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Abstract

We exhibit nonlinear studies of sliding Couette flow, the flow between two infinitely long co-

axial cylinders generated by the sliding motion of the inner cylinder in the axial direction.

As a result, two types of finite-amplitude solutions of the Navier-Stokes equations are

discovered.

First we confirm Gittler (1993)’s axisymmetric linear stability result, namely that the flow

can be linearly unstable to axisymmetric perturbations when the radius ratio η = a/b,

where a and b denote the radii of the inner and outer cylinders respectively, is smaller than

0.1415. A bifurcation analysis reveals that Tollmien-Schlichting wave like axisymmetric

finite-amplitude solutions bifurcate from the basic flow due to this instability. For these

obtained numerical equilibrium solutions, the relationship to the theoretical study, valid for

asymptotically large values of Reynolds number, R, is discussed. We continue the numerical

axisymmetric solution branch, which comes into exist once at R ∼ O(104), to R ∼ O(108),

and confirm the quantitative agreement with axisymmetric asymptotic theory developed

in this thesis. All of these axisymmetric numerical solutions vanish with increasing η in

the range (0.33, 0.40), exhibiting a streamwise localized long-wave structure as this cut-off

is approached. Consistent with this observation, the asymptotic theory breaks down when

the disturbance wavelength is comparable with R.

Secondly, our nonlinear analysis leads to the discovery of non-axisymmetric travelling-wave

solutions which appear abruptly at a finite Reynolds number for wide range of η where

the linear instability is absent. We also show these solutions of sliding Couette flow can

be continued to plane Couette flow, which is the zero-curvature limit of sliding Couette

flow. These solutions, including new solutions of plane Couette flow, are characterized

by vortex-wave interaction asymptotic theory (Hall & Smith 1991, Hall & Sherwin 2010).

We confirm the interaction sustaining solutions is localized at positions at which strong

streak shear and outward jets in the roll velocity components are commonly observed. The

fact that the interaction can be present for all values of η explains the robustness of the

non-axisymmetric solutions against change of geometry. Thanks to this property, it is also

possible to find some connections to pipe flow, which is obtained in the limit of vanishing

inner cylinder of sliding Couette flow with proper axial pressure gradient.
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(η, α) = (0.1, 0.6546). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Same plots as figure 4.2 for different solutions. . . . . . . . . . . . . . . . . 27
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Chapter 1

Introduction

1.1 Finite amplitude solutions of shear flows

Fluid motion can be observed in situations as diverse as a cup of coffee to blood circulation

in the body. For these flows, it is well known that smooth laminar flow can reach a chaotic

turbulent state when the flow speed is sufficiently fast. Although both of the states are

effectively modelled by the nonlinear partial differential equations called the Navier-Stokes

equations, when and how laminar-turbulent transition occurs is still not well understood.

Laminar-turbulent transition can be realized when a fluid flow experiences a strong shear

typically due to the presence of a wall. After the flow reaches a turbulent state, the fluid

flow shows a highly unpredictable motion exhibiting high energy and momentum (and heat

if included) dissipation and transfer on the wall. The control of such turbulent states is

practically important, but the Navier-Stokes equations are too difficult to solve for complex

realistic situations. Therefore a number of simple wall bounded configurations, so-called

canonical flows, have been studied in order to extract the essential nature of transition

phenomena. Such canonical problems include:

• plane Couette flow: a flow between mutually moving two parallel plates,

• pipe flow: a pressure driven flow through a single pipe,

1



2 Chapter 1. Introduction

• plane Poiseuille flow: a pressure driven flow between two parallel plates,

• Rayleigh-Benard convection: a fluid layer on a heated horizontal plate,

• Taylor-Couette flow: a flow between independently rotating co-axial cylinders.

For these flows, a speed of fluid relative to a wall is controlled by moving another wall,

pressure gradient or buoyancy which can define Reynolds number, i.e. non-dimensional

shearing flow speed. One of the most important concerns in laminar-turbulent transition

problem is to determine critical Reynolds number for this phenomena.

Laminar flow is obtained as a solution of the linearized Navier-Stokes equations. We

can prove this “basic flow” solution exists for all Reynolds number and is unique when

the Reynolds number is sufficiently small (Serrin 1959). However, recent advances in

computing power allow us to compute nonlinear finite-amplitude solutions of the Navier-

Stokes equations for sufficiently large values of the Reynolds number. Therefore, these

solutions, which take a form of travelling waves, relative periodic orbits or more complex

time-dependent orbits, have been attracting attention as a key to understanding turbulent

transition.

The fact that such solutions are sometimes unstable and cannot be obtained by simulation

requires the use of the Newton iterative method, which is much more computationally

expensive than simulation. This leads to the obvious question: how to choose the initial

guess for the iteration? Since the flow motion has a very high number of degrees of freedom

(e.g. number of grid points needed to resolve the flow field), typically O(103) − O(106)

even for moderate R, any search for a solution with a poor initial guess likely to fail (for

example, if we consider three discrete states for each 1000 variables, say corresponding to

positive, zero and negative values, there are 31000 = 1.3× 10477 possible initial guesses!).

One possible method to construct an initial guess is the linear instability, i.e. the stability

to infinitesimally small disturbances, of the basic flow. We can rewrite the time-dependent

Navier-Stokes problem as

dx

dt
= Lx+N(x,x)
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where vector x(t) represents ‘disturbance to the basic flow’, whose dimension determines

a number of degrees of freedom, and L and N are linear and nonlinear operators respec-

tively. For infinitesimally small x, products of the disturbance can be neglected, and so the

problem reduces to a linear one and it is possible to set x = <(x̌est) where s is a complex

growth rate. The resultant eigenvalue problem

sx̌ = Lx̌

yields an eigenvector x̌. In the neighbourhood of linear critical point, where at least one of

the eigenvalue satisfies IR(s) = 0, the associated eigenvector provides an initial guess fo the

nonlinear problem because (i) the Jacobian matrix, which is defined by the action of L to

x, becomes singular implying that the uniqueness of the basic flow solution is not assured

(c.f. implicit function theorem), i.e. the bifurcation of another solution branch is possible

and (ii) the eigenvector x̌ approximates the bifurcating finite-amplitude solution near the

linear critical point. Successive bifurcating solution branches also can be detected from

the finite-amplitude solution branch when the linear and nonlinear part of the equations

are rearranged so that x(t) represents ‘disturbance to the finite-amplitude solution’. These

bifurcating solutions sometimes break the symmetry of the original solutions and therefore

have more complex structures. The successive bifurcations of solutions starting from the

linear critical point of the basic solution provide one of route to turbulence, called super-

critical transition. This bifurcation scenario successfully explains some transition processes

such as those due to convection (e.g. Rayleigh-Benard convection) or rotational instability

(e.g. Taylor-Couette flow) for example.

However, for purely shear induced flow, such as plane Couette flow, pipe flow and plane

Poiseuille flow, the story is much more complex. One of the theoretical difficulties of shear

flow transition problem lies in the linear stability of basic flow, i.e. even when the basic

flow is stable to infinitesimal disturbances, transition to turbulence can occur. Thus for

this so-called subcritical transition, the dynamics should be fully nonlinear and the final

state observed in any experimental or numerical simulation depends on finite-amplitude
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initial conditions. This type of transition to chaotic turbulence typically occurs abruptly,

as demonstrated by Reynolds’ famous pipe flow experiment in 1883. As he observed from

a flow visualized by dye, in contrast to supercritical transition, stable coherent states such

as travelling waves cannot be realized.

Moreover, it is known that laminar-turbulent transition in shear flows involves two types

of distinct vortical structures. The first of these structures arises by consideration of the

linear stability of the basic flow at relatively high R. As Tollmien (1929) and Schlichting

(1933) found for boundary-layer flow, an infinitesimally small growing mode typically has

a two-dimensional orthogonally-aligned roll pattern. As a consequence of this instability

the finite-amplitude solution inherits a similar two-dimensional flow structure (Zahn et al.

1974, Herbert 1976 for plane Poiseuille flow).

In contrast, experimental results (e.g. Davies & White 1928 and Nishioka et al. 1975) and

direct Navier-Stokes simulations (e.g. Orszag & Kells 1980 and Henningson et al. 1987)

indicate that shear flows can lose stability to three-dimensional streamwise roll structures.

This second type of flow structure typically occurs at much lower Reynolds numbers than

those associated with the two-dimensional linear and corresponding nonlinear disturbances

mentioned above. In addition, there exist anomalistic flows which do not exhibit any linear

instability: plane Couette flow (Romanov 1973), and pipe flow (Meseguer & Trefethen

2003). Hereinafter we abbreviate these flows as PCF and PF respectively since they are

frequently cited in the present thesis.

One possible explanation to resolve this apparent conflict between theories and experiments

has been found through the computation of three-dimensional finite-amplitude solutions of

the Navier-Stokes equations (e.g. Nagata 1990 and Clever & Busse 1992 for PCF, Faisst

& Eckhardt 2003 and Wedin & Kerswell 2004 for PF, Waleffe 1998 for plane Poiseuille

flow). These nonlinear states are disconnected from any linear instability and are therefore

difficult to obtain. Instead, they appear abruptly by means of a saddle-node bifurcation

at values of R as low as that at which the corresponding flow dynamics begin to show

instability according to experiments or unsteady Navier-Stokes simulations. Visualiza-
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tions of such solutions reveal that they commonly have similar flow structures including

quasi-streamwise rolls and streaks, as are frequently observed in flows in laminar-turbulent

transitions of shear flows. For this reason, these travelling wave solutions are sometimes

termed “exact coherent structures”.

To obtain nonlinear solutions that do not arise from linear instability, related problems,

such as those that include additional forces (whether physical or non-physical) or different

boundary conditions may be considered. Such augmented systems typically have linear

instabilities. Solutions to the original problem may then be obtained by continuing in

small steps from the problem that includes the additional effects by applying the Newton-

Raphson iterative method. This is the so-called homotopy method, and has been widely

used to obtain solutions of nonlinear systems, for example those arising in electrical circuit

problems (e.g. Melville et al. 1993) and economic problems (e.g. Judd et al. 2000).

Nevertheless, the success of the homotopy continuation from one solution to another is not

always assured, and thus the choice of additional effects is crucial importance.

This difficulty has been resolved by Waleffe (1995, 1998) for shear flows, revealing the

physical mechanism of coherent structures as follows: small streamwise rolls create an

inhomogeneous streamwise mean flow, i.e. streaks, and then linear instability of the streaks

excites sinuous waves. Finally the rolls gain energy from the waves and so on. This

successive interaction of rolls, streaks and waves is now called Waleffe’s self sustaining

process (SSP). He showed that the choice of additional effect as an artificial forcing term

that mimics streak instability in SSP is a promising way to obtain exact coherent structures.

1.2 Role of solutions in dynamics

These finite-amplitude solutions provide a stepping stone to understanding subcritical shear

flow transition phenomena in terms of a dynamical systems theory context. In this theory,

we consider the dynamics of a flow as a trajectory in phase space spanned by each element

of x(t). Thus for a subcritical shear-flow transition problem, this trajectory is attracted to
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either the basic flow or a turbulent state depending on the given condition.

From linear stability theory we know that all small-amplitude disturbances decay to the

basic flow, while large-amplitude disturbances could trigger transition. For subcritical

transition an ‘edge state’ approach has been developed that, for given initial conditions,

seeks to control the amplitude of the disturbance in simulations so that the flow neither

becomes turbulent nor returns to the laminar basic flow. These studies showed that the

so-called lower-branch of three-dimensional solutions, which typically produce a smaller

modification to the basic flow than other solution branches, are frequently found in the

resultant trajectory, i.e. the edge of laminar-turbulent attractor (e.g. Itano & Toh 2001 and

Skufca, Yorke & Eckhardt 2006). Thus lower-branch states are considered to be embedded

in this edge state and play a ‘gatekeeper’ role in the transition dynamics. Though these

edge states are obtained by a numerical approach, a recent study has revealed that they

can indeed be observed in real controlled experimental flows (de Lozar et al. 2012).

An alternative approach to understanding subcritical transition is provided by Gibson et

al. (2007), who projected the finite-amplitude solutions and turbulent trajectory onto a

carefully chosen low-dimensional phase space and showed that the turbulent trajectory

hangs around for a long time in the neighborhood of certain finite-amplitude solutions.

Gibson et al. (2007) explains this behaviour with reference to the property that only have

a few unstable eigenvalues. This means that a given trajectory in phase space is pulled away

from such solution in a few directions while it is attracted to such a solution in the other

O(103)–O(106) directions. Gibson et al. (2007) also computed unstable manifolds, which

can be obtained from time marching from linearly unstable eigenvectors of the solution,

and found that trajectories near the solution are repelled away, guided by the unstable

manifold.

Though above picture is based on travelling wave solutions which are regarded as fixed

points in the state space in some sense, time periodic solutions also play a crucial role in

turbulence according to periodic orbit theory by Civitanović et al. (2011), in which chaotic

dynamics can be approximated by weighted sums of periodic orbits. One evidence for this
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picture was presented in the pioneering work by Kawahara & Kida (2001) who showed the

existence of time periodic solutions which give a surprisingly good approximation of turbu-

lent trajectories and must have a large weight in the periodic orbit expansion. In addition,

van Veen & Kawahara (2011) found orbits homoclinic to edge states which resemble to

turbulent burst events. Such orbits have an infinite period, as they lie in the intersection

of unstable and stable manifolds of the edge state. Importantly these homoclinic orbit

solutions predict the presence of Smale’s horseshoe which could explain chaotic dynamics

of turbulence.

However, though these investigations for three-dimensional instability provide fairly com-

prehensive mechanisms of the transition dynamics, it should be noted that all such studies

are undertaken far away from a parameter value region that yields linear and nonlinear

two-dimensional instabilities. Therefore, this type of instability could ‘pass the torch’ to a

Tollmien-Schlichting type disturbance as the critical Reynolds number for linear stability

is approached. Consequently, two-dimensional finite-amplitude solutions bifurcating from

the linear neutral point could play a crucial role when we consider laminar-turbulent tran-

sition control at high R. Thus the study of both two- and three-dimensional solutions are

indispensable to understanding shear flow transition.

1.3 Nonlinear asymptotic theory of shear flows

One of the aims of present thesis is to attempt to describe the structure of the nonlinear

travelling wave solutions using high Reynolds number asymptotic theory. There are two-

and three-dimensional theories corresponding to two types of vortical structure described

above.

This comparison of full Navier-Stokes finite amplitude solutions and asymptotic analysis is

motivated in part by the work of Hall & Sherwin (2010), who recently successfully linked

the asymptotic behaviour of the three-dimensional solutions described above to the high

Reynolds number vortex-wave interaction (VWI) theory developed by Hall & Smith (1991).
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The main point of this theory is that the wave described in the SSP satisfies the inviscid

linearized Navier-Stokes equation in the limit as R → ∞ exhibiting discontinuity at the

critical layer. As a consequence, the forcing to the rolls emerges as a result of the effect of

viscosity which smooths out the singularity. This forcing triggers interaction of the wave,

roll and streaks as SSP.

It is known that both Waleffe’s SSP and the VWI theory approaches describe the mech-

anism of the lower-branch exact coherent states predicting O(R−1) streamwise rolls com-

pared to the basic flow. Wang, Gibson & Waleffe (2007) confirmed that the lower-branch

of the three-dimensional solution of PCF, first discovered by Nagata (1990), obeys this

O(R−1) scaling for a wide range of values of R. Therefore this lower-branch scaling is

considered to represent threshold roll amplitude scaling of transition, when we recall the

dynamical systems point of view described in the last section. Indeed, the same scaling has

also been observed experimentally in a flow through a pipe (Darbyshire & Mullin 1995 and

Hof et al. 2004) and a channel (Lemoult et al. 2012). They confirm that for moderate R,

the O(R−1) roll disturbances induced can destabilize the basic flow by the so-called lift-up

mechanism, and ultimately generates the SSP.

Note that because of key differences in the explanations of how the wave is excited, only

VWI theory is available to explain the asymptotic flow structure of high R finite-amplitude

solutions qualitatively whereas only SSP elucidates how three-dimensional coherent struc-

tures evolve from small roll disturbances as above.

Wang et al. (2007) also discovered that the sinuous waves excite forcing in the vicinity

of the critical layer, as explained by the VWI theory. This work inspired the study of

Hall & Sherwin (2010) which refined the VWI theory deducing a closed system for infinite

Reynolds number shear flows. They solved this “VWI system” for PCF numerically, and

showed that the extrapolation of this solution from R = ∞ agrees with Wang et al.’s

calculations. We will confirm these VWI asymptotic structures for numerical solutions in

section 6.3.

In contrast to the VWI theory, where the flow must be necessarily three-dimensional, the
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asymptotic theory we outline here in section 4.2 is derived under the assumption of two-

dimensionality, so that the disturbances resemble Tollmien-Schlichting waves, i.e. they are

invariant under any translation in one specific direction. The dominant physical balances

are similar to those proposed in studies by Benney & Bergeron (1969) and Davis (1969),

and the properties of such critical layers were investigated further by Haberman (1972),

Brown & Stewartson (1978), Smith & Bodonyi (1982a,b) and Bodonyi, Smith & Gajjar

(1983).

The asymptotic theory derived in these studies also involves the presence of a strongly

nonlinear equilibrium critical layer as VWI theory. However, the asymptotic structure is

directly sustained by the jump in vorticity across the layer, which acts as a forcing of

the mean-flow distortion in the bulk of the flow outside the critical layer. Although the

properties of these critical layers and the associated surrounding flow have been known

for some time, the delicate structure of the overall solution, with its asymptotically thin

internal and boundary layers, has proved difficult to detect in full Navier-Stokes computa-

tions thus far. In section 4.2, we are able, for the first time, to quantitatively compare the

flow structures present in full Navier-Stokes finite-amplitude solutions with those resulting

from an asymptotic analysis.

1.4 Sliding Couette flow

In this thesis, the specific flow we consider is the one where the fluid motion is produced by

the mutual axial sliding motion of co-axial cylinders of circular cross-section, and the fluid

occupies the annular region between the cylinders (see figure 2.1in the next chapter). We

refer to this flow as sliding Couette flow (SCF), following the flow classification by Joseph

(1976).

SCF is one of the simplest models to examine the effect of spanwise curvature on shear

flows. The shear-spanwise curvature instability is relevant to many industrial and medical

applications: pipelinings (Arney et al. 1993), wire coating (Tadmor & Bird 1974), the
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production of optical fibres during the draw process (Chida et al. 1982, Panoliaskos et al.

1985 and Vaskopulos et al. 1993) and medical treatment by a thread injection (Frei et al.

2000; Walton 2003, 2004, 2005). These situations are effectively modelled when SCF is

extended to annular Couette-Poiseuille flow, where the fluid motion is produced both by

the streamwise pressure gradient and the axial motion of the cylinders.

In addition, the zero pressure gradient case has some relevance to the boundary-layer flow

along a cylinder (e.g. Tutty 2008 and Cipolla & Keith 2003): see section 6 of Gittler

(1993). Therefore applications of pure SCF, especially for its wide gap case results, can

be found in various aeronautical and astronautical situations while one of the applicable

situations for relatively narrow-gap SCF is flows around a train moving through a tunnel.

Despite these important applications, SCF has attracted much less attention than other

shear flows. Hitherto, theoretical studies of SCF has extended only to linear results. The

linear stability of SCF was first studied by Preziosi & Rosso (1990) who did not find

any indication of instability within the parameter range they considered. However, Git-

tler (1993), restricting his analysis to axisymmetric perturbations, detected instability for

radius ratio less than 0.1415 at much larger values of the Reynolds number than those

considered by Preziosi & Rosso (1990). Although nonlinear asymptotic theory (Walton

2003, 2004 and 2005) and axisymmetric finite-amplitude solutions (Wong & Walton 2012)

have already been developed for annular Couette-Poiseuille flow, corresponding nonlinear

results have yet to be found for SCF. Experimental results for annular flow with a sliding

inner core can only found in Shands et al. (1980) and Frei et al. (2000).

Another special property of SCF is that we recover PCF from this problem in the narrow-

gap limit, while PF can also be obtained in the limit as the radius of the inner cylinder

vanishes with a proper axial pressure gradient. PCF, the simplest shear flow, and PF, whose

applications can be found everywhere in our daily lives are particularly important shear

flows, and much research attention has been devoted to these problems as a consequence.

We will discuss some homotopy connections between the finite-amplitude solutions of these

flows in chapters 5 and 6.
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The rest of the thesis is organized as follows: We formulate the problem in chapter 2,

followed by the linear stability analysis with respect to an arbitrary three-dimensional

perturbation in chapter 3. In this chapter we confirm the result by Gittler (1993) that

SCF is linearly stable against axisymmetric perturbations for η ≤ 0.1415. In addition,

we find that the critical state is determined by axisymmetric perturbations. Axisymmet-

ric finite-amplitude solutions that bifurcate from the linear critical state for η ≤ 0.1415

are obtained in our nonlinear analysis in chapter 4. These solutions exist at relatively

high Reynolds numbers. We also present in this chapter, the corresponding axisymmet-

ric high Reynolds number asymptotic theory and the results thus obtained are compared

to numerical solutions quantitatively. In chapter 5 we explore the possibility that other

types of finite-amplitude solutions exist at lower Reynolds numbers. Using the fact that

SCF approaches PCF in the narrow-gap limit we continue the three-dimensional finite-

amplitude solutions of PCF (Nagata 1990) to wider gap cases. As a result a family of

finite-amplitude non-axisymmetric solutions is found at relatively low Reynolds numbers.

We further identify a second class of non-axisymmetric solutions that bifurcate from the

first class of solutions. In contrast to the latter solutions, this second class of solutions has

a mirror symmetric flow structure. In chapter 6 we describe how these bifurcating solutions

are continued to PCF and PF by gradually changing flow configuration. The associated

complex bifurcation scenario is examined in detail, while their flow structure is examined

by applying VWI theory. Finally, in chapter 7, we summarize our findings and draw some

conclusions.



Chapter 2

Formulation of the problem

2.1 The governing equations and the basic state

We consider an incompressible viscous fluid with kinematic viscosity ν and density ρ be-

tween two infinitely long concentric cylinders with radii a and b (b > a). The fluid ex-

periences a shear motion when the inner cylinder is pulled with the axial speed Us while

the outer cylinder is kept at rest. The flow defines sliding Couette flow (SCF) when the

axial pressure gradient is set to zero. We adopt a cylindrical coordinate system (x, r, θ)

as shown in figure 2.1. To nondimensionalise the problem we use (b − a)/2, (b − a)2/4ν

and 4ρν2/(b − a)2 as the length, time and pressure scales, respectively. These length and

time scales reduce the velocity scale to 2ν/(b − a), which is consistent with the one cho-

sen by Nagata (1990) for PCF (c.f. chapter 5). This choice of the velocity scale is also

useful when one considers an extension to the Couette-Poiseuille flow problem, which is

controlled by two independent velocities (c.f. chapter 6). With the present length scale,

inner, outer and mean radius can be written as a function of the radius ratio η = a/b as

ra = 2η/(1 − η), rb = 2/(1 − η) and rm = (1 + η)/(1 − η), respectively. The nondimen-

sional total velocity U = Uex + V er +Weθ, where ex, er and eθ are the unit vectors in

the axial, radial, and azimuthal directions, and pressure P are governed by dimensionless

12
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Figure 2.1: The configuration of sliding Couette flow.

Navier-Stokes equations

∇ ·U = 0, (2.1)

∂U

∂t
+ (U · ∇)U = −∇P +∇2U, (2.2)

subject to the no-slip boundary condition on the inner and outer cylinders at r = ra and

r = rb, respectively:

U = Rex at r = ra = 2η/(1− η), (2.3)

U = 0 at r = rb = 2/(1− η) (2.4)

where R = U(b−a)/2ν is the Reynolds number. In equations (2.1) and (2.2), the standard

notation for the gradient operator, ∇, is used. This system is equivalent under axial and

azimuthal translations and azimuthal reflection.

The axial basic flow UB depending on only r,

UB(r) = UB(r)ex = R
ln(r/rb)

ln η
ex, (2.5)

can be solved as an exact solution of linearized governing equations 0 = ∂2rrUB + r−1∂rUB

subject to boundary conditions (2.3) and (2.4). Note that the zero pressure gradient

constraint leads basic pressure PB(r) =const.
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2.2 The disturbance equations written in terms of po-

tentials

We assume that the flow is periodic in the azimuthal and axial directions with the wavenum-

bers m0 and α, respectively. This assumptions allows us to use potential notation which is

convenient to reduce computational costs (Marques 1990). The disturbance velocity u to

the basic flow is decomposed into a spatially varying fluctuation part ũ = ũex + ṽer + w̃eθ

and a spatial mean part u = uex + ver + weθ. The latter is defined by the (θ, x)-average:

·̄ = m0α

4π2

∫ 2π
m0

0

∫ 2π
α

0

· dθdx. (2.6)

Notice that radial mean flow v vanishes by the incompressibility condition (2.1) with the

boundary conditions (2.3) and (2.4). The fluctuation part ũ is further decomposed into a

poloidal part, ∇ × ∇ × (φer), and a toroidal part, ∇ × (ψer), so that the total velocity

field U is expressed as

U = (UB + u)ex + weθ +∇×∇× (φer) +∇× (ψer) (2.7)

=


UB + u+ 1

r
∂2rzrφ− 1

r
∂θψ

−( 1
r2
∂2θθ + ∂2zz)φ

w + ∂2rθ
φ
r
+ ∂zψ

 .

Note that this expression ensures the incompressibility condition (2.1) is satisfied. The

equations for φ and ψ are obtained by operating er · ∇×∇× and er · ∇×, respectively, on

the momentum equation (2.2):

r(∂t − 4̀)(4̀42
φ

r
+

2

r3
∂r
φθθ

r
)− 2

r2
(∂r4

φθθ

r
− 2

r2
φθθxx) +

2

r
(∂t − 24)

ψθx

r

+U · ∇c(r424
φ

r
+ 2∂r

φxx

r
+

2

r2
ψθx) +U

′ · ∇c42
φ

r
− rU

′′ · ∇c42
φ

r

− 2

r2
W

′42φθ −
3

r3
Wφθxx +

1

r5
Wφθθθ +

2

r
W42ψx

+ er · ∇ ×∇× (ũ · ∇cũ+
ṽ

r
ez × ũ) = 0, (2.8)



2.2. The disturbance equations written in terms of potentials 15

and

−r(∂t − 4̀)42
ψ

r
+

2

r2
∂r
ψθθ

r
+

2

r
(∂t − 24)

φθx

r

+ ((rW )′∂x − U
′
∂θ)42

φ

r
+U · ∇c(

2

r2
φθx −42ψ)

+ er · ∇ × (ũ · ∇cũ+
w̃

r
ex × ũ) = 0, (2.9)

where the prime, ′, denotes differentiation with respect to r and

42 =
1

r2
∂2θθ + ∂2xx,

4 = ∂2rr +
1

r
∂r +

1

r2
∂2θθ + ∂2xx,

4̀ = ∂2rr +
3

r
∂r +

1

r2
∂2θθ + ∂2xx,

∇c = er∂r + eθ
1

r
∂θ + ex∂x.

In order to obtain equations for U and W we take the (θ, x)-average of the azimuthal and

axial components, respectively, of equation (2.2):

∂tu = r−1∂r{r(42φ)(r−1∂rr∂xφ− r−1∂θψ) + ru′}, (2.10)

∂tw = r−2∂r{r2(42φ)(∂θ∂rr−1φ+ ∂xψ) + (r2w′ − rw)}. (2.11)

The no-slip boundary conditions become

u = w = φ = ∂rφ = ψ = 0 at r = ra and rb. (2.12)
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2.3 Numerical method to solve finite-amplitude solu-

tions

In this section we describe how to compute solutions of equations (2.8)–(2.11) that take

the form of travelling waves, propagating with the axial wavespeed c and the azimuthal

wavespeed cθ. The scalar variables φ, ψ, u and w therefore become functions of the radial

coordinate r and the travelling-wave coordinates

ξ = α(x− ct) ∈ [0, 2π], (2.13)

ζ = m0(θ − cθt) ∈ [0, 2π]. (2.14)

These variables are approximated by the truncated sums

φ(ξ, y, ζ) =
M∑

m=−M

N∑
n=−N

(m,n) 6=(0,0)

L∑
l=0

X
(1)
lmnΦl(y)e

i(mζ+nξ), (2.15)

ψ(ξ, y, ζ) =
M∑

m=−M

N∑
n=−N

(m,n) 6=(0,0)

L∑
l=0

X
(2)
lmnΨl(y)e

i(mζ+nξ), (2.16)

u(y) =
L∑
l=0

X
(1)
l00Ul(y), (2.17)

w(y) =
L∑
l=0

X
(2)
l00Wl(y), (2.18)

where Φl = (1 − y2)2Tl(y) and Ψl = Ul = Wl = (1 − y2)Tl(y) are modified lth-order

Chebyshev polynomials of the first kind Tl(y) in the transformed radial coordinate

y = r − rm ∈ [−1, 1]. (2.19)

The factors (1 − y2) and (1 − y2)2 in the basis are introduced in order for the boundary

condition (2.12) to be satisfied. Throughout the present thesis, the radial, azimuthal and

axial truncation levels are denoted by L, M and N respectively.
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To restrict the flow field to be real, all the X
(j)
lmn should have Hermitian redundancy, i.e.

<(X(j)
lmn) = <(X(j)

l−m−n),

=(X(j)
lmn) = −=(X(j)

l−m−n).

After Galerkin projection in the two periodic directions, equations (2.8)–(2.11) are evalu-

ated at collocation points

yl = cos

(
l + 1

L+ 2
π

)
, l = 0, ..., L. (2.20)

We then obtain the nonlinear algebraic equations

Fi = DijXj +HijkXjXk + i(mm0cθ + nαcz)BijXj = 0. (2.21)

In these equations, unknowns areXi ∈ X
(j)
lmn and the wavespeeds c and cθ. The involvement

of these additional variables for the solution requires that some conditions which fix the

translation freedom of the solution in the ξ and ζ directions. The detailed conditions for

two- and three-dimensional solutions will be shown in sections 4.1 and 5.1 respectively.

Equation (2.21) is solved by the Newton-Raphson iterative scheme with the tolerance

ε = max
j
εj < 10−5 (2.22)

where

εj =


∣∣∣∣XIt

j −X
It−1
j

X
It−1
j

∣∣∣∣ if |XIt−1
j | and |XIt

j | > 10−10

0 otherwise

(2.23)

and It is the iteration number. The choice of 10−5 in condition (2.22) is justified in

Appendix 5.A.1.

The momentum transfer on the outer cylinder at r = rb, normalized by that of the base
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flow,

∆ ≡ u′ + U ′
B

U ′
B

∣∣∣∣
r=rb

(2.24)

is used as a measure of how much a nonlinear solution differs from the basic flow. Note that

we can confirm that rau
′|r=ra = rbu

′|r=rb by multiplying equation (2.10) by r and integrating

with respect to r. Since the basic flow of SCF (2.5) satisfies raU
′
B|r=ra = rbU

′
B|r=rb , the

momentum transfer on the inner cylinder at r = ra, given by
u′+U ′

B

U ′
B

∣∣∣
r=ra

, is exactly equal

to the right hand side of (2.24). Note however that the numerical values of momentum

transfer differ slightly due to the finite truncation of the basis functions. This difference

can be made to be insignificant if large enough truncation levels are used.



Chapter 3

The linear stability of the basic state

3.1 Numerical method

When the deviations from the basic state are infinitesimal the Reynolds stresses in (2.11)

and (2.10) can be omitted to result in u = w = 0, i.e. U = UBex. Neglecting those terms

that are quadratic in ũ in (2.9) and (2.8) we obtain the linearized disturbance equations,

r(∂t − 4̀)(4̀42
φ̌

r
+

2

r3
∂r
φ̌θθ

r
)− 2

r2
(∂r4

φ̌θθ

r
− 2

r2
φ̌θθxx) +

2

r
(∂t − 24)

ψ̌θx

r

+ UB∂x(r424
φ̌

r
+ 2∂r

φ̌xx

r
+

2

r2
ψ̌θx) + U ′

B∂x42
φ̌

r
− rU ′′

B∂x42
φ̌

r
= 0 (3.1)

and

−r(∂t − 4̀)42
ψ̌

r
+

2

r2
∂r
ψ̌θθ

r
+

2

r
(∂t − 24)

φ̌θx

r

− U ′
B∂θ42

φ̌

r
+ UB∂x(

2

r2
φ̌θx −42ψ̌) = 0 (3.2)

where we write ũ = ∇ ×∇ × (φ̌er) +∇ × (ψ̌er). Note that the solution can be taken to

be proportional to normal modes because equations are now linear. Thus the potentials φ̌

19
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and ψ̌ are approximated by

φ̌(x, y, θ, t) =
L∑
l=0

X̌
(1)
l Φl(y) exp (iαx+ im0θ + st), (3.3)

ψ̌(x, y, θ, t) =
L∑
l=0

X̌
(2)
l Ψl(y) exp (iαx+ im0θ + st), (3.4)

where s = σ + iγ is the (complex-valued) growth rate. The ansatz used in expressions

(3.3) and (3.4) allows us to apply the separation of variables and reduce the resulting

equations to a system that depends only on y. We substitute expansions (3.3) and (3.4)

into the linearized disturbance equations (3.1) and (3.2), which are then evaluated at the

collocation points defined by (2.20). The resulting linear algebraic eigenvalue problem with

the growth rate s as the eigenvalue,

DijX̌j = sBijX̌j, (3.5)

is solved numerically by using the LAPACK package ZGGEVX. The matrices Dij and Bij

depend on η, R, m0 and α, and so s = s(η,R,m0, α). The azimuthal reflection symmetry

of SCF allows the restriction to m0 ∈ Z≥0 and α ∈ [0,∞).

3.2 Results

Table 3.1 shows typical eigenvalues calculated at different truncation levels L. From the

table we find L = 120 is sufficient when R = 3.6× 106 and m0 = 0 (it will be shown later

that this R is close to the critical value) whereas L = 600 is needed if the Reynolds number

is ten times higher than the critical value and m0 6= 0. For a given η the stability of the

basic state at R subject to a perturbation with m0 is determined by the largest real part of

σ of the growth rate s over all possible values of α, which we denote by σα. For m0 = 0 and

1, we plot σα on the (η, R) plane in figure 3.1, where the truncation level L = 600 is used.

As shown in the figure 3.1 (a) for axisymmetric perturbations (m0 = 0) two eigenmodes are

shown in the contour plot of σα in the (η,R) plane: one always has negative σα while the
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flow is unstable to the other mode anywhere inside the locus of σα = 0 (thick solid curve).

For the non-axisymmetric perturbation (m0 = 1), σα is always negative as shown in figure

3.1 (b). Other computations show that σα is always strictly negative for m0 = 2, 3, 4. We,

therefore, conclude that the flow is linearly stable to all non-axisymmetric perturbations.

The locus of σα = 0 in figure 3.1 (a) is reproduced in figure 3.2 (a) as the neutral curve.

We can see from figure 3.2 (a) that as η is decreased from the narrow gap limit (η = 1)

the neutral curve emerges from infinity at η ≈ 0.14, drops sharply reaching a minimum at

η ≈ 0.1 and ascends sharply toward infinity as η approaches zero. Along the neutral curve,

the critical axial wavenumber αc decreases monotonically to zero as η approaches to the

cut-off value as shown in figure 3.2 (b). When η = 0.1, Rc = 3.61×106 at αc = 0.6546. This

result is consistent with the findings of Gittler (1993), who restricted his linear stability

analysis only to axisymmetric perturbations. According to his result, more precise cut-off

value of η can be obtained as 0.1415 by solving a long-wave linear stability problem.

It can be shown that any infinitesimal axisymmetric perturbations, [v, w] = [v̆(r), w̆(r)]eiαx+st,

to the inviscid annular flow are governed by

(s+ iαUB)w̆
′ = 0, (3.6)

(s+ iαUB)(v̆
′′ + r−1v̆′ − (r−2 + α2)v̆)− iαUB(U

′′
B − r−1U ′

B)v̆ = 0 (3.7)

subject to v̆ = w̆ = 0 at the walls. The former equation only has trivial solutions while

later equation yields

σ

∫ rb

ra

(r−1U ′
B)

′r2|v̆′|2

|UB + γ|2
dr = 0, s = σ + iγ. (3.8)

This leads to Rayleigh’s inflection point theorem for the planar geometry extended to the

annular geometry (Problem 3.2 in Drazin & Reid 1981, Walton 2004), i.e. (r−1U ′
B)

′ = 0,

which never occur with the basic flow given by (2.5), must be satisfied for some r ∈ [ra, rb]

in order to yield a growing disturbance (σ > 0). Therefore, the fact that SCF for η < 0.1415

becomes unstable implies that viscosity is necessary for linear instability.
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(η,m0, α, R) L <(s) = σ =(s) = γ
(0.1, 0, 0.6546, 3.6× 106) 120 -7.25876×100 -2.26731×106

(0.1, 0, 0.6546, 3.6× 106) 130 -7.28065×100 -2.26731×106

(0.1, 0, 0.6546, 3.6× 106) 140 -7.28189×100 -2.26731×106

(0.01, 1, 2.0, 4.0× 107) 120 1.99913×105 -6.50952×107

(0.01, 1, 2.0, 4.0× 107) 550 -4.69859×104 -1.72860×105

(0.01, 1, 2.0, 4.0× 107) 600 -4.69859×104 -1.72860×105

Table 3.1: The eigenvalue s determined by the linear stability analysis.
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Figure 3.1: Contour plot of the largest real part σα of the eigenvalue s as a function of η
and R. (a): dashed lines correspond to −8.2, −8.4, −8.5, −8.6, −8.8, −9.0, −9.2 (from left
to right), the thick solid curve corresponds to 0 and thin solid curves correspond to 4000,
8000, 12000, 16000 (from bottom to top). (b): dashed lines correspond to −8.2, −8.4,
−8.5, −8.6, −8.8, −9.0, −9.2 (from left to right).
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Figure 3.2: The neutral curve determined by axisymmetric perturbations (m0 = 0). (a):
the critical Reynolds number Rc. (b): the critical axial wavenumber αc.



Chapter 4

Axisymmetric solutions

4.1 Bifurcation from the linear neutral curve

If η . 0.1415, where the long-wave cut-off of linear instability occurs, the basic flow can be

destabilized by axisymmetric infinitesimal disturbances as we saw in the previous chapter.

Since the linear approximation of the growing mode is accurate close to the neutral stability

point, it can be used as an initial guess for a nonlinear calculation using Newton’s method.

As a consequence, the solution branch of the finite-amplitude axisymmetric travelling wave

that bifurcates from this point can be computed. The spatial phase lock condition which

we impose for two-dimensional solutions is

F (0)− c.c. = 0

where the first Fourier coefficient of axial velocity is defined as

F (y) ≡ 2ue−iξ (4.1)

and c.c. denotes complex conjugate. This ensures that the sin ξ component of u vanishes

at the midpoint of the gap. This property is useful when we compare numerical solutions

with those obtained by asymptotic analysis (section 4.2).

23
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Figure 4.1: The axisymmetric travelling-wave bifurcation diagram for (η, α) = (0.1, 0.6546).
The upper and lower figures represent the variation of the critical layer location yc and
the momentum transfer ∆ respectively. Open circles in the figures represent linear critical
points. The range of truncation level L ∈ [120, 200] and N ∈ [30, 60] is used to compute
the solution branches.

Upper Lower
(L,N) ∆ c/R ‖Li‖2 ‖Fi‖2 ∆ c/R ‖Li‖2 ‖Fi‖2
(120,20) 1.11730 0.82654 6.8e9 2.5e-3 1.03183 0.85887 5.1e9 9.6e-4
(180,20) 1.11730 0.82654 8.6e9 7.1e-4 1.03183 0.85890 5.5e9 5.3e-4
(120,30) 1.11727 0.82650 8.5e9 3.6e-4 1.03174 0.85887 6.4e9 1.6e-3

Table 4.1: The momentum transfer ∆, the wavespeed c and the L2-norms ‖Li‖2 and
‖Fi‖2 at different truncation levels (L,N) for the axisymmetric solution at (η, α,R) =
(0.1, 0.6546, 45000).
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In section 3.2 the linear critical point for η = 0.1 was determined to be (m0, α, R) =

(0, 0.6546, 3.6× 106). Firstly, we set η = 0.1, m0 = 0 and α = 0.6546 and it is found that

the bifurcation is subcritical with a saddle-node at R ≈ 4.0× 104 as shown in figure 4.1.

Table 4.1 shows the variation of various measures (∆: the momentum transfer, c: the

axial wavespeed and the L2-norms of the linear part Li = DijXj of equation (2.21), ‖Li‖2,

and the residual of equation (2.21), ‖Fi‖2) as a function of the truncation level (L,N)

for a typical axisymmetric solution. We see the truncation level (L,N) = (120, 20) is

sufficient for approximating the axisymmetric solutions. However, we need to increase the

truncation level as the value of R increases. For these cases, we performed a similar check

of convergence.

At the same wavenumber α = 0.6546, the basic flow restabilizes at R = 1.6×107. From this

second neutral point, another bifurcation of the axisymmetric solution is detected. This

bifurcation scenario is also pictured in figure 4.1, and it can be seen in the figure that the

resultant branch heads in the direction of increasing R, in which the basic flow becomes

linearly stable; i.e. the new bifurcation is also subcritical. We adopt the terminology

‘lower-branch’ to represent the branch that passes through the neutral points, and the

points such as passing through P3–P6 while the phrase ‘upper-branch’ is used to denote

solutions at higher ∆, that lie on the solution curve that passes through P1 and P2. One

of the striking features of this branch is the kink at R ' 3.5× 107, and a similar kink can

also be found on the upper-branch in between the points P2 and P1, at R ' 6.7 × 105.

The branches behave differently before and after the kinks, although no bifurcations take

place here, and the curves appear smooth when examined closely. Henceforth we denote

the branches before and after the kinks as the LR (low Reynolds number) and HR (high

Reynolds number) modes respectively.

Along the branches, the streamwise fluctuation flow-field, ũ, is visualized in figures 4.2

and 4.3. The plots labelled by P1–P6 represent solutions at the corresponding points in

figure 4.1. For the upper-branch solution at sufficiently high Reynolds number (P1, P2),

we can see a relatively slowly-varying, evenly-spaced strong positive/negative pattern in
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P1: R = 2× 106 upper-branch

P2: R = 2× 105 upper-branch

P3: R = 2× 105 lower-branch

Figure 4.2: The axial fluctuation velocity field ũ of the travelling-wave solutions for (η, α) =
(0.1, 0.6546). Colour bar range is scaled by R. The dashed lines in the close-up figures,
which are placed just below the full domain representation in each case, represent the
critical layer locations yc. P1, P2 and P3 correspond to the points in figure 4.1.



4.1. Bifurcation from the linear neutral curve 27

P4: R = 2× 106 lower-branch

P5: R = 2× 107 lower-branch

P6: R = 108 lower-branch

Figure 4.3: Same parameter values as figure 4.2 but for the solutions at the points P4, P5,
P6.
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Figure 4.4: The mean-flow distortion ū of the travelling-wave solutions. The vertical axis is
normalized by R. Left and right figures correspond to upper- and lower-branch solutions.
The crosses on the curves represent the critical layer locations yc.
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the vicinity of the critical layer yc, where the basic flow speed, UB, coincides with the

wavespeed c of the travelling-wave solution. In these cases, the critical layer is situated

near the inner wall: the distance between the critical layer and inner wall is only 5% of

the gap (see figure 4.1(b)). As we move towards the point P3, which lies on the lower-

branch, the positive part of the flow pattern begins to be squeezed in the axial direction.

Then as R is increased along the lower-branch (P4, P5), the critical layer moves even

closer to the inner wall (typically it is now at 1% of the gap from the inner wall) and the

strong positive/negative flow pattern is again evenly-spaced, although it is now much more

concentrated than it was on the upper-branch. The magnitude of the solution decreases

as the branch approaches the linear instability, but it begins to grow again after the linear

neutral point is passed (P6). The computation of the solution beyond P6, where R is in

excess of 108, is very difficult because of the Gibbs phenomena of the Chebyshev basis

due to large solution gradients in the neighbourhood of yc. This feature can also be found

in the mean-flow distortion plot for P1–P6, which is presented in figure 4.4. When we

examine the high Reynolds number structure of this mode in the next section we will see

that a thin critical layer, centred at y = yc, regularizes this apparent singularity.

To examine the geometry dependence of the travelling-wave solutions, the solution branches

are calculated for various η and R, fixing α = 0.6546. The results are shown in figure 4.5,

where the solution branches, shown as solid lines, bifurcate from the thick dashed curve

traced in the ∆ = 1 plane, which represents the linear neutral curve for α = 0.6546. When

η is increased to 0.14, the HR mode and the LR mode are separated into an open branch

and a closed branch respectively. Owing to this separation, the branch has three turning

points when η is varied at fixed sufficiently high R. Since we originally defined the HR

and LR modes in terms of their positions with respect to the kink, it seems reasonable

to consider the first turning point encountered as ∆ is increased from unity to represent

the existence boundary for the LR mode. This boundary defines a critical value of η,

beyond which the LR mode ceases to exist, and its variation with R is plotted in figure

4.6 for α = 0.6546, 0.2, 0.1 and 0.05. The linear neutral curves and the branches of the

solution in figure 4.5 are also projected on this figure. We can see clearly that the solution
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Figure 4.5: The bifurcating branches of the axisymmetric travelling-wave solutions (solid
lines) from the linear neutral curve (thick dashed line) with α = 0.6546. The base level is
placed at ∆ = 1. The range of truncation level L ∈ [120, 200] and N ∈ [30, 60] is used to
compute the solution branches.

104

105

106

107

 0.1  0.15  0.2  0.25  0.3  0.35

R

η

Figure 4.6: First turning points from the lower-branch, which represent the edge of the
existence of the LR mode. ×,�,4 and � are calculated with α = 0.6546, 0.2, 0.1 and
0.05 respectively. Lines in the figure are the projection of figure 4.5. The thick solid line
represents the linear neutral curve taken over all wavenumbers.
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can exist well beyond the longwave cut-off of linear instability, where the thick solid line

heads sharply towards R = ∞ at η = 0.1415, and the branch extends to larger η as α is

decreased. The maximum η of the LR mode is at relatively low R for all α, and then it

monotonically decreases for higher R. In contrast, the present calculations suggest that the

existence region of the HR mode expands as R is increased. We cannot be certain about

this however, because there are resolution issues associated with continuing the branches

beyond the points marked ‘A’ and ‘B’ in figure 4.5

4.2 Asymptotic solution at large Reynolds number

In this section we propose a nonlinear equilibrium travelling-wave structure for SCF, valid

for asymptotically large values of the Reynolds number. For this purpose, only in this

section the velocity scale is changed to the sliding velocity, Us, so that the leading mag-

nitude of velocity stays O(1) for all R. Therefore, under the assumption of axisymmetry,

the velocity disturbance u = uex + ver and the pressure disturbance p to the basic flow,

which are rescaled by R and R2 respectively from previous sections, satisfy

ut + UB ux + vU ′
B + u · ∇u = −px +R−14u, (4.2)

vt + UBvx + u · ∇v = −pr +R−1(4v − r−2v), (4.3)

ux + vr + r−1v = 0, (4.4)

together with the no-slip boundary conditions

u = v = 0 at r = ra and r = rb.

Here we use the notation

∇ = er∂r + ex∂x, 4 = ∂2rr + r−1∂r + ∂2xx (4.5)

and a prime denotes a derivative with respect to r.
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Figure 4.7: Sketch of the high Reynolds number asymptotic travelling-wave structure for
axisymmetric SCF.

The asymptotic structure consists of a core region of O(1) radial extent in which the flow

dynamics are linear and inviscid to leading order, with viscous wall layers adjacent to the

inner and outer cylinders. We assume that the wavenumber α is O(1), with the unknown

real wavespeed c ∼ O(1), and 1 − c ∼ O(1) (note that c is also rescaled by R from the

previous section). As a consequence, a singularity is encountered within the core region at

the location rc where UB(rc) = c. This singularity is regularized within a thin nonlinear

critical layer. The phase shifts induced across the two wall layers must be balanced by the

corresponding phase shift induced across the critical layer, and this requirement leads to

the determination of the amplitude of the disturbance in terms of its axial wavenumber

and the properties of the basic flow. A sketch of the flow structure is shown in Figure 4.7.

The structure is similar to that found by Smith & Bodonyi (1982a) for fully-developed PF,

and Walton (2002, 2003) for impulsively-started PF and pressure-driven annular Couette-

Poiseuille flow. A key difference to the previous studies is the assumption of axisymmetry.

We find that unlike for PF, axisymmetric solutions are indeed possible here. One of the

reasons for this is that, for the fully-developed flow through a circular pipe, the combination

U ′′
B − U ′

B/r is zero, in contrast to the flow under consideration here, where this quantity

remains positive throughout the annulus. It is the non-zero nature of this term that gives

rise to the logarithmic singularity referred to above, and evident in (4.14) below. The same

arguments mean that this structure is also absent for PCF, implying that the asymptotic

structures presented here does not exist in the narrow gap limit.
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The flow behaviour in the various regions is set out in the following subsections.

4.2.1 The inviscid core flow

In the core, the flow dynamics are inviscid to leading order, with the flow expansions

assuming the form

u = εu1(r) + ε2 {A0F2(r) cos ξ + u2(r)}

+ · · ·+ ε2R−1/2u5(ξ, r) + · · · ,

v = −ε2A0G2(r) sin ξ + · · ·+ ε2R−1/2v5(ξ, r) + · · · , (4.6)

p = ε2A0P2(r) cos ξ + · · ·+ ε2R−1/2p5(ξ, r) + · · · .

Here u1(r) is the leading-order mean-flow distortion term and ε is a small parameter that

will be determined in terms of the Reynolds number subsequently. The real constant A0 is

also to be determined, and the variable ξ is the same travelling-wave coordinate defined in

(2.13). The terms with subscript 5 are the highest-order terms that break the [even, odd,

even] symmetry of [u, v, p] about ξ = π, i.e.

[u5, v5, p5] contain terms A0 [F5(r) sin ξ,G5(r) cos ξ, P5(r) sin ξ] . (4.7)

In order to fix the phase of the solution we impose the phase normalization condition

P2(rc) = 1, (4.8)

where r = rc is the location of the critical layer, i.e. the radial location where UB(rc) = c,

with UB the basic flow defined in (2.5). The choice of (4.8) is mainly for algebraic simplicity.

If we do not impose this condition then the quantity P2(rc) will appear in expressions

throughout the critical-layer analysis below.
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4.2.1.1 The core-flow fluctuation

Substitution of (4.6) into the Navier-Stokes equations (4.4)–(4.4) leads to the following

inviscid balances:

(UB(r)− c)αFi +GiU
′
B = −αPi, (UB(r)− c)αGi = P ′

i , (4.9)

for i ∈ {2, 5}, together with the continuity equation. Further manipulation and elimination

of the velocity components leads to Rayleigh equations for the pressure components

(UB(r)− c)
(
P ′′
i + r−1P ′

i − α2Pi

)
= 2U ′

BP
′
i , i ∈ {2, 5}. (4.10)

For the P2-component, the appropriate boundary conditions are

P ′
2(ra) = P ′

2(rb) = 0, (4.11)

which arise from imposition of the condition of zero radial velocity at the wall. For the

P5-component, the wall-layer analysis (subsection 4.2.2) predicts the existence of a non-

zero radial velocity component of O(ε2R−1/2) as each wall is approached, implying that

the appropriate conditions on the radial fluctuation in the core are

G5(ra) = ga, G5(rb) = gb, (4.12)

with the precise values of ga and gb to be fixed in (4.31), (4.37). In terms of the pressure,

the boundary conditions are therefore

P ′
5(ra) = (1− c)αga, P

′
5(rb) = −αcgb, (4.13)

from the radial momentum balance in (4.9).

For the purposes of the critical-layer analysis to be presented in section 4.2.3, we need to

know the limiting behaviour of the flow as the critical layer is approached. This can be



34 Chapter 4. Axisymmetric solutions

calculated by the Frobenius method, and the relevant asymptotes, as r → rc±, are:

Pi ∼ Pi(rc)

[
1− α2r2c

2

(
rc − r

rc

)2

− 2α2r2c
3

(
rc − r

rc

)3(
ln

∣∣∣∣rc − r

rc

∣∣∣∣+ j
(i)
±

)
+ · · ·

]
,

Fi ∼ 2τ−1
0 Pi(rc)

[
ln

∣∣∣∣rc − r

rc

∣∣∣∣+ j
(i)
± +

1

6
(1 +

5τ1
τ0

) + · · ·
]
, (4.14)

(with a similar expansion for Gi) for i ∈ {2, 5}, with the ± denoting the limits r → rc ± .

Here we have defined

τ0 = −rcU ′
B(rc) = −(ln η)−1, τ1 = (r2c/2)U

′′
B(rc) = −(2 ln η)−1, (4.15)

to represent the shear and curvature of the basic flow at the critical location, and we have

made use of the property 2τ1/τ0 = 1 to simplify the expressions slightly. The constants j
(i)
±

are determined by solving the Rayleigh equation for Pi numerically. This is described for

P2 in more detail in subsection 4.2.1.2 below. A feature of the nonlinear critical layer is the

smallness of the jump in velocity and pressure induced across it, in contrast with a classical

linear critical layer in which the phase shift is O(1) (c.f. Healey 1995). This feature can

be anticipated here by taking j
(2)
+ = j

(2)
− . However it will be necessary for j

(5)
+ − j

(5)
− to be

non-zero in order to accommodate the velocity jump across the critical layer. We shall see

that the critical layer analysis shows that there is a jump

ε2R−1/2ϕ sin ξ (4.16)

in the streamwise velocity as we cross the critical layer from r = rc− to r = rc+, with ϕ

determined specifically in (4.57). In terms of the core properties, we therefore have

ϕ = 2A0P5(rc)τ
−1
0 (j

(5)
+ − j

(5)
− ), (4.17)

in view of the asymptotic expansion for F5 in (4.14). The quantity (j
(5)
+ − j

(5)
− ) can be

related to the wall velocities ga, gb, by considering the Wronskian of the solutions to (4.10),
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which has the form

r(UB(r)− c)−2(P5P
′
2 − P2P

′
5) = ω±. (4.18)

Applying the boundary conditions (4.11), (4.13), we can determine the constants ω± as

ω+ = αgbrbP2(rb)/c, ω− = −αgaraP2(ra)/(1− c). (4.19)

Then, letting r → rc± in (4.18), using the series expansions in (4.14) for P2 and P5, and

the phase normalization (4.8) we find that (4.17) can be rewritten as

ϕ = −(ω+ − ω−)α
−2r−2

c A0τ0, (4.20)

so that the velocity jump across the critical layer is now related to the wall-layer properties

by (4.19) and (4.20).

4.2.1.2 The numerical solution of the Rayleigh equation

Aside from a number of numerical integrations, the only part of the asymptotic analysis

where a non-trivial numerical approach is required is in the solution of the Rayleigh equa-

tion (4.10) for P2(r). This solution is important as it yields, for a given wavenumber α,

the corresponding wavespeed c, and hence the location rc of the critical layer. We briefly

describe the method we used here for α of O(1) and also the corresponding approach for

the limiting case α→ 0.

(i) Solution for α of O(1)

First we introduce a new radial variable s such that r = rcs and define sa = ra/rc, sb =

rb/rc, α̂ = αrc. The Rayleigh equation (4.10) for P2(r) = Q(s) say, can then be rewritten

as

Q′′(s) +
1

s
Q′(s)− α̂2Q(s) =

2

s
(ln s)−1Q′(s), Q′(sa) = Q′(sb) = 0, Q(1) = 1. (4.21)
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Figure 4.8: (a): Critical layer location yc versus η. The solid lines are from left to right:
α = 1.5, 1.0, 0.6546, 0.5, 0.1 while the dotted line is the α → 0 asymptote. (b): Normalized
amplitude α1/3A0 versus η with same labeling as figure (a).

For fixed values of sa and α̂, (4.21) is marched forward from s = sa with a guess for Q(sa)

(equal to Qg, say). The values of Q and Q′ are found at s = s1 = (1 + sa)/2. Equation

(4.21) is then marched backwards from s = s2 = 1 − ε1 (with ε1 suitably small) using

the series expansion (4.14) to provide values for Q(s2), Q
′(s2). A guess is made for the

constant j
(2)
− . As a result of this procedure we can calculate a second set of values for

Q(s1), Q
′(s1). We then iterate on the guesses Qg and j

(2)
− until the two estimates for Q and

Q′ at s1 are in agreement. Next we set j
(2)
+ = j

(2)
− (as discussed just below (4.15)) and

march (4.21) forward from s = 1 + ε1, again using the series expansion for P2 in (4.14) to

provide suitable starting values. The marching process is stopped when the location sb is

reached at which Q′(sb) = 0. The required value for the critical layer location is then given

by rc = rbs
−1
b . The wavespeed follows from c = UB(rc) and the corresponding wavenumber

and radius ratio from α = r−1
c α̂, η = sa/sb. The pressure at both walls is also required later

and so these values are also stored. Clearly this procedure can be repeated for a range of

wavenumbers and radius ratios.

A typical computation result is plotted in figure 4.8 (a). The location of the critical layer

gradually shifts from near the inner wall towards the centre of the gap as η increases. A

turning point in the yc = yc(η) profile can be observed typically at around η = 0.1 ∼ 0.4.

After the turning point, the branch is terminated at the point where the corresponding

wave amplitude A0, whose explicit form will be given in subsection 4.2.2.2, blows up as

shown in figure 4.8 (b).



4.2. Asymptotic solution at large Reynolds number 37

(ii) Solution in the limit α→ 0

In addition to providing a partial check on the accuracy of the numerical procedure outlined

in part (i), the form of the solution of the Rayleigh equation (4.10) as α → 0 is significant

as it provides an important clue as to the form of the new long-wave solution structure

that emerges in place of the present structure when α ∼ O(R−1).

If we consider the inviscid disturbance equations (4.9) in the core, together with the con-

tinuity balance, we find that as α→ 0:

F2 ∼ F20(r) +O(α2), G2 ∼ αG20(r) +O(α3), P2 ∼ P20 +O(α2), (4.22)

where P20 is a constant. The leading-order terms (F20, G20, P20) satisfy the balances

F20 +G′
20 +G20/r = 0, (UB(r)− c)F20 +G20U

′
B = −P20,

and elimination of F20 leads to the result

rG20

(UB − c)
=


P20

∫ r

ra
s(UB(s)− c)−2 ds, (r < rc),

P20

∫ r

rb
s(UB(s)− c)−2 ds, (r > rc).

Across the critical layer we have a zero jump in the component G20 and this implies that

the following integral condition must hold:

−
∫ rb

ra

r dr

(UB(r)− c)2
= 0, (4.23)

where the bar denotes the finite part of the integral. Equation (4.23) can be viewed as the

α → 0 limit of the Rayleigh equation (4.10) and determines the solutions for the leading-

order wavespeed c for a given value of radius ratio η. To evaluate the integral numerically

we make the substitution s = r/rc as in part (i) and use the specific form for UB given in
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(2.5). The integral condition (4.23) can then be rewritten as

−
∫ sc

ηsc

s ds

(ln s)2
= 0, (4.24)

which determines the values of the quantity sc = rb/rc. The finite-part integral in (4.24)

can then be easily evaluated by using integration by parts as, for example, in Appendix B

of Walton (2011).

This result is also traced in figure 4.8 as the dashed line. The behaviour of the branch

is consistent with the computational results for α ∼ O(1), i.e. there exist turning and

termination points on the branch, suggesting that the generic conclusion for SCF: there

is no nonlinear asymptotic structure when η & 0.40. It is also of interest that the cut-off

point, i.e. maximum value of η is close to the value givem in the long-wave limit.

4.2.1.3 The mean-flow distortion in the core

Again, from substitution of the expansions (4.6) into the Navier-Stokes equations (4.4)−(4.4),

we find that the leading-order contribution to the mean-flow distortion satisfies

u′′1 + r−1u′1 = A2
0 (G5F

′
2 −G2F

′
5) /2 = 0,

using (4.9) and (4.18), so that the distortion is unforced in the core at this order. The

solution satisfying no-slip at the walls therefore has the simple form

u1 =

 Ma ln(r/ra), (ra < r < rc),

Mb ln(r/rb), (rc < r < rb).
(4.25)

The solution in the critical layer requires that u1 be continuous across r = rc, but that

there is a jump in u′1. We therefore have

Ma ln(rc/ra) =Mb ln(rc/rb), (4.26)
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with Mb−Ma non-zero and to be determined later, in terms of the disturbance amplitude,

by the critical-layer analysis. Although the mean flow distortion is unforced in the core, it

is forced in the wall layers, and the specific forms that it takes will be determined in the

next subsection where we consider those layers in some detail.

4.2.2 The viscous wall layers

Since the dynamics in the core are inviscid to leading order, the leading-order axial fluctu-

ation F2(r) does not tend to zero as r → ra, rb. Viscous wall layers are therefore required

in order that the no-slip condition can be satisfied.

4.2.2.1 The boundary-layer on the inner cylinder

The boundary-layer has the classical O(R−1/2) thickness, and the relevant flow expansions

are

UB + u = 1 + ε2ua(ξ, Za) +R−1/2U ′
B(ra)Za + ε4Ua(Za) + · · · ,

v = ε2R−1/2va(ξ, Za) + · · · , p = ε2A0P2(ra) cos ξ + · · · , (4.27)

with r = ra + R−1/2Za, where we have anticipated the independence of the pressure on

the normal coordinate. The continuity and axial momentum balances for the fluctuation

terms are

α
∂ua
∂ξ

+
∂va
∂Za

= 0, α(1− c)
∂ua
∂ξ

= αA0P2(ra) sin ξ +
∂2ua
∂Z2

a

,

with ua = va = 0 on Za = 0 and the condition of no exponential growth as Za → ∞. The

appropriate solutions are

ua =
1

2
Fa(Za)e

iξ + c.c., va =
1

2
Ga(Za)e

iξ + c.c., (4.28)
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with

Fa(Za) = −A0P2(ra)(1− e−µaZa)

(1− c)
, (4.29)

Ga(Za) =
iαA0P2(ra)

(
Za + µ−1

a (e−µaZa − 1
)
)

(1− c)
, (4.30)

and µa = (iα(1− c))1/2 . Taking the limit of (4.30) as Za → ∞ and matching to the core,

we conclude that

ga = −α1/22−1/2(1− c)−3/2P2(ra). (4.31)

The mean-flow distortion is forced by the fluctuation and satisfies

U ′′
a =

1

4
G∗
a(Za)F ′

a(Za) + c.c.,

with Ua ∼MaZa/ra as Za → ∞ to match to the core flow (4.25) and Ua(0) = 0 to satisfy

the no-slip condition. Use of (4.29), (4.30) for Fa,Ga and integration leads to the explicit

expression

Ua =
(A0P2(ra))

2

4(1− c)3
(2(maZa + 2) cos (maZa) e

−maZa

+2(maZa − 1) sin(maZa)e
−maZa − e−2maZa − 3) +

MaZa

ra
, (4.32)

with ma = <(µa) = (α(1− c)/2)1/2 .

4.2.2.2 The boundary-layer on the outer cylinder

Since the basic flow is zero on the outer cylinder, the appropriate expansion in the upper

layer is

UB + u = ε2ub(ξ, Zb)−R−1/2U ′
B(rb)Zb + ε4U b(Zb) + · · · ,

v = −ε2R−1/2vb(ξ, Zb) + · · · , p = ε2A0P2(rb) cos ξ + · · · , (4.33)
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with r = rb − R−1/2Zb. The governing equations for the fluctuations and the mean-flow

distortion are very similar to those in the inner boundary layer and the method of solution

proceeds in an identical fashion to yield

ub =
1

2
Fb(Zb)e

iξ + c.c., vb =
1

2
Gb(Zb)e

iξ + c.c., (4.34)

with

Fb(Zb) =
A0P2(rb)(1− e−µbZb)

c
, (4.35)

Gb(Zb) = −
iαA0P2(rb)

(
Zb + µ−1

b (e−µbZb − 1)
)

c
, (4.36)

and µb = (−iαc)1/2. From the expression for Gb we can calculate that

gb = α1/22−1/2c−3/2P2(rb). (4.37)

The corresponding solution for the mean-flow distortion is found to be

U b = −(A0P2(rb))
2

4c3
(2(mbZb + 2) cos (mbZb) e

−mbZb

+2(mbZb − 1) sin(mbZb)e
−mbZb − e−2mbZb − 3)− MbZb

rb
, (4.38)

with mb = <(µb) = (αc/2)1/2. Here we have applied no slip on Zb = 0 and the core-

matching condition U b ∼ −MbZb/rb as Zb → ∞.

Now that we have determined the radial velocities ga and gb, we can rewrite the jump

condition (4.20) as

ϕ =
A0τ0

(2α)1/2 r2c

{
ra [P2(ra)]

2

(1− c)5/2
− rb [P2(rb)]

2

c5/2

}
. (4.39)

The aim now is to investigate the dynamics of the critical layer with a view to obtaining an

alternative, amplitude-dependent expression for ϕ, and hence determining the amplitude

dependence of the neutral modes.
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4.2.3 The critical-layer analysis

The aims of the critical-layer analysis are three-fold. The first is to determine the small

parameter ε in terms of the Reynolds number R. Next, the jump in the mean-flow distor-

tion across the critical-layer is calculated, and allows us to determine the constantsMa,Mb

introduced in (4.25), thus fixing the core mean-flow distortion. Finally, we find the ve-

locity jump across the layer in terms of the disturbance amplitude A0, which can then be

determined explicitly as a result.

The velocity and pressure expansions are as follows

UB + u = c+ εÛ1 + (ε2 ln ε)Û2L + ε2Û2 + · · ·+ ε5Û5 + · · · ,

v = ε2V̂1 + (ε3 ln ε)V̂2L + ε3V̂2 + · · ·+ ε6V̂5 + · · · , (4.40)

p = ε2P̂1 + ε3P̂2 + · · ·+ ε6P̂5 + · · · ,

with r = rc + εY. The solutions at the first two orders, which match appropriately to the

core via (4.6) and (4.14), are relatively simple and can be shown to be

Û1 = −τ0Y/rc + u1(rc), V̂1 = −µ sin ξ, P̂1 = A0 cos ξ, (4.41)

Û2L = 2A0τ
−1
0 cos ξ, V̂2L = 2αA0τ

−1
0 Y sin ξ, (4.42)

where the amplitude parameter µ is defined by

µ = αrcA0τ
−1
0 . (4.43)

The terms with subscript 2 in (4.40) are the first to possess a non-trivial dependence on

the radial coordinate. The governing equations for these terms are

αÛ2ξ + V̂2Y + V̂1/rc = 0, P̂2Y = 0,

α
{
Û1Û2ξ + Û2Û1ξ

}
+ V̂2Û1Y + V̂1Û2Y = −αP̂2ξ, (4.44)
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and the match to the core requires

Û2 ∼ τ1Y
2/r2c + u′1(rc±)Y + 2A0τ

−1
0 ln

∣∣r−1
c Y

∣∣ cos ξ
+A0τ

−1
0

(
2j(2) + (1/3)(1 + 5τ1/τ0)

)
cos ξ, (4.45)

as Y → ±∞, in view of (4.14). Differentiating the third of equations (4.44) with respect

to Y, using (4.41) for Û1, V̂1, and switching to a characteristic variable

Ξ =
ατ0
2rc

(
Y − rcu1(rc)τ

−1
0

)2
+ µ cos ξ, (4.46)

we eventually obtain the following expression for the shear term Û2Y :

Û2Y = ∓(2τ0/αr
3
c )

1/2(Ξ− µ cos ξ)1/2 + κ(Ξ). (4.47)

An asymptotic condition on the unknown function κ can be found by applying the matching

condition (4.45), and this yields:

κ(Ξ) ∼ ±23/2τ
1/2
0 (αr3c )

−1/2Ξ1/2 + Λ±, as Ξ → ∞, (4.48)

where the constants Λ± are undetermined at this order. Here, the ± signs refer to the

upper/lower parts of the critical layer wherein Y − rcu1(rc)τ
−1
0 > (2rcµ(1− cos ξ)/ατ0)

1/2,

and Y − rcu1(rc)τ
−1
0 < −(2rcµ(1− cos ξ)/ατ0)

1/2, respectively. Later in the analysis it will

become clear that Λ+ 6= Λ−, and this jump fixes the leading-order mean-flow distortion in

the core, via the matching condition (4.45).

The [even, odd, even] symmetry about ξ = π of the solution [Ûm, V̂m, P̂m] is not broken until

viscous effects enter the critical layer equations. Since (from (4.41)) we have Û1Y Y = 0, the

first non-zero term of this type is Û2Y Y , which makes a contribution at O(R−1) in the axial

momentum equation that determines the quantity Û5. Balancing inertia and viscosity at
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this order requires ε3R−1/2 ∼ R−1, and hence fixes the small parameter

ε = R−1/6. (4.49)

If we then carry on to consider the equations at the m = 5 level and impose periodicity in

ξ (which is now a non-trivial condition due to the presence of viscosity and inertia) we can

determine fully the unknown function κ introduced in (4.47), and we find that

κ(Ξ)− κ0 =

 ±23/2πτ
1/2
0 (αr3c )

−1/2
∫ Ξ

µ
(I(Ξ1))

−1 dΞ1, (Ξ > µ),

0, (Ξ < µ).
(4.50)

with

I(Ξ) =

∫ 2π

0

(ζ − µ cos ξ)1/2 dξ. (4.51)

The specific form given for κ in (4.50) can be deduced from equation (4.66) in Appendix

4.A.1, together with the asymptotic condition (4.48). A routine numerical calculation then

shows that

Λ+ − Λ− = −(2µτ0/αr
3
c )

1/2C0, C0 ' 3.90, (4.52)

and this expression is equal to the distortion shear jump u′1(rc+) − u′1(rc−), in view of

(4.45). This enables us to fix the constants in the core mean-flow distortion as

Ma = C1 ln(rc/rb)A0
1/2/ ln η, C1 = 21/2C0 ' 5.52, (4.53)

with Mb following from (4.26). The same matching condition also allows us to determine

the constant of integration κ0 in (4.50) as

κ0 = (2rc)
−1(Ma +Mb) + 2rc

−1Ma ln(rc/ra). (4.54)

Since κ is now fully determined, it is possible to go back and integrate (4.47) to obtain the
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explicit expression

Û2 = − Ξ

αrc
+

(
Y − rcu1(rc)

τ0

)
κ(Ξ)∓

(
2rc
ατ0

)1/2 ∫ Ξ

µ

(Ξ−µ cos ξ)1/2κ′(Ξ) dΞ+ q(ξ), (4.55)

where

q(ξ) =
µ cos ξ

αrc

{
1 +

1

3
(1 +

5τ1
τ0

)− 2 ln
(
ατ0/2r

3
cµ

)1/2
+ 2j(2)

}
+ q0

+2(αrc)
−1

∫ ∞

µ

{
2π(Ξ− µ cos ξ)1/2(I(Ξ))−1 + (µ cos ξ)(2Ξ)−1 − 1

}
dΞ, (4.56)

and q0 is a constant, the determination of which would require higher-order analysis. Fi-

nally, in order to determine the amplitude A0 we need to calculate the phase shift across the

critical layer (i.e. the jump in the sin ξ component of axial velocity across the layer). The

calculation is very similar to that performed in Walton (2003), but for the axisymmetric

case. The details are given in an appendix, and lead to the expression

ϕ =
2τ0C1

αr2cA
1/2
0

. (4.57)

Equating this to the expression (4.39) for ϕ found from the core and wall-layer analyses,

enables us to derive an explicit expression for the amplitude dependence of the neutral

modes:

A0 =
2α−1/3C

2/3
1(

ra [P2(ra)]
2 (1− c)−5/2 − rb [P2(rb)]

2 c−5/2
)2/3 . (4.58)

The high-Reynolds-number analysis is now complete. An independent check on the analysis

can be performed by recalling from section 4 that the momentum transfer ∆ defined in

(2.24) is the same on both walls. In terms of our asymptotic solution this implies that

raU
′
a(0) = −rbU

′
b(0) with the wall-layer solutions Ua,U b given in (4.32), (4.38). By explicit

calculation it can be shown that this is indeed the case if and only if A0 satisfies (4.58).

This gives us a high degree of confidence in the correctness of the analysis presented in
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this section. The corresponding expression for ∆ is

∆ = 1 +R−1/6

{
A

1/2
0 C1 ln(rc/ra) +

(αc
2

)1/2

rb ln(1/η)
(A0P2(rb))

2

2c3

}
, (4.59)

neglecting terms of O(R−1/3), from which it can be seen that the perturbation to ∆ is

always positive.

For a given wavenumber α and radius ratio η we can compute all the necessary flow

quantities to make a direct comparison with the full Navier-Stokes solutions presented

in section 4.1. In order to determine quantities in the core we first solve the eigenvalue

problem (4.10) to determine the pressure component P2(r), the wavespeed c and the critical

layer location rc. The amplitude of the neutral modes follows from (4.58) with C1 given in

(4.53). The core fluctuations A0F2(r) cos ξ, A0G2(r) sin ξ can then be calculated from the

solution for P2 using (4.9). The mean-flow distortion u1(r) in the core follows from (4.25),

(4.26) and (4.53). The fluctuations in the wall layers are given by (4.27), (4.28), (4.29) and

(4.30) for the inner layer, and (4.33), (4.34), (4.35) and (4.36) for the layer on the outer

cylinder. The mean-flow distortions in the two wall layers can be calculated from (4.27),

(4.32) and (4.33), (4.38). Finally, in the critical layer, we have found expressions for the

first three terms Û1, Û2L, Û2 in the streamwise velocity expansion in (4.40) and these are

given in (4.41), (4.42) and (4.55).

4.2.4 Comparison of asymptotic and numerical results

In the previous subsection we proposed an asymptotic form for the nonlinear instability

of SCF. Now we wish to compare this solution with our Navier-Stokes computations from

section 4.1. In particular, we are interested in: (i) how large the Reynolds number needs

to be to obtain reasonable agreement between the solutions, (ii) which, if any, of the

modes discovered in section 4.1 does the asymptotic solution best approximate and (iii)

is it possible to see the delicate asymptotic flow structure in the finite Reynolds number

computations?
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Figure 4.9: The solid lines represent the lower- branch solution for (η, α) = (0.1, 0.6546).
The truncation level (L,N) = (240, 100) is used. The dashed lines are asymptotic results
yc = −0.9866 and ∆ = 1+0.0613R−1/6. Open circles in the figures represent linear critical
points.

Figure 4.10: The asymptotic flow structure in the vicinity of the critical layer for (η, α) =

(0.1, 0.6546). The grey scale represents contours of
˜̂
U2Y .

First, from numerical computation of the Rayleigh equation (4.10) we find that there is

a unique value yc = −0.9866 at (η, α) = (0.1, 0.6546) for which A0 in (5.53) is finite. It

is therefore clear immediately from figure 4.1 (a) that the asymptotic theory is a better

approximation to the lower-branch than the upper-branch. A close-up version of figure 4.1

(a) for the lower-branch at high R is shown in figure 4.9 (a), together with the corresponding

asymptotic result. In the figure, we can see that the agreement between the numerical and

asymptotic solutions is good once the kink at R = 3.5 × 107 has been passed. In figure

4.9 (b) we compare the corresponding values of the momentum transfer ∆. Again, it can

be seen that after the kink, the solution branch is approximated reasonably well by the

asymptotic result.

Encouraged by the agreement obtained thus far, we now seek to compare the numerically

and asymptotically determined flow structures. For this purpose, we make the comparisons

for each layer using only the leading order asymptotic solutions as follows.
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P1: R = 2× 106 upper-branch

P2: R = 2× 105 upper-branch

P3: R = 2× 105 lower-branch

P4: R = 2× 106 lower-branch

P5: R = 2× 107 lower-branch

P6: R = 108 lower-branch

Figure 4.11: The flow structure the finite-amplitude solutions in the vicinity of the critical
layer for (η, α) = (0.1, 0.6546). The grey scale represents contours of ε−2ũY . The radial
plot intervals are the same as the close-up plots in figures 4.2 and 4.3.
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Figure 4.12: The comparison of the real part of the fluctuation F for the lower-branch finite-
amplitude solutions (solid lines, ε−2F ) and the asymptotic results (dashed lines, A0F2 for
(a) and (b), Fa for (c), Fb for (d)) for (η, α) = (0.1, 0.6546). The values of R = A × 10N

are abbreviated as AeN.
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Figure 4.13: Caption as for figure 4.12 except that the imaginary parts are now compared.
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Figure 4.14: The comparison of the mean-flow distortion for the lower-branch finite-
amplitude solutions (solid lines, ε−1ū for (a) and (b), ε−4ū for (c) and (d)) and the asymp-
totic results (dashed lines, ū1 for (a) and (b), Ua for (c), U b for (d)) for (η, α) = (0.1, 0.6546).
The values of R = A× 10N are abbreviated as AeN.
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Figure 4.15: The nonlinear forcing of the mean-flow distortion for (η, α) = (0.1, 0.6546).
The solid, dashed and dotted lines correspond to P6 (R = 108, lower- branch), P3 (R =
2× 107, lower-branch), P1 (R = 2× 106, upper-branch).



4.2. Asymptotic solution at large Reynolds number 51

First we consider the nonlinear critical layer structure in terms of the stretched radial

coordinate Y = ε−1(y − yc). The asymptotic critical layer solution for the streamwise

velocity has the expansion

u = εÛ1(Y ) + ε2 ln εÛ2L(ξ) + ε2{ ˜̂U2(ξ, Y ) + Û2(Y )}+ · · · , (4.60)

where Û2(ξ, Y ) is numerically decomposed into the fluctuation
˜̂
U2(ξ, Y ) and the mean

Û2(Y ). For the sake of clarity, the fluctuation is differentiated with respect to Y , and

the result is shown in figure 4.10. We compare this with the corresponding numerical

result ε−2ũY (ξ, Y ) (figure 4.11). One of the characteristic structures associated with the

asymptotic solution
˜̂
U2Y is the cats-eye shape which possesses, at this order, a discontinuity

in the first derivative at Y − rcu1(rc)τ
−1
0 = ±(2rcµ(1 − cos ξ)/ατ0)

1/2. We can detect

a similar quasi-discontinuous structure in the high R numerical solutions (P1 and P6).

However, when R is smaller than its value at the kink, the discontinuity seems to be

smoothed out due to the thicker nonlinear critical layer structure which effectively overlaps

with the inner wall layer. For example, the visualization for P1 and P2 is similar at first

glance, but there is only an upper (outer) discontinuity for P2 whereas we can see a lower

(inner) discontinuity for P1. In other words the kink, which differentiates between the LR

and HR modes, can be considered to be the product of the separation of the nonlinear

critical layer and the inner wall layer structures. This feature is reminiscent of the role of

kink investigated by Healey (1995) for the linear stability of the Blasius boundary layer,

but seen in here in a nonlinear setting.

Next we compare asymptotic and numerical streamwise velocity solutions in the core and

the wall layers, restricting our attention to the lower-branch numerical solution. The

asymptotic core solution for the streamwise component expands in the form

u = εū1(y) + ε2{A0F2(y) cos ξ + ū2(y)}+ · · · , (4.61)
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while the inner wall layer solution is written in terms of functions of Za = R1/2(1 + y) as

u = ε2{1
2
Fa(Za)e

iξ + c.c.}+ ε4Ua(Za) + · · · , (4.62)

and the outer wall layer solution is expressed in terms of the variable Zb = R1/2(1− y) as

u = ε2{1
2
Fb(Zb)e

iξ + c.c.}+ ε4U b(Zb) + · · · . (4.63)

Therefore we see that the axial-dependence in the leading-order terms of the asymptotic

solution in both the core and the wall layers consists of just a single harmonic. We recall

that the numerical solution for the streamwise velocity takes the form

u = ū(y) + {1
2
F (y)eiξ + c.c.}+ higher order Fourier modes. (4.64)

The real and imaginary parts of ε−2F and A0F2, Fa,Fb are compared in figures 4.12 and

4.13 respectively. Note that the real and imaginary parts of F correspond to the even

(cos ξ) and odd (sin ξ) axial dependences respectively. In the outer part of the core, above

the critical layer, both asymptotic and numerical solutions predict that F is even, to leading

order. In the inner core, where the asymptotic theory again predicts an even streamwise

velocity, such agreement is harder to obtain, in part due to the interaction of the nonlinear

critical layer and inner wall layer referred to earlier. Except for this difference, the numerical

solutions qualitatively agree with the asymptotic result. Furthermore, the solutions begin

to show quantitative agreement after the kink is passed, as predicted in figure 4.9. The

two peaks of F for R = 108 in figure 4.12 (b) also suggest that the separation of the inner

wall layer and the nonlinear critical layer is underway.

The mean-flow distortion is also compared in figure 4.14. Since the leading order magnitude

of the asymptotic solutions is different in each layer, we compare ε−1ū and ū1 for the core

region and ε−4ū and Ua, U b for the wall layers. Again, good qualitative and quantitative

agreement of asymptotic and numerical solutions can be found before and after the kink.

There are two prominent features close to the inner wall. One is the sharp peak, which is
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related to the asymptotic discontinuity of the core solution at the critical layer. The other

is the negative perturbation to the mean flow near the inner wall which arises in order to

maintain the same value of momentum transfer ∆ at the inner and outer walls (c.f. section

2.3). A plot of the normalized nonlinear forcing

Nf (y) ≡ (αR)r−1∂r{rψξ(ψr + r−1ψ)} = −r−1∂r(rū
′), (4.65)

calculated from the numerical solution (figure 4.15), reveals that the mean-flow distortion

is almost unforced in the outer core, as predicted by asymptotic theory.

4.3 The long-wave breakdown of the asymptotic struc-

ture

Here we focus on LR mode solutions which do not show quantitative agreement with the

asymptotic analysis of section 4.2 due to the incomplete nature of the nonlinear critical

layer structure (see, for example figure 4.11). One of the reasons that the limit of α → 0

is of interest is that numerical evidence suggests that the maximum value of η, ηmax say,

beyond which solutions do not exist, occurs at this limit.

From examination of figure 4.6, it appears that ηmax tends to a maximum limiting value

in the range 0.33–0.40 as α → 0. A more accurate estimate than this is difficult to obtain

due to the high resolution required. In view of this, we choose to examine the behaviour

as α → 0 by fixing η = 0.33, R = 5 × 104. The fluctuation component of the streamwise

velocity is visualized in figure 4.16 (a)–(c) for α = 0.05, 0.02 and 0.01. These figures

show an intriguing localization of the disturbance in the streamwise direction. To see the

localization more clearly, the fluctuation field at the critical level y = yc is shown in figure

4.17 where we can see the concentration of both the axial and radial velocities in the

localized region.

Due to the localization of the flow regime, there are small Gibbs oscillations in the stream-
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(a): α = 0.05

(b): α = 0.02

(c): α = 0.01

Figure 4.16: The axial fluctuation velocity field ũ for (η,R) = (0.33, 5×104). The resolution
(L,N) = (50, 240) is used for (a) while (L,N) = (30, 500) is used for (b) and (c). The
dashed line represents the location of the critical layer.
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Figure 4.17: The fluctuation velocity field at the critical layer location y = yc for (η,R) =
(0.33, 5 × 104). Left/right figure represents ũ/ṽ. The solid, dashed and dotted curves
correspond to α = 0.01, 0.02 and 0.05 respectively. The truncation level is same as figure
4.16.
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Figure 4.18: The spectral intensity Sn =
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Figure 4.19: The convergence of the flow field as the wavenumber is decreased for (η,R) =
(0.33, 5 × 104). The truncation level is the same as figure 4.16. (a): Plot of flow field
along the axis in the phase space spanned by ũ and ṽ for ξ ∈ [0, 2π] at the critical layer
location y = yc. (b): The normalized mean flow ū/α. The solid, dashed and dotted curves
correspond to α = 0.01, 0.02 and 0.05 respectively. The crosses indicate the critical layer
locations.
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wise direction. Hence to check reliability of solutions, we exhibit spatial resolution test

in figure 4.18 by examining spectral intensity of streamwise disturbance at the critical

layer location. From the figure, we can find the spectral coefficients decay rapidly with

little change in the leading order intensities as streamwise resolution, N , is increased. The

slightly upraised tail corresponds to Gibbs oscillations and we conclude these are artificial

one because of their sensitivity to the resolution.

The smaller the value of α, the stronger the localization becomes and it appears that

the shape of the fluctuation is converging to a limiting form as α → 0. Indeed, it is

possible to obtain α = 0.02 solution by Newton’s method starting from superimposed two

α = 0.01 solutions so that the resultant peaks are evenly placed. To show this tendency

more clearly, the plots of ũ and ṽ are combined in figure 4.19 (a). The mean-flow distortion

for the different values of α is compared in figure 4.19 (b) and we see that this quantity

scales with α when α is small. This makes sense because the mean-flow distortion is

sustained by the spatial average of the nonlinear self-interaction of the fluctuation (see

(2.10)) and therefore if the shape of the fluctuation is becoming independent of α, the

mean-flow distortion divided by α must converge to a limiting form. However when α is

sufficiently small, specifically of O(R−1), the solution cannot continue to exist in its present

form at finite R as it would violate the criteria of energy analysis, which, for η = 0.33,

shows that all disturbances must monotonically decay if αR . 108.20 (see Appendix

4.A.2). Another feature of flow fields in figure 4.19 is multi-layered asymptotic structure

is no more visible. To see why the asymptotic structure in the previous section fails in

long-wave situation, consider the thickness of the critical layer. From expression (4.58) we

observe that A0 ∼ O(α−1/3) as α→ 0, which in turn means that from (4.43), the parameter

µ ∼ O(α2/3). It follows that the critical-layer variable Y ∼ O(µ/α)1/2 ∼ O(α−1/6), from

(4.46). Thus, in the long-wave limit, the critical-layer thickness ∼ O(εY ) ∼ O(αR)−1/6,

in view of (4.49). Turning to the viscous wall layers, the thickness of the layer on the

inner cylinder is O(R−1/2µ−1
a ) ∼ O(αR)−1/2, using expressions (4.27) and (4.29). A similar

argument leads to the same order estimate for the thickness of the boundary-layer on the

outer cylinder. Eventually, when α is sufficiently small, the thicknesses of the critical layer
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and wall layers become comparable. In this new structure the wall layers and critical layer

have grown and merged to fill the whole of the annulus.

4.4 Summary

In the nonlinear analysis presented here, we obtained finite-amplitude axisymmetric solu-

tions travelling downstream. The initial computation of the axisymmetric solutions was

conducted at a radius ratio η = 0.1, where we can find linear instability, and we fixed the

wavenumber α at its linear critical value of 0.6546. There are two linear critical points for

this particular wavenumber, and we detect two solution branches that bifurcate subcriti-

cally. The solution branch bifurcating from the smaller critical R has a turning point at

R = O(104). In other words, the resultant solution branch comes into existence with in-

creasing R due to this saddle-node bifurcation, and the upper- and lower-branch solutions,

which coincides with the linear solution for finite range of R, are formed in the R–amplitude

space. At sufficiently high R, our calculations indicated that there exist kinks in both the

upper- and lower-branches. The part of each branch before and after the kink is refereed

to as LR (low Reynolds number) and HR (high Reynolds number) mode respectively.

A multi-structured analytic solution valid for asymptotically large R was derived in section

4.2: this asymptotic theory divides the shear layer into five decks (figure 4.7). At a leading

order viscosity is only present in the boundary layers near the inner and outer walls and

is also vital in the nonlinear critical layer where a cats-eye shape quasi-singularity exists

and the mean flow is strongly modified. The asymptotic theory was then compared with

the finite Reynolds number calculations.

For the LR mode, where R is in the range O(104)–O(107), we observed good qualitative

agreement between the asymptotic solutions for the various layers and the corresponding

visualization of the numerical solutions. However, for this mode, the inner inviscid core

layer is absent and hence the nonlinear critical layer structure is incomplete, due to the

effective interaction with the inner wall layer. The reason for this is that the distance
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between the nonlinear critical layer and the inner wall layer is so close that it is comparable

with the thickness of the critical layer, which is of order R−1/6 according to the theory.

When we further increase R to 108, so that the relevant solution branch belongs to the HR

mode, we find that the flow visualization of the lower-branch solution agrees quantitatively

with the asymptotic solution, with visualizations showing a clear separation of the inner

wall layer and the critical layer. Therefore we conclude that the kink in the solution branch

results from the separation of the inner wall layer and the nonlinear critical layer. In the

linear setting, Healey (1995) came to a similar conclusion when considering boundary-layer

stability.

We also examined how the finite-amplitude solution branch behaved as η is varied. It

is found that the solution branches of both the HR and LR mode can be continued well

beyond the linear long-wave cut-off value of η ' 0.1415. For the LR mode, the nonlinear

cut-off value of η increases as α decreases. The ultimate value for small α is estimated

to lie between 0.33 and 0.40. This observation suggests that the nonlinear version of the

cut-off is also a long-wave phenomenon. Although the present calculation failed to trace

the HR mode solution branch beyond a value of η ' 0.159, it must also reach a cut-off if

we assume that this mode asymptotes according to the large R theory which must itself

experience a cut-off before the narrow gap limit of PCF is reached.

The viscous layers in the asymptotic structure become thinner as R is increased, but thicken

as α is decreased. A distinguished limit α ∼ O(R−1) arises at which the wall layers and the

critical layer thicken to an O(1) size and merge together. An identical effect is observed

in the numerical solutions where we observe that as α is decreased to 0.01 for η = 0.33,

the rapidly varying behaviour near the critical layer location is completely smoothed out.

Instead, there is the formation of a prominent streamwise localized structure.
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4.A Appendix

4.A.1 The phase shift calculation for the asymptotic solution

Here our aim is to calculate the jump in the sin ξ component of axial velocity across the

critical layer considered in section 5.3. It is shown there that the term Û5(ξ, Y ) in (4.40)

is the largest to possess an odd part about ξ = π. We therefore write

Û5 = Û5O + Û5E,

with subscripts O and E to denote the odd and even parts of this expression, and we do

likewise for the corresponding radial velocity and pressure components. From substitu-

tion of (4.40) into the Navier-Stokes equations (4.4−4.4), we find that (Û5O, V̂5E, P̂5O) are

governed by

αÛ5Oξ + V̂5EY = 0,

αÛ1Û5Oξ + V̂1Û5OY + V̂5EÛ1Y = −αP̂5Oξ + Û2Y Y + Û1Y /rc.

If we differentiate the second of these equations with respect to Y, use expressions (4.41),

(4.47) for the velocity components, and change to the characteristic variable ζ defined in

(4.46), we can simplify this system to

∂

∂ξ̂
(Û5OY ) = ∓

(
2ατ0
rc

)1/2
∂

∂ζ

(
(ζ − µ cos ξ)1/2κ′(ζ)

)
, (4.66)

where κ(ζ) is given by (4.50), and ∂/∂ξ̂ denotes differentiation with respect to ξ, holding

ζ fixed.

To determine the velocity jump we write

Û5O =
∞∑
n=1

bn(Y ) sinnξ,
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so that the quantity ϕ defined in (4.16) is given by

ϕ = lim
Y→∞

b1 − lim
Y→−∞

b1,

where

b1(Y ) =
1

π

∫ 2π

0

Û5O(ξ, Y ) sin ξ dξ.

By changing variables from (ξ, Y ) to (ξ̂, ζ), where ξ = ξ̂, integrating by parts with respect

to ξ̂, and using (4.66), we finally obtain

b1 =
2

µ
(2ζκ′ − κ) + constant.

Then, using the properties of κ given in (4.48), (4.50), (4.51) and (4.52), we can establish

that

ϕ =
2τ0C1

αr2cA
1/2
0

,

which is the result (4.57) quoted in the main text.

4.A.2 Energy analysis

Here we employ standard techniques of energy analysis (e.g. see Joseph & Carmi 1969 and

Joseph 1976) to compute an energy Reynolds number RE for axisymmetric SCF. This is a

value of Reynolds number below which it is guaranteed that all disturbances to the basic

flow decay monotonically in time, and it therefore represents a lower bound on R, below

which finite-amplitude travelling waves cannot exist. Often, of course, this bound proves to

be extremely pessimistic in practice; however it still provides a useful partial check on the

validity of the travelling-wave solutions discussed in this paper and reduces the parameter

space that needs to be investigated.

We begin by defining the kinetic energy of the disturbance flow as

E ≡ 1

2
〈u2 + v2〉,
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where the volumetric integrating operator takes the form

〈·〉 ≡
∫ 2π/α

0

∫ rb

ra

· r dr dx.

The development of the energy can be found by considering 〈u(4.2) + v(4.4)〉. This leads

to the exact result

dE

dt
=
ID
R

(m− 1),

where

ID ≡ 〈|∇u|2 + |∇v|2 + r−2v2〉 ≥ 0, m ≡ R
IA
ID
, IA ≡ −〈uv/ ln ηr〉.

It follows that we need m̀ = maxum > 1 in order for the system to experience some energy

growth. Suppose that the solution which realizes m̀ is [ù, v̀]. We then consider all solutions

in the form [u, v] = [ù, v̀] + δ[ú, v́]. By definition, m̀ = m|δ=0 and ∂m
∂δ

∣∣
δ=0

. Using these

relations and the definition of m, we obtain

m̀
∂ID
∂δ

∣∣∣∣
δ=0

−R
∂IA
∂δ

∣∣∣∣
δ=0

= 〈ú ·Φ〉 = 0 (4.67)

where

Φ = (−2m̀∇2ù+Rv̀/r ln η)ex + (−2m̀(∇2v̀ − r−2v̀) +Rù/ ln ηr)er.

Since equation (4.67) is satisfied for arbitrary ú, Φ must have a scalar potential %. By

introducing a stream function φ such that [ù, v̀] = [φr + r−1φ,−φx] and eliminating the

potential % by combining the axial and radial equations of ∇% = Φ, we find that φ satisfies

φxxxx + 2φxxrr + 2r−1φxxr − 2r−2φxx

+φrrrr + 2r−1φrrr − 3r−2φrr + 3r−3φr − 3r−4φ =

R

2m̀
∂x(−2φr/ ln η

r), (4.68)

together with φ = φr = 0 at r = ra and r = rb. The solution can be taken to be

proportional to eiαx because equation (4.68) is linear. As a consequence, we can solve this

equation numerically by expanding φ in terms of lth Chebyshev polynomial of first kind
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Figure 4.20: The energy Reynolds number RE for axisymmetric disturbances. The solid,
dashed and dotted lines are calculated for η = 1, 0.1 and 0.01 respectively.

Tl(y) as

φ(x, y) =
L∑
l=0

(1− y2)2Tl(y)e
iαx

and evaluating (4.68) at the collocation points (2.20). The resultant algebraic eigenvalue

problem

Al0lXl = σBl0lXl

leads to L+ 1 eigenvalues σ ≡ αR/m̀. The minimum value of positive purely real σ gives

αRE where RE is the energy Reynolds number. There are no finite-amplitude solutions if

R < RE, because all disturbances monotonically decay.

The results of numerical computations are shown in figure 4.20. We investigated the range

0.01 ≤ η ≤ 1 and found that αRE increases with decreasing η. Note that (4.68) reduces to

its planar counterpart in the narrow-gap limit η → 1. Because σ(α, η) = σ(−α, η), αRE

must have a local extremal value at α = 0. From the figure, we can see that this point is

a global minimum for the current range of η. However, we note that the minimum of RE

is at a non-zero value of α, e.g. for η = 0.1, the minimum RE = 122 occurs at α = 1.96.

The axisymmetric finite-amplitude solutions found in section 4.1 have α = O(1) and ex-

ist over a range of R = O(104), comfortably in excess of the energy Reynolds numbers

calculated here.



Chapter 5

Non-axisymmetric solutions

It is likely that the laminar SCF can be destabilized in experiments at Reynolds numbers

far below the values we saw in the linear and nonlinear analyses with respect to axisym-

metric disturbances. Therefore, in this chapter we attempt to find other types of nonlinear

solutions at relatively low Reynolds numbers. It is possible that these types of solutions

have some connection with nonlinear solutions in PCF since the narrow-gap limit of SCF

corresponds to PCF. With reference to the analysis of chapters 3 and 4 there are no linear

and nonlinear two-dimensional instabilities in PCF. Yet, finite-amplitude three-dimensional

streamwise roll type solutions as a result of the saddle-node bifurcation at R = O(102) ex-

ist (Nagata 1990). Thus it is natural to anticipate that the three-dimensional solutions of

PCF as our narrow gap limit (η → 1) still exist in wider gap cases (η < 1).

5.1 Homotopy from the Nagata solution in plane Cou-

ette flow

In this section, we will consider a homotopy between the planer geometry of PCF and

the cylindrical geometry of SCF. Therefore, first we need to construct a transformation

between the Cartesian and cylindrical coordinates used in these systems. Note that the

63
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(l,m, n) X
(1)
lmn : η = 0.9999 X

(1)
lmn : η = 1

(0, 1,1) (-0.531545990, 0.000342705) (-0.531546101, 0.000000000)
(0, 1,2) ( 0.015296839,-0.000020938) ( 0.015296853, 0.000000000)
(0, 2,1) (-0.000003429,-0.000523607) ( 0.000000000,-0.000523609)
(0, 2,2) ( 0.000000662, 0.000539484) ( 0.000000000, 0.000539484)
(1, 1,1) ( 0.000247443, 0.381802584) ( 0.000000000, 0.381802665)
(1, 1,2) ( 0.000015775, 0.013213093) ( 0.000000000, 0.013213102)
(1, 2,1) (-0.077862389, 0.000048121) (-0.077862404, 0.000000000)
(1, 2,2) ( 0.004590099,-0.000005700) ( 0.004590102, 0.000000000)
(0,-1,1) ( 0.531545990,-0.000342705) ( 0.531546101, 0.000000000)
(0,-1,2) ( 0.015296839,-0.000020938) ( 0.015296853, 0.000000000)
(0,-2,1) ( 0.000003429, 0.000523607) ( 0.000000000, 0.000523609)
(0,-2,2) ( 0.000000662, 0.000539484) ( 0.000000000, 0.000539484)
(1,-1,1) (-0.000247443,-0.381802584) ( 0.000000000,-0.381802665)
(1,-1,2) ( 0.000015775, 0.013213093) ( 0.000000000, 0.013213102)
(1,-2,1) ( 0.077862389,-0.000048121) ( 0.077862404, 0.000000000)
(1,-2,2) ( 0.004590099,-0.000005700) ( 0.004590102, 0.000000000)

Table 5.1: The comparison of the leading amplitude coefficients of the narrow gap SCF for
η = 0.9999 at (α,m0) = (0.75, 31168) and the corresponding coefficients of PCF (α, β) =
(0.75, 1.5585). R = 400. The lower-branch solution. (L,M,N) = (20, 6, 4).

cylindrical coordinate system becomes singular in the narrow-gap limit because rm → ∞

in the limit as η → 1. Thus we introduce new variables: distance along the mean radius

z = rmθ, wavenumber β = m0/rm and wavespeed cz = rmcθ, replacing θ, m0 and cθ. With

the new coordinate system (x, y, z), all of the governing equations smoothly reduce to their

planar counter part in the narrow gap limit η → 1. In the case of η < 1, non-integer values

of m0 do not cause any mathematical and computational difficulties although physically

we must have m0 ∈ Z due to the azimuthal 2π periodicity. The new wavenumber β and

wavespeed cz coincide with the usual spanwise wavenumber and wavespeed respectively

at η = 1 (note that x, y and z represent streamwise, wall-normal and spanwise directions

respectively though the system becomes a left-handed system).

The basic flow (2.5) becomes the plane Couette profile

UB(y) = R(1− y)/2 (5.1)

in the narrow-gap limit. The phase lock conditions we adopt for three-dimensional solutions
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Upper Lower
(L,M,N) ∆ c/R ‖Li‖2 ‖Fi‖2 ∆ c/R ‖Li‖2 ‖Fi‖2
(16, 8, 9) 2.15290 0.49908 1.4e5 3.2e-8 1.54290 0.44516 2.9e4 2.0e-7
(24, 8, 9) 2.15328 0.49907 1.7e5 8.5e-7 1.54282 0.44515 3.5e4 1.2e-8
(16,12, 9) 2.15046 0.49976 1.4e5 2.7e-8 1.54277 0.44514 2.9e4 1.4e-9
(16, 8,14) 2.15323 0.49880 1.4e5 7.7e-5 1.54290 0.44516 2.9e4 1.7e-9

Table 5.2: The momentum transfer ∆, the wavespeed c and the L2-norms ‖Li‖2 and ‖Fi‖2
at different truncation levels (L,M,N) for the non-axisymmetric solution at (η, α,m0, R) =
(0.5, 0.51, 3, 350).

are =(X(1)
120) = 0 and =(X(1)

102) = 0.

First, in order to obtain the solution in cylindrical geometry, we consider the case of

η = 0.9999 (rm = 19999,m0 = 31168 so that β = 1.5585 for PCF) and use the steady

three-dimensional PCF solution with (α, β) = (0.75, 1.5585) by Nagata (1990) as the initial

guess for the Newton-Raphson iterations. The iterations successfully converge and the

leading amplitude coefficients for the potentials of the converged solution at η = 0.9999

are compared with the corresponding coefficients of the PCF solution at R = 400 in table

5.1. The solution in the cylindrical coordinates inherits some features of the PCF solution:

we can see from table 5.1 that

X
(1)
lmn = −X(1)

l−mn if n ∈ odd integers,

X
(1)
lmn = X

(1)
l−mn if n ∈ even integers.

We also verified that (not listed in table 5.1)

X
(2)
lmn = X

(2)
l−mn if n ∈ odd integers,

X
(2)
lmn = −X(2)

l−mn if n ∈ even integers.

These relations imply the shift-reflection symmetry

(i) : [u, v, w](ξ, y, ζ) = [u, v,−w](ξ + π, y,−ζ), (5.2)
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Figure 5.1: The saddle-node bifurcations of non-axisymmetric travelling-wave solutions for
(α, β) = (0.75, 1.5585). The nonlinear measures are (a): the momentum transfer ∆ on the
inner cylinder and (b): the axial wavespeed c. Thick solid, thin solid, dashed and dotted
curves indicate the cases for η = 1, 0.8, 0.5 and 0.4, respectively.

are possessed by both of these PCF and SCF solutions. It is known that the nonlinear

PCF solution also possesses the shift-rotation symmetry

(ii) : [u, v, w](ξ, y, ζ) = [−u,−v, w](−ξ + π,−y, ζ + π). (5.3)

This symmetry (ii) is obviously absent in SCF solutions because the reflection about the

mean radius y = 0 corresponding to r = rm is broken due to the curvature in the cylindrical

coordinates. The symmetry (ii) in PCF solutions is represented by

=(X(1)
lmn) = =(X(2)

lmn) = 0 if l +m ∈ odd integers,

<(X(1)
lmn) = <(X(2)

lmn) = 0 if l +m ∈ even integers

which is not satisfied in SCF as can be verified in table 5.1. So, for SCF with η < 1 the

nonlinear solution possesses only the shift-refection symmetry (i). Furthermore the present

SCF solution does not possess any other symmetries other than (i); see a more detailed

discussion in subsection 5.2.2. Once the solution for η = 0.9999 with (α, β) = (0.75, 1.5585)

is obtained, solutions for wider gap cases are sought by continuation. Changing η implies

that, according to m0 = 1+η
1−η

β, m0 does not necessarily take an integer value for fixed β.

In order for the continuation to be smooth we allow m0 to take a real number at the first

stage (since we now fix the gap, it is reasonable to fix azimuthal fundamental periodicity
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Figure 5.2: The axially averaged disturbance flow patterns for (m0, α) = (2, 0.33), (3, 0.51),
(4, 0.71), (5, 0.90) (from left to right). R = 350 and η = 0.5. The top/bottom four
figures correspond to the upper/lower-branch solutions. The grey scale represents the
axial velocity component relative to the laminar state (light: fast, dark: slow).
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Figure 5.3: The existence region of the travelling-wave solutions for m0 = 2, 3, 4, 5 at
R = 350 for η = 0.5. The truncation level (L,M,N) = (16, 8, 9) is used to draw the curve.
Crosses indicate the result with higher truncation level (L,M,N) = (20, 12, 12).

in terms of length keeping β). In the next stage, 2π-periodic solutions are sought for each

η by changing β gradually so that m0 becomes an integer.

Figure 5.1(a) shows the momentum transfer ∆ of the solutions for η = 0.8, 0.5 and 0.4 with

(α, β) = (0.75, 1.5585). With these wavenumbers, it is observed that the saddle-node points

shift slightly toward larger values of R as η is decreased. We see from figure 5.1(b) that the

wavespeed c in the axial direction for these cases are non-zero in general. The solutions of

PCF are steady when the two boundaries are moving in the opposite directions with the

same speed. Here, since the outer cylinder is stationary the wavespeeds c of both the upper-

and lower-branch solutions for η = 1 are equal to half the speed of the inner cylinder. For
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Figure 5.4: The Reynolds number near the saddle-node bifurcation point for the travelling-
wave solutions with the wavenumber pairs (m0, α) for η = 0.5.

wide gap cases, the wavespeed c of the upper-branch solution is faster than that of the

lower-branch solution. Consistent with the shift-reflection symmetry (i), our calculation

showed the wavespeed cθ and the mean flow W in the azimuthal direction are always zero.

As described above, we change β gradually to obtain non-axisymmetric travelling-wave

solutions of SCF with m0 = 2, 3, 4, 5 for η = 0.5. Table 5.2 shows the accuracy of a typical

solution at various truncation levels. We see that (L,M,N) = (16, 8, 9) gives sufficiently

accurate solutions and we therefore adopt this truncation level for the calculations in this

section unless stated otherwise. Figure 5.2 shows the axially averaged disturbance flow

patterns for these solutions. Note that the patterns are still dependent on θ. It can be

seen that for all the cases the region where the axial velocity is faster than the basic flow

is located near the outer cylinder, whereas the region where the axial velocity slower than

the base flow is located near the inner cylinder.

Figure 5.3 shows the existence region of the travelling-wave solutions with m0 = 2, 3, 4, 5

with respect to the axial wavenumber α at R = 350. For other azimuthal wavenumbers,

m0 = 1, 6 and above, non-axisymmetric travelling-wave solutions appear at higher Reynolds

numbers, and so their existence regions are not captured in figure 5.3. The solution family

is created in a saddle-node bifurcation for each wavenumber pair (m0, α) as shown in

figure 5.4. From the figure we see that the lowest Reynolds number at the saddle-node

bifurcations takes place at 256.6 with (m0, α) = (3, 0.51).

The axial mean-flow profiles U of the travelling-wave solution with the ‘optimum wavenum-
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Figure 5.5: The axial mean-flow profile U for (η,m0, α) = (0.5, 3, 0.51). (a): R = 300,
(b): R = 350, (c): R = 400. Thin solid and dashed curves indicate the mean flows for the
upper- and lower-branch solutions, respectively. Thick curves correspond to the base flow.

Figure 5.6: The disturbance flow field u for (η,m0, α, R) = (0.5, 3, 0.51, 350). The
top/bottom four figures correspond to the upper/lower- branch solutions. Arrows indi-
cate the projection of the velocity on the cross-section, ξ = (k/4)(2π/α), k = 0, 1, 2, 3
(from left to right). The grey scale represents the axial velocity component (light: fast,
dark: slow).

ber pair’, (m0, α) = (3, 0.51), for η = 0.5 are given in figure 5.5. It is seen that as R increases

the profile becomes sharper near the cylinders with larger momentum transfer than in the

central region. The flat central region becomes wider, especially for the upper-branch.

Also, the disturbance flow field u in the axial direction is shown in figure 5.6. It can be

observed that slow speed streaks occupy the region near the inner cylinder whereas fast

speed streaks are located near the outer cylinder. The structure of the streaks along the

axial direction is also depicted in figure 5.7. Sinusoidal variation of the fast and slow

speed streaks can be seen. At r = rm the fast speed streaks are accompanied by radially

outward velocities whereas the slow speed streaks are accompanied by radially inward
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Figure 5.7: The disturbance flow field u for (η,m0, α, R) = (0.5, 3, 0.51, 350) on the mean
radius r = rm. The grey scale represents the radial velocity component. The left/right
figures correspond to the upper/lower-branch solutions.

(a) (b)

(c) (d)

Figure 5.8: The axial variation of the streaks for the travelling-wave solutions for
(η,m0, α, R) = (0.5, 3, 0.51, 350). (a),(c): The isosurface of the axial velocity at u = ±70.
Light/dark grey surfaces correspond to the fast/slow streaks. (b),(d): The isosurface of
the axial vorticity at ωx = ±90. Light/dark grey surfaces correspond to positive/negative
vorticities. (a) and (b) correspond to the upper-branch solution whereas (c) and (d) to the
lower-branch solution.



5.2. Bifurcation of the mirror-symmetric solution 71

Upper Lower
(L,M,N) ∆ c/R ‖Li‖2 ‖Fi‖2 ∆ c/R ‖Li‖2 ‖Fi‖2
(19,10,10) 1.56900 0.41746 3.3e4 4.9e-8 1.41512 0.35393 1.4e4 2.0e-9
(30,10,10) 1.56901 0.41746 4.1e4 8.2e-8 1.41511 0.35393 1.7e4 6.9e-9
(19,15,10) 1.57075 0.41717 3.4e4 5.3e-8 1.41716 0.35426 1.4e4 2.4e-9
(19,10,15) 1.56880 0.41751 3.4e4 4.6e-8 1.41512 0.35393 1.4e4 3.4e-9

Table 5.3: The momentum transfer ∆, the wavespeed c and the L2-norms ‖Li‖2 and ‖Fi‖2
at different truncation levels (L,M,N) for the non-axisymmetric solution at (η, α,m0, R) =
(0.1, 0.59, 1, 300).

velocities. Figures 5.8 (a) and (b) show the isosurfaces of the axial velocity component, u,

and the axial vorticity component, ωx = r−1∂r(rw)− r−1∂θv, of the upper-solution branch.

Those corresponding to the lower-branch solution are given in figures 5.8 (c) and (d). By

superposing figure 5.8 (a) on figure 5.8 (b), or figure 5.8 (c) on figure 5.8 (d) it can be seen

that the streaks are flanked by stronger vorticities.

5.2 Bifurcation of the mirror-symmetric solution

5.2.1 Results for wider gap case

In this section we continue the SCF solution to values of η as low as 0.1 for m0 = 1.

To maintain accuracy it is necessary to increase truncations to (L,M,N) = (19, 10, 10)

(see Table 5.3). The momentum transfer ∆ of the continued solutions changes with α as

indicated by the solid curves in figure 5.9. The amplitude coefficients of the solution which

satisfy m+n ∈ odd integers vanish at the points (circle), creating a new highly symmetric

solution branch (dashed curve) as shown in figures 5.9 (a) and (b). The behaviour of the

amplitudes suggests that this new type of solution satisfies the symmetry

(iii) : [u, v, w](ξ, y, ζ) = [u, v, w](ξ + π, y, ζ + π), (5.4)
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together with the symmetry (i). The combined symmetry, (i) and (iii), represents the

mirror symmetry

(i) + (iii) : [u, v, w](ξ, y, ζ) = [u, v,−w](ξ, y,−ζ + π). (5.5)

We label this type of solution as class M, and the solution which was continued previously

from PCF in section 5.1 as the class S.

The branches of the classes S and M solutions change their shapes in a complex manner

as R is varied from 360 to 320 (see figures 5.9 (a), (b) and (c)). During the transformation,

some branches are reconnected due to the transcritical bifurcations and one closed curve of

the class S and two closed curves of the classM are formed atR = 300. Each of these closed

curves in the (α,∆) plane corresponds to the cross-sections of the ‘nose’ in the (α,R,∆)

space. The tip of the nose for the class S is located at R = 288.6 with α = 0.59, and the

tips of the two noses for the class M are at R = 291.8 and R = 294.7 with α = 0.77 and

α = 0.86, respectively, as shown in figure 5.10. Thus, the present solutions with η = 0.1,

the first emerging state with increasing R is the class S solution, as is therefore similar

to the PCF case, in which the Nagata solution first appears with increasing R. The flow

fields of the class S solution and the two class M solutions along the axial direction at

R = 300 are shown in figure 5.11. For all three solutions, low-speed streaks stay near the

inner cylinder almost without changing their positions whereas fast-speed streaks oscillate

in the azimuthal direction. The regions of the most violent cross-sectional motion coincide

with the regions of the fast-speed streaks. The streaks and the axial vorticity for these

solutions are given in figures 5.12, where the streaks are flanked by strong axial vortices

similar to η = 0.5 case. The physical and mathematical explanation of this typical flow

structure will be given in section 6.3.

Form0 = 2, solutions of the classM and the class S first appear at Reynolds numbers about

two times higher than those for m0 = 1. Thus the optimum wavenumber for minimum R

is given by m0 = 1 for both of the solutions. Bifurcation points that connect the classes S

and M have not been detected with this azimuthal wavenumber choice.
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Figure 5.9: The momentum transfer of the solutions for η = 0.1. Solid/dashed curves
represent the class S/M solutions with m0 = 1. (a): R = 360, (b): R = 340, (c):
R = 320, (d): R = 300. Circles in (a) and (b) are the bifurcation points. The truncation
level (L,M,N) = (19, 10, 10) is used to draw the curve.
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Figure 5.10: The saddle-node bifurcations for the non-axisymmetric solutions for η = 0.1.
+/× represents the class S/M solutions with m0 = 1.
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(a)

(b)

(c)

Figure 5.11: The disturbance flow field for (η,m0, R) = (0.1, 1, 300). The top/bottom four
figures correspond to the upper/lower-branch solutions. Arrows indicate the projection of
the velocity on the cross-section, ξ = (k/4)(2π/α), k = 0, 1, 2, 3 (from left to right). The
grey scale represents the axial velocity component (light:fast,dark:slow). (a): the class S
with α = 0.59, (b): the class M with α = 0.77, (c): the class M with α = 0.86.
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(a)

(b)

(c)

Figure 5.12: The axial variation of the streaks for the travelling-wave solutions for
(η,m0, R) = (0.1, 1, 300). Left: The isosurface of the axial velocity at u = ±50. Light/dark
grey surfaces correspond to the fast/slow speed streaks. Right: The isosurface of the axial
vorticity at ωx = ±50. Light/dark grey surfaces correspond to positive/negative vorticities.
(a): the class S with α = 0.59, (b): the class M with α = 0.77, (c): the class M with
α = 0.86.
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5.2.2 The symmetry of PCF and SCF solutions

Here we deduce all possible symmetries of PCF and SCF solutions, and confirm that the

results in the previous sections are mathematically consistent to the symmetries of the flow

configurations.

Introducing X = [u, v, w, p, c, cz](ξ, y, ζ), we can express the Navier-Stokes equations (2.2)

and (2.1) as F(X) = 0. Defining the translation operators

τXξ [u, v, w, p, c, cz](ξ, y, ζ) = [u, v, w, p, c, cz](ξ + π, y, ζ), (5.6)

τZζ [u, v, w, p, c, cz](ξ, y, ζ) = [u, v, w, p, c, cz](ξ, y, ζ + π) (5.7)

we find F(X) = 0 ⇔ F(τXξ X) = 0 ⇔ F(τZζ X) = 0 for any X,Z ∈ IR.

Since we consider solutions X in the periodic domain, X = τmξ X = τnζ X for any m,n ∈ Z.

Therefore, note that τm+X
ξ and τXξ represent the same operator for any m ∈ Z and X ∈ IR

(similar argument also holds for τZζ ).

In the present section we consider only the planar geometry case η = 1, for which flows can

possess the larger number of symmetries (see earlier discussion in section 5.1). Throughout

we will consider the general antisymmetric basic flow profile UB = UBex where UB(y) =

−UB(−y), which the PCF basic flow satisfies if an appropriate Galilean transformation is

performed. This situation allows the following symmetries of the system:

F(X) = 0 ⇔ F(σζX) = 0 ⇔ F(σξyX) = 0 ⇔ F(σζσξyX) = 0, (5.8)

where

σζ [u, v, w, p, c, cz](ξ, y, ζ) = [u, v,−w, p, c,−cz](ξ, y,−ζ), (5.9)

σξy[u, v, w, p, c, cz](ξ, y, ζ) = [−u,−v, w, p,−c, cz](−ξ,−y, ζ). (5.10)

Based on these relations, we next examine the symmetry of the solutions. The general
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problem when we consider expression of symmetry of solutions is that it depends on the

choice of the origin of the coordinate system. Thus we say solution X is symmetric under

(denoted by s.u. for short) operator S if there exist X,Z ∈ IR such that τXξ τ
Z
ζ X =

SτXξ τ
Z
ζ X. With this definition, the allowable symmetry operations are clarified in the

following theorem.

Theorem 1. We assume the solution X(ξ, y, ζ) is periodic in (ξ, ζ) directions with the

fundamental wavenumber pair (α, β), i.e. X = τXξ X ⇔ X ∈ Z and X = τZζ X ⇔ Z ∈ Z. If

X is s.u. S, where S is an arbitrary combination of τXξ , τ
Z
ζ , σζ and σξy for any X,Z ∈ IR,

then X is s.u. one of: identity, σζ , τ
1/2
ξ σζ , σξy, τ

1/2
ζ σξy, σζσξy or τ δξ τ

ε
ζ where δ, ε are

non-integer real numbers.

The proof is as follows. Note that τXξ σξyX = σξyτ
−X
ξ X for any X ∈ IR and τZζ σζX =

σζτ
−Z
ζ X for any Z ∈ IR. By using these relations, S can be expressed as one of τ δξ σζ ,

τ εζσξy, σζσξy or τ δξ τ
ε
ζ for some δ, ε ∈ IR. If S = τ δξ σζ , δ must be Z or Z + 1/2 because

X = SX ⇒ X = S2X = τ 2δξ X. Similarly ε should belong to Z or Z + 1/2 for τ εζσξy.

Given that we cannot deduce any extra conditions for the case of the double translations,

S = τ δξ τ
ε
ζ . This completes the proof.

We can classify solutions X in terms of symmetries like as Sym(σζ) ≡ {X satisfies the

requirement of the theorem 1 |X is s.u. σζ but not s.u. τ
1/2
ξ σζ , σξy, τ

1/2
z σξy, σζσξy and τ δξ τ

ε
ζ

}. In principle it is possible to list all of the symmetry classes since the number of elements

we have to consider is finite. There exist 15 distinct classes as follows:

• I ≡ Sym(),

• E ≡ Sym(σξy),

• S ≡ Sym(τ
1/2
ξ σζ),

• D ≡ Sym(σζ),

• R ≡ Sym(τ
1/2
ζ σξy),

• Tε,δ ≡ Sym(τ δξ τ
ε
ζ ),

• I∗ ≡ Sym(σζσξy),

• E∗ ≡ Sym(σζ , σξy, σζσξy),

• S∗ ≡ Sym(τ
1/2
ξ σζ , σξy, σζσξy),

• D∗ ≡ Sym(σζ , τ
1/2
ζ σξy, σζσξy),

• R∗ ≡ Sym(τ
1/2
ξ σζ , τ

1/2
ζ σξy, σζσξy),

• T ∗
ε,δ ≡ Sym(σζσξy, τ

δ
ξ τ

ε
ζ ),
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• M ≡ Sym(σζ , τ
1/2
ξ σζ , τ

1/2
ξ τ

1/2
ζ ),

• N ≡ Sym(σξy, τ
1/2
ζ σξy, τ

1/2
ξ τ

1/2
ζ ),

• M∗ ≡ Sym(σζ , τ
1/2
ξ σζ , σξy, τ

1/2
ζ σξy, σζσξy, τ

1/2
ξ τ

1/2
ζ ).

Some symmetry classes fix the shift value (δ, ε) to (Z+1/2,Z+1/2). The class of solution

should be unchanged along the solution branch as long as there is no bifurcation and the

symmetry of the system is preserved. In other words, if the symmetry of the system is

changed, the class of solution could change without bifurcation. For example, in the case

of η 6= 1, for solutions F(X) = 0 it is not the case that F(σξyX) = 0 and F(σζσξyX) = 0.

Therefore symmetries S that contain σξy and σζσξy are no longer allowed, and the number

of possible classes reduces to 5: I, D, S, Tε,δ and M.

The solution X which is s.u. S = σζσξy is sometimes referred to as steady solution, because

c and cz must be zero in this case. Similarly, c = 0 if X is s.u. σζ or τ
1/2
ξ σζ , and cz = 0

if X is s.u. σξy or τ
1/2
ζ σξy. Note that these relations for wavespeeds hold when present

particular Galilean flame, which assure the symmetry of basic flow, is chosen. For example,

for plane Couette flow with basic flow (UB,WB) = (R(1 − y)/2, 0), steady solutions have

(c, cz) = (R/2, 0) as we observed in figure 5.1 (b).

According to this classification, the Nagata solution in PCF belongs to class S∗. How-

ever, with the introduction of non-zero curvature into the problem geometry, this solution

becomes a class S solution by symmetry breaking of the system (c.f. section 5.1).

5.3 Linear stability of non-axisymmetric solutions

Finally in the present chapter, we examine the stability of the travelling-wave solutions

in the previous sections. The strategy here is the same as that for basic solution, i.e. we

superimpose an infinitesimal perturbations on the flow field (chapter 3). Here we restrict

our attention to disturbances with the fundamental mode, namely the disturbance has the
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same wavenumbers as the travelling-wave solution. The velocity field is now given by

u = uTW + ǔ = (uTW + ǔ)ex+(wTW + w̌)eθ+∇×∇×((φTW + φ̌)er)+∇×((ψTW + ψ̌)er),

(5.11)

where the subscript TW denotes the travelling-wave solution and the check (∗̌) denotes

the superimposed infinitesimal perturbations. The perturbations φ̌, ψ̌, ǔ, w̌ are expanded

as

φ̌(ξ, y, ζ, t) =
L∑
l=0

M∑
m=−M

(m,n)6=(0,0)

N∑
n=−N

X̌
(1)
lmnΦl(y) exp(imζ + inξ + st), (5.12)

ψ̌(ξ, y, ζ, t) =
L∑
l=0

M∑
m=−M

(m,n)6=(0,0)

N∑
n=−N

X̌
(2)
lmnΨl(y) exp(imζ + inξ + st), (5.13)

ǔ(y, t) =
L∑
l=0

X̌
(1)
l00Ul(y) exp(st), (5.14)

w̌(y, t) =
L∑
l=0

X̌
(2)
l00Wl(y) exp(st) (5.15)

where the travelling-wave coordinates ζ and ξ and the truncation levels (L,M,N) must be

the same as the travelling-wave solution.

Substituting expansions (5.12)–(5.15) into governing equations (2.8)–(2.11) for φ = φTW +

φ̌, ψ = ψTW+ψ̌, u = uTW+ǔ and w = wTW+w̌, and employing the same Fourier-Galerkin,

Chebyshev-collocation technique as used for Newton’s method in section 2.3, we obtain a

linear algebraic eigenvalue problem. Using the same notation as in equation (2.21), this

problem can be expressed as

{Dij +HijkXk +HikjXk + i(mm0cθ + nαc)Bij}X̌j = sBijX̌j, (5.16)

where X̌i ∈ X̌
(j)
lmn and Xi ∈ X

(j)
lmn.

Our numerical analysis shows that (5.16) has always two zero eigenvalues. These eigenval-

ues result from the fact that SCF is invariant under azimuthal and axial translations.
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Figure 5.13: The real part σ of the growth rate s of the travelling-wave solution for η =
0.5 corresponding to those with m0 = 3 at α = 0.51 in figure 5.4. The solid/dashed
curves imply that the imaginary part γ of the growth rate s is zero/non-zero. The figure
includes two growth rates s ≡ 0 for any R. Curves with an open circle correspond to the
perturbation with the symmetry (i). The right figure is a close-up near the saddle-node
bifurcation point (dotted vertical line).

Figures 5.13 and 5.14 show real part σ of the growth rate s around the saddle-node in the

case η = 0.5 and 0.1, respectively. Recall that the class S solution possesses the symmetry

(i) only, whereas the class M solution possesses the symmetries (i) and (iii). The curves

with an open circle in these figures correspond to the eigenvalues calculated by restrict-

ing X̌i to those with the symmetry (i) and the curves with a closed circle correspond to

eigenvalues calculated by restriction to X̌i with the symmetry (iii). The curves with both

open and closed circles correspond to the eigenvalues calculated by restricting X̌i to those

with both of the symmetries (i) and (iii). It is seen that the lower-branch solutions are

always unstable against the fundamental mode and, consistent with the bifurcation theory,

the real eigenvalue crosses zero at the saddle-node bifurcation point (dotted vertical line).

Except for figure 5.14 (c), the lower-branch solutions have only one growing eigenmode.

These lower-branch solutions can be expected to play particularly important roles in tran-

sition dynamics, since such solutions can be realized in simulation by controlling only one

flow parameter, e.g. energy (therefore these solutions are identical to edge states). For the

same solution branches, it is also found that the upper-branch counterparts are stable in a

small region next to the saddle-node. As R increased, these stable solutions soon become

unstable against the perturbation with the symmetry (i): the corresponding eigenvalues

are complex, and so some sort of time-dependent solutions which keep the shift-refection

symmetry are expected.
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Figure 5.14: The real part σ of the growth rate s of the three travelling-wave solutions
(η,m0) = (0.1, 1) corresponding to those in figure 5.10. The solid/dashed curves imply that
the imaginary part γ of the growth rate s is zero/non-zero. The figures include two growth
rates s ≡ 0 for any R. Curves with an open or closed circle correspond to the perturbation
with the symmetry (i) or (iii). Curves with both open and closed circles correspond to the
perturbation with the symmetries both (i) and (iii). The right figure is a close-up near the
saddle-node bifurcation point (dotted vertical line). (a): the class S with α = 0.59, (b):
the class M with α = 0.77, (c): the class M with α = 0.86.
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5.4 Summary

In order to investigate the possibility for the existence of finite-amplitude solutions other

than axisymmetric solutions in chapter 4, especially in a relatively low Reynolds number

region, we used the three-dimensional PCF equilibrium solution by Nagata (1990) in the

limit of narrow gap (η = 1) and continued it to wider cases (η < 1). This homotopy

approach proves to be successful and the resulting non-axisymmetric nonlinear solutions

travelling in the axial direction are found. They are characterised by fast and slow speed

streaks flanked by strong axial vortices, as is typical for other exact coherent structures.

These solutions result from saddle-node bifurcations at R = O(102) and exist for a wide

range of η. For η = 0.5, where the linear critical state is absent, the Reynolds number

at the saddle-node bifurcations reaches a minimum, which is approximately 256.6 for the

optimal azimuthal and axial wavenumbers (m0, α) = (3, 0.51). Recalling that the linear

critical state is absent for η = 0.5, it is very likely that the lower-branch solutions originate

from the finite-amplitude streaky field at asymptotically large R as described by Wang,

Gibson & Waleffe (2007) in the case of PCF. We will give a detailed discussion for this

point in section 6.3.

We also obtained mirror symmetric solutions for η = 0.1 by bifurcation. There are two

distinct mirror symmetric solution families at the low R range, which give minimum R =

291.8 and 294.7. However, the lowest minimum Reynolds number 288.6 is still given by

non-mirror symmetric solutions continued from PCF. All the minima for η = 0.1 are

obtained when the azimuthal wavenumber m0 = 1.

The linear stability analysis of non-axisymmetric travelling-wave solutions, though re-

stricted to the fundamental mode, shows that the lower-branch solutions are always un-

stable, and that stable upper-branch solutions may exist in a small region next to the

saddle-node bifurcation point. It is also found that the several lower-branch solutions only

have one unstable mode and thus coincide to the ‘edge states’ in SCF.
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Figure 5.15: The accuracy of the solution for the nonlinear algebraic equation (2.21) based
on the maximum relative error ε (closed circles) and the L2-norm of the residual ‖Fi‖2 (open
circles) as a function of the Newton-Raphson iteration. (η,m0, α, R) = (0.5, 3, 0.50, 350).
(L,M,N) = (16, 8, 9). Double precision is used.

5.A Appendix

5.A.1 Convergence criterion of Newton-Raphson method

An example of the variation of ε in (2.22) as the Newton-Raphson iteration is repeated

is shown in figure 5.15. The calculation is undertaken at (η,m0, α, R) = (0.5, 3, 0.50, 350)

with the resolution (L,M,N) = (16, 8, 9). We use the converged solution at (η,m0, α, R) =

(0.5, 3, 0.51, 350) as an initial guess. Double precision arithmetic is used. We can see from

the closed circles in figure 5.15 that the accuracy does not improve once the criterion (2.22)

is satisfied at the fifth iteration. As for the L2-norm of the residual of (2.21), ‖Fi‖2 is not

reduced after the fifth iteration either (see the open circles in figure 5.15). However, the

value of ‖Fi‖2 for the approximation obtained by using the criterion (2.22) smaller than

that expected when compared with the typical order of the corresponding ‖Li‖2 (see tables

4.1, 5.2 and 5.3). From figure 5.15, the tolerance 10−5 in (2.22) guarantees convergence

with the signal-to-noise-floor ratio at O(10−11)–O(10−12).
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5.A.2 Symmetry for other basic flow field

(i) Symmetry for system of symmetric basic flow

For the reader who is interested in the possible symmetry of solutions for symmetric basic

flow profile, i.e. UB(y) = UB(−y), here we exhibit similar analysis for this case as in

subsection 5.2.2 where antisymmetric basic flow is considered. In this case the system has

symmetries

F(X) = 0 ⇔ F(σζX) = 0 ⇔ F(σyX) = 0 ⇔ F(σζσyX) = 0, (5.17)

where σy[u, v, w, p, c, cz](ξ, y, ζ) = [u,−v, w, p, c, cz](ξ,−y, ζ).

The straightforward calculation yields following 22 distinct classes.

• I ≡ Sym(),

• I‡ ≡ Sym(σy),

• I† ≡ Sym(τ
1/2
ζ σy),

• I� ≡ Sym(τ
1/2
ξ σy),

• I◦ ≡ Sym(τ
1/2
ξ τ

1/2
ζ σy),

• D ≡ Sym(σζ),

• S ≡ Sym(τ
1/2
ξ σζ),

• P ≡ Sym(σyσζ),

• Q ≡ Sym(τ
1/2
ξ σyσζ),

• Tε,δ ≡ Sym(τ δξ τ
ε
ζ ),

• D‡ ≡ Sym(σζ , σy, σyσζ),

• D† ≡ Sym(σζ , τ
1/2
ζ σy, σyσζ),

• D� ≡ Sym(σζ , τ
1/2
ξ σy, τ

1/2
ξ σyσζ),

• D◦ ≡ Sym(σζ , τ
1/2
ξ τ

1/2
ζ σy, τ

1/2
ξ σyσζ),

• S‡ ≡ Sym(τ
1/2
ξ σζ , σy, τ

1/2
ξ σyσζ),

• S† ≡ Sym(τ
1/2
ξ σζ , τ

1/2
ζ σy, τ

1/2
ξ σyσζ),

• S� ≡ Sym(τ
1/2
ξ σζ , τ

1/2
ξ σy, σζσy),

• S◦ ≡ Sym(τ
1/2
ξ σζ , τ

1/2
ξ τ

1/2
ζ σy, σζσy),

• M ≡ Sym(σζ , τ
1/2
ξ σζ , τ

1/2
ξ τ

1/2
ζ ),

• T ‡ ≡ Sym(τ
1/2
ξ τ

1/2
ζ , σξy, τ

1/2
ξ τ

1/2
ζ σξy),

• M‡ ≡ Sym(σζ , τ
1/2
ξ σζ , τ

1/2
ξ τ

1/2
ζ , σy, τ

1/2
ξ τ

1/2
ζ σy, σyσζ , τ

1/2
ξ σyσζ),

• M† ≡ Sym(σζ , τ
1/2
ξ σζ , τ

1/2
ξ τ

1/2
ζ , τ

1/2
ζ σy, τ

1/2
ξ σy, σyσζ , τ

1/2
ξ σyσζ).
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(ii) Symmetry for quasi-isotropic flow

We can also investigate symmetry for a spatially periodic quasi-isotropic flow (invariant for

arbitrary replacement of x, y and z) i.e. the system governing the flow is invariant under

Ryxz[u, v, w, p](x, y, z) = [v, u, w, p](y, x, z), (5.18)

Rxzy[u, v, w, p](x, y, z) = [u,w, v, p](x, z, y), (5.19)

Rzyx[u, v, w, p](x, y, z) = [w, v, u, p](z, y, x). (5.20)

We assume the flow X is invariant under τD,E,FRyxz, τ
D,F,ERxzy and τF,E,DRzyx where

τF,E,D denotes a shift operator. The superscripts F,E,D ∈ [0, 1/2] represents the shift

value in x, y and z directions divided by the fundamental period. Though we write these

operators in general form above, as can be seen, a relation τD,E,FRyxzτ
D,E,FRyxzX =

τD+E,D+E,0X = X, D = E = F must be satisfied.

We further assume the flow X has reflectional symmetries

σx[u, v, w, p](x, y, z) = [−u, v, w, p](−x, y, z), (5.21)

σy[u, v, w, p](x, y, z) = [u,−v, w, p](x,−y, z), (5.22)

σz[u, v, w, p](x, y, z) = [u, v,−w, p](x, y,−z) (5.23)

together with the shift operators τF,E,D. Thus we can consider the flowX which is invariant

under τA,B,Cσx, τ
C,A,Bσy, τ

B,C,Aσz and τD,D,DRyxz, τ
D,D,DRxzy and τD,D,DRzyx and the

symmetries generated by them. For such a flow, we find A = B = C by considering

τD,D,DRyxzτ
C,A,Bσyτ

D,D,DRyxzτ
A,B,CσxX = τ 0,B+C,B+CX = X. The case (A,D) = (0, 1/2)

coincides to that first derived by Kida (1985) while the other cases (A,D) = (0, 0), (1/2, 0)

and (1/2, 1/2) are also possible.



Chapter 6

Homotopy of mirror-symmetric

solutions

For the past decade enormous efforts have been made to understand the dynamics of

transitional and turbulent fluid motion in PCF and PF. In these flows recurrent coherent

states, such as travelling waves, are transiently observed in experiments (e.g. Bech et al.

1995, Bottin et al. 1997, Bottin et al. 1998, Daviaud 1992, Darbyshire and Mullin 1995,

Hof et al. 2004 and Hof et al. 2005) and numerical simulations (e.g. Hamilton et al.

1995, Kerswell & Tutty 2007, Schneider et al. 2007 and Willis & Kerswell 2008). However,

the fact that these coherent states are unstable and the absence of a linear instability

mechanism has previously prevented the discovery of nonlinear solutions to these linearly

stable canonical flows.

Nevertheless, solutions to such a systems could have been obtained continuing from so-

lutions of some other modified system by using the homotopy method. One common

and effective modification for obtaining exact coherent structures, i.e. three-dimensional

streamwise roll type finite-amplitude solutions, of shear flows is the introduction of an

artificial force which creates finite-amplitude rolls and streaks. These rolls and streaks

trigger linear instability in the modified system as explained by Waleffe’s SSP. By continu-

ing the bifurcating solution to the unforced objective system, a large number of nonlinear

86
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Sym. PCF PF

S∗
Nagata (1990)=Gibson et al. (2009): EQ1,EQ2,

Gibson et al. (2009): EQ3 ∼ EQ6,
Schneider et al.(2010): uEQ.

NA

M∗ Itano & Generalis (2009),
Gibson et al. (2009): EQ7,EQ8.

NA

I∗ Gibson et al. (2009): EQ9 ∼ EQ13. NA
R Gibson et al. (2009): TW1. NA

S Nagata (1997)=Gibson et al. (2009): TW2, TW3,
Schneider et al.(2010): uTW .

Faisst & Eckhardt (2003)
=Pringle et al. (2009): S,
Pringle et al. (2009): U.

M - Pringle et al. (2009): M,N
D - Pringle et al. (2009): D,Z

Table 6.1: The list of the known travelling-wave solutions in PCF and PF.

travelling-wave solutions for PCF and PF have been discovered (a summary of the known

travelling-wave solutions to date is provided in table 6.1).

In addition to this SSP strategy, one may also anticipate that further solutions can be

obtained by starting from a known solution in one problem configuration and then gradually

changing the flow configuration to move to a configuration of a separate problem. It is

particularly of interest to investigate homotopy connections between solutions for PCF,

PF and SCF, since similar mirror-symmetric solutions have been commonly reported for

these flows. In the following sections, we investigate homotopies from solutions for SCF

obtained in chapter 5 to solutions for PCF and PF problems.

6.1 Towards plane Couette flow

6.1.1 Resultant homotopy path

Here we will show that two types of class M solutions found in section 5.2 can be followed

back to PCF. The bifurcation diagram of these two solutions in SCF is replotted in figure

6.1 together with the class S solution. Though these two branches belong to the same

symmetry class, we can observe a difference in the axial averaged flow fields in figure

6.2: one has large vortices whose scale is almost equal to the gap, whereas the other has
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Figure 6.1: The momentum transfer of the SCF solutions for (η,m0, α) = (0.1, 1, 0.75).
The solid/dashed curves represent the class S/M solutions. (L,M,N) = (25, 16, 10). The
circle is the bifurcation point. Note that β ≈ 0.82.
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Figure 6.2: The axial averaged flow field of the SCF class M solutions for (η,R,m0, α) =
(0.1, 700, 1, 0.75). The grey scale represents the axial velocity component (light: fast, dark:
slow). The white curves represents the critical layers, i.e. streak, steamwise averaged axial
component of velocity, coincides with wavespeed of the travelling waves.
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Figure 6.3: The SCF-PCF homotopy of the single-layer class M solutions for (α, β) =
(0.75, 0.82). The range of truncation level (L,M,N) ∈ [25, 40]× [6, 16]× [10, 26] is used.

double-layered, half gap sized vortices. Mathematically, this roll structure could change

along the solution branch without bifurcation. However, it seems that the roll structure is

roughly preserved as long as there is no rapid change of the branch shape compared to the

overall. Indeed, the two branches of classM solutions in figure 6.1 reconnect when the axial

wavenumber α is changed as we saw in figure 5.9. We confirm the flow structures change

rapidly only in the vicinity of the reconnection point where the branches turn sharply.

The reconnection of these solution branch does not occur at higher values of η because the

homotopy behavior with changing η for these two solution types differs. As shown in figure

6.3 the minimum Reynolds number for which the single-layer mode exists increases with

η. In the PCF limit, as can be seen also from figure 6.6 (d), its saddle-node point is at

R = O(103) which is ten times higher than other known three-dimensional finite-amplitude

solutions of PCF. On the other hand, the saddle-node point of the double-layer mode is

relatively invariant to the change in η, and R remains low in the PCF limit. Figure 6.4

shows the variation of wall shear ∆ as a function of α and β together with the existence

region given by the projection onto the α − β plane for four different values of η under

R = 400. The azimuthal wavenumber m0 takes integer values along the two-dot chain

lines as are shown in the lower projections. At η = 0.3, we thus find that solutions exist
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Figure 6.4: The SCF-PCF homotopy of the double-layer solutions for R = 400. The
truncations used are within the range of (L,M,N) ∈ [23, 30] × [12, 30] × [12, 22]. The
black/grey lines represent the class M/M∗ solutions.

only for m0 = 1, 2. When η becomes larger than 0.3, the solution bubble separates into

two bubbles. The bubble that exists for smaller values of β smoothly connects to PCF

with only a small change in its shape. We call this solution the double-layer mode A.

The homotopy of the solution bubble that exists for larger values of β is also smooth, but

it joins at η = 1 with a third bubble which abruptly appears between η = 0.5 and 0.7.

The upper and lower surfaces of the resultant large bubble at η = 1 is made of these two

different bubbles. The contact surfaces of the two bubbles which was facing each other

become a membrane forming in the large bubble at η = 1. At this planar limit, the outer

surface of the solution bubble retrieves the steady symmetry, σξy, so that it belongs to

class M∗, whereas the solution membrane (i.e. the contact surface of the joined bubbles)

remains of class M. We call these solutions, the membrane and outer joined bubble

solutions, double-layer mode B solutions. The exotic bifurcation scenario of this solution

family accompanying the imperfection of the symmetry of the system around η = 1 will

be examined in detail in subsection 6.1.2. Figure 6.5 shows the existence region of the

solutions in the PCF limit. We can see the existence regions of the Nagata solution and
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Figure 6.5: The open symbols chained by the solid lines represent the existence region of
the PCF solutions at R = 400 in the wavenumber plane. The closed symbols show the
optimal wavenumber pair. Triangle: the class S∗ Nagata solution, square: the class M
double-layer solution A, circle: the class M∗ double-layer solution B.

double-layer mode B almost overlap whereas a larger spanwise structure, i.e. smaller β,

is preferred for the double-layer mode A. With decreasing R each of the existence regions

shrinks to a single point in the wavenumber plane and then disappears. As in the previous

section, we term this special parameter set (R,α, β), at which R attains its global minimum

for the particular solution, as the optimum parameter set. Using the optimum wavenumber

pair, the bifurcation diagrams of all the PCF solutions obtained are summarized in figure

6.6. We can see the double-layer mode A has class M upper- and lower-branch solutions

corresponding to the upper and lower surfaces of the bubble respectively, while the double-

layer mode B has class M∗ upper and lower branches, and a bifurcating class M solution

branch corresponding to the upper and lower surfaces of the outer bubble, and the inner

membrane respectively. From these properties, it is found that the M∗ double-layer mode

B coincides to known mirror-symmetric solutions (Itano & Generalis 2009 and EQ7 and

EQ8 of Gibson et al. 2009, earlier can be found in Schmiegel 1999’s low resolution result)

whereas the M double-layer mode B, the single-layer mode and the double-layer mode

A represent solutions previously unreported in the literature. We can see from the axial

averaged flow field of these solutions (figure 6.7) that the single- and double-layer properties

are preserved along the PCF-SCF homotopy. We can also see that the Nagata solution is
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Figure 6.6: The bifurcation diagram for the PCF solutions with the optimum wavenum-
ber pairs. (a): Nagata solutions ((L,M,N) = (20, 10, 12), the optimum parameter set is
(R,α, β) = (255.4, 0.58, 1.15)), (b): Double-layer solutions A ((L,M,N) = (25, 12, 22),
the optimum optimum parameter set is (R,α, β) = (348.5, 0.51, 0.71)), (c): Double-
layer solutions B ((L,M,N) = (23, 12, 16), the optimum optimum parameter set is
(R,α, β) = (280.1, 0.75, 1.37)), (d): Single-layer solutions ((L,M,N) = (40, 6, 26), the
optimum optimum parameter set is (R,α, β) = (3164.5, 0.74, 1.09)). The grey dashed,
grey solid and black solid lines represent the class S∗, M∗ and M solutions, respectively.

of a single-layer type structure.

Similar bubble separation/unification also occurs for the SCF-PCF homotopy path of class

S solutions, but we do not show the details here because the bubbles have very complex

shape at small η (c.f. figure 5.9). We only say here that the class S solutions continued

from the Nagata solution to SCF do not always retrieve steady type symmetry, S∗, when

returned to PCF. For example, if η is decreased to 0.36 in figure 5.9, the branch is recon-

nected to another branch around R = 350. The new branch obtained by the reconnection

instead return to the travelling-wave solution discovered by Nagata (1997). (These lat-

ter solutions are class S, with optimum (R,α, β) = (315.2, 0.70, 1.36); we confirm these

solutions are the same solution as TW2 and TW3 of Gibson et al. 2009).
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(a): (b):

(c): (d):

(e): (f):

(g):

(h): (i):

Figure 6.7: Same plot as figure 6.2 but for the PCF solutions at R = 400 for (a)–(g),
at R = 4000 for (h) and (i). The optimal wavenumbers are used. The horizontal axis
represents spanwise coordinate z ∈ [0, 2π/β], and the vertical axis represents wall-normal
coordinate y ∈ [−1, 1]. (a): the upper-branch and (b): the lower-branch Nagata solution;
(c): the upper-branch and (d): the lower-branch double-layer solution A; (e): the upper-
branch, (f): the lower-branch and (g): the bifurcating travelling-wave double-layer solution
B; (h): the upper-branch and (i): the lower-branch single-layer solution.
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Figure 6.8: The imperfect bifurcation of the double-layer solution B in PCF when a plane
Poiseuille flow component, Rp, is added for wavenumbers (α, β) = (0.75, 1.37). The mea-
sures of the nonlinearity are (a): the momentum transfer ∆ and (b): the wavespeed c. The
curves in grey and black correspond to Rp = 0 and Rp = 0.1, respectively.

Recall that we also observed the unification of the solution bubbles of class M solutions

around similar values of η. The typical unification of solution bubbles around η = 0.3 can

be considered to be due to the introduction of the inner cylinder, which begins to affect the

flow structure when its diameter is comparable to the gap at this particular radius ratio.

6.1.2 Double structure of the travelling-wave solution branches

This subsection examines the bifurcation nature of class M double-layer solution B at

η ≈ 1. As we saw in figures 6.4 and 6.6 (c), there exist steady upper- and lower-branch

solutions, here denoted by XEQ, and two bifurcating travelling-wave solution branches,

here denoted by X+
TW and X−

TW , at η = 1. The two travelling-wave solution branches

which are overlapped in figure 6.6 (c), satisfy cross-parity σξyX
±
TW = X∓

TW as long as the

system has σξy symmetry. Where ± refers sign of their non-zero wavespeeds relative to the

steady solutions.

In order to examine the qualitative change of the bifurcation due to the imperfect symmetry

of the system, which must resolve the degeneracy of X±
TW , it is convenient to consider

a simpler situation, i.e. we perturb antisymmetric PCF profile by adding a symmetric
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Figure 6.9: The real part of the growth rate of a perturbation for the double-layer solution
B with (α, β) = (0.75, 1.37). The three largest real parts for Rp = 0 and Rp = 0.1 are shown
in (a) and (b), respectively. The next largest real parts (from the fourth to the tenth) for
Rp = 0 and Rp = 0.1 are shown in (c) and (d), respectively. The figures include two growth
rates s = σ+iγ ≡ 0 for all R, which result from the invariance of the solution to infinitesimal
translations. The solid/dashed curves imply that σ is real/complex conjugate, respectively.
For Rp = 0, the black and grey curves correspond to XEQ and X±

TW , respectively. For
Rp = 0.1, the black thick (285.2 ≤ R ≤ 287.6), black thin (286.6 ≤ R ≤ 287.6) and grey
thick (286.6 ≤ R ≤ 287.6) curves correspond to travelling-wave solutions with negative,
smaller positive and larger positive wavespeeds, respectively.
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(a) (b)

(c) (d)

Figure 6.10: Isosurfaces of the streamwise velocity component U (grey) and the streamwise
vorticity component ωx (light grey: positive and dark grey: negative) of for the double-layer
solution B with wavenumbers (α, β) = (0.75, 1.37) at R = 400. Isosurfaces is at U = 120
and (a): |ωx| = 300 for XEQ upper-branch, (b): |ωx| = 100 for XEQ lower-branch, (c):
|ωx| = 250 for X+

TW and (d): |ωx| = 250 for X−
TW . The isosurface of the streamwise velocity

component U at U = −120 in each case is located near the boundary y = 1 symmetrically
to the isosurface at U = 120, but not displayed for clarity.
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Figure 6.11: The mean flow U of XEQ and X±
TW with wavenumbers (α, β) = (0.75, 1.37)

at R = 400 for the double-layer solutions B. The solid curve: the upper-branch steady
solution XEQ. The dashed curve: the lower branch steady solution XEQ. The dash-dotted
curve: the travelling-wave solution X+

TW . The dotted curve: the travelling-wave solution
X−

TW .

Poiseuille flow component so that the basic flow takes the form of

UB = −Ry/2 +Rp(1− y2). (6.1)

Where Rp is the second Reynolds number associated with a pressure gradient in the Couette

flow direction which causes symmetry breaking of σξy symmetry of the system as in the

case of η < 1.

Figure 6.8 shows the momentum transfer, ∆, and the wavespeed, c, for XEQ and X±
TW

with (α, β) = (0.75, 1.37), which is the magnified portion of figure 6.6 (c), for the cases

Rp = 0 and 0.1. As Rp is increased from zero, the pitchfork bifurcation at R = RB = 286.2

for Rp = 0 is destroyed due to the symmetry breaking of the system as in the case of η < 1.

The section of the XEQ branch for R < RB and the travelling-wave branch with c ≤ 0

form a smooth branch with negative wavespeeds whereas the section of the XEQ branch

for R > RB, on the other hand, forms a new branch with a saddle-node point at R slightly

larger than RB by connecting with the travelling-wave branch with c ≥ 0.

In order to further elucidate the bifurcation structure, the stability of XEQ and X±
TW is

analyzed when Rp = 0 and Rp = 0.1 near R = RB. The strategy to obtain the growth

rate σ for these solutions is the same as in section 5.3. Figure 6.9 shows the results of
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the stability analysis where (a) and (c) correspond to the unperturbed case with Rp = 0

whereas (b) and (d) to the perturbed case with Rp = 0.1. For both cases, the three largest

real parts are shown in the upper parts of the figures (figures 6.9 (a) and (b)). From these

figures it is clear that all the solution branches are unstable. The next largest real parts

(from the fourth to the tenth) are shown in the lower parts of the figures (figures 6.9 (c) and

(d)). As shown in figure 6.9 (c) for Rp = 0 the fifth largest real part of the growth rate for

XEQ changes from positive to negative as R is increased. It crosses zero at R = RB = 286.2,

giving rise to the bifurcation of the travelling-wave solutions, X±
TW . The fifth largest real

part of the growth rates for X+
TW and X−

TW , which are degenerate in figure 6.9, starts from

zero at this point and increases with R. Hence these eigenvalues crossing zero are purely

real, and bifurcating travelling-wave solutions must have zero wavespeed at the bifurcation

point. However, away from the bifurcation point the bifurcating solutions are travelling

waves because the associated eigenfunction breaks steady symmetry (i.e. σξy).

For perturbed case Rp = 0.1, we can see from figure 6.9 (d) that for the travelling wave

branch with a negative wavespeed, which are originally X−
TW and XEQ, the sign of the

growth rates of the linear disturbance are unchanged with changing R, implying no bi-

furcations from this branch. In contrast, near R = 286.6 the fifth largest real parts of

the growth rate for the two travelling-wave branches with positive wavespeeds, which are

originally X+
TW and XEQ, join together at zero creating a saddle-node bifurcation.

Isosurfaces of the total streamwise velocity component U and the streamwise vorticity

component ωx for these solutions with (α, β) = (0.75, 1.37) at R = 400 are plotted in

figure 6.10. All of the plots are presented for a domain comprising the full height of the

channel and one period in both the streamwise and spanwise directions. For all plots,

high speed streaks corresponding to the ridges of the isosurface of U = 120 are located

near the boundary at y = −1. High-speed streaks with opposite sign are also located

near the boundary at y = 1, but these are not plotted for clarity. It can be seen that

there are two streaks varying in a varicose way in the streamwise direction, due to the

mirror symmetry. For the upper-branch of XEQ, we can see strong streamwise vortices of

equal strength situated near the boundaries at y = ±1, whereas they are located near the
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midplane y = 0 for the lower-branch of XEQ. Strong quasi-streamwise vortices are located

in a neighbourhood of the bottom boundary y = −1 for X+
TW , whereas, consistent with

the cross-parity, they are found near the upper boundary y = 1 for X−
TW .

The total mean flow U shown in figure 6.11 also reflects the differing symmetries. It can be

seen that mean flows of both the upper- and lower-branch of the XEQ are anti-symmetric

about the midplane y = 0, whereas those of the travelling-wave solutions, X+
TW and X−

TW ,

are asymmetric.

6.2 Towards pipe flow

We also show that class M solution in SCF can be continued to PF. In this section the

flow is assumed to be driven by an axial pressure gradient together with the movement of

the inner cylinder. As a consequence, the basic flow profile UB = UBex is obtained by

UB(r) = R
ln(r/rb)

ln η
+Rp

r2 − r2b − 2r2p ln(r/rb)

r2p − r2b − 2r2p ln(rp/rb)
, (6.2)

and can be seen to depend on R, the Reynolds number induced by sliding, Rp, the Reynolds

number induced by the axial pressure gradient, and η, the radius ratio. This system is often

refereed to as annular Couette-Poiseuille flow in the case of non-zero R and Rp. Note that

if R = 0, i.e. the case called annular Poiseuille flow, UB takes the largest value Rp at

r = rp = rb

√
η2−1
2 ln η

. The definition of Rp is consistent with the basic flow expressed by

(6.1).

With this basic flow profile we next consider the limit as η → 0 in which the basic flow

coincides with that of PF

UB(r) = R
r2b − r2

4rm
, (6.3)

together with axial pressure gradient

Rp

R
= Π(η) =

r2p − r2b − 2r2p ln(rp/rb)

r2b (η
2 − 1)

. (6.4)
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However, the infinitesimally thin inner cylinder still has a non-negligible effect on the

disturbance in this limit. We discuss how to eliminate this effect in the next subsection.

6.2.1 Eliminating process of inner cylinder

Firstly, we examine the analytic condition at the centreline r = 0 which is needed for pipe

flow calculation. Let us consider the circular domain in Cartesian coordinates,

B ≡ {(x1, x2) ∈ IR2 : x21 + x22 ≤ r2b} (6.5)

and cylindrical coordinates,

B◦ ≡ {(r, θ) ∈ IR≥0 × IR : r ∈ [0, rb], θ ∈ [0, 2π)}. (6.6)

Because of the singularity at r = 0, C∞(B◦) does not ensure C∞(B). Here we say that

f(r, θ) ∈ B◦ is an analytic function if f ◦ %−1(x1, x2) ∈ C∞(B) introducing inverse polar

mapping

% : IR2 → IR≥0 × IR/(2πZ)

(x1, x2) 7→ (
√
x21 + x22, arctan(x2/x1)). (6.7)

We approximate f by using a truncated series in a usual spectral method.

f(r, θ) ≈ fLM(r, θ) =
L∑
l=0

M∑
m=−M

XlmPm
l (r)eimθ + c.c., (6.8)

where Pm
l (r) is lth-order polynomial basis function. To ensure the analyticity at the

centreline of fLM(r, θ) for any truncated sum, each function Pm
l (r)eimθ should be C∞(B).

We can paraphrase this analyticity condition to the condition for Pm
l (r) as follows (see

Eisen et al. 1991 for example).
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Theorem 2. The following three statements are equivalent:

(i): Pm
l (r)eimθ ∈ C∞(B), i.e. is analytic,

(ii): Pm
l (r)eimθ can be rewritten as a polynomial in x1 and x2,

(iii): Pm
l (r) satisfies the following conditions (a) and (b):

(a, parity condition) : m is odd (even) ⇒ Pm
l (r) is odd (even) function,

(b, order condition) : minimum order of Pm
l (r) ≥ |m|.

One basis set which can satisfy the above conditions is the Zernike basis (Zernike 1934),

Z m
l (r) =

(l−m)/2∑
s=0

(−1)s
(l − s)!

s!(m+l
2

− s)!( l−m
2

− s)!
rl−2s. (6.9)

Note that the above conditions represent the analytic condition for a scalar function. There-

fore we further need the conditions for the potentials so that the velocity field is to be

analytic in cylindrical domain D ≡ {(x1, x2) ∈ B, x3 ∈ [0, L3]}.

Theorem 3. φ/r, ψ/r, v/r, w ∈ C∞(D) ⇒ velocity field [u, v, w]T given by (2.8) can be

rewritten as a C∞(D) vector field in Cartesian coordinates.

The proof of this theorem is straightforward. Let us denote velocity field in Cartesian

coordinates [u1, u2, u3]
T = Θ[v, w, u]T by using the orthogonal transformation

Θ ≡


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 .

Unit vectors in the x1, x2, x3 directions are obtained by[ex1 , ex2 , ex3 ] = [er, eθ, ex]Θ
−1. If

we write the curl operator in matrix form for Cartesian and cylindrical coordinate as

A ≡


0 −∂x3 ∂x2

∂x3 0 −∂x1

−∂x2 ∂x1 0

 , A◦ ≡


0 −∂z r−1∂θ

∂z 0 −∂r

−r−1∂θ ∂r + r−1 0
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respectively, then we have A = ΘA◦Θ−1. Therefore

[er, eθ, ex]


v

w

u

 = [er, eθ, ex]

A
◦A◦


φ

0

0

+ A◦


ψ

0

0

+


0

v

w




= [ex1 , ex2 , ex3 ]

AA

xφ/r

yφ/r

0

+ A


xψ/r

yψ/r

0

+


−yv/r

xv/r

w


 .

The terms in curly brackets in the last line equals [u1, u2, u3]
T and this is C∞(D). The

proof is completed.

In view of theorems 2 and 3, each basis function for potentials and mean flows must satisfy

the modified parity and the order conditions to assure the analyticity of flow field. However,

higher order conditions are not required for the current computations because the centerline

is not chosen as a collocation point. Indeed, although many authors use a non-analytic

basis to calculate PF (for example, Kerswell and co-workers omit order conditions, whereas

Shimizu & Kida (2009) only consider analyticity of scalar potentials), their results seem to

be reliable. Hence we can relax the above conditions to the minimum requirement, namely

boundary conditions at the centreline. Expressing each basis function Φl, Ψl, Ul and Wl as

a Taylor expansion
∑l

k=0 qkr
k and applying the analytic condition to the leading order, we

can find these proper boundary conditions at r = 0:

Φl : q0 = q2 = 0 ⇒ Φl = ∂r(Φl/r) = 0 if m = 0, (6.10)

Φl : q0 = q1 = 0 ⇒ Φl = ∂rΦl = 0 if m 6= 0, (6.11)

Ψl : q0 = 0 ⇒ Ψl = 0, (6.12)

Ul : q0 = 0 ⇒ Ul = 0, (6.13)

Wl : q1 = 0 ⇒ ∂rWl = 0. (6.14)

In order to smoothly transform these conditions to those corresponding to the no-slip
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conditions, we consider the linear combination of these boundary conditions at r = 0,

 (Φl)
′ = 0 if m = 0,

(1− ε)(Φl)
′ − ε(Φl/r)

′ = 0 if m 6= 0,

Φl = Ψl = Ul = (1− ε)Wl − εW ′
l = 0. (6.15)

We can construct a basis which satisfies (6.15) at r = 0 and the no-slip conditions at r = rb

by using modified Chebyshev polynomials as

Φl(r) =

 r(2− r)2(rTl(r − 1) + ε(−1)l) if m = 0

r(2− r)2rTl(r − 1) if m 6= 0
, (6.16)

Ψl(r) = r(2− r)Tl(r − 1), (6.17)

Ul(r) = r(2− r)Tl(r − 1), (6.18)

Wl(r) = (2− r)(rTl(r − 1) +
2ε

2− ε
(−1)l). (6.19)

This expression coincides with the previously used basis if (η, ε) = (0, 0), whereas the effect

of inner cylinder vanishes if (η, ε) = (0, 1).

6.2.2 Resultant homotopy path

The homotopy path from SCF to PF is thus made by the following three procedures:

• (i) : Add an axial pressure gradient to adjust the basic flow to be parabolic.

• (ii) : Consider the limit as η → 0.

• (iii) : Eliminate the effect of the inner cylinder by considering the limit as ε→ 1.

The last procedure can be done by using basis (6.16)–(6.19).

Note here that at final pipe state, pressure gradient balances the basic flow shear on the

outer cylinder, i.e. U ′ = U ′
B = −R, and the deviation of ∆ from its laminar value is always
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Figure 6.12: The SCF-PF homotopy. (a): The change of momentum transfer ∆, fixing
(η, ε, R,m0, α) = (0.1, 0, 700, 1, 0.75). (b): Same result as (a) but for flux Q. (c), the dashed
lines: The change of fluxQ against η, fixing (ε, R,Rp,m0, α) = (0, 700, ΠR, 1, 0.75). (c), the
solid lines: The change of flux Q against ε, fixing (η,R,Rp,m0, α) = (0.1, 700, ΠR, 1, 0.75).
(d): The bifurcation diagram of PF solution, namely (η, ε, Rp) = (0, 1, ΠR) for (m0, α) =
(1, 0.73). (L,M,N) = (30, 26, 18) are chosen, but for around (η, ε) = (0, 0), L is pushed to
50.

(a): (b):

Figure 6.13: Same plot as figure 6.2 but for the PF solutions at (R,m0, α) = (1000, 1, 0.73).
(a): Upper-branch. (b): Lower-branch.
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0 for any equilibrated nonlinear solutions. For this reason during the homotopy we instead

use the normalized flux

Q =

∫ rb
ra
(u+ UB)rdr∫ rb
ra
UBrdr

(6.20)

to measure the solutions.

Figure 6.12 (a) shows the variation of momentum transfer ∆ during the procedure (i).

Solutions marked Ud, Ld, Us and Ls in the figures correspond to those of figure 6.1. The

basic flow profile (6.2) becomes parabolic at Rp = ΠR where the vertical dotted line is

traced in the figures. Only the lower branch of the double-layer mode could successfully

reach this limit. As can be seen, the upper-branch was followed through a large number

of turning points without reaching Rp = ΠR, before computation was abandoned. The

upper-branch starting from Rp = ΠR in the figure is derived by a roundabout route via

the lower branch. The same homotopy paths for (i) in terms of Q are shown in figure 6.12

(b). In figure 6.12 (c), the solid lines show the variation of flux Q during the procedure (ii)

while the dotted lines represent the variation during the procedure (iii). Figure 6.12 (d)

shows the solution branch of the double-layer mode at the final single pipe state obtained

by the homotopy. In this figure, we slightly change α to 0.73, to optimize the bulk Reynolds

number Rb = Q
∫ rb
ra
UBrdr/2rm. Our solution takes a minimum bulk Reynolds number at

Rb = 772/4 which confirms that this solution is the same solution as the M1 found by

Pringle & Kerswell (2007). The plot of the structure of this flow provided in figure 6.13

further shows the similarity of our double-layer type solution and M1. As for the PCF-SCF

homotopy, this solution preserves its double-layer vortex pattern even in the pipe geometry

limit.

On the other hand, we confirm the single-layer mode experiences a turning point before

Rp reaches ΠR for various (R,α, β). Though it is known that PF has a single-layer type

class M solution family (labelled N by Pringle et al. 2009), this result suggests that the

single-layer class M solution of SCF cannot continue to this class of flows. The branch of

class S solutions of SCF with m0 = 1 is also unable to reach pipe flow by this homotopy
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due to the many folds of the branches when the pressure gradient increases.

As a check of the homotopy method exhibited in this section, we confirm that the solutions

of pipe flow calculated by basis (6.16)–(6.19) could be recalculated using the following

Zernike-based basis,

Φl(r) = r(1− r2)2Z m
l (r), (6.21)

Ψl(r) = r(1− r2)Z m
l (r), (6.22)

Ul(r) = r(1− r2)Z 0
l (r), (6.23)

Wl(r) = (1− r2)Z 0
l (r). (6.24)

Note that the flow field, which is now mapped in (x, r, θ) ∈ [0, 2π/α]× [−1, 1]× [0, 2π/m0],

is analytic with this expression. By constructing an initial guess from a least-square in-

terpolation of the solution calculated by basis (6.16)–(6.19), Newton’s method successfully

converged within a few iterations.

6.3 Self-sustaining mechanism: the forcing from wave

to vortex

The aim of this section is to confirm the large Reynolds number asymptotic structure

in three-dimensional finite-amplitude solutions we obtained. The possible theory we can

apply is vortex-wave interaction (VWI) theory introduced by Hall & Smith (1991), whose

quantitative agreement to the Nagata solution has been confirmed recently by Hall &

Sherwin (2010).

First, we briefly summarize the VWI theory. For the sake of simplicity, we here use

Cartesian coordinates in the narrow-gap limit. Assuming α ∼ O(1), the total velocity of
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travelling-wave solution propagating in streamwise direction expands as

U = A0U0(y, z) +
∞∑

m=1

Am(Um(y, z)e
imα(x−ct) + c.c.), (6.25)

V = V0(y, z) +
∞∑

m=1

Am(Vm(y, z)e
imα(x−ct) + c.c.), (6.26)

W = W0(y, z) +
∞∑

m=1

Am(Wm(y, z)e
imα(x−ct) + c.c.) (6.27)

where c.c. represents complex conjugate. The Fourier decomposed velocities [Um, Vm,Wm](y, z)

are O(1) for all m and the amplitudes Am ∈ IR≥0, where IR≥0 is the set of non-negative real

numbers, measure the Reynolds number dependence of the order of each terms. In VWI

theory, any component which is proportional to the 0th/1st streamwise Fourier mode is

referred to as “vortex”/“wave” and plays an important role. In the “vortex” component,

U0 represents the streaks, whereas V0 and W0 represent the streamwise rolls. The reason

why the same order of amplitudes are used in all three velocity components arises from

requiring [Um, Vm,Wm](y, z) satisfy continuity equation (recall α ∼ O(1)). However diffi-

culties arise for the 0th terms because the streamwise component, streak, is free from this

balance. Bearing in mind U0 includes the basic flow, the proper choice is A0 = R. We will

see from the following streamwise-averaged Navier-Stokes equations (6.29)–(6.32) why the

amplitude of roll components should be O(1), thereby deducing so-called R−1 scaling of

rolls. It is known that for the lower branch solution, the higher the value of m the faster

the decay of the amplitude coefficients Am (Wang et al. 2007 for PCF, Viswanath 2009

for PF). With this motivation, we assume A2
m → 0 and Am+1/Am → 0 as R → ∞ for

any m ≥ 1, and the proper expansion of the pressure is determined as follows so that the

pressure terms balance the nonlinear terms,

P = A0Gx+ P0(y, z) + A0

∞∑
m=1

Am(Pm(y, z)e
imα(x−ct) + c.c.) (6.28)

where G represents the constant streamwise pressure gradient. Substituting expansions
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(6.25)–(6.28) into (2.2) for U, V,W and P and taking the streamwise average,

V0∂yU0 +W0∂zU0 = G+ ∂2yyU0 + ∂2zzU0 + Fx, (6.29)

V0∂yV0 +W0∂zV0 = −∂yP0 + ∂2yyV0 + ∂2zzV0 + Fy, (6.30)

V0∂yW0 +W0∂zW0 = −∂zP0 + ∂2yyW0 + ∂2zzW0 + Fz, (6.31)

∂yV0 + ∂zW0 = 0 (6.32)

subject to

U0 − UB = V0 =W0 = 0 at y = ±1. (6.33)

We refer to these equations as the vortex system hereafter. Where Fx = O(A−1
0 A2

1), Fy =

O(A2
1), Fz = O(A2

1) are forcing terms arising from the nonlinear interaction of the higher

harmonics which rapidly decay as R increases. However, we need forcing F ≡ Fyey +Fzez,

which is the only energy input to the roll components, to sustain the solution. Therefore

we need the “wave” in order to maintain the “vortex”. This point can be resolved by

examining the Galerkin projection of the first streamwise Fourier mode onto the Navier-

Stokes equations (i.e. wave system). The leading part of resultant equation is inviscid

linearized Navier-Stokes equations for the fundamental wave, U1 and P1, and exhibits a

singularity at the critical layer, where U0 equals to c. This can be found by the following

two-dimensional Rayleigh equation

∂2yyP1 + ∂2zzP1 − α2P1 − 2
∂yU0

U0 − c
∂yP1 − 2

∂yU0

U0 − c
∂yP1 = 0, (6.34)

subject to

∂yP1 = 0 at y = ±1, (6.35)

which are equivalent to the wave system derived above (Hall & Horseman 1991). Due to the

singularity, the critical layer analysis reveals that F does not decay at the critical layer in
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the manner of the Dirac delta function. The asymptotic form of the force F∞ ≡ (F∞
y , F∞

z )

in the limit as R → ∞ can be explicitly calculated as a function of P1 and U0. Since

the result of the force is manifested in a finite jump at the critical layer, it is convenient

to introduce normal and tangential distance (n, s) from the critical layer instead of (y, z).

The unit vectors in these directions are obtained in terms of U0 as en = − ∂yU0

∂nU0
ey − ∂zU0

∂nU0
ez

and es = − ∂zU0

∂nU0
ey +

∂yU0

∂nU0
ez where ∂nU0 =

√
(∂yU0)2 + (∂zU0)2. Here the signs of these

vectors are determined so that en = ey and es = ez when the basic flow is undisturbed.

A jump appears in the component of roll velocity tangential to the critical layer at this

layer, V0 = es · (V0ey + W0ez), as [∂V0

∂n
]+− 6= 0 and pressure, P0, as [P0]

+
− 6= 0 where ±

signs represent values just above and below the critical layer. As a consequence, the vortex

system (6.29)–(6.32), Rayleigh equation (6.34) and F∞(P1, U0) comprise a closed system

in the limit as R → ∞. Hall & Sherwin (2010) solved this system numerically for PCF.

6.3.1 Detailed physical mechanism of VWI structure

Figures 6.14, 6.15 and 6.16 show the magnitude of the forcing |F| calculated by (6.30) and

(6.31) for the solutions obtained in the previous chapter. The forcing spreads out across

the entire layer for the upper-branch solutions because the assumption of the behavior of

Am in the limit as R → ∞ does not hold. By contrast, for all lower-branch solutions, the

forcing is confined to the critical layer, where white curves are traced in the corresponding

velocity plot figures 6.2, 6.7 and 6.13, in agreement with VWI theory. Further, we can see

that the forcing in these cases is always manifested as a pair of strongly forced localize

regions on the critical layer. By comparing the pictures of the velocity fields and forcing,

we can find that the force is situated near points at which the rolls create outward jets

along the critical layer. We can see this picture more clearly in figure 6.18, where the rolls

, streaks, and forced regions are superimposed for two typical PCF solutions, the class S∗

Nagata solution and the class M∗ double-layer solution B at sufficiently high R. Further,

the plot of the tangential forcing along the critical layer Fs ≡ es · F, figure 6.17, reveals

that a pair of forces described above correspond to a positive-negative peak. From the
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(a): (b):

(c): (d):

Figure 6.14: The magnitude of the forcing |F| for the flow fields of the SCF solutions
pictured in figure 6.2. Black colour represents zero forcing.

figure, it can also be seen that the shear ∂nU0 takes a maximum value in the streaks.

The peak of streak shear, the wave forcing at the critical layer and the outward jets of

rolls we observed are correspond to the trinity of elements of Waleffe’s SSP cycle. Here

we reconstruct this cycle, but locally in terms of VWI context, restricting attention to the

lower branch class M∗ solution (same solution as figure 6.7 (f)) for simplicity. From the

symmetry, we can deduce that the critical layer for this flow is given by y = 0. There

are therefore no curvature effects of the critical layer which appear in the formulation by

Hall & Sherwin (2010). However, in more general cases we note from figures (6.2), (6.7)

and (6.13) that curvatures of the critical layer for the lower-branch solutions in typically

smaller than that of the upper-branch solutions and, a similar mechanism should exist if

the curvature is sufficiently small.

This assumption simplify the asymptotic functional form of the wave forcing at the critical



6.3. Self-sustaining mechanism: the forcing from wave to vortex 111

(a): (b):

(c): (d):

(e): (f):

(g):

(h): (i):

Figure 6.15: Same plots as figure 6.14 but for the flow fields of the PCF solutions pictured
in for figure 6.7.

(a): (b):

Figure 6.16: Same plots as figure 6.14 but for the flow fields of the PF solutions pictured
in figure 6.13.
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(a):

(b):
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Figure 6.17: The forcing on the rolls at high Reynolds number for a lower branch class
M∗ solution of PCF. The optimal wave number pair is used (same as figure 6.7 (f) except
for R and resolution (L,M,N) = (180, 4, 22)). (a): The bright/dark colour represents
positive/negative Fz for R = 6× 105. (b): The forcing at y = 0. The solid lines represent
exact calculations, Fz

√
2πR−1/3, whereas the dashed lines represent VWI calculations,

F∞
z /δ(y). The grey and black correspond to R = 6× 103 and R = 6× 105, respectively.

Figure 6.18: The visualization of the solutions of PCF. Left: The lower branch Nagata
solution (class S∗) at (R,α, β) = (2 × 105, 1, 2) calculated by (L,M,N) = (120, 5, 50).
Right: The lower branch double-layer class M∗ solution at (R,α, β) = (2× 105, 0.75, 1.37)
calculated by (L,M,N) = (180, 4, 22). The horizontal axis represents spanwise coordinate
z ∈ [0, 2π/β], whereas vertical axis represents wall-normal coordinate y ∈ [−1, 1]. The
thick solid lines show the position of the critical layer (U0 − c) = 0, while the thin solid
lines show the position of the iso-contours (U0 − c) = 0.5 × (U0|y=±1 − c). The vectors
indicate roll velocity (V0,W0) and the greyed ovals represent the strongly forced regions
where |F| is greater than the half of its maximum.
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Figure 6.19: The streak shear ∂nW0 (solid line), the wave force Fs = es · F (dotted line)
and the component of the roll velocity tangent to the critical layer V0 = es · (V0ey +W0ez)
(dashed line). The horizontal axis represents arc length of critical layer from z = 0. All
dependent variables are normalized by their maximum value. Left / right figures correspond
to left / right figures of figure 6.18 respectively.

layer y = 0 (see Hall & Sherwin 2010 for the complete expression) as

F∞
y = 0, (6.36)

F∞
z = −C1∂z{(α∂yU0)

−5/3|∂zP1|2}δ(y), (6.37)

where δ represents the Dirac delta function and C1 = 2π(2/3)2/3(−2/3)!. Here A1 should

be R−1/6 in order that the effect of the force A
−5/3
0 A2

0A
2
1 ∼ O(1). With respect to figure

6.17 (b), in which we plot forcing on the critical layer, it can be seen that the exact

expression Fz asymptotes to that of VWI expression F∞
z along the critical layer. In this

comparison, the delta function δ(y) in (6.37) is approximated by normalized Gaussian

function e−y2/2a2/
√
2πa whose width a was chosen to the order of critical layer thickness

R−1/3, and hence δ(0) ≈ R1/3/
√
2π.

Next we examine how the forcing affects rolls. We can calculate the jump in the roll velocity

across the critical layer by integrating equation (6.31) from just below to just above the

critical layer as

−
[
∂V0

∂n

]+
−
= −

[
∂W0

∂y

]+
−
=

∫ 0+

0−
F∞
z dy. (6.38)

Recalling thatW0 is even function in y by symmetry, if F∞
z is positive (negative), W0 takes

a maximum (minimum) at y = 0. This dependence of W0 on F∞
z clearly represents that
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the positive and negative peaks of the forcing create jets in the roll component. The jets

advect fast fluid from the near wall to the vicinity of the critical layer and hence the peak

of the streak shear is formed.

Finally we link the peaks of the streak shear and the wave forcing. We just consider a toy

problem here since it is not possible to give a proof for the general case. Two assumptions is

are made. (i): y = 0 represents the critical layer as in the case ofM∗ class solution; (ii): the

streak profile can be approximated by the simple profile U0 − c = −C2y exp(−λz2/2) with

real constants C2 and λ > 0, with which the streak shear (y derivative of this profile) has

single peak at z = 0 on the critical layer. With these assumptions, separation of variables

P1(y, z) = P̌1(y)P̂1(z) is possible. Setting Z =
√
λz, B(Z) = exp(Z2)P̂1(z) satisfies the

following Hermite differential equation,

∂2ZZB − 2Z∂ZB + 2(k − 1)B = 0, (6.39)

where k is the separation variable constant. This suggests P1 (and so the forcing) is given

by damped oscillatory waves with strong peaks around the origin. To verify this analysis,

we compare the model with the numerical results of figure 6.17. The profiles of the plots

in the figure suggests that the non-oscillation case k = 0 express in the solution for B

to equation (6.39). Consistent with the observation of full solutions, the corresponding

solution ∂zP̂1(z) ∝ e−λz2 implying P1(y, z) = −P1(y,−z), i.e. the strong wave is at the

axis of shift-reflection symmetry. Substituting U0 and P1 of the toy problem into expression

(6.37), the forcing takes form

F∞
z = C3z exp(−7λz2/6)δ(y), (6.40)

where C3 is a positive undetermined constant. The forcing (6.40) indeed has positive-

negative peaks in the vicinity of the origin. Note that both the class M∗ solution and

the model, U0 expand as C2(−y + λyz2/2) + · · · around the origin. Estimating λ by this

comparison for the case of figure 6.17, R = 6× 105, we find expression (6.40) has a peak at

0.112. This is sufficiently close to that of exact calculation, 0.108, and of VWI calculation,
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Figure 6.20: The schematic of interaction between the peak of the streak shear (solid lines),
the wave forcing at the critical layer (ovals) and the outward jets of the rolls (arrows).

0.109. Also, note that we can prove there can be no forcing if U0 is independent of the

spanwise variable z as follows. Seeking a solution of the form P1(y, z) = P̌1(y)P̂1(z) in

(6.34), we find that P̂1(z) ∝ eiC4z. So assuming P̂1(z) does not cause exponential growth,

i.e. C4 ∈ IR, it is sufficient to show that ∂2yyP̌1 − C5P̌1 − 2 ∂yU0

U0−c
∂yP̌1 = 0 has only trivial

solutions for some positive constant C5 = α2 + C2
4 . Multiplying the complex conjugate of

P̌1 and integrating between the walls, we find

∫ 1

−1

C5|P̌1|2 + |∂yP̌1|2

|U0 − c|2
dx =

[
∂x|P̌1|2

|U0 − c|2

]1
−1

= 0. (6.41)

Only P̌1 ≡ 0 satisfies this equation. Similar arguments also hold for the cylindrical case,

because the Rayleigh equation (6.34) leads to ∂2rrP̌1 +
1
r
∂rP̌1 −C5P̌1 − 2 ∂rU0

U0−c
∂rP̌1 = 0, and

P̌1 satisfies the similar equation

∫ rb

ra

C5|P̌1|2 + |∂rP̌1|2

|U0 − c|2
rdr =

[
r
∂r|P̌1|2

|U0 − c|2

]rb
ra

= 0. (6.42)

Therefore, if U0 is slowly varying in the spanwise direction, as in the case of no streaks,

the forcing will be weak.

The schematic of overall interaction process is pictured in figure 6.20. The local self-
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(a): (b):

Figure 6.21: The schematic of a typical single-layer solution (left) and double-layer solution
(right). The allows and lines represent the rolls and the contours of streaks respectively.
The thick lines represent the critical layer. The grey elliptic ovals are the forced regions
where the outward jets are induced.

sustaining mechanism explains why spatially localized roll patterns can be observed in

subcritical shear flow transition. Indeed, spanwise localized solutions of PCF have been

are recently found by Schneider et al. (2010), and the present theory can explain the

mechanism of this solution. An important feature of equilibrated VWI type flow is that

it requires an O(1) streak modification to the basic flow as suggested in equation (6.41).

However, note that if we consider the wavenumber dependence of the streak modification,

this modification should be scaled by β when we assume the spanwise localization of flow

field (c.f. section 4.3, where the mean flow of streamwise localized axisymmetric solution

is discussed).

We note here that the homotopy behavior of the lower-branch double-layer solution is

relatively robust in comparison with other branches; i.e. it is easy to continue such solutions

when we change the geometry or the basic flow profile compared to the upper-branch

solutions or lower branch single layer solutions. The mechanism stated above also enables

to explain this difference in homotopy behaviours of the lower-branch single- and double-

layer modes because the spatial distribution of locally forced region can be affected by the

change of the basic flow and the geometry. The point is the critical layer must pass through

the locally forced region where jets occur at the side of the rolls.

For single-layer type solutions, jets are created between two rolls and the wall. As a result,

the critical layer is curved so that it gets close to both of the walls where the jets are

created (figure 6.21 (a)). The peaks of the streak shear which produce these jets are due
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to concentration of U0 contours in a neighbourhood of the critical layer. It seems that

one-sided forcing is also possible (figure 6.14 (d) and figure 6.15 (i)), but it is driven by

the same mechanism.

In contrast, the critical layer is always located away from the walls for the double-layer

solution. In this case, jets are induced between the two vortex layers (figure 6.21 (b)).

As a consequence, the critical layer is nearly parallel to the walls, perpendicular to the

basic flow gradient. In other words, the shear of the basic flow is almost uniform along

the critical layer for the case of the planer-cylindrical homotopy. Because of this special

property, the sustaining mechanism at the critical layer is maintained when the basic flow

profile is varied along the homotopy of lower branch double-layer mode.

6.3.2 VWI process in high Reynolds number sliding Couette flow

Finally, we investigate VWI structure for high Reynolds number SCF solutions. The vortex

system for a cylindrical coordinate system can be written as

V0∂rU0 + r−1W0∂θU0 = G+ ∂2rrU0 + r−1∂rU0 + r−2∂2θθU0 + Fx, (6.43)

V0∂rV0 + r−1W0∂θV0 − r−1W 2
0 = −∂rP0 + ∂2rrV0 + r−1∂rV0 (6.44)

+r−2∂2θθV0 − r−2V0 − 2r−2∂θW0 + Fr,

V0∂rW0 + r−1W0∂θW0 + r−1V0W0 = −r−1∂θP0 + ∂2rrW0 + r−1∂rW0 (6.45)

+r−2∂2θθW0 − r−2W0 + 2r−2∂θV0 + Fθ,

∂rV0 + r−1V0 + r−1∂θW0 = 0. (6.46)

Figure 6.22 shows the visualization of roll, streak and forcing calculated by above equations

for double-layer class M solutions at (η,R) = (1/42, 6×104) (this radius ratio corresponds

to that used by experimental work by Shands et al. 1980). In the figure, we can find typical

roll, streak and forcing interaction described in the previous subsection (c.f. figure 6.20).

It is also possible to compare the forcing field F = Frer + Fθeθ with the VWI asymptotic
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(a): (m0, α) = (2, 1.08) (b): (m0, α) = (3, 1.27)

Figure 6.22: The visualizations of double layer class M solutions of SCF for (η,R) =
(1/42, 6× 104). The thick solid curves show the position of the critical layer (U0 − c) = 0,
while the thin curves show the position of the iso-contours (U0 − c) = 0.1 × (U0|r=ra − c)
and (U0 − c) = 0.1 × (U0|r=rb − c). The vectors indicate roll velocity (V0,W0) and greyed
ovals represent strongly forced regions where |F| is greater than half of its maximum.

calculation. The finite jump by Hall & Sherwin (2010) at the critical layer r = rc yields

r′c
rc
[∂rW0]

rc+
rc− = [∂rV0]

rc+
rc− =

r′c
rc
J(θ) (6.47)

[P0]
rc+
rc− = K(θ) (6.48)

where

J(θ) =
C1

a5/3Θ5r3c

{(
−7

2

Θ′

Θ
− 5

3

a′

a
− 2

r′c
rc

)
|∂θP1|2 + ∂θ|∂θP1|2

}
, (6.49)

K(θ) =
C1

a5/3Θ5r3c

(
2Θ− 1− r′′c

rc

)
|∂θP1|2, (6.50)

a = α(∂rU0)/Θ and Θ = 1 + (r′c/rc)
2. Integrating roll equations (6.45) and (6.46) across

the critical layer, we obtain

K −
(
r′c
rc

)
ΘJ =

∫ rc+

rc−
F∞
r

∂nU0

∂rU0

dn =
F∞
r

δ(n)

∂nU0

∂rU0

, (6.51)

−
(
r′c
rc

)
K −ΘJ =

∫ rc+

rc−
F∞
θ

∂nU0

∂rU0

dn =
F∞
θ

δ(n)

∂nU0

∂rU0

. (6.52)

In figure 6.23, we plot the forcing at the critical layer, a good quantitative agreement
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(a): (m0, α) = (2, 1.08) (b): (m0, α) = (3, 1.27)
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Figure 6.23: The tangential forcing at the critical layer r = rc for high Reynolds number
SCF solutions. (a) and (b) correspond to those of figure 6.22. The solid lines represent
exact calculations, Fs

√
2πR−1/3, whereas the dashed lines represent VWI calculations,

F∞
s /δ(n). The reader who notices that the sign difference to figure 6.17 should refer the

notice in the beginning of section 5.1.

of the exact and the asymptotic form of tangential forcing Fs can be seen. Note that

in the comparison, es = − ∂θU0

rc∂nU0
er +

∂rU0

∂nU0
eθ and ∂nU0 =

√
(∂rU0)2 + (r−1

c ∂θU0)2. The

delta function δ(n) is approximated by the same Gaussian function normal as in the last

subsection.

6.4 Summary

The homotopy of three-dimensional solutions between flows with planar, cylindrical and

circular cross-section has been developed. We started the homotopy from the solutions of

SCF and continued to PCF and PF. The two types of mirror-symmetric solution found in

section 5.2, one with a single-layer and the other with a double-layer streamwise vortex

structure, were used as the starting points for the homotopies. The single- and double-layer

structures belong to the same symmetry class and therefore mathematically can change

from one to the other without bifurcation, and these structures are preserved along our

homotopy paths.

It is found that the homotopy of the double-layer solution is relatively easy. As a result,

we obtain solutions that include those of Itano & Generalis (2008) for PCF and Pringle &

Kerswell (2007) for PF. Though the homotopy sometimes failed for upper-branch solutions,
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we were always able to continue the lower branch solution between the three flows with

distinct cross-sections, keeping R ∼ O(102). On the other hand, the resultant solution

appears at a much higher Reynolds number than other known finite-amplitude solutions

for PCF, while we were unable to continue the single-layer mode to PF.

For any η, all of the new solutions discovered in this thesis belong to class M, i.e. these are

mirror-symmetric travelling waves. According to table 6.1, where the list of solutions of

PCF are summarized, our study provides the first discovery of class M solutions in PCF.

For these solutions, it is found that there exist overlapped solution branches corresponding

to positive and negative speed travelling-wave solutions. This degeneracy is resolved when

the system’s symmetry is imperfect due to the introduction of curvature.

The three-dimensional solutions obtained are characterized by their streamwise-averaged

velocity field, i.e. roll-streak coherent structure. To sustain the streamwise averaged field,

i.e. the “vortex”, it is well known that we need nonlinear forcing from the streamwise

fluctuation velocity field, the “wave”. This forcing is the key of the sustaining mechanism

of finite-amplitude solutions as explained in Waleffe’s SSP and in VWI theory, which had

been developed in the asymptotic field of study, and was recently applied to lower-branch

exact coherent structures. We examine the forcing of the solutions obtained, and it is

found that this forcing nucleates as a pair of positive-negative strong portions on the

critical layer for lower-branch solutions. At the strongly forced region, outward jets in the

roll component and the peak of the streak shear are commonly observed.

We use VWI theory as a basic tool and developed the self-sustaining process which can

work locally as follows: the positive-negative forcing create outward tangential jets to the

critical layer. These jets arise in the roll component and form a part of outer edge of the

rolls. The rolls advect fast streaks to the critical layer so that the streak shear takes a

maximum that amplifies the wave pressure, which in turn creates a strong force and so on.

Though VWI theory is an asymptotic approach varied for asymptotically large R, it seems

that the flow structures presented above can be observed for lower-branch solutions even

at moderate Reynolds numbers.
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As stated above, the local mechanism requires consistency of the roll structure and the

critical layer, i.e. the critical layer must be sandwiched by rolls or a roll and a wall. The

single-layer solutions is the latter case, for which there is a curved critical layer which

significantly cuts across the basic shear layer. In contrast, the former case corresponds to

the double-layer solutions, the critical layer is located between a double vortex pattern.

This means that the shear of basic flow is almost constant along the critical layer which is

nearly parallel to the wall in this case. Because this property is preserved even when the

basic flow and boundary are changed, this double-layer solutions are therefore relatively

easy to continue to other flow geometries by homotopy.

6.A Appendix

6.A.1 Homotopy of axisymmetric solutions

(i) Towards plane Couette flow

One might ask about the connection between the present two-dimensional solutions for

SCF presented in chapter 4 with similar two-dimensional streamwise localized solutions in

PCF, which have been discussed in shear flow transition community. Such two-dimensional

solutions in PCF are first obtained by homotopy continuation of Tollmien-Schlichting wave

solutions in plane Poiseuille flow to PCF, decreasing pressure gradient and adding mutual

motion of upper and lower walls (Cherhabili & Ehrenstein 1995, we call this solution 2DEQ

hereafter). However, the question of the existence of this solution is still not confirmed

due to its problematical sensitivity to the number of Fourier modes in the streamwise

direction (Rincon 2007, Ehrenstein et al. 2008). Though similar states have been discovered

in slightly perturbed PCF by using different axial discretization method by Barkley &

Tuckerman (1999), Mehta (2004) and Mehta & Healey (2005), corresponding solutions in

pure PCF have not yet been discovered.

To make a comparison with 2DEQ, we continue the solution branch of SCF to PCF. The
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(a): 2DEQ, α = 0.03

(b): 2DTW, α = 0.03

(c): 2DTW, α = 0.006

Figure 6.24: The axial fluctuation velocity field ũ/R for the two-dimensional solutions for
PCF with (η,R) = (1, 5300). The truncation level (L,N) = (39, 60) is used for (a) and
(b) while (L,N) = (39, 250) is used for (c). The dashed lines represent the locations of the
critical layers.

continuation is successful if we use a low resolution level and we label this solution as

2DTW. The resultant solution is compared to 2DEQ in figure 6.24 (a) and (b) under the

same calculation conditions. Though the visualization shows similar streamwise localized

pattern, these solutions are distinct. The crucial difference of these solutions is that 2DTW

does not possesses symmetry about the mid-gap observed in 2DEQ (i.e. 2DEQ is a steady

solution whereas 2DTW is a travelling-wave solution).

Figure 6.25 shows the results of resolution test of these solutions. This figure shows all

coefficients including leading parts are sensitive to the resolution, in contrast to figure 4.18.

In addition, there exists the upper bound of resolution: it is not possible to increase N from

120 to 121 for 2DEQ, from 63 to 64 for 2DTW for fixed values of the physical parameters.

It is possible to increase N if we decrease α as in figure 6.24 (c), however, another difficulty

comes up. This can be seen in figure 6.26, where the axisymmetric solutions obtained is

plotted in η–(αR) parameter space. From the figure, we can see the solution in figure 6.24

(c) violates the energy criteria in Appendix 4.A.2 while all other computation conducted
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Figure 6.25: The spectral intensity Sn =
∣∣∣ue−inξ

∣∣∣ |y=yc/R for various streamwise truncation

level N . The parameters used are the same as those of figure 6.24. The truncation level in
wall-normal direction is fixed to L = 39. Left/right figures represent the results for 2DEQ
/ 2DTW. The solid, dashed and dotted curves represent the results with N = 120, N = 60
and N = 50, respectively.

in this paper is comfortably settled within the energy boundary.

In view of all the above unphysical behaviours, we conclude that any solutions found above

the existence threshold of axisymmetric solutions determined by reliable computation in

subsection 4.1 to be ηmax = 0.33–0.40, are numerical artifacts. This conclusion is consistent

to non-existence of nonlinear two-dimensional asymptotic structure of PCF (c.f. section

4.2). Although the solution 2DTW does not exist for pure PCF, it may have some relevance

to perturbed PCF as for 2DEQ.

(ii) Towards pipe flow

Homotopy of localized axisymmetric solutions from SCF to PF is also an interesting sub-

ject, because it is widely known that localized disturbances, called ‘puffs’, are frequently

found in pipe flow experiments. To find solution of PF, we add axial pressure gradient to

axisymmetric solution found in section 4.1 fixing η = 0.1.

However, Rp does not reach the parabolic limit Rp/R = Π ≈ 0.46, even when R and α are

adjusted. As a result of the optimization of Rp/R, it is found that long-wave and high R

situation is preferred. The maximum Rp/R achieved within our computational restriction

is 0.41. We confirm further increasing of R nor decreasing of η does not so much improve

this value. As for SCF–PCF case, the requirement of long-wave structure in this limit
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Figure 6.26: The η–αR parameter space plot of the solutions obtained in this section
and chapter 4 together with the energy boundary for α = 0 (solid line) and α = 0.6546
(dashed line). The marks ×,�,4 and � represent the existence edges of LR modes for
α = 0.6546, 0.2, 0.1 and 0.05 (same points as figure 4.6). The filled and open circles
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Figure 6.27: The axial fluctuation velocity field ũ/R for the axisymmetric solution with
(η,R,Rp, α) = (0.1, 5.2 × 106, 0.41R, 0.01). The truncation level (L,N) = (58, 212) is
used. The dashed line represents the location of the critical layer.

corresponds to the long-wave breakdown of two-dimensional asymptotic structure, which

inhibits high R axisymmetric asymptotic theory of PF (c.f. section 4.2 and 4.3). In order to

maintain long-wave version of asymptotic structure, O(1) mean-flow modification is needed

since Rayleigh equation cannot have a solution if the mean flow is close to a parabola.

The mean flow for Rp/R = 0.41 is pictured in figure 6.28. As the figure shows the modifi-

cation part is very weak compared to the basic flow and the total mean-flow profile is close

to the parabolic profile. This phenomena suggests that the failure of the continuation to

PF is due to the absence of nonlinear asymptotic structure.

Other evidence for the result that solutions cannot be continued to PF, is that the strongest

velocity fluctuation on the critical layer is confined to the inner wall (figure 6.27). Thus
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Figure 6.28: The mean flow of the axisymmetric solution with (η,R,Rp, α) = (0.1, 5.2×106,
0.41R, 0.01). The truncation level (L,N) = (58, 212) is used. (a): The total mean flow
U/R (solid line) and the parabolic base flow profile (dashed line), where the parameter
Rp/R takes Π ≈ 0.46. (b): The mean-flow distortion u/R.

removal of the inner cylinder in the homotopy would destroy the sustaining mechanism of

the solution.

We, therefore, conclude that there is little hope for two-dimensional counterpart of homo-

topy path from SCF to PF solutions.
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Conclusion

This thesis has considered the problem of flow between two infinitely long co-axial cylinders

mutually sliding in the axial direction, called sliding Couette flow (SCF). A number of finite-

amplitude solutions are discovered and compared to theoretical large Reynolds number

asymptotic structures. Also, homotopy connections between the solutions of SCF and

those of plane Couette flow (PCF) and pipe flow (PF) are considered.

Let us conclude the stability properties of SCF in the R–η parameter plane in figure 7.1.

Our linear stability analysis with respect to axisymmetric and non-axisymmetric distur-

bances shows that the basic flow of SCF exhibits linear instability only to axisymmetric

disturbances (chapter 3). As shown in the figure, the instability exists at R > O(106) when

η < 0.1415, where the long-wave cut-off occurs.

From these linear neutral points, the branch of axisymmetric finite-amplitude travelling

wave solutions bifurcates subcritically (chapter 4). Along the branch Reynolds number can

be reduced to around O(104). The flow field of this type of solution is characterized by

distinct wall boundary layers and a nonlinear critical layer structure qualitatively agreeing

with the nonlinear axisymmetric asymptotic theory that is developed in the same chapter.

The critical layer structure is sensitive to the basic flow profile, which in turn depends on

η. Indeed, both the numerical and asymptotic solutions cannot be continued beyond at

126
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Figure 7.1: The schematic illustration of the stability property of SCF. Depicted are the
stability boundaries for two-dimensional linear (2DL), two-dimensional nonlinear (2DNL)
and three-dimensional nonlinear (3DNL) perturbations. Below the 3DNL threshold, SCF
is globally stable, i.e. any disturbance decay ultimately.

some value of η, estimated to be around 0.33–0.40. Our computations suggest that these

nonlinear cut-offs occur in the long-wave limit as for the linear instability. The long-wave

situation breaks the multi-layered asymptotic flow structure and a streamwise localized

disturbance emerges instead.

In SCF, there also exist three-dimensional, non-axisymmetric solutions with various kinds

of symmetric streamwise roll structure (chapter 5 and 6). Most of these solutions arise

in a saddle-node bifurcation at R ∼ O(102) for wide range of values of the radius ratio,

at least from η = O(10−1) to narrow-gap limit η = 1, i.e. PCF. Thus even when the

two-dimensional instability is absent in SCF, turbulence could be triggered by a three-

dimensional streamwise roll type instability as has been observed in other shear flows. The

asymptotic structure of the non-axisymmetric solutions can be well explained by VWI

theory. In contrast to two-dimensional asymptotic theory, the VWI structure is sustained

via streamwise rolls, which can be present in shear flows with any cross-section. This is

consistent to the absence of cut-off behaviour for the non-axisymmetric solutions, i.e. the

solutions do not vanish as η varies. Further, our observations elucidate that a spanwise

localized roll structure can also sustain this type of solution.
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Now the overall stability properties of SCF are summarized. The results suggest that for

any η, the global stability boundary of SCF, below which the flow always ultimately returns

to the laminar flow, is determined by the three-dimensional nonlinear stability boundary

at R ∼ (102), since there is no solution on which the turbulent trajectory hangs.

A schematic illustration of the finite-amplitude solution branches for η < 0.1415 is pre-

sented in figure 7.2. With increasing η, the two-dimensional solution branch detaches from

the linear instability at η = 0.1415 and finally disappear at η = 0.33 − 0.40. For both

two- and three-dimensional solutions, the lower-branch solutions show quantitative agree-

ment with asymptotic theory, while the asymptotic structure of the upper-branch solutions

remains an open problem.

All of these numerical investigations indicate subcritical transition to turbulence in SCF,

though the evidence for such a phenomenon has yet to be observed in experiment or sim-

ulation studies. As R is increased, the present results suggest that the flow would first

encounter a three-dimensional instability triggered by the lower-branch three-dimensional

solutions, whose asymptotic structure is governed by VWI theory. However, we note here

that one of the notable properties of the axisymmetric asymptotic solution, and one which

agrees with the asymptotic behaviour of the numerically-computed two-dimensional lower

branch solutions, is that all disturbances decay as R is increased. This means that when we

consider practical laminar flow control at high R, the two-dimensional Tollmien-Schlichting

type flow structure could become more important than the VWI type streamwise roll equi-

librated states, which require an O(1) modification of the mean flow, because it would be

‘closer’ to laminar flow in the sense of disturbance magnitude (e.g. disturbance norm or

energy). Thus it is likely that the axisymmetric solutions opens up the route to transition

first in some cases. We also note here that for moderate R, it is known that an O(R−1)

streamwise roll can trigger shear-flow transition by the lift-up mechanism (e.g. Darbyshire

& Mullin 1995, Hof et al. and Lemoult et al.). When R is sufficiently large, the axisym-

metric solutions, which have O(R−1/6) deviation from the basic flow, would also affect this

route to transition where the magnitude of the disturbance evolves from O(R−1) to an

O(1) size.
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Figure 7.2: Schematic illustration of the bifurcation diagram of SCF when η < 0.1415.

Although the present thesis mainly concentrates on SCF, the story presented above would

be commonly observed for a one-parameter family of flows which exhibit linear instabil-

ity below a critical value of that parameter. For these flows, it is often found that, as

the critical value is approached, the linearly unstable region due to Tollmien-Schlichting

wave type two-dimensional instability recedes to R → ∞ with the wavenumber scaling

as O(R−1) (e.g. see Cowley & Smith (1985) for plane Couette-Poiseuille flow and Gittler

(1993) for annular Couette-Poiseuille flow, the corresponding generalization to a cylindri-

cal geometry). The present study suggests that there also exists a long-wave cut-off for

two-dimensional nonlinear instabilities, e.g. finite-amplitude solutions for plane Couette-

Poiseuille flow (Cherhabili & Ehrenstein 1995) and annular Couette-Poiseuille flow (Wong

& Walton 2012). Although only the two-dimensional results are known for these flows, the

existence of three-dimensional solutions is a promising area of future work. Such solutions

would easily be obtained by homotopy continuation from our three-dimensional solutions.

SCF also has a strong connection to PF. We can continue non-axisymmetric solutions

of SCF to the PF solution (chapter 6). Also, the axisymmetric solutions presented here

are particularly interesting since they appear to have some connection to the initiation of

localized turbulent spots. However, it should be noted that our solutions of SCF cannot be

linked directly to fully developed ‘puffs’ in pipe flow, because the axisymmetric asymptotic

solution presented in this study does not exist in pipe flow (see remark at the beginning of

section 4.2 and Appendix 6.A.1). Instead, by analogy with our results, it might be expected
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that a more relevant asymptotic model for that situation would be the spiral wave structure

given by Smith & Bodonyi (1982a), and in particular its long-wave limit, which gives a

threshold amplitude for the instability. The continuation method developed in this thesis

serves to find one of the possible root to this type of solution together with the similar spiral

wave linear instability of annular Couette-Poiseuille flow (Walton 2005). Another probable

modification for the starting point of continuation is introduction of artificial body force

which distorts the mean flow as in Smith & Bodonyi (1982a)’s asymptotic theory. If such

a force can induce linear instability in pipe flow, it thus yields another possible starting

point for finding such spiral solutions.

Further advanced applications of the present work include investigation of the transition

control of curved external boundary-layer flow surrounding an object in flight where we

have to additionally consider the spatial development of the disturbance. Despite the

large extension from the present SCF work, where the flow is homogeneous in the stream-

wise direction, it is clearly of interest to apply our results to such a configuration, which

is more relevant to practical problems. In particular, our finding of the agreement of

two-dimensional asymptotic and numerical solutions could help to control the Tollmien-

Schlichting waves, which are the first instability from the leading edge in spatial developing

boundary layer problems. Furthermore, the local self-sustaining mechanism we found can

be used to control successive three-dimensional streamwise roll type disturbances: it should

be possible to eliminate the embryo of the growing disturbance with a minimal effort, by

breaking the local roll-streak-wave balance.
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