used to reproduce the 

characteristics of the hydraulic jump by using the standard k-ε and the non-linear k-ε model. 

The comparisons of water surface profile reproduce close agreement with the experimental 

data for the standard k-ε model as compared to the non-linear k-ε model. Besides the water 

surface profile for non-linear k-ε model, the comparisons of velocity distribution and 

streamwise turbulence intensity are in close agreement with the experimental and theoretical 

data. The performance of the non-linear k-ε model over the standard k-ε model could easily 

distinguish from the velocity and the streamwise turbulence intensity distributions. 
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Chapter 6 

 TRANSITION FROM UNDULAR JUMP TO 

STRONG HYDRAULIC JUMP 

 

6.1  Preliminaries 

 In previous chapter water surface profile analysis is conducted by using 1D depth-

averaged model. However, the numerical analysis is performed by excluding the Boussinesq 

term from the basic equation. The undular jump is one of the fundamental flows which 

considered the effect of vertical acceleration (Hosoda et al. 1994). In this type of the jump, 

the flow is characterized by free-surface undulations of decreasing amplitude which extend 

for a considerable distance downstream of the transition (Fig. 6.1), and replace the roller 

structure of the conventional jump (Montes et al. 1998). Undular jumps have been 

experimentally studied and described by many researchers but more extensive tests were 

performed by Chanson (1995).  

 Bakhmeteff and Matzke (1936) conducted the series of experiments for different 

Froude number. Through their investigations, they characterized the transitions of jump from 

undular to direct jump. Iwasa (1955) reported the limiting condition for the existence of the 

undular jump experimentally by remarking the breaking characteristics of the undular jump. 

Hosoda et al. (1994) on the other hand, simulated the breaking process of undular jump by 

multiplying the damping function to the vertical acceleration term.  

 Concerning the previous study, in this chapter free surface profile analysis for steady 

open channel flow is performed by using the one-dimensional basic equation with the vertical 

acceleration terms. Initially, the wave characteristic of the undular jump is reproduced 

numerically using a suitable eddy diffusivity term. Following the study of the hydraulic jump 
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new empirical relationship between the Froude number and the turbulent diffusivity 

coefficient is proposed in succession. Finally, with the help of proposed empirical 

relationship transitions of flow from undular jump to strong hydraulic jump is explained. 
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Figure 6.1. Schematic illustration of undular jump 

 

6.2  Empirical relationship between Froude number and proportionality factor  

 The definition of turbulent diffusivity coefficient indicated that the value of α 

occurred in the range of 0.005 to 0.1. Contrary to this range, for water surface computation of 

hydraulic jump, different values of α are considered and the suitable value, which reproduce 

the reasonable agreement with the experimental data is employed (as shown in Fig. 5.3). This 

comparisons further lead to conclude that Froude number has a direct relationship with the 

turbulent diffusivity coefficient. Therefore, in order to compute the water surface profile for 

different types of jump, it is necessary to find a suitable relationship between the Froude 

number and the proportionality factor α. Consequently, the empirical relationship between the 

Froude number and the proportionality factor α is proposed with the help of comparisons of 

the numerical and the experimental data. This empirical relationship is expressed as 

     25.1

1001 1 Fr      (6.1) 

where, 01.00  , 396.00   and 1  is a new proportionality factor.  

 

6.3  Transition from undular jump to strong jump 

 To validate the applicability of the proposed empirical relationship, the computation 

of water surface profile of the jump for different Froude number needs to calculate. To do so, 
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experimental data of Bakhmeteff and Matzke (1936), Dunbabin (1996) and Montes et al. 

(1998) that consisting the range of Froude numbers 1.25 to 8.87 are considered for the 

simulations.  

 

6.3.1  Numerical model 

 The momentum equation by including eddy diffusivity and the vertical acceleration 

term is given as 
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where, x = streamwise distance; h = flow depth; U = depth-averaged velocity; θ = angle made 

by the streamwise slope with the horizontal; Dm = eddy diffusivity coefficient; g = 

gravitational acceleration; bx  = bed shear stress;  = mass density of fluids. 

 Assuming the equilibrium between the gravity and the frictional terms and integrating 

Eq. 6.2, following equation is obtained.  
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where, momentum flux 0M  is defined as 
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 Representing Eq. (6.3), into the following form, 
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 The singular point in the basic equation is the point satisfying the relation, 0p  and 

2// 22

0 ghhqM  . That is these singular points are the two-depth satisfied by the 

conjugate relation. It is assumed that the depth obtained from the reduction of undulations at 

the downstream of the jump satisfied the conditions of the singular point. Singular points are 

classified in the following relation by linearizing the basic equation around this depth and for 

Fr <1. 
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 As Whitham (1974) suggested that, the undular jump is corresponding to the region of 

stable focal point. On the other hand, it is considered that the region of stable nodal point 

have no meaning from the viewpoint of hydraulics, because qDm /  has very large value.  

 Therefore, to evaluate the transitions from focal to nodal point, the empirical 

relationship is needs to incorporate into the basic equation. To do so, eddy diffusivity 

coefficient is calculated as 

    qDm 1        (6.7) 

 

6.3.2  Computational results 

 To evaluate the water surface profile for different types of jump, Eq. 6.3 is solved 

numerically by using the 4
th

 order Runge-Kutta method. The calculation proceeds with the 

initial values of water depth and the derivative of depth as an initial condition. Depending on 

the Froude number, Δx is selected for the computation. Begin with the upstream depth and 

the derivative at the upstream end the numerical simulation is conducted by using new 1  

value based on Froude number. For the sake of comparisons the numerical results for 

01.01   are also calculated. The selective comparisons of numerical results are shown in 

Fig. 6.2-6.5 and corresponding hydraulic variables of numerical simulations are tabulated in 

Table 6.1 and Table 6.2. The first crest of the solitary wave ch  for 01.01   and first crest of 

the solitary wave or conjugate depth 2h  (depending on Froude number) for new 1  value are 

also tabulated in Table 6.1 and 6.2. It is evident from figures that, because of vertical 

acceleration term in basic equation, the wave characteristics of undular jump are reproduced 

well by the numerical simulation for small Froude number. As the Froude number, hence 1  

value increases, the free surface undulations downstream of the jump disappear and the jump 

reverts to a weak conventional jump. Further increase of Froude number leads to the roller 

formation and intense mixing of the strong hydraulic jump. To depict this transitional 

characteristics of jump from undular jump to strong hydraulic jump it is necessary to discuss 

the relation between the downstream depth and the Froude number. 
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Figure 6.2. Computational result of water surface profile of jump for case C1 
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Figure 6.3. Computational result of water surface profile of jump for case C6 
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Figure 6.4. Computational result of water surface profile of jump for case S29 
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Figure 6.5. Computational result of water surface profile of jump for case S17 
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Figure 6.6. Comparison of the numerical result with the experimental data 

 

Table 6.1. Hydraulic variables of Dunbabin (1996) and Montes et al. (1998)'s 

 experimental data considered for numerical simulation 

No. h1 (m) Fr Slope q (m
2
/s) hc (m) h2 (m) α1 

C1 0.0468 1.25 0.0044 0.0397 0.0732 0.0703 0.081 

C2 0.0292 1.27 0.0044 0.0198 0.0468 0.0448 0.086 

C3 0.0420 1.48 0.0038 0.0399 0.0919 0.0822 0.169 

C4 0.0240 1.70 0.0083 0.0198 0.0694 0.0569 0.264 

C5 0.0384 1.70 0.0083 0.0400 0.1100 0.0907 0.263 

C6 0.0456 1.96 0.0049 0.0598 0.1750 0.1290 0.387 

C7 0.0210 2.10 0.0132 0.0200 0.0920 0.0639 0.456 

C8 0.0191 2.40 0.0173 0.0198 0.1090 0.0666 0.611 

        
D1 0.061 1.41 0.003 0.0631 0.109 0.102 0.112 

D2 0.067 1.52 0.003 0.0792 0.142 0.128 0.159 

D3 0.057 1.63 0.003 0.0695 0.151 0.128 0.233 
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Table 6.2. Hydraulic variables of Bakhmeteff and Matzke (1936)'s   

experimental data considered for numerical simulation 

No. h1 (m) Fr q (m
2
/s) 

Expt. h2 

(m) 
hc (m) h2 (m) α1 

S27 0.0771 1.94 0.1301 0.171 0.289 0.215 0.376 

S30 0.0765 1.98 0.1316 0.175 0.301 0.219 0.399 

S40 0.0686 2.12 0.1171 0.165 0.296 0.207 0.447 

S43 0.0695 2.13 0.1219 0.168 0.313 0.214 0.469 

S25 0.0774 2.31 0.1561 0.211 0.414 0.261 0.568 

S45 0.0759 2.34 0.1531 0.208 0.414 0.258 0.580 

S41 0.0695 2.57 0.1478 0.208 0.460 0.259 0.709 

S24 0.0756 2.59 0.1687 0.233 0.507 0.284 0.718 

S28 0.0759 2.92 0.1914 0.269 0.647 0.318 0.907 

S26 0.0774 3.15 0.2122 0.301 0.765 0.346 1.040 

S29 0.0674 3.45 0.1886 0.292 0.799 0.326 1.219 

S36 0.0512 4.10 0.1486 0.265 0.855 0.288 1.637 

S18 0.0381 4.56 0.1067 0.226 0.799 0.238 1.962 

S6 0.0326 5.01 0.0918 0.215 0.802 0.219 2.238 

S17 0.0271 5.45 0.0762 0.192 0.801 0.199 2.574 

S39 0.0274 5.53 0.0786 0.202 0.834 0.204 2.631 

S35 0.0189 6.69 0.0544 0.163 0.842 0.170 3.488 

S37 0.0162 7.34 0.0472 0.153 0.865 0.159 3.972 

S32 0.0143 7.89 0.0424 0.145 0.890 0.153 4.455 

S34 0.0122 8.29 0.0349 0.133 0.829 0.137 4.740 

S33 0.0119 8.63 0.0346 0.131 0.858 0.137 4.937 

S38 0.0098 8.87 0.0268 0.116 0.768 0.118 5.248 

 

 As a basis for the comparisons and to check the validity of the empirical relationship 

the obtained numerical results are compared with the experimental data for Fr =1.1, as shown 

in Fig. 6.6. It is seen from the figures that, the downstream depth for the experiment is less 

than the conjugate depth. Therefore, the numerical results show higher amplitudes of the 

waves as compared to the experiment.  



Chapter 6.   TRANSITION FROM UNDULAR JUMP TO STRONG HYDRAULIC JUMP 

 

149 

 

 To ensure the transition of flow from undular to strong hydraulic jump by proposed 

empirical relationship; the relation between the maximum depth and the upstream Froude 

number is plotted in Fig. 6.7. As a basis for the comparison the crest depth of solitary wave 

(Eq. 6.8) given by Hosoda et al. (1994) and the curve for conjugate depth of the conventional 

hydraulic jump (Eq. 6.9) are included in Fig. 6.7. The experimental data of Iwasa (1955) is 

also included into the Fig. 6.7.  
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 It is seen from figure that, for small Froude number, the first crest height of the 

undular jump follows the theoretical curve of solitary wave. From experimental investigation 

Iwasa (1955) reported that, the limiting condition of occurrence of the undular jump lies 

within the range of 5.11 Fr  to 9.11 Fr . Further he indicated that for 6.11 Fr , the 

experimental points deviated from the theoretical curve of solitary wave. Bakhmeteff and 

Matzke (1936) defined this limit as a transitional zone; equivalent to 5.11 Fr . The 

computed result with the proposed empirical relation also able to reproduce this 

characteristics indicating the deviation from the theoretical curve at 5.11 Fr . As Froude 

number increases, the breaking of wave causes discontinuous profile of the water surface. 

Iwasa (1955) experimentally reported that range from 5.11 Fr  to 9.11 Fr , which 

corresponds to likely breaking or transition of the jump. The breaking or roller formation 

occurs from 21 Fr . In Fig. 6.7, different colours represent the breaking process of the 

undular jump as indicated by Iwasa (1955). From the observations, the computational results 

contained within the depth ratios of 2.5-3.0 corresponding to the likely breaking phenomenon 

of the jump. Further increase of Froude number brings the computational results close to the 

conjugate depth, indicating the formation of strong hydraulic jump.  

 

6.4  Summary 

 In this chapter, new empirical relationship between the Froude number and the 

proportionality factor is proposed using the help of numerical results of hydraulic jump. To 
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verify the applicability of the proposed relationship, one dimensional basic equation is solved 

numerically considering the vertical acceleration term. Different types of jump are computed 

based on the proposed relationship. The obtained results are then compared with the Froude 

number to assure the transition of flow from continuous water surface profile of undular jump 

to the discontinuous water surface profile of strong hydraulic jump. 
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Figure 6.7. Transition from undular jump to strong hydraulic jump 
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Chapter 7 

 CONCLUSIONS 

 

7.1  Summary of the findings 

 To understand the fundamental characteristics of unsteady varied flows numerical and 

analytical studies are conducted for open channel flows. Beginning from simple one-

dimensional depth-averaged model, the hydrodynamic behaviour of the unsteady non-

uniform flows over smooth and rough beds is examined by 3D unsteady RANS model. The 

deficiency of one-dimensional depth-averaged model in production of velocity distributions 

led to further analysis for evaluations of flow properties. This is done by the analytical study 

of the standard k-ε model. In coordination with improvement of velocity distributions, other 

flow properties such as, turbulent kinetic energy k, turbulent energy dissipation rate ε and 

eddy viscosity are evaluated using the analytical solution. Additionally, the effect of damping 

function on the distributions of aforementioned properties near free surface zone is also 

verified analytically. After analyzing the characteristics of gradually varied unsteady flows, 

an analytical study based on deformation principle and the numerical study by using 3D 

unsteady RANS model are performed for rapidly varied unsteady flows. Finally, the 

transitions of flows from continuous water surface profile to discontinuous water surface 

profile for rapidly varied unsteady flows are discussed. The summary of these numerical and 

analytical studies of the research are concluded below under respective topics.  

 

7.1.1  1D depth-averaged velocity deformation model 

 To overcome the inaccuracy of Engelund model and to propose friction velocity 

formula, simple depth-averaged velocity deformation model is derived in this chapter. The 

comparison of numerical results with the experimental data showed that, the characteristics of 
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bed shear stress is similar to the experimental one. It means that, the bed shear stress attains 

peak value before the peak depth appears and the maximum value of it increases with an 

increase in unsteadiness of the flows. Similarly, thickness of the loop characteristics of the 

streamwise velocity increases with an increase in unsteadiness of the flows.  

 Because of inclusion of additional shear stresses into the model, the deformation of 

the velocity distributions from that of uniform velocity distribution of the Engelund model is 

observed. This deformation between these two models is increases with an increase in 

unsteadiness of the flow and vice versa.  

 These characteristics are valid for both kinds of bed cases: smooth beds and rough 

beds. This suggests that the velocity deformation model is adequate for the unsteady varied 

flows over smooth bed and rough bed as well. 

 

7.1.2  3D unsteady RANS model 

 The turbulent characteristics of unsteady non-uniform flows are studied well by the 

3D unsteady RANS model. Similar to 1D model, two experimental conditions; smooth bed 

and rough bed condition, are computed. The behaviour of the model is compared in 

accordance with the numerical results of the standard and non-linear k-ε model. The 

distributions of bed shear stress and loop property of averaged velocity, turbulence intensities 

and Reynolds stresses in smooth bed cases followed the same trend.  Though the distributions 

of Reynolds stresses during the passage of flood flows are diverted from those experimental 

results, turbulence intensities are in close agreements with the experimental data for high 

unsteadiness case. Contrary, for less unsteadiness case the distributions of Reynolds stresses 

and turbulence intensities (especially vertical component) are in good agreement with the 

steady state condition.  

 Apart from the comparisons in smooth bed case, the distributions of numerical results 

are in good agreement with the experimental data in rough bed case. In this particular case, 

the difference between the linear and non-linear k-ε model is more pronounced, indicating 

that the turbulence characteristics of the non-linear k-ε model are in good agreement to the 

steady state condition than the standard k-ε model. 
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7.1.3  Analytical solution of the standard k-ε model 

 For improvements of velocity distributions and examination of damping function on 

flow properties, an analytical solution of the standard k-ε model is developed. Initially, an 

effective analytical solution for uniform flow by excluding the damping function is derived. 

This solution is then compared with another analytical solution, which is deduced by 

including the damping function. The comparisons between two analytical solutions exhibited 

negligible effects of the damping function on the velocity distributions. Contrarily, the 

damping function illustrated small effect on energy dissipation rate near the free surface zone. 

Because of influence of the coefficient of the damping function, the distribution of turbulent 

kinetic energy was unable to produce the damping effect near the free surface. Although, 

some divergence observed for analytical results while in comparisons with the numerical 

results, the overall tendency is maintained well by the analytical results.  

 In non-uniform flow conditions, two kinds of flow: accelerated and decelerated flows 

are analyzed by including and excluding the damping function. The analytical results are then 

compared with the experimental data. The distributions of streamwise velocity for 

decelerated flows reproduced good comparison with the experiment than the accelerated 

flows. On the other hand, distribution of vertical velocity is in good agreement for both the 

cases. The characteristics of the turbulence intensities in respective flows are acquired well 

by the solution, except near the wall region. It is because of the wall function values 

employed for the non-uniform flow case. Similar to uniform flow analysis, in this case also, 

kinetic energy failed to reproduce the damping effect near free surface. Nevertheless, the 

effect of damping function on energy dissipation rate and on eddy viscosity is observed well. 

The nature of energy dissipation rate and eddy viscosity further satisfied the conditions of the 

flows. In other words, more energy dissipation is observed for accelerated flows than 

decelerated flows while comparing to the uniform flow distributions. Similar trend is 

observed for eddy viscosity distribution; where, the distribution of eddy viscosity is damped 

in accelerated flow and amplified in decelerated flow while in comparisons with the uniform 

flow. 
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7.1.4  Analysis of hydraulic jump 

 Following the deformation principle in gradually varied unsteady flows, an analytical 

solution for hydraulic jump is developed in successive steps. The analysis starts with the 

solution of momentum equation by including the eddy diffusivity term. The obtained results 

with this solution could reproduce the continuous profile of the jump between two conjugate 

depths. The solutions also brought the similar trend of continuous profile between two 

conjugate depths when bed shear stress term is included into the basic equation. However, 

obtained results from both the methods reproduced appropriate characteristics (in 

comparisons with the experiments) only for large proportionality factor. This led to further 

analysis for the evaluation of formation of the jump. The simple depth-averaged model by 

including the velocity deformation is then proposed. The behavior of the model is verified in 

comparisons with the experimental data. Though further improvement is required, it is found 

that the proposed model can reproduced the experimental characteristics from the view point 

of accuracy of the approximate distributions.  

 After analyzing depth-averaged model, the numerical simulations of the hydraulic 

jump by 3D unsteady RANS model considering the standard and the non-linear k-ε model is 

conducted in another section. The computed results are compared with the previous 

experimental and theoretical results. The comparisons of water surface profile showed that, 

more local energy dissipation is observed for the non-linear k-ε model. However, the vertical 

distributions of streamwise velocities for both models reproduced the close agreement with 

the theoretical results. The pronounced effect of the non-linearity is observed in streamwise 

turbulence intensity distributions, where non-linear k-ε model produced reasonable agreement 

with the previous theoretical data as compared to the standard k-ε model.  

 

7.1.5  Transitions from undular to strong hydraulic jump 

 The numerical simulation of hydraulic jump led to conclude that the Froude number 

has a direct relationship with the turbulent diffusivity coefficient. This finding extended the 

objective of the analysis to propose that relationship. Thus, with the help of numerical results 

of hydraulic jump, empirical relationship between the Froude number and proportionality 

factor is proposed. The applicability of the empirical formula is verified by computing the 

different types of jump. This is done by introducing the empirical relation into the Boussinesq 
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equation and solving the equation numerically by using 4
th

 order Runge-Kutta method. The 

computational results reproduced the reasonable water surface profile for different Froude 

number. The comparisons of numerical results with the theoretical curves also showed that, 

the breaking process of the undular jump and transition to strong hydraulic jump is well 

characterized by the obtained results. This ensured the applicability of the proposed empirical 

relationship. 

 

7.2  Recommendations for future studies 

 Based on the numerical and analytical results of proposed problems and in 

comparisons with the previous findings, this research leads to following recommendations for 

future works: 

 For one-dimensional depth-averaged model simulations are performed over rough 

beds without incorporating the sediment transport model. Because of which sediment 

transport characteristics was not able to produce during flood flows. Therefore, to study the 

behavior of the model in more practical way it is better to include the sediment transport 

model for further studies. 

 In analytical solutions of the standard k-ε model for non-uniform flow, the wall 

functions did not reproduce the similar characteristics as like the experimental results. 

Although, new wall function is proposed for present research, the effectiveness of the wall 

function is not satisfactory. Therefore, it is further necessary to derive the new wall function 

values for non-uniform flow. Along with wall function values further improvements in the 

analytical solution is also required to depict the effect of damping function on turbulent 

energy production.  

 Only analytical solution for standard k-ε model is derived here for the sake of 

evaluation of flow properties. So as to next, simple depth-averaged model can be developed 

based on these findings.  

 


