FURTHER RECORD OF WINTER FISH STRANDING IN THE VICINITY OF SETO¹⁾

Chûichi ARAGA and Hidetomo TANASE

The Aquarium, Seto Marine Biological Laboratory

With 1 Text-Figure and 3 Tables

In January this year, this region was attacked by sudden drop of the atmospheric temperature continuously for about six days. Early morning of January 19, the junior author was awaked by Mr. Y. Makino, the head clerk of the laboratory, who found innumerable fishes stranded on the beach near the laboratory on the way of his daily walk. Immediately he went down to the beach with one of the aquarium members to examine those fishes, found that most of them were coral fishes, and began to collect them for further studies. The senior author made a dive in the shallow water around the laboratory in that afternoon and observed that such tropical fishes as Apogon cyanosoma Bleeker, Abudefduf vaigiensis (Quoy & Gaimard) and Acanthurus bariene Lesson were just losing the balance and dying.

The collecting of stranded fishes, in morning or sometimes at night, was continued by us together with some aquarium staff members till February 9. The collected fishes were cleaned, measured and sorted carefully every time. Most of collected specimens were nearly perfect in their appearance except for several specimens which were seemingly damaged by kites.

In this paper, the list of stranded fishes is given and some comparison with other cases of fish stranding by the cold is made. We are very grateful to Messrs. Y. Makino, S. Sakai, Y. Kashiyama and S. Moriyama of the laboratory and the laboratory aquarium who kindly helped us collect and measure fishes. We wish to express our hearty thanks to Mr. K. Nishi of the Disaster Prevention Research Institute of Kyoto University for his kind informations about the meteorological and hydrological conditions in the vicinity and also to Prof. H. Utinomi and Dr. T. Tokioka of the laboratory for their kindness in reading the manuscript.

Results of examination

Names, sizes and numbers of stranded fishes are shown in Table 1. In all, 3902 specimens belonging to 166 species were included in the collection. Of these, 116

¹⁾ Contributions from the Seto Marine Biological Laborotory, No. 493.

Table 1. List of stranded fishes

No.	monios	total length (mm)			number				0/
110.	species	max.	min.	mean	1st week	2nd week	3rd week	total	<u>%</u>
1 2	Clupeida Dussumieridae Spratelloides japonicus (Houttuyn) キビナゴ Plecoglossus altivelis Теммінск & Schlegel アコ	32	-	35 51	I 8	<u></u>	_	1 9	
3	Cyprinida Plotosidae Plotosus anguillaris (LACÉPÈDE) ゴンズイ	57	216	124	10	4	3	17	0.4
4 5 6	Anguillida Ophichthidae Leiuranus semicinctus (LAY & BENNETT) ソラウミへじ* Pisoödonophis cancrivorous (RICHARDSON) ミナミホタテウミへじ Myrichthys aki TANAKA ゴイシウミへじ	370 242 —	395 625	— — 642	2 	- 2 1		2 2 1	0.1
7 8	Dysommidae <i>Dysomma anguillare</i> Barnard メクラアナゴ Leptocephallus of Apodes	- 64	<u> </u>	326 76	1 3	_	_	1 3	
9	Syngnathida Aulostomidae <i>Aulostomus chinensis</i> (Linné) ヘラヤガラ*	622	628				2	2	
10 11	Fistulariidae Fistularia villosa Klunzinger アオヤガラ* Fistularia petimba Lacépède アカヤガラ	206 310	672 567	473 455	126 2			126 4	3.2
12 13 14 15 16	Berycida Holocentridae Holotrachys lima (VALENCIENNES) セトエピス* Myripristis murdjan (FORSKÅL) アカマツカサ* Flammeo sammara (FORSKÅL) ウケグチイットウダイ* Holocentrus spinosissimus T. & S. イットウダイ Holocentrus ruber (FORSKÅL) アヤメエピス* Holocentrus ittodai JORDAN & FOWLER テリエピス*	58 — — 63	110 — — 84 —	98 78 60 210 66 103	16 1 	1 - 1 		1 17 1 1 10	0.4
18	Gadida Bregmacerotidae Bregmaceros japonicus TANAKA サイウオ	33	54	51	8		_	8	
19	Percida Mugilina Atherinidae Allanetta bleekeri (Günther) トウゴロウイワシ	80	116	86	33	3	-	36	1.7
20	Mugilidae <i>Mugil cephalus</i> Linné ポラ	34	88	48	6	1	_	7	

0.4	
	Winter
2.6 26.7	Fish S
0.3 0.5	trandin
1.7 0.7	Ø
0.4	
0.4	

21	Sphyraenidae Sphyraena pinguis Günther アカカマス	134	300	213	24		_	24	0.6
	Carangina Carangidae								
22	Trachurus japonicus (T. & S.) マアジ		_	202	1			1	
23	Alectis cilialis (BLOCH) イトヒキアジ	_	_	250	î		_	i	
24	Tranchinotus baillonii (LACÉPÈDE) コパンアジ	67	200	115	4			4	
25	Leiognathidae Leiognathus rivulatus (T. & S.) オキヒイラギ	42	88	53	1	2		3	
,,,	Percina	14	00	33	•	~		3	
	Pempheridae								
26	Pempheris xanthopterus Tominaga ミナミハタンポ*	54	137	78	15	-		15	0.4
	Oplegnathidae								
27	Oplegnathus fasciatus (T. & S.) イシダイ	_		302	1		-	1	
28	Mullidae	149	230	188	7			7	
88	Pseudupeneus spilurus (Bleeker) オキナヒメジ*	149	230	188	/		_	7	
20	Apogonidae	50	cc		ć				
29	Apogon niger Döderlein クロイシモチ	52 48	.66	<u> </u>	2			2	
80	Apogon marginatus Döderlein ツマグロイシモチ	48 32	110 150	85 67	2 89	1 13		3	0.0
31	Apogon taeniatus Cuvier ヨコスジイシモチ* Apogon cyanosoma Bleeker キンセンイシモチ*	32 32	78	58	1052	13 24		102	2.6
32 33	Apogon endekataenia BLEEKER コスジイシモチ	90	112		1032	Z 4	_	1049	26.7
აა 34	Apogon novemfasciatus Cuvier タスジイシモチ*	68	77	72	9			2 9	
35	Apogon doederleini Jordan & Snyder オオスジイシモチ*	50	115	87	10		1	11	0.3
36	Apogon kiensis J. & S. テッポウイシモチ	49	68	56	18	_		18	0.5
37	Apogon semilineatus T. & S. ネンブッダイ	52	114	77	3			3	0.5
38	Apogon notatus (Houttuyn) クロホシイシモチ*	34	104	83	54	11	1	66	1.7
39	Apogon erythrinus kominatoensis Ebina コミナトテンジクダイ	32	64	41	25		î	26	0.7
40	Apogon sp.*	30	48	39	3			3	0.7
41	Abogon sp.*	35	46	38	15			15	0.4
42	Cheilodipterus macrodon (LACÉPEDE) リュウキュウヤライイシモチ*	_	_	105	1		_	1	0
	Priacanthidae								
43	Priacanthus macracanthus Cuvier キントキダイ	165	180		2		_	2	
44	Priacanthus hamrur (Forskål) ホウセキキントキ*	170	230	201	4		-	4	
45	Priacanthus cruentatus (LACÉPÈDE)*	159	204	167	8	_	_	8	
	Serranidae					_			
46	Cephalopholis miniatus (FORSKÅL) ユカタハタ*	34	140	78	13	3		16	0.4
47	Cephalopholis sp.*	61	68		2		_	2	
48	Epinephelus merra Bloch カンモンハタ*	10	165 1 34	_	1	1	_	2	
49	Grammistes sexlineatus sexlineatus (Thunberg) ヌノサラシ*	22			28	9	3	40	1.0
50 51	Grammistinae sp. Sacura margaritacea (HILGENDORF) サクラダイ	_		37 62	ì			1	
31	Sacara margarnacea (FILGENDORF) 92734	_		04		1	_	1	

Table 1. (Continued)

No.	species	tota	l length	(mm)		numbe	r		0/
110.	species	max.	min.	mean	lst week	2nd week	3rd week	total	%
52	Gerridae Gerres oyena (Forskål) クロサギ	56	244		_	2		2	
53	Girellidac Girella melanichthys (RICHARDSON) クロメジナ	32	_	_	1	_		1	
54	Pseudogrammidae Pseudogramma polyacantha (Bleeker) トゲメギス*	26	32	27	5	_		5	
55 56 57 58	Lethrinidae Lethrinus nematacanthus Bleeker イトフエフキ* Lethrinus haematopterus T. & S. フエフキダイ* Lethrinus choerorhynchus (Schneider) ハマフエフキ* Lethrinus variegatus (C. & V.) シマクチビ*	130 — 95	176 110	170 — 90 102	1 2 1 3		_ _ _	1 2 1 3	
59 60	Lutjanidae Lutjanus kasmira (FORSKÅL) ヨスジフエダイ* Aprion virescens C. & V. アオチビキ*	56 284	212 296	87	33 2	_	_	33 2	0.8
61	Caesionidae Caesio chrysozonus C. & V. タカサゴ*	_		106	1		_	1	
62 63 64	Pomadasyidae Plectorhynchus diagrammus (LINNÉ) ムスジコショウダイ* Scolopsis sp. Leptoscolopsis nagasakiensis TANAKA イトタマガシラ	109 53 80	114 89 100	— 69 86	2 7 5	<u>-</u>		2 7 7	
65	Cirrhitidae Isobuna japonica (Steindachner & Döderlein) イソブナ			38	1	_		1	
66	Champsodontidae Champsodon snyderi Franz ワニギス	29	36	_	2	_		2	
67 68 69	Blenniina Blenniidae Aspidontus taeniatus Quoy & Gaimard* Aspidontus tapeinosoma (Bleeker) テンクロスジギンポ* Meiacanthus kamoharai Tomiyama カモハラギンポ*	83 	100 	90 71	3 1 2		<u></u>	3 1 2	
03	Gobiina Eleotridae	37	02		2	_		2	
70 71 72 73 74 75	Amblyeleotris japonicus TAKAGI ダテハゼ Parioglossus dotui TOMIYAMA サッキハゼ Vireosa hanae J. & S. ハナハゼ* Zonogobius boreus SNYDER ミサキイレズミハゼ Eleotridae sp. Eleotridae sp.	33 30 39	 111 33 65	102 59 67 32 29 53	1 1 59 4 1	<u></u>	<u>-</u> 2 -	1 66 4 1	1.7

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90	Pomacentrina Pomacentridae Amphiprion xanthurus C. & V. クマノミ* Amphiprion chrysogaster C. & V. モンツキクマノミ* Chromis isharai (Schmidt) アマミスズメダイ* Chromis notatus (T. & S.) スズメダイ Chromis weberi Fowler & Bean* Chromis xanthochir (Bleeker) コガネスズメダイ* Chromis sp.* Tetradrachmum aruanum (Lenné) ミスジリュウキュウスズメ* Tetradrachmum trimacuiatum (Rüppell) ミツボシクロスズメ* Parapomacentrus nigricans (Lacépède) クロソラスズメ* Parapomacentrus marginatus (Jenkins) セダカスズメダイ* Pomacenturs coelestis Jordan & Starks ソラスズメダイ* Pomacenturs dorsalis Gill セホシスズメダイ* Abudefduf notatus (Day) イソスズメダイ* Abudefduf vaigiensis (Quoy & Gaimard) オヤビツチヤ* Abadefduf sexfasciatus (Lacéppèd) ロクセンスズメダイ*	44 80 60 65 74 34 32 116 34 — 60 111	126 96 90 95 83 94 110 120 86 — 130 115	85 35 87 73 81 58 78 30 51 77 118 52 35 80 86	33 1 9 25 33 — 1 89 29 4 53 — 1 87	1 1 3 3 	2 2 1 1	36 1 9 25 33 1 3 1 89 34 4 54 1 1 87	0.9 0.6 0.8 2.3 0.9 1.4	Win
92 93 94 95 96 97	Labrina Labridae Cheilio inermis (FORSKÅL) カマスペラ* Labroides dimidiatus (C. & V.) ホンソメワケベラ* Stethojulis kalosoma (BLEEKER) カミナリペラ* Cheilinus bimaculatus (C. & V.) タコペラ* Iniistius pavo (C. & V.) ホシテンス* Labridae sp.*	90 44 —	95 111 —	392 66 93 76 122 32	1 1 3 16 1			1 1 3 19 1	0.5	Winter Fish Stranding
98 99 100	Scaridae Scarus ghobban Forskål しつダイ* Scarus sp. * Scarus sp. *	104 53 72	256 80 80	170 — 75	4 2 3			4 2 3		ding
101 102 103 104 105 106 107 108 109 110 111	Chaetodontina Chaetodontidae Pomacanthus imperator (Bloch) タテジマキンチヤクダイ* Pomacanthus semicirculatus (C. & V.) サザナミヤッコ* Holacanthus trimaculatus LACÉPÈDE シテンヤッコ* Centropyge tibicen (C. & V.) アヴラヤッコ* Centropyge croliki (Bleeker) ナメラヤッコ* Centropyge flavicauda Fraser-Beunner* Forcipiger longirostris (Broussonet) フェヤッコダイ* Chaetodon plebeius C. & V. スミッキトソサマダイ* Chaetodon auriga Forskål トゲチョウチョウウオ* Chaetodon vagabundus Linné フウライチョウチョウウオ* Chaetodon collaris Bloch チョウチョウウオ* Chaetodon lienolatus C. & V. ニセフウライチョウチョウウオ*	32 40 52 50 54 48 104 51 48 64 59	129 76 97 80 58 62 116 54 94 76 115	54 59 73 62 — 56 111 — 65 68 81 263	37 42 	3 1 — — — — — 1		37 42 3 11 2 4 5 2 95 7 3	0.9 1.1 0.3	211

CH. ARAGA and H. TANASE

Table 1. (Continued)

Ma	amaailaa	tota	length	(mm)		number			
No.	species	max.	min.	mean	1st week	2nd week	3rd week	total	%
13	Chaetodon citrinellus C. & V. ゴマチョウチョウウオ*	72	102	78	7		_	7	
14	Chaetodon kleini BLOCH ミゾレチョウチョウウオ*	64	80	73	29	_	_	29	0.
15	Chaetodon trifasciatus Mong Park ミスジチョウチョウウオ*		_	43	1	_		i	
16	Chaetodon speculum C. & V. トノサマダイ*		-	54	I			1	
.17	Heniochus acuminatus (LINNÉ) ハタタテダイ*	49	112	85	31			31	0.
18	Heniochus monoceros C. & V. オニハタタテダイ*	72	85	-	2			2	
19	Zanclus cornutus (Linné) ッノダシ*	110	185	122	14	_		14	0.
	Acanthuridae								
120	Acanthurus olivaceus BLOCH & SCHNEIDER モンツキハギ*	_	_	129	1		_	1	
121	Acanthurus bariene Lesson カンランハギ*	56	182	124	276		_	276	7
122	Acanthurus lineolatus C. & V. ナガニザ*	84	132	108	11	_		11	0
123	Ctenochaetus strigosus (BENNETT) サザナミハギ*	88	124	100	3	-	•	3	
124	Callicanthus hexacanthus (Bleeker) テングハギモドキ*	96	148	127	15	_		15	0
125	Naso unicornis (FORSKÅL) テングハギ*	118	476	168	21	_		21	0
126	Brionurus microlepidotus LACÉPÈDE こザダイ	-	-	393	_	_	1	1	
	Siganina								
	Siganidae								
127	Siganus fuscescens (HOUTTUYN) アイゴ*	66	374	142	40	76	4	120	3
	Tetraodontida								
	Balistidae								
128	Balistes vidua Solander クロモンガラ*	128	145	139	6	_	_	6	
129	Balistes capistratus SHAW メガネハギ*	64	96	76	20			20	0
130	Balistes chrysopterus Bloch & Schneider ツマジロモンガラ*	40	154	82	251	3		254	6
131	Balistes bursa Lacépède ムスメハギ*	60	100	82	11	_		11	0
132	Abalistes stellatus (LACÉPÈDE) オキハギ*			152	_	1	_	1	
	Aluteridae								
133	Prevagor melanocephalus (Bleeker) こシキカワハギ*		_	78	1		-	1	
134	Stephanolepis cirrhifer (T. & S.) カワハギ	60	73	-	-	2	_	2	
135	Rudarius ercodes Jordan & Fowler アミメハギ	_		42	1			1	
136	Amanses pardalis (RUPPELL) アミメウマヅラ*	120	170	154	12			12	0
137	Aluteres monoceros (Linné) ウスバハギ*	480	585	529	9		-	9	
	Ostraciontidae								
138	Ostracion tuberculatus Linné ハコフグ*	25	230	56	27	1	_	28	0
139	Lactoria cornutus (Linné) コンゴウフグ*	45	97	67	4			4	•
140	Lactoria diaphanus (BLOCH & SCHNEIDER) ウミスズメ*	128	256	181	11	10	15	36	0
141	Lactoria fornasini (BIANCONI) シマウミスズメ*	36	108	77	3	2	6	11	Ö

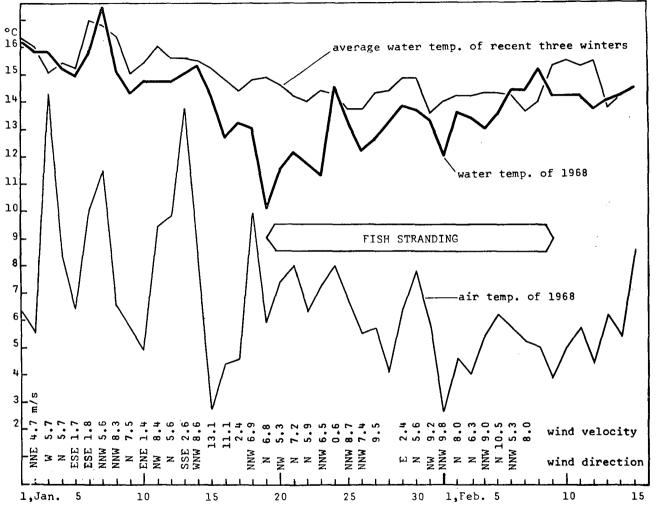
	Grand total				3574	269	59	3902	
166	Lophio haron horridus (BLEEKER) オオモンイザリウオ*	150	310	208	4	2		6	
165	Antennarius sp.		_	77	i			1	
164	Antennarius sp.	43	77	59	6	_		6	
163	Antennarius nummifer (Cuvier) ベニイザリウオ*	42	89	61	5	3	1	9	
161 162	Phyrnelox nox (JORDAN) クロイザリウオ* Phyrnelox tridens (T. & S.) イザリウオ*	<u></u> 41	— 97	70 68		1 3	_	1 5	
	Lophiida Antennariidae								
160	Pleuronectida Bothidae <i>Bothus</i> sp.	_		40	1			1	
159	Cephalacanthidae Dactyloptena orientalis (C. & V.) セミホウボウ*	76	330	182	7	2		9	
158	Scorpaenidae sp.	42	57		2	-		2	
157	Scorpaenidae sp.		_	32	1			1	
156	Brachirus sp.*	42	57	_	2	_		2	
155	Brachirus zebra (Quoy & Gaimard) キリンミノ*	40	200	87	211	2	4	217	5.5
154	Pterois voitians (LINNE) ハリミノバラコ・ Pterois radiata C. & V. キミオコゼ*	33	129	79	23		_	23	0.6
152 153	Cottida Scorpaenidae Scorpaenodes littoralis (TANAKA) イソカサゴ Pterois volitans (LINNÉ) ハナミノカサゴ*	 48	 222	90 91		1 19	_	1 21	0.5
	Cottida				-			-	
150 151	Diodontidae Diodon holacanthus Linné ハリセンボン* Chilomycterus affinis Günther イシガキフグ*	, 111 310	130 362	120 334		8	_	8	
149	Arothron hispidus (LINNÉ) サザナミフグ*	74	210	111	23		_	23	0.6
148	Fugu pardalis (T. & S.) ヒガンフグ		_	168		1	_	1	
147	Fugu poecilonotus (T. & S.) コモンフグ	_		160	1			1	
146	Fugu niphobles (T. & S.) クサフク	78	116	102	$\overline{2}$	1		3	
145	Lagocephalus sceleratus (GMELIN) センコンフグ*		102	130	1		_	1	0
143	Canthigaster cinctus Richarsdon* Canthigaster rivulatus (T. & S.) キタマクラ*	80	162	117	21	5		28	0.7
142 143	Canthigaster valentini (BLEEKER) シマキンチャクフグ*	36	122	95 49	101 1	21	5	127 1	3.2
	Tetraodontidae			•-			_		

^{*:} coral or tropical species

species with asterisk, 69.9% in number of species and 93.4% in number of individuals, are so-called coral fishes or tropical fishes. Spratelloides japonicus (HOUTTUYN), Plecoglossus altivelis Temminch & Schlegel and Girella melanichthys (Richardson) listed in this table, all represented by young specimens, are found very abundantly and commonly in the shallow water of this vicinity in that season, and the minimum water temperature in that season, 10.1°C, seems a little above the critical low water temperature for these three species. Therefore, they were probably killed not by the cold but by another factor such as an attack of some predatory fishes.

Chromis weberi Fowler & Bean, Centropyge flavicauda Fraser-Brunner, Canthigaster cinctus Richardson and most of 18 unidentified species seem to be new to the Japanese ichthyofauna; their descriptions will be given in another paper. Fifteen species (Nos. 14. 42, 54, 48, 62, 69, 70, 78, 83, 98, 103, 124, 130, 133 and 165 in Table 1) are newly recorded from the coast of Wakayama Prefecture including this vicinity.

Hydrological conditions of the period


Daily changes of the air temperature, sea water temperature and the wind direction and velocity from January 1 to Feburary 15, recorded at 9:00 every morning near the laboratory, are shown in Text-figure 1. Of these, the air temperature, wind direction and wind velocity were recorded at the Shirahama Oceanographic Tower Station of Kyoto University in Tanabe Bay; Some vacancies in the wind data were caused by the trouble of the automatic recorder.

As seen clearly by comparing the water temperature curve of last winter with that averaging three foregoing winters, the most noticeable in the figure is that the water temperature went down sharply from 15.3°C (Jan. 14) to 10.1°C (Jan. 19) prior to fish stranding. The mass mortality of tropical fishes must be caused by this sudden drop of water temperature. After January 20, the water temperature went up gradually. At present, it is uncertain how the local air temperature in the early weeks of January showing prominent fluctuations was correlated with the above-mentioned drop of the water temperature.

The winds during the period were mostly northerly and with a considerable velocity. On the other hand, the beach where the fishes were stranded faces the north. As the fishes affected or killed by the cold usually go up to the surface (Doudoroff 1945, Tamura 1944), killing by the cold and accumulation by the wind must be the main mechanism of the fish stranding on that beach. The effect of the tidal phase seems to be rather insignificant about this phenomenon.

Considerations

Many cases of mass mortality of fish by the cold have been reported in this and other countries. Among those in these years, two cases on the Pacific coast of middle Japan (Kimura 1948, Amemiya et al. 1957) and some cases on the Texas coast of the

Text-fig. 1. Daily changes of the air temperature, sea water temperature, and the wind direction and velocity from January 1 to Feburary 15.

United States (Gunter 1941, Gunter & Hildebrand 1951) are to be noted. These cases are common in that most of the stranded fishes were the species adapted to the temperate region and they were killed by unusual long-term cold. In the case reported here, most of stranded fishes were coral or tropical fishes.

As seen in Table 2, high percentage of coral fish specimens to total number of specimens was maintained similarly for three weeks of observation.

To see the successive changes of the composition of stranded fishes during the

Table 2. Percentage of coral fishes to total number of specimens.

	lst week	2nd week	3rd week	total
number of coral fish specimens	3349	242	54	3645
number of total specimens	3 57 4	264	59	3902
percentage of coral fish	93.8	90.0	91.5	93.4

Table 3. Dominant species and their numbers, with percentages to the total number of specimens for each week.

species	lst week	2nd week	3rd week
Plotosus anguillaris (LACÉPÈDE)		4 (1.5)	3 (5.1)
Fistularia villosa KLUNZINGER	126 (3.5)	, ,	
Allanetta bleekeri (GUNTHER)	, ,	3 (1.1)	
Apogon taeniatus Cuvier	89 (2.5)	13 (4.8)	
Apogon cyanosoma Bleeker	1025 (28.7)	24 (8.9)	
Apogon notatus (HOUTTUYN)	54 (1.5)	11 (4.1)	
Cephalopholis miniatus (FORSKÅL)	` ,	3 (1.1)	
Grammistes sexlineatus (THUNBERG)		9 (3.3)	3 (5.1)
Vireosa hanae JORDAN & STARKS	59 (1.7)	5 (1.9)	2 (3.4)
Chromis sp.	, ,	3 (1.1)	
Tetradrachmum trimaculatum (RÜPPEL)	89 (2.5)	. ,	
Parapomacentrus nigricans (LACÉPÈDE)		3 (1.1)	2 (3.4)
Pomacentrus coelestis J. & S.	53 (1.5)		
Abudefduf vaigienses (QUOY & GAIMARD)	87 (2.4)		
Cheilinus bimaculatus (C. & V.)	, ,	3 (1.1)	
Pomacanthus imperator (BLOCH)	37 (1.0)		
Pomacanthus semicirculatus (C. & V.)	42 (1.2)		
Holacanthus trimaculatus LACÉPÈDE	, ,	3 (1.1)	
Chaetodon auriga Forskål	95 (2.7)	, ,	
Acanthurus bariene LESSON	276 (7.7)		
Siganus fuscescens (HOUTTUYN)	40 (1.1)	76 (28.3)	4 (6.8)
Balistes chrysopterus B. & S.	251 (7.0)		
Canthigaster rivulatus (T. & S.)		5 (1.9)	
Canthigaster valentini (BLEEKER)	101 (2.8)	21 (7.8)	
Diodon holacanthus Linné	, ,	8 (3.0)	
Pterois volitans (LINNÉ)		19 (7.1)	
Brachirus zebra (Q. & G.)	211 (5.9)		
Phyrnelox tridens (T. & S.)	, ,	3 (1.1)	
Antennarius numifer (Cuvier)		3 (1.1)	

period, dominant species occupying more than 1% of the total specimens are listed up for each week (Table 3).

Most of fishes in this table are coral or tropical fishes, except for two species, All-anetta bleekeri (Günther) (1.1% in the first week) and Vireosa hanae Jordan & Starks (1.7% in the first week, 1.9% in the second week) which are ranging mainly in the temperate region. Five species, Plotosus anguillaris, Apogon notatus, Pomacentrus coelestis, Siganus fuscescens and Phrynelox tridens, are originally tropical ones but also adapted to the temperate region as their breeding has been confirmed in this vicinity. The total percentage of these five species was 4.1% in the first week, increased to 34.9% in the second week, and decreased to 11.9% in the last week in which much fewer fishes were stranded. This change seems to reflect the gradual rise of water temperature after January 19 (10.1°C to 15.2°C) in the vicinity. If the cold water has continued longer, much more individuals of such fishes adapted to the temperate region would be killed and stranded. Though in the first week stranded fishes were collected solely by us, in the second week and thereafter many people in the vicinity walked around the beach for edible fishes such as Siganus fuscescens and Stephanolepis cirrhifer, thus the decrease of such fishes might be artificial.

The mass mortality of marine fishes by the cold in this vicinity was reported first by Yamanouchi in 1936. All of the warm-water fishes kept in the laboratory aquarium were killed at that time and the minimum temperature of the sea water was 7.0°C.

Tokioka also reported the fish stranding on the same beach in the mid-winter of 1961. Though the minimum temperature at that time was somewhat higher (11.5°C) than in this case, the number of tropical fishes was rather few (29/51: 56.9% in number of species, and 488/1906: 30.3% in number of specimens) and a half of dominant species were the fishes well adapted to the temperate region. The possible reason for such a difference in the composition of stranded fishes might be the difference of the time of that stranding that occurred in the middle of February when the water climate might be more advanced than in the present case.

The cold attacked this vicinity in 1963 too, and native shore fishes such as Gerres oyena (Forskål), Plectropomus leopardus (Lacépède), Epinephelus fasciatus (Forskål) and Callyodon ovifrons T. & S. were killed and stranded from Januray to February. The minimum temperature was 9.8°C on January 31 in that year. Although no detailed data in this vicinity is available, the fishes inhabiting the southern coasts of Japan were seemingly damaged very widely by the cold wave of that year (Kondo 1963).

It was rather warm in next four winters as shown in Text-figure 1. Though such tropical fishes as *Solenostomus paradoxus* (Pallas) and *Prevagor melanocephalus* (Bleeker) were found stranded on the same beach by the junior author, the number of specimens were very few. The influence of the warm-water current *Kuroshio* was so strong in this district in these four years that unusually many kinds and individuals of coral fishes seemingly transported by *Kuroshio* in juvenile stages were found in the shallow water of this vicinity in the autumn of 1967 as observed directly by SCUBA. Further,

the unusually higher water temperature was maintained from the end of 1967 to the beginning of 1968 and a considerable amount of tropical fishes were found still staying there as confirmed by the senior author on January 4. Thus, it is clear that the abovementioned tropical fishes were killed at a stretch by the sudden drop of the water temperature that started on January 14.

At the time of our observations, it was reported that a big scale of mass mortality of common inshore fishes occurred along the coast of the northwestern part of Kii Peninsula facing the Kii Channel adjacent to Osaka Bay. Some opinions were expressed to attribute this to the winter cold, although we could not agree to them, for the reason that those inshore fishes are distributed much northerly and of course stand much lower temperature. Much later, illegal discharge of the industrial wastes by an outlaw boat in that area was reported by papers, and inevitably this must be responsible for that mass mortality.

REFERENCES

- Amemiya, I., T. Hibiya and H. Koyama, 1957. Massive destruction of fish due to low temperature of the sea water in the Pacific coast of middle Japan. Suisangaku Shyusei (Essays in Fisheries Science), Tokyo University Press. (in Japanese)
- Doudoroff, P. 1945. The resistance and acclimatization of marine fishes to temperature changes. Biol. Bull., 88 (2).
- GUNTER, G. 1941. Death of fishes due to cold on the Texas coast, January 1940. Ecology, 22 (2).
- Gunter, G. and H.H. Hildebrand, 1951. Destruction of fishes and other organisms on the south Texas coast by the cold waves of January 28 -February 3, 1951. ibid. 32 (4).
- Kimura, K. 1948. Recent decline in fishing industries and a prospection in skip jack fishery. Science of the Sea, 5 (1). (In Japanese).
- Konno, M. 1963. Massive destruction of fishes due to abnormal condition of the sea water in wastern Japan in winter, 1963. Contrib. Seikai Reg. Fish. Rcs. Lab. No. 163. (In Japanese with English synopsis).
- Tamura, T. 1944. The influence of the change of external media upon fish VII. The influence of sudden change of water temperature on fish. Japanese Jour. Sci. Fish., 12 (6). (In Japanese).
- Tatsuki, K. 1966. Hydrological condition and the outline of fisheries along the southern coast of Kii Peninsula, Marine Park survey of Wakayama Prefecture. Japan Society of Nature Conservation, Report No. 27. (In Japanese).
- Токіока, Т. 1961. Record of an unusual fish stranding in winter, with the list of stranded fishes identified by Prof. K. Matsubara. Publ. Seto Mar. Biol. Lab., IX (2).
- Yamanouchi, T. 1936. Water temperature and fishes in winter. Zoological Magazine (Dobutsugaku Zasshi), 48 (3). (In Japanese).