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Abstract

The notion of a (φ, Ĝ)-module is defined by Tong Liu in 2010 to classify lattices in semi-
stable representations. In this paper, we study torsion (φ, Ĝ)-modules, and torsion p-adic
representations associated with them, including the case where p = 2. First we prove that the
category of torsion p-adic representations arising from torsion (φ, Ĝ)-modules is an abelian
category. Secondly, we construct a maximal (minimal) theory for (φ, Ĝ)-modules by using
the theory of étale (φ, Ĝ)-modules, essentially proved by Xavier Caruso, which is an analogue
of Fontaine’s theory of étale (φ,Γ)-modules. Non-isomorphic two maximal (minimal) objects
give non-isomorphic two torsion p-adic representations.
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1 Introduction

The notion of a (φ, Ĝ)-module was introduced by T. Liu in [Li3] to classify lattices in semi-stable
representations. In this paper, we give various properties of torsion (φ, Ĝ)-modules such as the
Cartier duality theorem. Furthermore, we study the category of torsion representations arising
from torsion (φ, Ĝ)-modules. Let G be the absolute Galois group of a complete discrete valuation
field K of mixed characteristic (0, p) with perfect residue field. Fix r ∈ {0, 1, 2, . . . ,∞}. Our study
is motivated by the following question:

Is any torsion Zp-representation of G a torsion semi-stable representation with
Hodge-Tate weights in [0, r]?

Here, a torsion Zp-representation of G is said to be torsion semi-stable with Hodge-Tate weights in
[0, r] if it can be written as the quotient of two lattices in a semi-stable p-adic representation of G
with Hodge-Tate weights in [0, r]. It is known that the above question does not have an affirmative
answer if r <∞ and thus it makes sense only if r =∞. We propose an approach to this question
by using (φ, Ĝ)-modules which give descriptions of (torsion) semi-stable p-adic representations
with Hodge-Tate weights in [0, r]. The theory of Breuil modules also gives descriptions of these
representations in terms of linear algebra (cf. [Li2]), however, for technical reasons, we have to
assume r < p − 1 when we use this theory for integral or torsion representations. On the other
hand, there is no restriction on r in the theory of (φ, Ĝ)-modules. This is the main reason why we
focus on (φ, Ĝ)-modules.

Let Reptor(G) be the category of torsion Zp-representations. Let Repsttor(G) be the category of

torsion semi-stable representations. We denote by Modr,Ĝ/S∞
the category of torsion (φ, Ĝ)-modules

of height r and T̂ : Modr,Ĝ/S∞
→ Reptor(G) the associated functor (see Section 2). Let RepĜtor(G) be

the category of torsion representations arising from torsion (φ, Ĝ)-modules, that is, the essential

image of T̂ on Mod∞,Ĝ
/S∞

. Then inclusions

Repsttor(G) ⊂ RepĜtor(G) ⊂ Reptor(G)

are known (cf. [CL2, Theorem 3.1.3]). Since our interest is related with the equality of cate-
gories Repsttor(G) and Reptor(G), we want to know differences between above three categories. The
following is the first main result of this paper:

Theorem 1.1. The category RepĜtor(G) is an abelian full subcategory of Reptor(G) which is stable
under subquotients, ⊕, ⊗ and the dual.

To show the category RepĜtor(G) is abelian, we give two different proofs. The first one uses a
deep relation, proved by T. Liu, between (φ, Ĝ)-modules and representations associated with them
(cf. Lemma 4.2). The second proof is based on a result on maximal (minimal) objects of (φ, Ĝ)-

modules. In general, the category Modr,Ĝ/S∞
is not abelian and T̂ : Modr,Ĝ/S∞

→ Reptor(G) is not

fully faithful. The theory of maximal (minimal) objects allows us to avoid this problem. Denote by

Maxr,Ĝ/S∞
the full subcategory of Modr,Ĝ/S∞

whose objects are maximal. Then we obtain the functor

Maxr : Modr,Ĝ/S∞
→ Maxr,Ĝ/S∞

which is a retraction of the natural inclusion Maxr,Ĝ/S∞
↪→ Modr,Ĝ/S∞

and commutes with T̂ . We prove

Theorem 1.2. The category Maxr,Ĝ/S∞
is abelian and, if r < ∞, it is Artinian. Furthermore,

the restriction of T̂ on Maxr,Ĝ/S∞
is exact and fully faithful, and its essential image is stable under

subquotients.

2



In particular, we immediately find that the category RepĜtor(G) is abelian. If r < ∞, we can

also define the full subcategory Minr,Ĝ/S∞
of Modr,Ĝ/S∞

whose objects are minimal and the functor

Minr : Modr,Ĝ/S∞
→ Minr,Ĝ/S∞

; they satisfy analogous properties as those stated in Theorem 1.2. Fur-

thermore, the Cartier duality theorem gives a connection between maximal objects and minimal
objects (cf. Proposition 5.28). Maximal (minimal) objects are first defined for finite flat group
schemes by M. Raynaud [Ra]. X. Caruso and T. Liu generalized Raynaud’s theory, with respect to
finite flat group schemes killed by a power of p, to torsion Kisin modules [CL1], whose representa-
tions are defined on G∞. Here G∞ = Gal(K̄/K∞) and K∞ = ∪n≥0K(πn), π0 = π a uniformizer
of K, πpn+1 = πn. Furthermore, a categorical interpretation of maximal (minimal) objects is given
in [Ca3]. Our theorem described above is an extended result of [CL1] in a certain sense. In the
case where r =∞, we obtain the following:

Corollary 1.3. The functor T̂ : Mod∞,Ĝ
/S∞

→ Reptor(G) induces an equivalence of abelian categories

between the category Max∞,Ĝ
/S∞

of maximal torsion (φ, Ĝ)-modules of finite height and the category

RepĜtor(G) of torsion Zp-representations of G arising from (φ, Ĝ)-modules.

To define maximal (minimal) objects of torsion (φ, Ĝ)-modules, we introduce an étale (φ, Ĝ)-
module, which is an étale φ-module (in the sense of J.-M. Fontaine [Fo]) equipped with certain
Galois action. Arguments in the theory of (φ, τ)-modules of [Ca4] give us the fact that the category
of torsion étale (φ, Ĝ)-modules is equivalent to Reptor(G).

Now denote by e the absolute ramification index of K. If er < p − 1, then all torsion (φ, Ĝ)-
modules of height r are automatically maximal and minimal. Therefore, we have

Corollary 1.4 (= Corollary 5.34). Suppose er < p − 1. Then the category Modr,Ĝ/S∞
is abelian

and Artinian. Furthermore, the functor T̂ : Modr,Ĝ/S∞
→ Reptor(G) is exact and fully faithful, and

its essential image is stable under subquotients.

The corresponding result on torsion Breuil modules has been proven by X. Caruso (cf. [Ca2,
Théorème 1.0.4]).
We hope our study will be useful to solve the question described in the beginning of this paper (cf.
Section 5.7).

Now we describe an organization of this paper. In Section 2, we recall some results on Kisin
modules and (φ, Ĝ)-modules, and prove some fundamental properties of them which are often used
in this paper. In Section 3, we prove the Cartier duality theorem for (φ, Ĝ)-modules. In Section
4, we prove Theorem 1.1. Finally in Section 5, we give a theory of étale (φ, Ĝ)-modules, define
maximal (minimal) objects for (φ, Ĝ)-modules, and prove Theorem 1.2.

Convention. For any Z-module M , we always use Mn to denote M/pnM for a positive integer
n and M∞ = M ⊗Zp Qp/Zp. We reserve φ to represent various Frobenius structures and φM
will denote the Frobenius on M . However, we often drop the subscript if no confusion arises. All
representations and actions are assumed to be continuous.

Acknowledgements. The author wants to thank Shin Hattori who gave him useful advice and
comments throughout this paper, in particular, Section 5.6. This work is supported by the Grant-
in-Aid for Young Scientists Start-up.

2 Preliminaries

In this section, we recall some notions and results which will be used throughout this paper.

3



2.1 Notation

Let k be a perfect field of characteristic p ≥ 2, W (k) its ring of Witt vectors, K0 = W (k)[1/p],
K a finite totally ramified extension of K0, K̄ a fixed algebraic closure of K and G = Gal(K̄/K).
Throughout this paper, we fix a uniformizer π ∈ K and denote by E(u) its Eisenstein polynomial
over K0. Put S = W (k)[[u]]. We define a Frobenius endomorphism φ of S by u 7→ up, extending
the Frobenius on W (k).

Let R = lim←−OK̄/p where OK̄ is the integer ring of K̄ and the transition maps are given by the
p-th power map. By the universal property of the ring of Witt vectors W (R) of R, there exists a

unique surjective projection map θ : W (R) → ÔK̄ which lifts the projection R → OK̄/p onto the

first factor in the inverse limit, where ÔK̄ is the p-adic completion of OK̄ . We denote by Acris the
p-adic completion of the divided power envelope of W (R) with respect to the kernel of θ. We put
B+

cris = Acris[1/p]. For any integer n ≥ 0, let πn ∈ K̄ be a pn-th root of π such that πpn+1 = πn and
write π = (πn)n≥0 ∈ R. Let [π] ∈ W (R) be the Teichmüller representative of π. We embed the
W (k)-algebra W (k)[u] into W (R) by the map u 7→ [π]. This embedding extends to an embedding
S ↪→W (R), which is compatible with Frobenius endomorphisms.

Let O be the p-adic completion of S[1/u], which is a discrete valuation ring with uniformizer p
and residue field k((u)). Denote by E the field of fractions of O. The inclusion S ↪→W (R) extends
to inclusions O ↪→ W (FrR) and E ↪→ W (FrR)[1/p]. Here FrR is the field of fractions of R. It is
not difficult to see that FrR is algebraically closed. We denote by Eur the maximal unramified field
extension of E inW (FrR)[1/p] and Our its integer ring. Let Êur be the p-adic completion of Eur and
Ôur its integer ring. The ring Êur (resp. Ôur) is equal to the closure of Eur in W (FrR)[1/p] (resp.

the closure of Our in W (FrR)). Put Sur = Ôur ∩W (R). We regard all these rings as subrings of
W (FrR)[1/p].

Let K∞ = ∪n≥0K(πn) and G∞ = Gal(K̄/K∞). Then G∞ acts on Sur and Eur continuously
and fixes the subring S ⊂ W (R). We denote by RepZp

(G∞) (resp. RepQp
(G∞)) the category of

continuous Zp-representations of G∞ on Zp-modules of finite type (resp. the category of continuous
Qp-representations ofG∞ on finite dimensionalQp-vector spaces). We denote by Reptor(G∞) (resp.
Repfr(G∞)) the full subcategory of RepZp

(G∞) consisting of Zp-modules killed by some power of
p (resp. free Zp-modules). Similarly, we define categories RepZp

(G),RepQp
(G∞),Reptor(G) and

Repfr(G) by replacing G∞ with G.

2.2 Étale φ-modules

In this subsection, We recall the theory of Fontaine’s étale φ-modules. For more precise information,
see [Fo, A 1.2].

An étale φ-module over O is an O-module M of finite type, equipped with a φ-semi-linear
map φM : M → M such that φ∗

M is an isomorphism. Here, φ∗
M stands for the O-linearization

1⊗ φM : O ⊗φ,O M →M of φM . An étale φ-module over E is a finite dimensional E-vector space
M , equipped with a φ-semi-linear map φM : M →M such that there exists a φ-stable O-lattice L
ofM and that L is an étale φ-module over O. We denote by ′ΦM/O (resp. ΦM/E) the category of
étale φ-modules over O (resp. the category of étale φ-modules over E) with the obvious morphisms.
Note that the extension K∞/K is a strictly APF extension in the sense of [Wi] and thus G∞ is
naturally isomorphic to the absolute Galois group of k((u)) by the theory of norm fields. Combining
this fact and Fontaine’s theory in [Fo, A 1.2.6], we have that functors

T∗ : ′ΦM/O → RepZp
(G∞), M 7→ (Ôur ⊗O M)φ=1

and
T∗ : ΦM/E → RepQp

(G∞), M 7→ (Êur ⊗E M)φ=1

are equivalences of abelian categories and there exist natural Ôur-linear isomorphisms which are
compatible with φ-structures and G∞-actions:

Ôur ⊗Zp T∗(M)
∼−→ Ôur ⊗O M for M ∈ ′ΦM/O (2.2.1)
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and
Êur ⊗Qp T∗(M)

∼−→ Êur ⊗E M for M ∈ ΦM/E . (2.2.2)

On the other hand, define functors

M∗ : RepZp
(G∞)→ ′ΦM/O, T 7→ (Ôur ⊗Zp T )

G∞

and
M∗ : RepQp

(G∞)→ ΦM/E , T 7→ (Êur ⊗Qp T )
G∞ .

There exist natural Ôur-linear isomorphisms which are compatible with φ-structures and G∞-
actions:

Ôur ⊗OM∗(T )
∼−→ Ôur ⊗Zp T for T ∈ RepZp

(G∞) (2.2.3)

and
Êur ⊗EM∗(T )

∼−→ Êur ⊗Qp T for T ∈ RepQp
(G∞). (2.2.4)

We denote by ΦM/O∞ (resp. ΦM/O) the category of étale φ-modules over O which are killed by
some power of p (resp. the category of étale φ-modules over O which are p-torsion free). We call
objects of ΦM/O∞ (resp. ΦM/O) torsion étale φ-modules over O (resp. free étale φ-modules over
O).

Proposition 2.1. The functor T∗ induces equivalences of categories between ΦM/O∞ (resp. ΦM/O,
resp. ΦM/E) and Reptor(G∞) (resp. Repfr(G∞), resp. RepQp

(G∞)). Furthermore,M∗ is a quasi-
inverse of T∗.

The contravariant version of the functor T∗ is useful for integral theory. For any T ∈ Reptor(G∞),
put

M(T ) = HomZp[G∞](T, Eur/Our) if T is killed by some power of p,

M(T ) = HomZp[G∞](T, Ôur) if T is free,

and for any T ∈ RepQp
(G∞), put

M(T ) = HomQp[G∞](T, Êur).

Then we can check that T (M) is the dual representation of T∗(M). For any M ∈ ΦM/O, put

T (M) = HomO,φ(M, Eur/Our) if M is killed by some power of p,

T (M) = HomO,φ(M, Ôur) if M is p-torsion free,

and for any M ∈ ΦM/E , put

T (M) = HomE,φ(M, Êur).

These formulations give us contravariant functors T andM (on appropriate categories) such that
M◦ T ≃ Id, T ◦M ≃ Id.

2.3 Kisin modules

A φ-module (over S) is an S-module M equipped with a φ-semi-linear map φ : M → M. A
morphism between two φ-modules (M1, φ1) and (M2, φ2) is an S-linear morphism M1 → M2

compatible with φ1 and φ2. Denote by ′Modr/S the category of φ-modules M of height r in the
following sense;

• if r <∞, then M is of finite type over S and the cokernel of φ∗ is killed by E(u)r, where φ∗

is the S-linearization 1⊗ φ : S⊗φ,S M→M of φ,
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• if r = ∞, then M is of height r′ for some integer 0 ≤ r′ < ∞. In this case, M is called of
finite height.

Let Modr/S∞
be the full subcategory of ′Modr/S consisting of S-modules M of finite type which

satisfy the following:

• M is killed by some power of p,

• M has a two term resolution by finite free S-modules, that is, there exists an exact sequence

0→ N1 → N2 →M→ 0

of S-modules where N1 and N2 are finite free S-modules.

Let Modr/S be the full subcategory of ′Modr/S consisting of finite free S-modules. An object of
Modr/S∞

(resp. Modr/S) is called a torsion Kisin module (resp. a free Kisin module) of height r.
A φ-modules M is called p′-torsion free if for any non-zero element x ∈ M, AnnS(x) = 0

or AnnS(x) = pnS for some integer n. This is equivalent to the natural map M → O ⊗S M
being injective. If M is killed by some power of p, then M is p′-torsion free if and only if M is
u-torsion free. Therefore, if M ∈ ′Modr/S is killed by p and p′-torsion free, then M is finite free
as a k[[u]]-module. A φ-module M is called étale if M is p′-torsion free and O ⊗S M is an étale
φ-module over O. Since E(u) is a unit of O, we see that M is étale if and only if M is p′-torsion
free for any M ∈ ′Modr/S. Any object of M ∈ Modr/S is clearly étale.

For any M ∈ Modr/S∞
, we define a Zp[G∞]-module by

TS(M) = HomS,φ(M,Sur
∞),

where a G∞-action on TS(M) is given by (σ.g)(x) = σ(g(x)) for σ ∈ G∞, g ∈ TS(M), x ∈M. The
representation TS(M) is an object of Reptor(G∞).

Proposition 2.2 ([CL1, Corollary 2.1.6]). The functor TS : Modr/S∞
→ Reptor(G∞) is exact and

faithful.

Proof. The exactness follows from Proposition 2.4 below and the fact that the functor (M 7→
O ⊗S M) from Modr/S∞

to ΦM/O is exact (since O is flat over S).

Similarly, for any M ∈ Modr/S, we define a Zp[G∞]-module by

TS(M) = HomS,φ(M,Sur).

The representation TS(M) is an object of Repfr(G∞) and rankZpTS(M) = rankSM.

Proposition 2.3 ([Ki, Corollary 2.1.4, Proposition 2.1.12]). The functor TS : Modr/S → Repfr(G∞)
is exact and fully faithful.

Let M be a torsion Kisin module (resp. a free Kisin module). Since E(u) is a unit in O, we see
that M = M[1/u] := O⊗S M is a torsion étale φ-module over O (resp. a free étale φ-module over
O). Here a Frobenius φM on M is given by φM = φO ⊗ φM.

Proposition 2.4 ([Br2, Lemma 2.3.3], [Li1, Corollary 2.2.2]). Suppose that M is an object of
Modr/S∞

or Modr/S. Then the natural map

TS(M)→ T (O ⊗S M)

is an isomorphism of Zp-representations of G∞.
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2.4 (φ, Ĝ)-modules

Let S be the p-adic completion of W (k)[u, E(u)i

i! ]i≥0 and endow S with the following structures:

• a continuous φ-semi-linear Frobenius φ : S → S defined by φ(u) = up.

• a continuous linear derivation N : S → S defined by N(u) = −u.

• a decreasing filtration (FiliS)i≥0 in S. Here FiliS is the p-adic closure of the ideal generated

by the divided powers γj(E(u)) = E(u)j

j! for all j ≥ i.

Put SK0
= S[1/p] = K0 ⊗W (k) S. The inclusion S ↪→ W (R) induces inclusions S ↪→ S ↪→ Acris

and SK0 ↪→ B+
cris. (See subsection 2.1 for definitions of rings Acris and B

+
cris.) We regard all these

rings as subrings of B+
cris.

Fix a choice of primitive pi-th root of unity ζpi for i ≥ 0 such that ζppi+1 = ζpi . Put ε

= (ζpi)i≥0 ∈ R× and t = log([ε]) ∈ Acris. Denote by ν : W (R) → W (k̄) the unique lift of the
projection R → k̄. Since ν(Ker(θ)) is contained in the set pW (k̄), ν extends to maps ν : Acris →
W (k̄) and ν : B+

cris →W (k̄)[1/p]. For any subring A ⊂ B+
cris, we put I+A = Ker(ν on B+

cris)∩A. For
any integer n ≥ 0, put t{n} = tr(n)γq̃(n)(

tp−1

p ) where n = (p− 1)q̃(n) + r(n) with 0 ≤ r(n) < p− 1

and γi(x) =
xi

i! is the standard divided power.

We define a subring RK0 of B+
cris as below:

RK0 = {
∞∑
i=0

fit
{i} | fi ∈ SK0 and fi → 0 as i→∞}.

Put R̂ = RK0 ∩W (R) and I+ = I+R̂.
For any field F over Qp, set Fp∞ = ∪∞n≥0F (ζpn). Recall K∞ = ∪n≥0K(πn) and note that

K∞,p∞ = ∪n≥0K(πn, ζp∞) is the Galois closure ofK∞ overK. PutHK = Gal(K∞,p∞/K∞), H∞ =

Gal(K̄/K∞,p∞), Gp∞ = Gal(K∞,p∞/Kp∞) and Ĝ = Gal(K∞,p∞/K).

K̄

K∞,p∞

H∞

Kp∞

Gp∞ nnnnnnnnnnnnn

K∞

HK

G∞

K

mmmmmmmmmmmmmmm

Ĝ

��������������������������

G

Figure 1: Galois groups of field extensions

Proposition 2.5 ([Li3, Lemma 2.2.1]). (1) R̂ (resp. RK0) is a φ-stable S-algebra as a subring in
W (R) (resp. B+

cris).

(2) R̂ and I+ (resp. RK0 and I+RK0) are G-stable. The G-action on R̂ and I+ (resp. RK0 and
I+RK0) factors through Ĝ.

(3) There exist natural isomorphisms RK0/I+RK0 ≃ K0 and R̂/I+ ≃ S/I+S ≃ S/I+S ≃W (k).
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For any Kisin module (M, φM) of height r, we equip R̂⊗φ,S M with a Frobenius by ϕR̂⊗φM̂.
It is known that the natural map

M→ R̂⊗φ,S M

is an injection (cf. [CL2, Section 3.1]). By this injection, we regard M as a φ(S)-stable submodule

in R̂ ⊗φ,S M.

Definition 2.6. A weak (φ, Ĝ)-module (of height r) is a triple M̂ = (M, φM, Ĝ) where

(1) (M, φM) is a Kisin module (of height r),

(2) Ĝ is an R̂-semi-linear Ĝ-action on R̂ ⊗φ,S M which induces a continuous G-action on
W (FrR)⊗φ,S M for the weak topology1,

(3) the Ĝ-action commutes with ϕR̂ ⊗ φM̂,

(4) M ⊂ (R̂ ⊗φ,S M)HK .

If M is a torsion (resp. free) Kisin module of (height r), we call M̂ a torsion (resp. free) weak

(φ, Ĝ)-module (of height r). A weak (φ, Ĝ)-module M̂ is called a (φ, Ĝ)-module if it satisfies the
additional condition

(5) Ĝ acts on the W (k)-module (R̂ ⊗φ,S M)/I+(R̂ ⊗φ,S M) trivially.

If M is a torsion (resp. free) Kisin module of (height r), we call M̂ a torsion (resp. free) (φ, Ĝ)-

module (of height r). If M̂ = (M, φM, Ĝ) is a weak (φ, Ĝ)-module, we often abuse notations by

writing M̂ for the underlying module R̂ ⊗φ,S M.

A morphism f : (M, φ, Ĝ) → (M′, φ′, Ĝ) between two weak (φ, Ĝ)-modules is a morphism

f : (M, φ) → (M′, φ′) of Kisin-modules such that R̂ ⊗ f : M̂ → M̂′ is Ĝ-equivariant. We denote

by wModr,Ĝ/S∞
(resp. wModr,Ĝ/S , resp. Modr,Ĝ/S∞

, resp. Modr,Ĝ/S ) the category of torsion weak (φ, Ĝ)-

modules (resp. free weak (φ, Ĝ)-modules, resp. torsion (φ, Ĝ)-modules, resp. free (φ, Ĝ)-modules).

We regard M̂ as a G-module via the projection G ↠ Ĝ. A sequence 0 → M̂′ → M̂ → M̂′′ → 0
of (weak) (φ, Ĝ)-modules is exact if it is exact as S-modules and all morphisms are morphisms of
(weak) (φ, Ĝ)-modules.

For a weak (φ, Ĝ)-module M̂, we define a Zp[G]-module as below:

T̂ (M̂) = HomR̂,φ(M̂,W (R)∞) if M is killed by some power of p

and
T̂ (M̂) = HomR̂,φ(M̂,W (R)) if M is free.

Here, G acts on T̂ (M̂) by (σ.f)(x) = σ(f(σ−1(x))) for σ ∈ G, f ∈ T̂ (M̂), x ∈ M̂.

Let M̂ = (M, φM, Ĝ) be a weak (φ, Ĝ)-module. There exists a natural map

θ : TS(M)→ T̂ (M̂)

defined by
θ(f)(a⊗m) = aφ(f(m)) for f ∈ TS(M), a ∈ R̂,m ∈M,

which is G∞-equivariant.
Let denote by ReprZp

(G) the category of G-stable Zp-lattices in semi-stable p-adic representa-
tions of G with Hodge-Tate weights in [0, r].

1Suppose that M is free as an S-module. We equip R̂ ⊗φ,S M (resp. W (FrR)⊗φ,S M) with the weak topology

using any R̂-basis (resp. W (FrR)-basis), which is independent of the choice of basis. Then we may replace the
condition (2) with the following condition (2)’:

(2)’ Ĝ is a continuous R̂-semi-linear Ĝ-action on R̂ ⊗φ,S M for the weak topology.

In fact, if G acts on R̂ ⊗φ,S M continuously, then the G-action on T̂ (M̂) is continuous for the p-adic topology (the

definition for T̂ (M̂) is given before Theorem 2.7). Since the map ι̂ in Lemma 4.2 (4) is a topological isomorphism
for weak topologies on both sides, we see that the G-action on W (FrR)⊗φ,S M is automatically continuous.
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Theorem 2.7 ([CL2, Theorem 3.1.3], [Li3, Theorem 2.3.1]). (1) For a weak (φ, Ĝ)-module M̂, the

map θ : TS(M)→ T̂ (M̂) is an isomorphism of Zp[G∞]-modules.

(2) The functor T̂ induces an anti-equivalence between Modr,ĜS and ReprZp
(G).

Corollary 2.8. The functor T̂ : wModr,Ĝ/S∞
→ Reprtor(G) is exact and faithful.

Proof. The exactness of the functor T̂ follows from Proposition 2.2 and Theorem 2.7 (1). Since
TS : Modr/S∞

→ Reprtor(G∞) is faithful, the faithfulness of T̂ follows from the following commuta-
tive diagram:

Hom
wModr,Ĝ

/S∞
(M̂, M̂′) //� � //

T̂

��

HomModr
/S∞

(M,M′) � � //TS // HomG∞(TS(M′), TS(M))

≀
��

HomG(T̂ (M̂
′), T̂ (M̂))

� � // HomG∞(T̂ (M̂′), T̂ (M̂)).

2.5 Some fundamental properties

In this subsection, we give some fundamental, but important, results on Kisin modules and (φ, Ĝ)-
modules. We start with the following proposition which plays an important role throughout this
paper.

Proposition 2.9 ([Li1, Proposition 2.3.2]). Let M be an object of ′Modr/S which is killed by pn.
The following statements are equivalent:
(1) M is an object of Modr/S∞

.
(2) M is u-torsion free.
(3) M is étale.
(4) M is a successive extension of finite free k[[u]]-modules in ′Modr/S∞

, that is, there exists a
sequence of extensions

0 = M0 ⊂M1 ⊂ · · · ⊂Mk = M

in ′Modr/S∞
such that Mi/Mi−1 is an object of ′Modr/S∞

, and Mi/Mi−1 is a finite free k[[u]]-
module.
(5) M is the quotient of two finite free S-modules N′ and N′′ with N′,N′′ ∈ Modr/S.

Remark 2.10. By Lemma 2.3.1 of [Li1], it is easy to see that, for any i, Mi and Mi/Mi−1

appeared in Proposition 2.9 (4) are in fact objects of Modr/S∞
.

Corollary 2.11. Let A be an S-algebra without p-torsion. Then TorS1 (M, A) = 0 for any Kisin
module M. In particular, the functor M 7→ A⊗SM is an exact functor from the category of Kisin
modules to the category of A-modules.

Proof. If M is a free Kisin module, then the fact TorS1 (M, A) = 0 is clear. Let M be a tor-
sion Kisin module and let show TorS1 (M, A) = 0. For this proof, we use Proposition 2.9 (4)
and dévissage to reduce the proof to the case where M is killed by p. Then it suffices to show

TorS1 (k[[u]], A) = 0. The exact sequence 0 → S
p→ S → k[[u]] → 0 induces an exact sequence

TorS1 (S, A)→ TorS1 (k[[u]], A)→ A
p→ A. Since TorS1 (S, A) = 0 and A has no p-torsion, we obtain

TorS1 (k[[u]], A) = 0.

Recall that, for any Z-module M and any positive integer n, we always use Mn to denote
M/pnM .
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Corollary 2.12. Let M be an object of Modr/S∞
or Modr/S. Let A ⊂ B be a ring extension of

p-torsion free S-algebras. Suppose that the natural map A1 → B1 is injective. Then the natural
map A⊗S M→ B ⊗S M is injective.

In this paper, we often regard A ⊗S M (resp. A ⊗φ,S M) as a submodule of B ⊗S M (resp.
B ⊗φ,S M).

Proof. The statement is clear if M is free over S or killed by p (since A1 ⊂ B1). Suppose that M
is killed by some power of p. Take a sequence of extensions 0 = M0 ⊂M1 ⊂ · · · ⊂Mk = M as in
Proposition 2.9 (4). Note that Mi and Mi/Mi−1 are objects of Modr/S∞

(cf. Remark 2.10). Since
two horizontal sequences in the diagram

0 // A⊗S Mi−1
//

��

A⊗S Mi
//

��

A⊗S Mi−1
//

� _

��

0

0 // B ⊗S Mi−1
// B ⊗S Mi

// B ⊗S Mi−1
// 0

are exact (see Corollary 2.11), induction on i gives the desired result.

Corollary 2.13. Let M be an object of Modr/S∞
and N a φ-module over S with M ⊂ N. Let

S ⊂ A ⊂W (FrR) be ring extensions such that A1 → FrR is injective.
(1) The natural map A⊗S M→ A⊗S N is injective.
(2) If A is φ-stable, then the natural map A⊗φ,S M→ A⊗φ,S N is injective.

Proof. We only prove (2) (a proof for (1) is similar). See the following commutative diagram:

A⊗φ,S M //

��

A⊗φ,S N

��
W (FrR)⊗φ,S M // W (FrR)⊗φ,S N.

The left vertical map is injective by Corollary 2.12 and the bottom horizontal map is also injective
since φ : S→W (FrR) is flat. Hence we obtain the desired result.

Remark 2.14. Let n > 0 be an integer.
(1) Let S ⊂ A ⊂ B ⊂W (FrR) be ring extensions. If the natural map An →Wn(FrR) is injective,
then the map An → Bn is also injective.
(2) (cf. [CL2, Lemma 3.1.1], [Fo, Proposition 1.8.3]) We have the following inclusions:

R̂n
� � // Wn(R)

� � // Wn(FrR)

Sn
� � //?�

OO

Sur
n

� � //?�

OO

Our
n .
?�

OO

Corollary 2.15. Let M be an object of Modr/S∞
and n ≥ 0 an integer. Then pnTS(M) = 0 if

and only if pnM = 0.

Proof. The sufficiency is clear from the definition of TS. Suppose pnTS(M) = 0. First we prove
the case where n = 0. By Proposition 2.9 and Remark 2.10, there exists a sequence of extensions

0 = M0 ⊂M1 ⊂ · · · ⊂Mk = M

in Modr/S∞
such that Mi+1/Mi is an object of Modr/S∞

and is a finite free k[[u]]-module. Applying
TS to the exact sequence 0 → Mi → Mi+1 → Mi+1/Mi → 0, we obtain an exact sequence 0 →
TS(Mi+1/Mi) → TS(Mi+1) → TS(Mi) → 0 of Zp[G∞]-modules. Since TS(Mk) = TS(M) = 0,
we obtain TS(Mk/Mk−1) = 0. By Lemma 2.1.2 of [Ki], this implies Mk = Mk−1 and in particular,
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TS(Mk−1) = 0. Inductively, we obtain Mk = Mk−1 = · · · = M0 = 0. For general n ≥ 0, we

consider the exact sequence 0→ ker(pn)→M
pn→M in Modr/S∞

. Since pnTS(M) = 0, we obtain
TS(M) ≃ TS(ker(pn)). Therefore, applying TS to the exact sequence 0 → ker(pn) → M →
M/ker(pn)→ 0 in Modr/S∞

, we obtain TS(M/ker(pn)) = 0 and then M/ker(pn) = 0.

Lemma 2.16. Let M be an S-module of finite type. If M is p′-torsion free, then so is M/pM.

Proof. We may suppose that M ̸= 0. By an elementary ring theory, we obtain
√
AnnS(M/pM) =√

AnnS(M) + pS = pS and thus AnnS(M/pM) = pS.

Proposition 2.17. Let M (resp. M′) be an object of Modr/S∞
(resp. Modr

′

/S∞
) for some r ∈

{0, 1, . . . ,∞} (resp. r′ ∈ {0, 1, . . . ,∞}). Then M⊗SM′

u-tor is an object of Modr+r
′

/S∞
. If we put M⊗M′ =

M⊗SM′

u-tor , then there exists a canonical isomorphism TS(M⊗M′) ≃ TS(M)⊗Zp
TS(M′) of Zp[G∞]-

modules. Furthermore, if M or M′ is killed by p, then M⊗S M′ is u-torsion free.

Proof. To check M⊗SM′

u-tor ∈ Modr+r
′

/S∞
is not difficult. Putting M = M[1/u] and M ′ = M′[1/u], we

have M⊗SM′

u-tor [1/u] ≃ M ⊗O M ′. By Proposition 2.4, we obtain TS(M ⊗M′) ≃ T (M ⊗O M ′) ≃
T (M)⊗Zp T (M

′) ≃ TS(M)⊗Zp TS(M′). The last assertion follows from Lemma 2.16.

Proposition 2.18 (Scheme-theoretic closure, [Li1, Lemma 2.3.6]). Let f : M→ L be a morphism
of φ-modules over S. Suppose that M and L are p′-torsion free and M is an object of ′Modr/S.
Then ker(f) and im(f) are étale and belong to ′Modr/S. In particular, if M is an object of Modr/S∞

,
then ker(f) and im(f) are also objects of Modr/S∞

.

There exists the (φ, Ĝ)-analogue of the above proposition.

Corollary 2.19. Let M̂ and M̂′ be objects of wModr,Ĝ/S∞
(resp. Modr,Ĝ/S∞

). Let f : M̂ → M̂′ be

a morphism of (φ, Ĝ)-modules. Then, ker(f) and im(f) as φ-modules are objects of Modr/S∞
.

Furthermore, the Ĝ-action on M̂ gives ker(f) a structure of a weak (φ, Ĝ)-module (resp. a (φ, Ĝ)-

module) and the Ĝ-action on M̂′ gives im(f) a structure of a weak (φ, Ĝ)-module (resp. a (φ, Ĝ)-
module).

Proof. It is enough to prove only the case where M̂, M̂′ are objects of Modr,Ĝ/S∞
. By Proposition

2.18, ker(f) and im(f) as φ-modules are in Modr/S∞
. Consider the image of f . Let f̂ : R̂ ⊗φ,S

M → R̂ ⊗φ,S M′ be the morphism induced from f . Since R̂ ⊗φ,S im(f) = f̂(R̂ ⊗φ,S M) (by

Corollary 2.13) and f̂ is compatible with Ĝ-actions, we can define a Ĝ-action on R̂ ⊗φ,S im(f)

such that the map R̂ ⊗φ,S M → R̂ ⊗φ,S im(f) induced from f is Ĝ-equivariant. Since R̂ ⊗φ,S
M/I+(R̂ ⊗φ,S M) → R̂ ⊗φ,S im(f)/I+(R̂ ⊗φ,S im(f)) is surjective, it is a routine work to check

that îm(f) = (im(f), φ, Ĝ) is a (φ, Ĝ)-module. The assertion for the kernel of f follows from

the fact that, two exact sequences 0 → R̂ ⊗φ,S ker(f) → R̂ ⊗φ,S M
f̂→ R̂ ⊗φ,S im(f) → 0 and

0 → (R̂/I+) ⊗φ,S ker(f) → (R̂/I+) ⊗φ,S M
f̂→ (R̂/I+) ⊗φ,S im(f) → 0 arising from the exact

sequence 0 → ker(f) → M → im(f) → 0 are exact by Corollary 2.11 (here, we remark that

R̂/I+ ≃W (k) is p-torsion free).

Corollary 2.20. Let 0 → M̂′ → M̂ → M̂′′ → 0 be an exact sequence in wModr,Ĝ/S∞
. If M̂ is an

object of Modr,Ĝ/S∞
, then M̂′ and M̂′′ are also objects of Modr,Ĝ/S∞

.

Proof. This immediately follows from Corollary 2.11.
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3 Cartier duality for (φ, Ĝ)-modules

In this subsection, we give the Cartier duality for (φ, Ĝ)-modules. Throughout this section, we fix
an integer r <∞.

3.1 Cartier duality for Kisin modules

In this subsection, we recall Liu’s results on duality theorems for Kisin modules (cf. Section 3 of
[Li1].

Example 3.1. Let S∨ = S ·fr be the rank-1 free S-module with φ(fr) = c−r0 E(u)r ·fr where pc0 is
the constant coefficient of E(u). We denote by φ∨ this Frobenius φ. Then (S∨, φ∨) is a free Kisin
module of height r and there exists an isomorphism TS(S∨) ≃ Zp(r) as Zp[G∞]-modules (see [Li1,
Example 2.3.5]). Put S∨

∞ = Qp/Zp ⊗Zp S∨ = S∞ · fr (resp. S∨
n = Zp/pnZp ⊗Zp S∨ = Sn · fr for

any integer n ≥ 0). The Frobenius φ on S∨ induces Frobenii φ∨ on S∨
∞ and S∨

n .
Put E∨ = E ⊗S S∨ = E · fr and equip E∨ with a Frobenius φ∨ arising from those of E and S∨.

Similarly, we put O∨ = O · fr,O∨
∞ = O∞ · fr,O∨

n = On · fr and equip them with Frobenii φ∨ which
arise from that of E∨. We define Our,∨, Our,∨

∞ Our,∨
n , and Frobenii φ∨ on them by the analogous

way.

Let M be a Kisin module of height r and denote by M = O ⊗S M the corresponding étale
φ-module. Put

M∨ = HomS(M,S∞), M∨ = HomO,φ(M,O∞) if M is killed by some power of p

and
M∨ = HomS(M,S), M∨ = HomO,φ(M,O) if M is free.

We then have natural pairings

⟨·, ·⟩ : M×M∨ → S∨
∞, ⟨·, ·⟩ : M ×M∨ → O∨

∞ if M is killed by some power of p

and
⟨·, ·⟩ : M×M∨ → S∨, ⟨·, ·⟩ : M ×M∨ → O∨ if M is free.

The Frobenius φ∨
M on M∨ (resp. φ∨

M on M∨ ) is defined to be

⟨φM(x), φ∨
M(y)⟩ = φ∨(⟨x, y⟩) for x ∈M, y ∈M∨.

(resp. ⟨φM (x), φ∨
M (y)⟩ = φ∨(⟨x, y⟩) for x ∈M,y ∈M∨.)

Theorem 3.2 ([Li1]). Let M be a Kisin module of height r, M = O⊗SM the corresponding étale
φ-module and ⟨·, ·⟩ the pairing as above.
(1) (M∨, φ∨

M) is a Kisin module of height r. Similarly, M∨ is an étale φ-module.
(2) A natural map O ⊗S M∨ →M∨ is an isomorphism and φ∨

M = φO ⊗ φ∨
M.

(3) The assignment M 7→M∨ is an anti-self-equivalence on the category of torsion Kisin-modules
(resp. free Kisin-modules) of height r, and the natural map M→ (M∨)∨ is an isomorphism.
(4) All pairings ⟨·, ·⟩ appeared above are perfect.
(5) The dual preserves short exact sequences of torsion Kisin modules (resp. free Kisin modules,
resp. torsion étale φ-modules, resp. free étale φ-modules).

Remark 3.3. The assertion (2) of the above theorem says that we have a natural isomorphism
O ⊗S M∨ ≃ (O ⊗S M)∨ = M∨ which is compatible with φ-structures. In fact, the pairing ⟨·, ·⟩
for M is equal to the pairing which is obtained by tensoring O to the pairing ⟨·, ·⟩ for M.
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3.2 Construction of dual objects

Put
Ŝ∨ = R̂ ⊗φ,S S∨ = R̂ ⊗φ,S (S · fr) = R̂ · fr,

Ŝ∨
n = Zp/pnZp ⊗Zp

Ŝ∨ = R̂ ⊗φ,S S∨
n = R̂ ⊗φ,S (Sn · fr) = R̂n · fr for any integer n ≥ 0

and
Ŝ∨

∞ = Qp/Zp ⊗Zp Ŝ∨ = R̂ ⊗φ,S S∨
∞ = R̂ ⊗φ,S (S∞ · fr) = R̂∞ · fr,

and we equip them with natural Frobenii arising from those of R̂ and S∨. By Theorem 2.7, we
can define a unique Ĝ-action on Ŝ∨ such that Ŝ∨ has a structure of a (φ, Ĝ)-module of height r
and there exists an isomorphism

T̂ (Ŝ∨) ≃ Zp(r) (3.2.1)

as Zp[G]-modules. This Ĝ-action on Ŝ∨ induces Ĝ-actions on Ŝ∨
n and Ŝ∨

∞. Then it is not difficult

to see that Ŝ∨
n has a structure of a torsion (φ, Ĝ)-module of height r and there exists an isomorphism

T̂ (Ŝ∨
n) ≃ Zp/pnZp(r) (3.2.2)

as Zp[G]-modules. We may say that Ŝ∨ (resp. Ŝ∨
n ) is the dual (φ, Ĝ)-module of Ŝ (resp. Ŝn )

since (3.2.1) and (3.2.2) hold.

Remark 3.4. If Kp∞ ∩ K∞ = K (which automatically holds in the case p > 2), then the Ĝ-

actions on Ŝ∨, Ŝ∨
n and Ŝ∨

∞ can be written explicitly as follows (see Example 3.2.3 of [Li3]): If
Kp∞∩K∞ = K, we have Ĝ = Gp∞⋊HK (see Lemma 5.1.2 in [Li2]). Fixing a topological generator

τ ∈ Gp∞ , we define Ĝ-actions on the above three modules by the relation τ(fr) = ĉr · fr. Here

ĉ = c
τ(c) =

∏∞
n=1 φ

n( E(u)
τ(E(u)) ), c =

∏∞
n=0 φ

n(
φ(c−1

0 E(u))
p ). Example 3.2.3 of [Li3] says that c ∈ A×

cris

and ĉ ∈ R̂×. It follows from straightforward calculations that Ŝ∨ and Ŝ∨
n are (φ, Ĝ)-modules of

height r.

Recall that, for any Z-module M , we put M∞ =M ⊗Zp Qp/Zp.

Lemma 3.5. Let A be an S-algebra with characteristic coprime to p. Let M ∈ Modr/S∞
(resp.

M ∈ Modr/S). Then there exists a natural isomorphism:

A⊗φ,S M∨ ∼−→ HomA(A⊗φ,S M, A∞) if M is killed by some power of p,

(resp. A⊗φ,S M∨ ∼−→ HomA(A⊗φ,S M, A) if M is free).

Proof. If M is free, the statement is clear. If pM = 0, then we may regard M as a finite free
S1-module and thus the statement is clear. Suppose that M is a (general) torsion Kisin module
of height r. By Proposition 2.9 of [Li1], there exists a sequence of extensions of φ-modules

0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M

such that, for all 1 ≤ i ≤ n, Mi/Mi−1 ∈ Modr/S∞
and Mi/Mi−1 is a finite free S/pS = k[[u]]-

module. Furthermore, we have Mi ∈ Modr/S∞
by Lemma 2.3.1 in [Li1]. We show that the natural

map
A⊗φ,S M∨

i −→ HomA(A⊗φ,S Mi, A∞), a⊗ f 7→ (a⊗ x 7→ af(x))

where a ∈ A, f ∈M∨
i and x ∈Mi, is an isomorphism by induction on i. For i = 0, it is obvious.

Suppose that the above map is an isomorphism for i − 1. We consider the exact sequence of
S-modules

0→Mi−1 →Mi →Mi/Mi−1 → 0. (3.2.3)
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By Corollary 3.1.5 of [Li1], we know that the sequence

0→ (Mi/Mi−1)
∨ →M∨

i →M∨
i−1 → 0

is also exact as S-modules. Therefore, we have the following exact sequence of A-modules:

A⊗φ,S (Mi/Mi−1)
∨ → A⊗φ,S M∨

i → A⊗φ,S M∨
i−1 → 0. (3.2.4)

On the other hand, the exact sequence (3.2.3) induces an exact sequence of A-modules

0→ HomA(A⊗φ,S Mi/Mi−1, A∞)→ HomA(A⊗φ,S Mi, A∞)→ HomA(A⊗φ,S Mi−1, A∞).
(3.2.5)

Combining the sequences (3.2.4) and (3.2.5), we obtain the following commutative diagram of
A-modules:

A⊗φ,S (Mi/Mi−1)
∨ //

��

A⊗φ,S M∨
i

//

��

A⊗φ,S M∨
i−1

//

��

0

0 // HomA(A⊗φ,S Mi/Mi−1, A∞) // HomA(A⊗φ,S Mi, A∞) // HomA(A⊗φ,S Mi−1, A∞)

where the two rows are exact. Furthermore, the first and the third columns are isomorphisms by the
induction hypothesis. By the snake lemma, we obtain that the second column is an isomorphism,
too.

Let M̂ = (M, φM, Ĝ) be a torsion (resp. free) weak (φ, Ĝ)-module of height r and (M∨, φ∨
M)

the dual Kisin module of (M, φM). By Lemma 3.5, we have isomorphisms

R̂ ⊗φ,S M∨ ∼−→ HomR̂(R̂ ⊗φ,S M, Ŝ∨
∞) if M is killed by some power of p, (3.2.6)

R̂ ⊗φ,S M∨ ∼−→ HomR̂(R̂ ⊗φ,S M, Ŝ∨) if M is free. (3.2.7)

We define a Ĝ-action on HomR̂(R̂ ⊗φ,S M, Ŝ∨
∞) (resp. HomR̂(R̂ ⊗φ,S M, Ŝ∨)) by

(σ.f)(x) = σ(f(σ−1(x)))

for σ ∈ Ĝ, x ∈ R̂ ⊗φ,S M and f ∈ HomR̂(R̂ ⊗φ,S M, Ŝ∨
∞) (resp. f ∈ HomR̂(R̂ ⊗φ,S M, Ŝ∨)) and

equip R̂ ⊗φ,S M∨ with a Ĝ-action via the isomorphism (3.2.6) (resp. (3.2.7)).

Theorem 3.6. Let M̂ = (M, φM, Ĝ) be a torsion (resp. free) weak (φ, Ĝ)-module of height r and

equip R̂⊗φ,SM∨ with a Ĝ-action as above. Then the triple M̂∨ = (M∨, φ∨
M, Ĝ) is a torsion (resp.

free) weak (φ, Ĝ)-module of height r. If M̂ is a (φ, Ĝ)-module of height r, then so is M̂∨.

Definition 3.7. Let M̂ be a weak (φ, Ĝ)-module (resp. a (φ, Ĝ)-module). We call M̂∨ in Theorem

3.6 the Cartier dual of M̂.

To prove Theorem 3.6, we need the following easy property for R̂∞ = R̂[1/p]/R̂.

Lemma 3.8. (1) For any integer n, we have

R̂[1/p] ∩ pnW (FrR) = R̂ ∩ pnW (R) = pnR̂.

(2) The following properties for a ∈ R̂[1/p] are equivalent:

(i) If x ∈ R̂[1/p] satisfies that ax = 0 in R̂∞, then x = 0 in R̂∞.

(ii) a /∈ pR̂.
(iii) a /∈ pW (R).
(iv) a /∈ pW (FrR).
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Proof. (1) The result follows from relations

R̂[1/p] ∩ pnW (FrR) = R̂[1/p] ∩ (W (R)[1/p] ∩ pnW (FrR)) = R̂[1/p] ∩ pnW (R)

and
pnR̂ ⊂ R̂[1/p] ∩ pnW (R) ⊂ R̂K0 ∩ pnW (R) = pn(R̂K0 ∩W (R)) = pnR̂.

(2) The equivalence of (ii), (iii) and (iv) follows from the assertion (1). Suppose the condition (iv)

holds. Take any x ∈ R̂[1/p] such that ax ∈ R̂. Then we have

1

a
R̂ ∩ R̂[1/p] ⊂ 1

a
W (FrR) ∩W (FrR)[1/p] ⊂W (FrR)

since a /∈ pW (FrR). Thus we obtain

x ∈ 1

a
R̂ ∩ R̂[1/p] = 1

a
R̂ ∩ R̂[1/p] ∩W (FrR) ⊂ R̂[1/p] ∩W (FrR) = R̂,

which implies the assertion (i) (the last equality follows from (1)). Suppose the condition (ii) does

not hold, that is, a ∈ pR̂. Then R̂[1/p]∩ 1
aR̂ ⊃

1
pR̂ ⊋ R̂ and this implies that (i) does not hold.

Proof of Theorem 3.6. We only prove the case where M̂ is a torsion (φ, Ĝ)-module (the free case
can be checked by almost the same method).

We check the properties (1) to (5) of Definition 2.6 for M̂∨. It is clear that (1) and (2) hold

for M̂∨. Take any f ∈M∨. Regard M∨ as a submodule of R̂ ⊗φ,S M∨. Then, in R̂ ⊗φ,S M∨, we
see that f is equal to the map

f̂ : R̂ ⊗φ,S M→ R̂ · fr, a⊗ x 7→ aφ(f(x)) · fr

for a ∈ R̂ and x ∈M. Since M ⊂ (R̂ ⊗φ,S M)HK , we have

(σ.f̂)(a⊗ x) = σ(f̂(σ−1(a⊗ x))) = σ(f̂(σ−1(a)(1⊗ x))) = σ((σ−1(a)f̂(1⊗ x)))

= aσ(f̂(1⊗ x)) = aσ(φ(f(x)) · fr) = aφ(f(x)) · fr = f̂(a⊗ x).

for any a ∈ R̂, x ∈M and σ ∈ HK . This implies M∨ ⊂ (R̂ ⊗φ,S M∨)HK and hence (4) holds for

M̂∨. Check the property (5), that is, the condition that Ĝ acts trivially on M̂/I+M̂. By Lemma
3.5, we know that there exists the following natural isomorphism:

R̂ ⊗φ,S M∨/I+(R̂ ⊗φ,S M∨)
∼−→ HomR̂(R̂ ⊗φ,S M/I+(R̂ ⊗φ,S M), Ŝ∨

∞/I+Ŝ
∨
∞),

which is in fact Ĝ-equivariant by the definition of the Ĝ-action on R̂ ⊗φ,S M∨. Since Ĝ acts on

R̂ ⊗φ,S M/I+(R̂ ⊗φ,S M) and Ŝ∨
∞/I+Ŝ

∨
∞ trivially, we obtain the desired result.

Finally we prove the property (3) for M̂∨. First we note that, if we take any f ∈ M∨ =
HomS(M,S∞) and regard f as a map with values in S∨

∞, then we have

φ∨(f) ◦ φM = φ∨ ◦ f : M→ S∨
∞. (3.2.8)

Recall that there exists a natural isomorphism

R̂ ⊗φ,S M∨ ≃ HomR̂(R̂ ⊗φ,S M, Ŝ∨
∞)

by Lemma 3.5. We equip HomR̂(R̂ ⊗φ,S M, Ŝ∨
∞) with a φ-structure φ∨ via this isomorphism.

Then it is enough to show that σφ∨ = φ∨σ on HomR̂(R̂ ⊗φ,S M, Ŝ∨
∞) for any σ ∈ Ĝ. Take any

f̂ ∈ Hom(R̂ ⊗φ,S M, Ŝ∨
∞) and consider the following diagram:

R̂ ⊗φ,S M
φM̂ //

f̂

��

R̂ ⊗φ,S M

φ∨(f̂)

��
Ŝ∨

∞ φ∨
// Ŝ∨

∞.

(3.2.9)
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By (3.2.8), we obtain that the diagram (3.2.9) is also commutative. To check the relation σ(φ∨(f̂)) =

φ∨(σ(f̂)), it suffices to show that σ(φ∨(f̂))(φM̂(x)) = φ∨(σ(f̂))(φM̂(x)) for any x ∈ R̂ ⊗φ,S M

since M is of finite E(u)-height and, for any a ∈ R̂∞, φ(E(u))a = 0 if and only if a = 0 by Lemma
3.8. By (3.2.9), we have

σ(φ∨(f̂))(φM̂(x)) = σ(φ∨(f̂)(σ−1(φM̂(x)))) = σ(φ∨(f̂)(φM̂(σ−1(x)))) = σ(φ∨(f̂(σ−1(x)))).

By replacing f̂ with σ(f̂) in the diagram (3.2.9), we have

φ∨(σ(f̂))(φM̂(x)) = φ∨(σ(f̂))(x) = φ∨(σ(f̂(σ−1(x)) = σ(φ∨(f̂(σ−1(x))))

and this finishes the proof.

3.3 Cartier duality theorem

Let M̂ be a weak (φ, Ĝ)-module of height r. We have natural pairings

⟨·, ·⟩ : (R̂ ⊗φ,S M)× (R̂ ⊗φ,S M∨)→ Ŝ∨
∞ if M is killed by some power of p (3.3.1)

and
⟨·, ·⟩ : (R̂ ⊗φ,S M)× (R̂ ⊗φ,S M∨)→ Ŝ∨ if M is free. (3.3.2)

It is not difficult to see that these pairings commute with the Frobenii and the Ĝ-actions.
Here we describe the Cartier duality theorem for (φ, Ĝ)-modules.

Theorem 3.9 (Cartier duality theorem). Let M̂ be a weak (φ, Ĝ)-module (resp. a (φ, Ĝ)-module)
of height r.
(1) The assignment M̂ 7→ M̂∨ is an anti-self-equivalence on the category of torsion weak (φ, Ĝ)-
modules (resp. free weak (φ, Ĝ)-modules, resp. torsion (φ, Ĝ)-modules, resp. free weak (φ, Ĝ)-

modules) of height r, and the natural map M̂→ (M̂∨)∨ is an isomorphism.
(2) Pairings (3.3.1) and (3.3.2) are perfect.
(3) The dual preserves short exact sequences of torsion weak (φ, Ĝ)-modules (resp. free weak (φ, Ĝ)-
modules, resp. torsion (φ, Ĝ)-modules, resp. free weak (φ, Ĝ)-modules).

Proof. By Theorem 3.2 (3), we have already known that the natural map M → (M∨)∨ is an
isomorphism as φ-modules. Furthermore, straightforward calculations show that the map M →
(M∨)∨ is compatible with the Galois actions after tensoring R̂. Thus we obtain that M̂→ (M̂∨)∨

is an isomorphism, and the assertion (1) follows immediately. The assertion (3) follows from
Theorem 3.2 (5). Consequently, we have to show the assertion (2). We leave a proof to the next
section.

3.4 Compatibility with Galois actions

The goal of this subsection is to prove the following which is equivalent to Theorem 3.9 (2):

Proposition 3.10. Let M̂ be a weak (φ, Ĝ)-module. Then we have

T̂ (M̂∨) ≃ T̂∨(M̂)(r) (3.4.1)

as Zp[G]-modules where T̂∨(M̂) is the dual representation of T̂ (M̂) and the symbol “(r)” stands
for the r-th Tate twist.

First we construct a covariant functor on the category of weak (φ, Ĝ)-modules. Recall that,

if M̂ = (M, φM, Ĝ) is a weak (φ, Ĝ)-module, we often abuse notations by writing M̂ for the

underlying module R̂ ⊗φ,S M.
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Proposition 3.11. Let M̂ be a weak (φ, Ĝ)-module. Then the natural W (FrR)-linear map

W (FrR)⊗Zp (W (FrR)⊗R̂ M̂)φ=1 →W (FrR)⊗R̂ M̂, a⊗ x 7→ ax, (3.4.2)

for any a ∈ W (FrR) and x ∈ (W (FrR) ⊗R̂ M̂)φ=1, is an isomorphism, which is compatible with
the φ-structures and the G-actions.

Proof. A non-trivial assertion of this proposition is only the bijectivity of the map (3.4.2). First
we note the following natural φ-equivariant isomorphisms:

W (FrR)⊗R̂ M̂ ≃W (FrR)⊗φ,S M

≃W (FrR)⊗O (O ⊗φ,S M)

1⊗φ∗
M−→ W (FrR)⊗O M

where M = O ⊗S M is the étale φ-module corresponding to M. Here the bijectivity of 1 ⊗ φ∗
M ,

where φ∗
M is the O-linearization of φM , follows from the étaleness of M . Combining the above

isomorphisms with the relation (2.2.1), we obtain the following natural φ-equivariant bijective
maps

W (FrR)⊗R̂ M̂
∼−→W (FrR)⊗O M

∼←−W (FrR)⊗Zp (Ôur ⊗O M)φ=1 (3.4.3)

and hence we obtain
(W (FrR)⊗R̂ M̂)φ=1 ≃ (Ôur ⊗O M)φ=1. (3.4.4)

By (3.4.3) and (3.4.4), we obtain

W (FrR)⊗Zp (W (FrR)⊗R̂ M̂)φ=1 ∼−→W (FrR)⊗R̂ M̂

and the desired result follows from the fact that this isomorphism coincides with the natural map
(3.4.2).

For any weak (φ, Ĝ)-module M̂, we set

T̂∗(M̂) = (W (FrR)⊗R̂ M̂)φ=1.

Since the Frobenius action on W (FrR)⊗R̂ M̂ commutes with the G-action, we see that T̂∗(M̂) is
stable under the G-action. We have shown in the proof of Proposition 3.11 (see (3.4.4)) that

T̂∗(M̂) ≃ T∗(M)

as Zp[G∞]-modules for M = O⊗SM (the functor T∗ is defined in Section 2.2). In particular, if M̂

is free and d = rankS(M), T̂∗(M̂) is free of rank d as a Zp-module. The association M̂ 7→ T̂∗(M̂)

is a covariant functor from the category of (φ, Ĝ)-modules of height r to the category RepZp
(G) of

finite Zp[G]-modules. By the exactness of the functor T∗, the functor T̂∗ is an exact functor.

Corollary 3.12. The Zp-representation T̂∗(M̂) of G is the dual of T̂ (M̂), that is,

T̂∨(M̂) ≃ T̂∗(M̂)

as Zp[G]-modules where T̂∨(M̂) is the dual representation of T̂ (M̂).

Proof. Suppose M̂ is killed by some power of p. By Proposition 3.11 and the relationW (FrR)φ=1
∞ =

Qp/Zp, we have

HomZp(T̂∗(M̂),Qp/Zp) ≃ HomW (FrR),φ(W (FrR)⊗Zp (W (FrR)⊗R̂ M̂)φ=1,W (FrR)∞)

≃ HomW (FrR),φ(W (FrR)⊗R̂ M̂,W (FrR)∞)

≃ HomR̂,φ(M̂,W (FrR)∞) = T̂ (M̂).
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The last equality follows from the proof of [Li3, Lemma 3.1.1], but we include a proof here for

the sake of completeness. Take any h ∈ HomR̂,φ(M̂,W (FrR)∞). It is enough to prove that h

has in fact its values in W (R)∞. Put g = h|M. Since g is a φ(S)-linear homomorphism from M
to W (R)∞ = φ(W (R)∞), there exists an S-linear homomorphism g : M → W (FrR)∞ such that
φ(g) = g. Furthermore, we see that g is φ-equivariant. Note that g(M) ⊂W (FrR)∞ is an S-finite
type φ-stable submodule with E(u)-height r. By [Fo, Proposition B.1.8.3], we have g(M) ⊂ Sur

∞.

Since h(a⊗ x) = aφ(g(x)) for any a ∈ R̂ and x ∈M, we obtain that h has values in W (R)∞.

In the case M̂ is free, we obtain the desired result by the same proof as above if we replace
W (FrR)∞ (resp. Qp/Zp) with W (FrR) (resp. Zp).

In the rest of this subsection, we prove Proposition 3.10. We only prove the case where M is
killed by pn for some integer n ≥ 1 (we can prove the free case by an analogous way and the free
case is easier than the torsion case).

First we consider natural pairings

⟨·, ·⟩ : M×M∨ → S∨
n (3.4.5)

and
⟨·, ·⟩ : M ×M∨ → O∨

n (3.4.6)

which are perfect and compatible with φ-structures. Here M = O ⊗S M is the étale φ-module
corresponding to M. We can extend the pairing (3.4.6) to a φ-equivariant perfect pairing

(Our ⊗O M)× (Our ⊗O M∨)→ Our,∨
n .

Since the above pairing is φ-equivariant and (Our,∨
n )φ=1 ≃ Zp/pnZp(−r), we have a pairing

(Our ⊗O M)φ=1 × (Our ⊗O M∨)φ=1 → Zp/pnZp(−r) (3.4.7)

compatible with the G∞-actions. Liu showed in the proof of [Li1, Lemma 3.1.2] that this pairing
is perfect. By a similar way, we obtain a pairing

(W (FrR)⊗O M)φ=1 × (W (FrR)⊗O M∨)φ=1 → Zp/pnZp(−r). (3.4.8)

On the other hand, the pairing (3.4.5) induces a pairing

(R̂ ⊗φ,S M)× (R̂ ⊗φ,S M∨)→ Ŝ∨
n . (3.4.9)

We can extend the pairing (3.4.9) to a φ-equivariant perfect pairing

(W (FrR)⊗R̂ (R̂ ⊗φ,S M))× (W (FrR)⊗R̂ (R̂ ⊗φ,S M∨))→W (FrR)⊗R̂ Ŝ∨
n .

Since the above pairing is φ-equivariant and (W (FrR) ⊗R̂ Ŝ∨
n)
φ=1 ≃ Zp/pnZp(−r), we have a

pairing

(W (FrR)⊗R̂ (R̂ ⊗φ,S M))φ=1 × (W (FrR)⊗R̂ (R̂ ⊗φ,S M∨))φ=1 → Zp/pnZp(−r) (3.4.10)

compatible with the G-actions. Since we have a natural isomorphism Our⊗Zp (Our⊗OM)φ=1 ∼−→
Our ⊗O M , we obtain φ-equivariant isomorphisms

W (FrR)⊗R̂ M̂
∼−→W (FrR)⊗O M

∼←−W (FrR)⊗Zp (Our ⊗O M)φ=1. (3.4.11)

Therefore, combining (3.4.7), (3.4.8), (3.4.10) and (3.4.11), we have the following diagram
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(W (FrR)⊗R̂ M̂)φ=1

≀
��

× (W (FrR)⊗R̂ M̂∨)φ=1

≀
��

// Zp/pnZp(−r)

(W (FrR)⊗O M)φ=1 × (W (FrR)⊗O M∨)φ=1 // Zp/pnZp(−r)

(Our ⊗O M)φ=1

≀

OO

× (Our ⊗O M∨)φ=1

≀

OO

// Zp/pnZp(−r)

It is a straightforward calculation to check that the above diagram is commutative. Since the
bottom pairing is perfect, we see that the top pairing is also perfect. This implies T̂∗(M̂

∨) ≃
T̂∗(M̂)(−r) and therefore, we have the desired result by Corollary 3.12.

4 Category of representations arising from torsion (φ, Ĝ)-
modules

4.1 Relations between (φ, Ĝ)-modules and their representations

Choose an element t ∈ Sur such that t /∈ pSur and φ(t) = c−1
0 E(u)t where pc0 = E(0). Such t is

unique up to units of Zp, see Example 2.3.5 in [Li1] for details.
Let M be an object of Modr/S∞

. We construct a map ιS which connects M to TS(M) (cf. [Li1,
Section 3.2]). First observe that there exists a natural isomorphism of Zp[G∞]-modules

TS(M) = HomS,φ(M,Sur
∞) ≃ HomSur,φ(S

ur ⊗S M,Sur
∞)

where G∞ acts on HomSur,φ(S
ur ⊗S M,Sur

∞) by (σ.f)(x) = σ(f(σ−1(x))) for σ ∈ G∞, f ∈
HomSur,φ(S

ur ⊗S M,Sur
∞), x ∈ Sur ⊗S M and G∞ acts on M trivial. Thus we can define a

morphism ι′S : Sur ⊗S M→ HomZp(TS(M),Sur
∞) by

x 7→ (f 7→ f(x)), x ∈ Sur ⊗S M, f ∈ TS(M).

Since TS(M) ≃ ⊕i∈IZp/pniZp as finite Zp-modules, we have a natural isomorphism HomZp(TS(M),Sur
∞) ≃

Sur ⊗Zp T
∨
S(M) where T∨

S(M) = HomZp(TS(M),Qp/Zp) is the dual representation of TS(M).
Composing this isomorphism with ι′S, we obtain the desired map

ιS : Sur ⊗S M→ Sur ⊗Zp T
∨
S(M).

For M ∈ Modr/S, we also construct ιS : Sur ⊗S M → Sur ⊗Zp T
∨
S(M) by the same way except

only for replacing Sur
∞ with Sur.

Lemma 4.1. Let A be a ring with Sur ⊂ A ⊂ W (FrR) which yields a ring extension A1 ⊂ FrR.
Let M be an object of Modr/S∞

or Modr/S. Let ιS be as above.
(1) ιS is G∞-equivariant and φ-equivariant. Furthermore, A⊗Sur ιS is injective.
(2) If r <∞, then tr(A⊗Zp T

∨
S(M)) ⊂ (A⊗Sur ιS)(A⊗SM). If r =∞, then tr

′
(A⊗Zp T

∨
S(M)) ⊂

(A⊗Sur ιS)(A⊗S M) for r′ > 0 such that M is of height r′.
(3) The map

W (FrR)⊗Sur ιS : W (FrR)⊗S M→W (FrR)⊗Zp T
∨
S(M)

is bijective.

Proof. We may suppose that r <∞. The assertion that ιS is G∞-equivariant and φ-equivariant is
a result of [Li1, Theorem 3.2.2]. Liu showed loc. cit., that there exists a map ι∨S : Sur⊗Zp T

∨
S(M)→

Sur ⊗S M such that ι∨S ◦ ιS = tr, in particular, (A⊗Sur ι∨S) ◦ (A⊗Sur ιS) = tr. Moreover, in the
proof loc. cit, Liu also showed that the composite (Our⊗Sur ιS)◦ (Our⊗Sur ι∨S) : Our⊗Sur (Sur⊗Zp
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T∨
S(M))→ Our ⊗Sur (Sur ⊗Zp T

∨
S(M)) is equal to the map Our ⊗Sur (tr ⊗Zp Id). Hence we obtain

ιS ◦ ι∨S = tr and then the assertion (2) follows.
We show the injectivity of A⊗Sur ιS. Since (A⊗Sur ι∨S) ◦ (A⊗Sur ιS) = tr, if M is free over S,

we see that A⊗Sur ιS is injective. Next we suppose that M is killed by p. In this case, the proof is
almost the same as the free case, except one needs to note that M is free as a k[[u]]-module, t ̸= 0
in A1 (since Sur

1 ⊂ A1; see Remark 2.14) and A1 is a domain (since A1 ⊂ FrR). Suppose that M
is killed by some power of p. By Proposition 2.9 (4) and Remark 2.10, there exists a sequence of
extensions

0 = M0 ⊂M1 ⊂ · · · ⊂Mk = M

in Modr/S∞
such that Mi, Mi+1/Mi ∈ Modr/S∞

and Mi+1/Mi is a finite free k[[u]]-module. We
have a commutative diagram

0 // A⊗S Mi−1
//

A⊗Sur ιS,i−1

��

A⊗S Mi
//

A⊗Sur ιS,i

��

A⊗S Mi/Mi−1
//

A⊗Sur ιS,i,i−1

��

0

0 // A⊗Zp T
∨
S(Mi−1) // A⊗Zp T

∨
S(Mi) // A⊗Zp T

∨
S(Mi/Mi−1) // 0

where ιS,i−1, ιS,i and ιS,i,i−1 are the maps ιS for Mi,Mi−1 and Mi/Mi−1, respectively. By
Corollary 2.11 and the exactness of TS, the two horizontal sequences are exact. By induction on
i, we see that A⊗Sur ιS (for M) is injective.

Finally, if we put A = W (FrR), we see the bijectivity of W (FrR) ⊗Sur ιS from (1), (2) and
t ∈W (FrR)×.

Let M̂ be an object of wModr,Ĝ/S∞
. We construct a map ι̂ which connects M̂ to T̂ (M̂) (cf. [Li2,

Section 3.1]). First, we recall that we abuse notations by writing M̂ for the underlying module

R̂ ⊗φ,S M. Observe that there exists a natural isomorphism of Zp[G]-modules

T̂ (M̂) = HomR̂,φ(M̂,W (R)∞) ≃ HomW (R),φ(W (R)⊗R̂ M̂,W (R)∞)

where G acts on HomW (R),φ(W (R) ⊗R̂ M̂,W (R)∞) by (σ.f)(x) = σ(f(σ−1(x))) for σ ∈ G, f ∈
HomW (R),φ(W (R)⊗R̂M̂,W (R)∞), x ∈W (R)⊗R̂M̂. Thus we can define a morphism ι̂′ : W (R)⊗R̂
M̂→ HomZp(T̂ (M̂),W (R)∞) by

x 7→ (f 7→ f(x)), x ∈W (R)⊗R̂ M̂, f ∈ T̂ (M̂).

Since T̂ (M̂) ≃ ⊕i∈IZp/pniZp as finite Zp-modules, we have a natural isomorphism HomZp(T̂ (M̂),W (R)∞) ≃
W (R) ⊗Zp T̂

∨(M̂) where T̂∨(M̂) = HomZp(T̂ (M̂),Qp/Zp) is the dual representation of T̂ (M̂).
Composing this isomorphism with ι̂′, we obtain the desired map

ι̂ : W (R)⊗R̂ M̂→W (R)⊗Zp T̂
∨(M̂).

For M̂ ∈ wModr,Ĝ/S , we also construct ι̂ : W (R)⊗R̂ M̂→W (R)⊗Zp T̂
∨(M̂) by the same way except

only for replacing W (R)∞ with W (R).

Lemma 4.2. Let A be a ring with Sur ⊂ A ⊂ W (FrR) which yields a ring extension A1 ⊂ FrR.

Suppose that A is φW (FrR)-stable. Let M̂ be an object of wModr,Ĝ/S∞
or wModr,Ĝ/S . Let ι̂ be as above.

(1) ι̂ ≃W (R)⊗φ,Sur ιS, that is, the following diagram commutes:

W (R)⊗φ,S M
ι̂ // W (R)⊗Zp T̂

∨(M̂)

W (R)⊗φ,Sur (Sur ⊗S M)
W (R)⊗φ,Sur ιS//

α⊗IdM ≀

OO

W (R)⊗φ,Sur (Sur ⊗Zp T
∨
SM).

α⊗(θ∨)−1 ≀

OO
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Here, α : W (R)⊗φ,Sur Sur →W (R) is the isomorphism given by α(
∑
i ai ⊗ bi) =

∑
i aiφ(bi) with

ai ∈W (R), bi ∈ Sur.
(2) ι̂ is G-equivariant and φ-equivariant. Furthermore, A⊗W (R) ι̂ is injective.

(3) If r < ∞, then φ(t)r(A ⊗Zp T̂
∨(M̂)) ⊂ (A ⊗W (R) ι̂)(A ⊗R̂ M̂). If r = ∞, then φ(t)r

′
(A ⊗Zp

T̂∨(M̂)) ⊂ (A⊗W (R) ι̂)(A⊗R̂ M̂) for r′ > 0 such that M is of E(u)-height r′.
(4) The map

W (FrR)⊗W (R) ι̂ : W (FrR)⊗R̂ M̂→W (FrR)⊗Zp T̂
∨(M̂)

is bijective.

Proof. The statement (1) follows from the same proof as that of Proposition 3.1.3 (2) of [Li2]. To see
that A⊗W (R) ι̂ is injective, by (1), it is enough to check that A⊗φ,Sur ιS : A⊗φ,SM→ A⊗ZpT

∨
S(M)

is injective. This can be checked by almost the same method as the proof of Lemma 4.1 (1). The
rest statements follow from (1) and Lemma 4.1.

Let M̂ be an object of wModr,Ĝ/S∞
or wModr,Ĝ/S . Then TS(M̂) has a natural G-action via

θ : TS(M)
∼→ T̂ (M̂) (see Theorem 2.7).

Corollary 4.3. Let M̂ and M̂′ be objects of wModr,Ĝ/S∞
(resp. wModr,Ĝ/S ). Let f : M′ → M be

a morphism in Modr/S∞
. If TS(f) is G-equivariant, then f is in fact a morphism in wModr,Ĝ/S∞

(resp. wModr,Ĝ/S ).

Proof. Consider a commutative diagram

W (R)⊗Zp T̂
∨(M̂′) // W (R)⊗Zp T̂

∨(M̂)

W (R)⊗R̂ (R̂ ⊗φ,S M′) //
?�

ι̂ ≀

OO

W (R)⊗R̂ (R̂ ⊗φ,S M)
?�

ι̂ ≀

OO

where the top and bottom arrows are morphisms induced from f . By our assumption on f and
the result that ι̂ is injective, we see that the bottom arrow commutes with the G-actions and then
we have done.

4.2 Proof of Theorem 1.1

Lemma 4.4. Let 0→ T ′ → T → T ′′ → 0 be an exact sequence in Reptor(G∞). Suppose that there
exist M ∈ Modr/S∞

and an isomorphism ψ : TS(M)
∼−→ T of Zp-representations of G∞. Then

there exists an exact sequence 0 → M′′ → M → M′ → 0 in Modr/S∞
which makes the following

commutative diagram:

0 // T ′ // T // T ′′ // 0

0 // TS(M′) //

≀

OO

TS(M) //

ψ ≀

OO

TS(M′′) //

≀

OO

0.

Proof. Put M = O ⊗S M and let Ψ be the composite T (M) ≃ TS(M)
ψ→ T . By Proposition 2.1,

there exists an exact sequence 0 → M ′′ → M
g→ M ′ → 0 in ΦM/O∞ which makes the following

commutative diagram:

0 // T ′ // T // T ′′ // 0

0 // T (M ′) //

≀

OO

T (M) //

Ψ ≀

OO

T (M ′′) //

≀

OO

0.
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By abuse of notation we denote by g the composite M ↪→ M
g→ M ′. Put M′′ = M ∩M ′′ and

M′ = g(M). Since M ∈ Modr/S∞
and M ′ is p′-torsion free, it follows from Proposition 2.18 that

M′ and M′′ are in Modr/S∞
. The inclusion map M ↪→ M induces an injection M′′ ↪→ M ′′ and

thus we have the following commutative diagram

0 // M ′′ // M // M ′ // 0

0 // O ⊗S M′′ //

OO

O ⊗S M // O ⊗S M′ //

OO

0

where the two horizontal sequences of étale φ-modules are exact. By a diagram chasing, we see
that the map O⊗S M′ →M ′ is surjective. Since M′ ⊂M ′ is φ-stable and finite as an S-module,
we know that the map O ⊗S M′ → M ′ is injective (cf. [Fo, B. 1.4.2]) and thus, it is bijective.
By the snake lemma, we know that the left vertical arrow of the above diagram is also bijective.
Applying the functor T to the above diagram, we obtain the desired result.

Theorem 4.5. Let 0 → T ′ → T → T ′′ → 0 be an exact sequence in Reptor(G). Suppose that

there exist M̂ ∈ Modr,Ĝ/S∞
and an isomorphism ψ : T̂ (M̂)

∼−→ T of Zp-representations of G. Then

there exists an exact sequence 0 → M̂′′ → M̂ → M̂′ → 0 in Modr,Ĝ/S∞
which makes the following

commutative diagram:

0 // T ′ // T // T ′′ // 0

0 // T̂ (M̂′) //

≀

OO

T̂ (M̂) //

ψ ≀

OO

T̂ (M̂′′) //

≀

OO

0.

Proof. A short argument shows that we may suppose T = T̂ (M̂) and ψ is the identity map on T .
Let

θ : TS(M)→ T̂ (M̂)

be as in Section 2.4, which is a G∞-equivariant isomorphism. By Lemma 4.4, we have an exact
sequence 0→M′′ →M→M′ → 0 in Modr/S∞

which makes the following commutative diagram:

0 // T ′ // T // T ′′ // 0

0 // TS(M′) //

≀

OO

TS(M) //

θ ≀

OO

TS(M′′) //

≀

OO

0.

We want to equip M′ and M′′ with structures of (φ, Ĝ)-modules. Combining the above diagram
with Lemma 4.2, we obtain the following diagram all of whose squares commute:

W (R) ⊗φ,S M
� � //ι̂ // W (R) ⊗Zp T∨

≀α−1⊗θ∨

��

W (R) ⊗φ,S M′′
% �

33ffffffffff
W (R) ⊗Zp (T ′′)∨

≀

��

$ �
22eeeeeeeeeeeeee

W (R) ⊗φ,Sur (Sur ⊗S M)

≀α⊗IdM

OO

� � W (R)⊗ιS // W (R) ⊗φ,Sur (Sur ⊗Zp T∨
S(M))

W (R) ⊗φ,Sur (Sur ⊗S M′′)
� � //W (R)⊗ιS //

≀α⊗Id
M′′

OO

% �
33fffffffff

W (R) ⊗φ,Sur (Sur ⊗Zp T∨
S(M′′)).

$ �
22eeeeeeeeee

Here, α : W (R)⊗φ,Sur Sur →W (R) is the isomorphism given by α(
∑
i ai⊗ bi) =

∑
i aiφ(bi) with

ai ∈ W (R), bi ∈ Sur. Define a map W (R) ⊗φ,S M′′ → W (R) ⊗Zp (T ′′)∨ such that all squares in
the above diagram commute. Tensoring W (FrR) to the ceiling, we obtain the following diagram
(note that all maps in the diagram are injective (cf. Corollary 2.11 and 2.12)):
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M̂
� � // W (FrR)⊗R̂ M̂

� � //ι // W (FrR)⊗Zp T̂
∨(M̂)

R̂ ⊗φ,S M′′ �
� //

?�

OO

W (FrR)⊗R̂ (R̂ ⊗φ,S M′′)
� � //ι′′ //

?�

OO

W (FrR)⊗Zp (T ′′)∨
?�

OO

Moreover, the map ι = W (FrR) ⊗W (R) ι̂ is bijective by Lemma 4.2 (4), and the map ι′′ is also

bijective by Lemma 4.1 (3). Define a G-action on W (FrR) ⊗R̂ (R̂ ⊗φ,S M′′) via ι′′. Then the

injection W (FrR) ⊗R̂ (R̂ ⊗φ,S M′′) ↪→ W (FrR) ⊗R̂ M̂ is automatically G-equivariant. On the
other hand, see the diagram

0 // S⊗φ,S M′′ //

��

S⊗φ,S M //

��

S⊗φ,S M′ //

��

0

0 // R̂ ⊗φ,S M′′ //

��

R̂ ⊗φ,S M //

��

R̂ ⊗φ,S M′ //

��

0

0 // W (FrR)⊗φ,S M′′ // W (FrR)⊗φ,S M // W (FrR)⊗φ,S M′ // 0.

By Corollary 2.11 and 2.12, we see that all the horizontal sequences are exact and all the vertical
arrows are injective. Hence we may regard R̂ ⊗φ,S M, R̂ ⊗φ,S M′′ and W (FrR) ⊗φ,S M′′ as

submodules of W (FrR)⊗φ,S M =W (FrR)⊗R̂ M̂. In particular, we have

R̂ ⊗φ,S M′′ = (R̂ ⊗φ,S M) ∩ (W (FrR)⊗φ,S M′′). (4.2.1)

Since the G-actions on R̂ ⊗φ,S M and W (FrR) ⊗φ,S M′′ are restrictions of the G-action on

W (FrR)⊗φ,S M =W (FrR)⊗R̂ M̂, the equation (4.2.1) gives an well-defined G-action on R̂ ⊗φ,S
M′′. Since the G-action on R̂ ⊗φ,S M factors through Ĝ, the G-action on R̂ ⊗φ,S M′′ also fac-

tors through Ĝ. We also define a Ĝ-action on R̂ ⊗φ,S M′ via the natural isomorphism R̂ ⊗φ,S
M′′ ≃ (R̂ ⊗φ,S M′′)/(R̂ ⊗φ,S M′′). It is not difficult to check that triples M̂′ = (M′, φ, Ĝ) and

M̂′′ = (M′′, φ, Ĝ) are weak (φ, Ĝ)-modules. Obviously, we have an exact sequences

0→ M̂′′ → M̂→ M̂′ → 0 (4.2.2)

of weak (φ, Ĝ)-modules. By Corollary 2.20, we know that M̂′ and M̂′′ are in fact (φ, Ĝ)-modules.
Now we check that the exact sequence (4.2.2) satisfies the desired property. Projections M→M′

and M̂ → M̂′ induce injections TS(M′) ↪→ TS(M) of Zp[G∞]-modules and T̂ (M′) ↪→ T̂ (M) of
Zp[G]-modules. Furthermore, the diagram below is commutative:

T̂ (M̂′)� _

��

TS(M′)
∼
θ

oo
� _

��

∼ // T ′
� _

��
T̂ (M̂) TS(M)

∼
θ

oo
θ

∼ // T.

This induces the commutative diagram

T ′ �
� // T

T̂ (M̂′)
� � //

≀

OO

T̂ (M̂) = T

and thus we see that the left vertical arrow in just the above square is G-equivariant. The desired
result follows from this.
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Remark 4.6. By using the theory of étale (φ, Ĝ)-modules, we will give a more natural interpre-

tation of the sequence 0→ M̂′′ → M̂→ M̂′ → 0 appeared in Theorem 4.5, see Remark 5.11.

By Theorem 4.5, the essential image of the functor T̂ : Modr,Ĝ/S∞
→ Reptor(G) is stable under

subquotients. In particular, we see that the category RepĜtor(G) is also stable under subquotients.

Clearly, the category RepĜtor(G) is also stable under direct sums. We show that RepĜtor(G) is stable
under the dual and tensor products.

Lemma 4.7. The full subcategory RepĜtor(G) of Reptor(G) is stable under the dual.

Proof. Let T ∈ RepĜtor(G) and take some M̂ ∈ Modr,Ĝ/S∞
(for some r < ∞) such that T = T̂ (M̂).

Take an integer n ≥ 0 such that M is killed by pn. For any integer k ≥ 0, denote by Ŝn(k) the

Cartier dual of the trivial (φ, Ĝ)-module Ŝn in Modk,Ĝ/S∞
and by Sn(k) its underlying φ-module.

Then it can be seen immediately that M ⊗S Sn(k) has a structure of a (φ, Ĝ)-module of height

r + k, and if we denote it by M̂(k), then T̂ (M̂(k)) = T̂ (M̂)(k). Take an integer m > r which is
divisible by pn−1(p− 1). Then

T∨ = T̂ (M̂∨)⊗Zp Zp(−r) = T̂ (M̂∨)⊗Zp Zp(m− r)

= T̂ (M̂∨)⊗Zp T̂ (Ŝn(m− r)) = T̂ (M̂∨(m− r))

and we have done.

Finally we consider the assertion related with a tensor product of Theorem 1.1. It is enough to
prove the following lemma.

Lemma 4.8. Let M̂ ∈ wModr,Ĝ/S∞
(resp. M̂ ∈ Modr,Ĝ/S∞

) and M̂′ ∈ wModr
′,Ĝ
/S∞

(resp. M̂ ∈ Modr
′,Ĝ
/S∞

)

for some r, r′ ∈ {0, 1, . . . ,∞}. Then M⊗SM′

u-tor is an object of wModr+r
′

/S∞
(resp. M̂ ∈ Modr+r

′,Ĝ
/S∞

) and

has a structure of a weak (φ, Ĝ)-module (resp. a (φ, Ĝ)-module). If we put M̂ ⊗ M̂′ = M̂⊗SM′

u-tor ,

then there exists a canonical isomorphism T̂ (M̂⊗ M̂′) ≃ T̂ (M̂)⊗Zp T̂ (M̂
′) of Zp[G]-modules.

Proof. Since M⊗SM′

u-tor is u-torsion free, we see M⊗SM′

u-tor ∈ Modr+r
′

/S∞
by Proposition 2.9. We equip

R̂ ⊗φ,S (M ⊗S M′) (resp. W (FrR) ⊗φ,S (M ⊗S M′)) with a Ĝ-action (resp. a G-action) via the

canonical isomorphism R̂⊗φ,S (M⊗SM′) ≃ (R̂⊗φ,SM)⊗S (R̂⊗φ,S (M′)). (resp. W (FrR)⊗φ,S
(M⊗S M′) ≃ (W (FrR)⊗R̂ (R̂ ⊗φ,S M))⊗S (W (FrR)⊗R̂ (R̂ ⊗φ,S M′))). If we denote by (u-tor)
by the u-torsion part of M⊗S M′, then we obtain the exact sequence

R̂ ⊗ (u-tor)→ R̂⊗φ,S (M⊗S M′)
η→ R̂⊗φ,S (

M⊗S M′

u-tor
)→ 0

as R̂-modules. Note that u is a unit of W (FrR). Since the natural map R̂ ⊗φ,S M⊗SM′

u-tor →
W (FrR) ⊗φ,S M⊗SM′

u-tor = W (FrR) ⊗φ,S (M ⊗S M′) is injective (cf. Corollary 2.12), we see that

the equality ker(η) = ker(R̂ ⊗φ,S (M⊗S M′)→W (FrR)⊗φ,S (M⊗S M′)) holds and thus ker(η)

is stable under the Ĝ-action on R̂ ⊗φ,S (M ⊗S M′). Therefore, we can define a Ĝ-action on

R̂ ⊗φ,S M⊗SM′

u-tor via the canonical isomorphism R̂ ⊗φ,S M⊗SM′

u-tor ≃ (R̂ ⊗φ,S (M ⊗S M′))/ker(η).

Then it is not difficult to see that M⊗SM′

u-tor has a structure of a (φ, Ĝ)-module. Finally we prove

T̂ (M̂⊗ M̂′) ≃ T̂ (M̂)⊗Zp T̂ (M̂
′). By Proposition 3.11, we obtain φ-equivariant and G-compatible

isomorphisms

W (FrR)⊗Zp (T̂∗(M̂)⊗ T̂∗(M̂′)) ≃W (FrR)⊗R̂ (M̂⊗R̂ M̂′)

≃W (FrR)⊗R̂ (R̂ ⊗φ,S (M⊗S M′))

≃W (FrR)⊗R̂ (R̂ ⊗φ,S (
M⊗S M′

u-tor
)).
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Seeing “φ = 1”-part of the above modules, we have that T̂∗(M̂)⊗ T̂∗(M̂′) ≃ T̂∗(M̂⊗ M̂). Taking
the dual of both sides, we obtain the desired result.

5 Maximal objects and minimal objects

Caruso and Liu defined maximal objects for Kisin modules and Breuil modules in [CL1] and they
proved that the category of maximal objects can be regarded as a full subcategory of Reptor(G∞).
In this section, we discuss maximal objects for (φ, Ĝ)-modules and prove that the category of them
can be regarded as a full subcategory of Reptor(G).

5.1 Maximal objects and minimal objects for Kisin modules

In this subsection, we recall the theory of maximal (minimal) objects given in [CL1]. For M ∈
ΦM/O∞ , we denote by F rS(M) the (partially) ordered set (by inclusion) ofM ∈ Modr/S∞

contained
in M such that M[1/u] = M . Then F rS(M) has a greatest element and a smallest element (cf.
[CL1, Corollary 3.2.6]).

Definition 5.1. Let M be an object of Modr/S∞
. We denote by Maxr(M) the greatest element

of F rS(M[1/u]). It is endowed with a morphism ιMmax : M ↪→ Maxr(M) of Kisin modules. We say
that M is maximal if ιMmax is an isomorphism.

Maximal objects are characterized by the following universality ([CL1, Proposition 3.3.5]): Let
M be an object of Modr/S∞

. The couple (Maxr(M), ιMmax) is characterized by the following universal
property:

• The morphism TS(ιMmax) is an isomorphism.

• For each couple (M′, f) where M′ ∈ Modr/S∞
and f : M → M′ becomes an isomorphism

under TS, there exists a unique map g : M′ → Maxr(M) such that g ◦ f = ιMmax.

This property gives rise to a functor Maxr : Modr/S∞
→ Modr/S∞

. If we denote by Maxr/S∞
its

essential image, Caruso and Liu proved

Theorem 5.2 ([CL1, Theorem 3.3.8]). The category Maxr/S∞
is abelian and, if r < ∞, it is

Artinian. Moreover, kernels, cokernels, images and coimages in the abelian category Maxr/S∞
have explicit descriptions.

The restriction TS on Maxr/S∞
is exact and fully faithful (cf. [CL1, Corollary 3.3.10]):

Modr/S∞

TS //

Maxr

%%LLLLLLLLLL

%% %%LLLLLLLLLL
Reptor(G∞)

Maxr/S∞
.

* 


88ppppppppppp

TS

88ppppppppppp

In the case r < ∞, we obtain the theory for minimal objects if we apply the “dual” to the above
theory. By Proposition 5.6 of [CL2], if r =∞, the functor TS gives an anti-equivalence of abelian
categories:

TS : Max∞/S∞

∼−→ Reptor(G∞).

For more precise properties, see Section 3 of [CL1].
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5.2 Étale (φ, Ĝ)-modules

In this subsection, we introduce a notion of étale (φ, Ĝ)-modules. The idea in this subsection follows
from the (φ, τ)-theory given in [Ca4]. As one of main theorems in [Ca4], we prove that the category
of various étale (φ, Ĝ)-modules are equivalent to the category of various Zp-representations of G,
including the case where p = 2.

Here2, we put OĜ = W (FrR)H∞ , which is absolutely unramified and a complete discrete
valuation ring with perfect residue field FrRH∞ . Furthermore OĜ is a closed subring of W (FrR)
for the weak topology. Put EĜ = FrOĜ = OĜ[1/p]. By definition, φW (FrR)[1/p] is stable on OĜ and

EĜ which is bijective on themselves. Furthermore, Ĝ acts on OĜ and EĜ continuously. Since the
inclusion O → OĜ (resp. E → EĜ) is faithfully flat, for any étale φ-module M over O (resp. over
E), the natural map M → OĜ ⊗O M (resp. M → EĜ ⊗E M) is an injection. By this embedding,
we regard M as a sub O-module of OĜ ⊗O M (resp. a sub E-module of EĜ ⊗E M). Similarly, the
natural map M → OĜ ⊗φ,O M (resp. M → EĜ ⊗φ,E M) is an injection and by this embedding we
regard M as a sub φ(OĜ)-module of OĜ ⊗φ,O M (resp. a sub φ(EĜ)-module of EĜ ⊗φ,E M).

Definition 5.3. An étale (φ, Ĝ)′-module over O (resp. an étale (φ, Ĝ)-module over O) is a triple
′M̂ = (M,φM , Ĝ) (resp. M̂ = (M,φM , Ĝ)) where

(1) (M,φM ) is an étale φ-module over O,
(2) Ĝ is a continuous OĜ-semi-linear Ĝ-action on OĜ ⊗O M (resp. OĜ ⊗φ,O M) for the weak

topology,

(3) the Ĝ-action commutes with φOĜ
⊗ φM ,

(4) M ⊂ (OĜ ⊗O M)HK (resp. M ⊂ (OĜ ⊗φ,O M)HK ).

If M is killed by some power of p, then ′M̂ (resp. M̂) is called a torsion étale (φ, Ĝ)′-module (resp.
a torsion étale (φ, Ĝ)-module). If M is a free O-module, then ′M̂ (resp. M̂) is called a free étale
(φ, Ĝ)′-module (resp. a free étale (φ, Ĝ)-module).

By replacing E and EĜ with O and OĜ, respectively, we define an étale (φ, Ĝ)′-module over E
(resp. an étale (φ, Ĝ)-module over E).

Denote by ′ΦMĜ
/O∞

(resp. ′ΦMĜ
/O, resp.

′ΦMĜ
/E) the category of torsion étale (φ, Ĝ)′-modules

over O (resp. the category of free étale (φ, Ĝ)′-modules over O, resp. the category of étale (φ, Ĝ)′-

modules over E). Similarly, we denote by ΦMĜ
/O∞

(resp. ΦMĜ
/O, resp. ΦMĜ

/E) the category of

torsion étale (φ, Ĝ)-modules over O (resp. the category of free étale (φ, Ĝ)-modules over O, resp.
the category of étale (φ, Ĝ)-modules over E).

If ′M̂ is an étale (φ, Ĝ)′-module over O, then Ĝ acts on OĜ ⊗φ,OĜ
(OĜ ⊗O M) by a natural

way. Hence we obtain a Ĝ-action on OĜ ⊗φ,O M via the isomorphism

OĜ ⊗φ,OĜ
(OĜ ⊗O M) ≃ OĜ ⊗φ,O M, a⊗ (b⊗ x) 7→ aφ(b)⊗ x

where a, b ∈ OĜ, x ∈M . This Ĝ-action equips M with a structure of an étale (φ, Ĝ)-module over

O. Conversely, if M̂ is an étale (φ, Ĝ)-module over O, we obtain a Ĝ-action on OĜ ⊗O M via the
isomorphism

OĜ ⊗φ−1,OĜ
(OĜ ⊗φ,O M) ≃ OĜ ⊗O M, a⊗ (b⊗ x) 7→ aφ−1(b)⊗ x

where a, b ∈ OĜ, x ∈M . This Ĝ-action equips M with a structure of an étale (φ, Ĝ)′-module over
O. Consequently, we have canonical equivalences of categories

′ΦMĜ
/O∞

≃ ΦMĜ
/O∞

, ′ΦMĜ
/O ≃ ΦMĜ

/O. (5.2.1)

By the same way, we obtain
′ΦMĜ

/E ≃ ΦMĜ
/E . (5.2.2)

In the following proposition,M and T are functors defined in Section 2.2.
2In [Ca4], rings OĜ and EĜ are denoted by E int

τ and Eτ , respectively.
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Lemma 5.4. (1) For any finite torsion Zp-representation T of G∞ (resp. finite free Zp-representation
T of G∞, resp. finite Qp-representation T of G∞), the natural map

OĜ ⊗OM(T )→ HomZp[H∞](T,W (FrR)∞)
(resp. OĜ ⊗OM(T )→ HomZp[H∞](T,W (FrR)),

resp. EĜ ⊗EM(T )→ HomQp[H∞](T,W (FrR)[1/p]))

is an isomorphism.
(2) For any torsion étale φ-module M over O (resp. free étale φ-module M over O, resp. étale
φ-module M over E), the natural map

T (M)→ HomOĜ,φ
(OĜ ⊗O M,W (FrR)∞)

(resp. T (M)→ HomOĜ,φ
(OĜ ⊗O M,W (FrR)),

resp. T (M)→ HomEĜ,φ
(EĜ ⊗E M,W (FrR)[1/p]))

is an isomorphism.

Proof. We only prove the torsion case. The rest cases can be checked by a similar manner. First
we consider (1). Applying the tensor productW (FrR) over Ôur to (2.2.3) and picking up H∞-fixed
parts, we obtain a bijection

OĜ ⊗O (Our ⊗Zp T )
G∞ → (W (FrR)⊗Zp T )

H∞ . (5.2.3)

If we replace T in (5.2.3) with its dual representation, we obtain the desired result. Using (2.2.1),
we can check (2) by a similar way.

We define a contravariant functor ′M̂ : Reptor(G)→ ′ΦMĜ
/O∞

as below: for any T ∈ Reptor(G),
define

′M̂(T ) =M(T ) = HomG∞(T, Eur/Our)

as a φ-module over O, and we equip OĜ ⊗OM(T ) with a Ĝ-action via the isomorphism OĜ ⊗O

M(T ) ≃ HomZp[H∞](T,W (FrR)∞) (cf. Lemma 5.4 (1)). Here Ĝ acts on the right hand side by the

formula (σ.f)(x) = σ̂(f(σ̂−1(x))) for σ ∈ Ĝ and σ̂ ∈ G any lift of σ, f ∈ HomZp[H∞](T,W (FrR)∞), x ∈
T .

On the other hand, we define a contravariant functor ′T̂ : ′ΦMĜ
/O∞

→ Reptor(G) as below: for

any ′M̂ ∈ ′ΦMĜ
/O∞

, define

′T̂ (′M̂) = T (M) = HomO,φ(M, Eur/Our)

as a Zp-module, and we equip ′T̂ (′M̂) with aG-action via the isomorphism T (M) ≃ HomOĜ,φ
(OĜ⊗O

M,W (FrR)∞) (cf. Lemma 5.4 (2)). Here G acts on the right hand side by the formula (σ.f)(x) =
σ(f(σ−1(x))) for σ ∈ G, f ∈ HomOĜ,φ

(OĜ ⊗O M,W (FrR)∞), x ∈ OĜ ⊗O M .

We also define a contravariant functor ′M̂ : Repfr(G) → ′ΦMĜ
/O (resp. ′M̂ : RepQp

(G) →
′ΦMĜ

/E) and
′T̂ : ′ΦMĜ

/O∞
→ Repfr(G) (resp.

′T̂ : ′ΦMĜ
/E → RepQp

(G)) by a similar manner.

Combining ′T̂ , ′M̂ with (5.2.1) or (5.2.2), we obtain contravariant functors

M̂ : Reptor(G)→ ΦMĜ
/O∞

, M̂ : Repfr(G)→ ΦMĜ
/O, M̂ : RepQp

(G)→ ΦMĜ
/E

and
T̂ : ΦMĜ

/O∞
→ Reptor(G), T̂ : ΦMĜ

/O → Repfr(G), T̂ : ΦMĜ
/E → RepQp

(G).

Proposition 5.5. The contravariant functor T̂ is an anti-equivalence of categories between ΦMĜ
/O∞

(resp. ΦMĜ
/O, resp. ΦMĜ

/E) and Reptor(G) (resp. Repfr(G), resp. RepQp
(G))). Furthermore, M̂

is a quasi-inverse of T̂ .
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Proof. By Proposition 2.1, we have already known that, for an étale (φ, Ĝ)-module M̂ and a
representation T of G, natural morphisms M →M(T (M)) and T → T (M(T )) are isomorphisms
as étale φ-modules and G∞-representations, respectively. It is enough to prove that the former
is compatible with Ĝ-action and the latter is G-equivariant. In the following, we only prove the
torsion case; the same proofs proceed for rest cases. It is enough to prove that functors ′T̂ and
′M̂ are inverses of each other. Take any ′M̂ ∈ ′ΦMĜ

/O∞
. We show the canonical isomorphism

η : OĜ ⊗O M → OĜ ⊗OM(T (M))

is Ĝ-equivariant. By definitions of functors ′T̂ and ′M̂, the following composition map

OĜ ⊗OM(T (M))
∼−→ HomZp[H∞](T (M),W (FrR)∞)
∼−→ HomZp[H∞](HomOĜ,φ

(OĜ ⊗O M,W (FrR)∞),W (FrR)∞)

is Ĝ-equivariant. By composing this map with η, we obtain a bijection

η̃ : OĜ ⊗O M
∼−→ HomZp[H∞](HomOĜ,φ

(OĜ ⊗O M,W (FrR)∞),W (FrR)∞)

which is given by x 7→ (f 7→ f(x)) for x ∈ OĜ ⊗O M, f ∈ HomOĜ,φ
(OĜ ⊗O M,W (FrR)∞). It

is a straightforward calculation to check that η̃ is compatible with Ĝ-actions, and thus so is η.
Consequently, we obtain ′M̂◦ ′T̂ ≃ Id. By a similar argument we can check ′T̂ ◦ ′M̂ ≃ Id and this
finishes a proof.

Remark 5.6. By definitions of T̂ and M̂ and the theory of Fontaine’s étale φ-modules, we see that
these functors preserves various structures of categories. For example, these functors are exact and
commute with formations of tensor products and the dual. Here the notion of the tensor product
of étale (φ, Ĝ)-modules and that of dual étale (φ, Ĝ)-modules are defined by natural manners.

5.3 Link between Liu’s (φ, Ĝ)-modules and étale (φ, Ĝ)-modules

In this subsection, we connect the theory of Liu’s (φ, Ĝ)-modules and the theory of our étale
(φ, Ĝ)-modules.

Let M̂ = (M, φ, Ĝ) be a (φ, Ĝ)-module, or a weak (φ, Ĝ)-module, in the sense of Definition

2.6. Extending the Ĝ-action on R̂ ⊗φ,S M to OĜ ⊗R̂ (R̂ ⊗φ,S M) by a natural way, we see

that M[1/u] = O ⊗S M has a structure of an étale (φ, Ĝ)-module over O (recall that G acts on
W (FrR)⊗φ,S M continuously for the weak topology by Definition 2.6). This is the reason why a

Ĝ-action in the definition of an étale (φ, Ĝ)-module is defined not on OĜ⊗OM but on OĜ⊗φ,OM .

In the below, we denote by M̂[1/u] the étale (φ, Ĝ)-module over O obtained as above. Note that
there exists a natural isomorphism of Zp-representations of G:

T̂ (M̂) ≃ T̂ (M̂[1/u]).

In fact, we have isomorphisms

T̂ (M̂[1/u]) ≃ HomOĜ,φ
(OĜ ⊗φ,O (M[1/u]),W (FrR)∞)

≃ HomR̂,φ(R̂ ⊗φ,S M,W (FrR)∞)

≃ HomR̂,φ(R̂ ⊗φ,S M,W (R)∞) = T̂ (M̂)

by Lemma 5.4 (1) and [Fo, Proposition B. 1.8.3] (see also the proof of Corollary 3.12).
In the below, we want to use various morphisms between Liu’s (φ, Ĝ)-modules and étale (φ, Ĝ)-

modules. To do this, we need to define some notions. Let Mod(φ, Ĝ) be the category whose
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objects are φ-modules M over S killed by a power of p equipped with an OĜ-semilinear Ĝ-action

on OĜ ⊗φ,S M. Morphisms in Mod(φ, Ĝ) are defined by a natural manner. Then categories

wModr,Ĝ/S∞
, Modr,Ĝ/S∞

and ΦMĜ
/O∞

can be regarded as full subcategories of Mod(φ, Ĝ). We call

a morphism f : M → M in the category Mod(φ, Ĝ) a morphism of (φ, Ĝ)-modules, and we often

denote f by f : M̂→ M̂ .

Definition 5.7. Let M̂ be an object of wModr,Ĝ/S∞
or Modr,Ĝ/S∞

, and M̂ an object of ΦMĜ
/O∞

equipped with a morphism f : M̂ → M̂ of (φ, Ĝ)-modules. If f is an injection as a morphism of

S-modules, then M̂ can be regarded as a subobject of M̂ in the category Mod(φ, Ĝ). In this case,

(the image of) M̂ is said to be a sub (φ, Ĝ)-module of M̂ .

Proposition 5.8 (Analogue of scheme theoretic closure). Let M̂ be in wModr,Ĝ/S∞
(resp. Modr,Ĝ/S∞

)

and M̂ an object of ΦMĜ
/O∞

. Let f : M̂ → M̂ be a morphism of (φ, Ĝ)-modules. Then, ker(f)

and im(f) as φ-modules are contained in Modr/S∞
. Furthermore, the Ĝ-action on M̂ gives ker(f)

a structure of a weak (φ, Ĝ)-module (resp. a (φ, Ĝ)-module) and the Ĝ-action on M̂ gives im(f) a
structure of a weak (φ, Ĝ)-module (resp. a (φ, Ĝ)-module).

In this paper, we often denote îm(f) by f(M̂) or f̂(M).

Proof. The same proof as that of Corollary 2.19 proceeds.

The above proposition gives us a result on a successive extension for (φ, Ĝ)-modules, which is
an analogue of Proposition 2.9 (4).

Corollary 5.9. Let M̂ be an object of wModr,Ĝ/S∞
(resp. Modr,Ĝ/S∞

). Then there exists a sequence

of extensions
0 = M0 ⊂M1 ⊂ · · · ⊂Mk = M

in Modr/S∞
which satisfies the following; for any i,

(i) Mi/Mi−1 is a finite free k[[u]]-module,
(ii) Mi and Mi/Mi−1 have structures of weak (φ, Ĝ)-modules of height r (resp. (φ, Ĝ)-modules of
height r) which make an exact sequence

0→ M̂i−1 → M̂i → ̂Mi/Mi−1 → 0

in wModr,Ĝ/S∞
(resp. Modr,Ĝ/S∞

).

Proof. Putting M = M[1/u], we have seen that M̂ = M̂[1/u] is an étale (φ, Ĝ)-module. We
see that pM and M/pM have structures of étale (φ, Ĝ)-modules, and we have an exact sequence

0 → p̂M → M̂
pr→ M̂/pM → 0 of étale (φ, Ĝ)-modules. We also denote by pr a composition

M̂ → M̂
pr→ M̂/pM which is a morphism of (φ, Ĝ)-modules. By Proposition 5.8, we know that

M′ = ker(pr|M) and M′′ = pr(M) have structures of weak (φ, Ĝ)-modules of height r (resp.

(φ, Ĝ)-modules of height r). Furthermore, we have an exact sequence 0→ M̂′ → M̂→ M̂′′ → 0 in

wModr,Ĝ/S∞
(resp. Modr,Ĝ/S∞

). Since pn−1M′ = 0 and pM′′ = 0, we can obtain the desired sequence

of extensions inductively.

Before starting the maximal (minimal) theory, we give one result on the “cokernel” of a mor-
phism of (φ, Ĝ)-modules, which will be used in the proof of Theorem 1.2.

Proposition 5.10. Let f : M̂ → N̂ be a morphism in wModr,Ĝ/S∞
(resp. Modr,Ĝ/S∞

). Denote by

coker(f) the cokernel of f as a morphism of φ-modules. Then coker(f)
u-tor is an object of Modr/S∞

.

Furthermore, coker(f)
u-tor has a structure of a weak (φ, Ĝ)-module (resp. a (φ, Ĝ)-module) induced from

N̂.
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Proof. It is enough to check the case where f is a morphism in Modr,Ĝ/S∞
. Put C = coker(f) and

denote by Cu-tor the u-torsion part of C. By Proposition 2.9, we see that C
Cu-tor

is an object of
Modr/S∞

. Since C is finitely generated as an S-module, there exists an integer n > 0 such that
unCu-tor = 0. Then C ′ = unC is u-torsion free and thus C ′ is a torsion Kisin module of finite
height. By Corollary 2.13, we see that the natural map R̂ ⊗φ,S C ′ → R̂⊗φ,S C is injective. Since

the composition map R̂ ⊗φ,S C
1⊗un

→ R̂ ⊗φ,S C ′ ↪→ R̂ ⊗φ,S C is the multiplication-by-unp map,

if we regard R̂ ⊗φ,S C ′ as a submodule of R̂ ⊗φ,S C, we obtain unp(R̂ ⊗φ,S C) ⊂ R̂ ⊗φ,S C ′.

Since C ′ ∈ Mod∞/S∞
, we know that R̂ ⊗φ,S C ′ ⊂ O ⊗φ,S C ′ and thus R̂ ⊗φ,S C ′ is u-torsion free.

Therefore, denoting by (R̂ ⊗φ,S C)u-tor the u-torsion part of R̂ ⊗φ,S C, we obtain

unp(R̂ ⊗φ,S C)u-tor = 0. (5.3.1)

The exact sequence 0→ Cu-tor → C
un

→ C ′ → 0 of S-modules induces an exact sequence

0→ R̂⊗φ,S Cu-tor → R̂⊗φ,S C
unp

→ R̂⊗φ,S C ′ → 0 (5.3.2)

since TorS1 (C ′, R̂) = 0 (see Corollary 2.11). By (5.3.1) and (5.3.2), we obtain the equality R̂ ⊗φ,S
Cu-tor = (R̂⊗φ,SC)u-tor in R̂⊗φ,SC. On the other hand, we remark that the Ĝ-action on R̂⊗φ,SN

induces that on R̂⊗φ,SC. Since this Ĝ-action preserves (R̂⊗φ,SC)u-tor, we can equip R̂⊗φ,S C
Cu-tor

with a Ĝ-action by using the exact sequence 0→ R̂⊗φ,SCu-tor → R̂⊗φ,SC → R̂⊗φ,S C
Cu-tor

→ 0.

Then it is not difficult to check that coker(f)
u-tor = C

Cu-tor
is a (φ, Ĝ)-module.

Remark 5.11. Let 0 → T ′ → T → T ′′ → 0 and M̂ be as in Theorem 4.5. Admitting notions of

étale (φ, Ĝ)-modules, the proof of Theorem 4.5 implies that the sequence (∗) : 0 → M̂′′ → M̂
g→

M̂′ → 0 appeared in the theorem is obtained by the following mannar: let 0→ M̂ ′′ → M̂ → M̂ ′ →
0 be a sequence of étale (φ, Ĝ)-modules corresponding to (∗). Then M̂ is a sub (φ, Ĝ)-module of
M̂ , and M′ = g(M) (resp. M′′ = M ∩M) has a structure of a sub (φ, Ĝ)-module of M̂ ′ (resp.
M̂ ′′).

5.4 Definitions of maximality and minimality

In this subsection, we construct maximal objects (resp. minimal objects) for (φ, Ĝ)-modules by
using the theory of étale (φ, Ĝ)-modules given in the previous section. Let M̂ = (M,φ, Ĝ) ∈
ΦMĜ

/O∞
be a torsion étale (φ, Ĝ)-module over O. We denote by F r,ĜS (M̂) the (partially) ordered

set (by inclusion) of M̂ ∈ Modr,Ĝ/S∞
which is a sub (φ, Ĝ)-modules of an étale (φ, Ĝ)-module M

such that M[1/u] = M . Note that M̂ is a sub (φ, Ĝ)-modules of M if and only if the natural

inclusion3 R̂ ⊗φ,S M ↪→ OĜ ⊗φ,O M is Ĝ-equivariant.

Lemma 5.12. Let M̂ be a torsion étale (φ, Ĝ)-module. Let M̂1 and M̂2 be objects of Modr,Ĝ/S∞

endowed with injections M̂1 → M̂ and M̂2 → M̂ of (φ, Ĝ)-modules. Then M12 = M1 +M2 (resp.
M′

12 = M1 ∩M2) in M has a structure of a (φ, Ĝ)-module of height r. In particular, the ordered

set F r,ĜS (M) has finite supremum and finite infimum.

Proof. First we note that M12 (resp. M′
12) is an object of Modr/S∞

and we have M12[1/u] = M
(resp. M′

12[1/u] =M) (see the proof of [CL1, Proposition 3.2.3]). Furthermore, M′
12 is canonically

isomorphic to the underlying Kisin module of the kernel of the morphism of (φ, Ĝ)-modules

M̂1 ⊕ M̂2 → M̂1 + M̂2 ⊂ M̂, (x, y) 7→ x− y.
3The natural map R̂ ⊗φ,S M → OĜ ⊗φ,O M is injective by Corollary 2.12.
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Thus we obtain the desired result for M′
12 by Proposition 5.8. Hence it is enough to prove the

result for M12. Since the Ĝ-actions on R̂⊗φ,SM1 and R̂⊗φ,SM2 are restrictions of the Ĝ-action

on OĜ ⊗φ,O M , we see that the Ĝ-action on OĜ ⊗φ,O M preserves R̂ ⊗φ,S M12 = R̂ ⊗φ,S M1 +

R̂ ⊗φ,S M2. For any σ ∈ Ĝ and x ∈ R̂ ⊗φ,S M12, take x1 ∈ R̂ ⊗φ,S M1 and x2 ∈ R̂ ⊗φ,S M2

such that x = x1 + x2. Then we have σ(x)− x = (σ(x1)− x1) + (σ(x2)− x2) ∈ I+(R̂ ⊗φ,S M1) +

I+(R̂ ⊗φ,S M2) = I+(R̂ ⊗φ,S M12) and thus Ĝ acts on (R̂ ⊗φ,S M12)/I+(R̂ ⊗φ,S M12) trivial.

Hence M̂12 = (M12, φ, Ĝ) is a (φ, Ĝ)-module and we obtain the desired result.

Proposition 5.13. F r,ĜS (M̂) has a maximum element. If r < ∞, then it also has a minimum
element.

Proof. Assume that F r,ĜS (M̂) does not have a maximum element. Take any M̂ = M̂0 ∈ F r,ĜS (M̂).

Since M̂0 is not maximum, there exists an element M̂′
1 ∈ F r,ĜS (M) such that M0 ̸⊂ M′

1. Put

M1 = M0 +M′
1 (the sum is taken in M). By Lemma 5.12, M1 has a structure of (φ, Ĝ)-module.

We denote this (φ, Ĝ)-module by M̂1. We see that M̂1 ∈ F r,ĜS (M̂) and M0 ⊊ M1. Inductively, we

find M̂i ∈ F r,ĜS (M) with an infinite length increasing sequence

M0 ⊊ M1 ⊊ M2 ⊊ · · ·

in F rS(M). However, this is a contradiction by [CL1, Lemma 3.2.4]. The proof of the assertion for
a minimum element is the same except only for that we use [CL1, Lemma 3.2.5].

Remark 5.14. If F∞,Ĝ
S (M̂) is not empty, then F∞,Ĝ

S (M̂) does not have a minimum element. In

fact, if M̂ is an object of F∞,Ĝ
S (M̂), then we obtain an infinite length decreasing sequence

M̂ > ûM > û2M > · · ·

in F∞,Ĝ
S (M̂).

Definition 5.15. Let M̂ ∈ Modr,Ĝ/S∞
. We denote by Maxr(M̂) (resp. Minr(M̂)) the maximum

element (resp. minimum element) of F r,ĜS (M̂[1/u]). It is endowed with a morphism of (φ, Ĝ)-

modules ιM̂max : M̂ → Maxr(M̂) (resp. ιM̂min : Min(M̂) → M̂). We often denote by maxr(M̂) (resp.

minr(M̂)) the underlying Kisin module of Maxr(M̂) (resp. Minr(M̂)). We say that M̂ is maximal

(resp. minimal) if ιM̂max (resp. ιM̂min) is an isomorphism.

5.5 Maximal objects for (φ, Ĝ)-modules

In this section, we prove various properties of maximal objects.

Proposition 5.16. Definition 5.15 gives rise to a functor Maxr : Modr,Ĝ/S∞
→ Modr,Ĝ/S∞

.

Proof. We have to prove that any map f : M̂ → M̂′ induces a map Maxr(M̂) → Maxr(M̂′). The

map g = f [1/u] : M̂[1/u]→ M̂′[1/u] is a morphism in ΦMĜ
/O∞

. By Corollary 5.8, g(Maxr(M̂)) is

a sub (φ, Ĝ)-module over S of M̂′[1/u]. Since M̂′ is maximal and g(Maxr(M̂)) + M̂′ is an object

of F r,ĜS (M̂′[1/u]), we see the underlying Kisin module of g(Maxr(M̂)) is contained in M′ and we
have done.

Denote by Maxr,Ĝ/S∞
the essential image of the functor Maxr : Modr,Ĝ/S∞

→ Modr,Ĝ/S∞
. It is a full

subcategory of Modr,Ĝ/S∞
. The following two propositions can be shown by essentially the same

method of [CL1] (cf. Proposition 3.3.2, 3.3.3, 3.3.4 and 3.3.5) and we omit proofs.
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Proposition 5.17. (1) The functor Maxr : Modr,Ĝ/S∞
→ Modr,Ĝ/S∞

is a projection, that is, Maxr ◦
Maxr = Maxr.
(2) The functor Maxr : Modr,Ĝ/S∞

→ Modr,Ĝ/S∞
is left exact.

(3) The functor Maxr : Modr,Ĝ/S∞
→ Maxr,Ĝ/S∞

is a left adjoint to the inclusion functor Maxr,Ĝ/S∞
→

Modr,Ĝ/S∞
.

Proposition 5.18. Let M̂ ∈ Modr,Ĝ/S∞
. Then the couple (Maxr(M̂), ιM̂max) is characterized by the

following universal property:

• the morphism T̂ (ιM̂max) is an isomorphism;

• for any M̂′ ∈ Modr,Ĝ/S∞
endowed with a morphism f : M̂→ M̂′ such that T̂ (f) is an isomor-

phism, there exists a unique map g : M̂′ → Maxr(M̂) such that g ◦ f = ιM̂max.

Here we are ready to prove the essential part of Theorem 1.2.

Theorem 5.19. The category Maxr,Ĝ/S∞
is abelian. More precisely, if f : M̂→ M̂′ is a morphism

in Maxr,Ĝ/S∞
, then

(1) if we denote the kernel of f as a morphism of φ-modules by ker(f), then ker(f) is an object

of Modr/S∞
and has a structure of a (φ, Ĝ)-module of height r. If we denote it by k̂er(f),

then it is maximal and is the kernel of f in the abelian category Maxr,Ĝ/S∞
;

(2) if we denote the cokernel of f as a morphism of φ-modules by coker(f), then coker(f)
u-tor is an

object of Modr/S∞
and has a structure of a (φ, Ĝ)-module of height r. If we denote it by

ĉoker(f)
u-tor , then Maxr( ĉoker(f)u-tor ) is the cokernel of f in the abelian category Maxr,Ĝ/S∞

; moreover,

if f is injective as a morphism of φ-modules, then coker(f) has no u-torsion;

(3) if we denote the image (resp. coimage) of f as a morphism of φ-modules by im(f) (resp.
coim(f)), then im(f) (resp. coim(f)) is an object of Modr/S∞

and has a structure of a

(φ, Ĝ)-module of height r. If we denote it by îm(f) (resp. ̂coim(f)), then Maxr(îm(f)) (resp.

Maxr( ̂coim(f))) is the image (resp. coimage) of f in the abelian category Maxr,Ĝ/S∞
.

Proof. (1) By Corollary 2.19, we know that ker(f) has a structure of a (φ, Ĝ)-module of height r.

We have to show that k̂er(f) is maximal. Consider the diagram below:

0 // ker(f) //
� _

��

M //
� _

��

M′
� _

��
0 // maxr(k̂er(f)) //

� _

��

maxr(M̂) //
� _

��

maxr(M̂′)� _

��
0 // ker(f)[1/u] // M[1/u] // M′[1/u].

The top and bottom horizontal sequences are exact as φ-modules overS. PutMmax = maxr(k̂er(f))+
M in M[1/u] and observe that Mmax ∈ Modr/S∞

and Mmax has a structure of a (φ, Ĝ)-module

with injection of Ĝ-modules M̂max ↪→ M̂[1/u]. Since M ⊂Mmax ⊂M[1/u], we have Mmax[1/u] =

M[1/u] and thus M̂max ∈ F r,ĜS (M̂[1/u]). Since M̂ is maximal, we obtain Mmax ⊂M. Therefore,
we have Mmax ⊂ M ∩ ker(f)[1/u] = ker(f) (where the equality M ∩ ker(f)[1/u] = ker(f) follows

from the above diagram) and hence k̂er(f) is maximal.
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(2) By Proposition 5.10, we know that coker(f)
u−tor has a structure of a (φ, Ĝ)-module of height r

induced from that of M̂′. By Proposition 5.17 (3), it is not difficult to check that Maxr( ĉoker(f)u−tor )

is the cokernel of f in the category Maxr,Ĝ/S∞
.

Next we prove the latter assertion; suppose f : M̂→ M̂′ is injective as a morphism of φ-modules.
Put C = coker(f) (as an S-module). The following diagram of exact sequences of φ-modules are
commutative;

0 // M //
� _

��

M′ //
� _

��

C //

g

��

0

0 // M[1/u] // M′[1/u] // C[1/u] // 0.

Put N = M[1/u] ∩M′. We claim that M = N. If we admit this claim, we see that g is injective
and thus C is u-torsion free, which is the desired result. Hence it suffices to prove the claim.
The inclusion M ⊂ N is clear. To prove N ⊂ M, it is enough to prove that N has a structure

of a (φ, Ĝ)-module and N̂ ∈ F r,ĜS (M̂[1/u]). By the proof of [CL1, Proposition 3.3.4], we know
that N ∈ Modr/S∞

. Furthermore, we see that N[1/u] = M[1/u] since M ⊂ N ⊂ M[1/u]. If we
denote by C ′ the cokernel of the inclusion map N ↪→ M′, then we know that C ′[1/u] = C[1/u]
and M′ ↪→ M′[1/u] induces an injection C ′ ↪→ C ′[1/u], in particular, C ′ is u-torsion free and
C ′ ∈ Modr/S∞

. By Corollary 2.12 and 2.11, two horizontal sequences of the diagram

0 // R̂ ⊗φ,S N //

��

R̂ ⊗φ,S M′ //

��

R̂ ⊗φ,S C ′ //

��

0

0 // R̂ ⊗φ,S (N[1/u]) // R̂ ⊗φ,S (M′[1/u]) // R̂ ⊗φ,S (C ′[1/u]) // 0

are exact as R̂-modules and all vertical arrows are injective. Since N[1/u] = M[1/u], we obtain

R̂ ⊗φ,S N = (R̂ ⊗φ,S (N[1/u])) ∩ (R̂ ⊗φ,S M′)

in R̂ ⊗φ,S (M′[1/u]). It is not difficult to check that the Ĝ-action on R̂ ⊗φ,S M extends to

R̂ ⊗φ,S (M[1/u]), which coincides with the restriction of the Ĝ-action on OĜ ⊗φ,S (M′[1/u]).

Hence the Ĝ-action on OĜ⊗φ,S (M′[1/u]) preserves R̂⊗φ,SN and N has a structure of a weak sub

(φ, Ĝ)-module of M̂′. Since C ′ ∈ Modr/S∞
, the exact sequence 0 → R̂ ⊗φ,S N → R̂ ⊗φ,S M′ →

R̂ ⊗φ,S C ′ → 0 gives C ′ a structure of a weak (φ, Ĝ)-module. By Corollary 2.20, we know that

N̂ is in fact a (φ, Ĝ)-module. Therefore, maximality of M̂ implies that N ⊂ M. This proves the
claim and we finish a proof of the latter assertion of (2).

(3) Let f : M̂ → M̂′ be a morphism in Maxr,Ĝ/S∞
. Corollary 2.19 says that im(f) has a structure

of a sub (φ, Ĝ)-module of M̂′. The map f induces a map g : îm(f) → M̂′. It is clear that

coker(f) = coker(g) as S-modules. Consider the map Maxr(g) : Max(îm(f)) → M̂′. By (2)
and Proposition 5.10, we see that coker(Maxr(g)) (as an S-module) is u-torsion free and it has

a structure of a (φ, Ĝ)-module induced from that of M̂′. Note that there exists an isomorphism

̂coker(Maxr(g)) ≃ ĉoker(f)
u−tor of (φ, Ĝ)-modules. We have the exact sequence of (φ, Ĝ)-modules below:

0→ Maxr(îm(f))→ M̂′ → ̂coker(Maxr(g))→ 0.

Since the functor Maxr : Modr,Ĝ/S∞
→ Modr,Ĝ/S∞

is left exact (cf. Proposition 5.17), we obtain an

exact sequence of (φ, Ĝ)-modules

0→ Maxr(îm(f))→ M̂′ → Maxr( ̂coker(Maxr(g))).
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Combining this with the description of kernels and cokernels in the category Maxr,Ĝ/S∞
, we obtain

that Maxr(îm(f)) is the image of f in the category Maxr,Ĝ/S∞
. The assertion for the coimage can

be checked by a similar way.

Lemma 5.20. If α : M̂′ → M̂ and β : M̂→ M̂′′ two morphisms in Maxr,Ĝ/S∞
such that β ◦ α = 0.

Then the sequence 0→ M̂′ α→ M̂
β→ M̂′′ → 0 is exact in (the abelian category) Maxr,Ĝ/S∞

if and only

if 0→ M̂′[1/u]
α[1/u]→ M̂[1/u]

β[1/u]→ M̂′′[1/u]→ 0 is exact in ΦMĜ
/O∞

. Furthermore, the functor

Maxr,Ĝ/S∞
→ ΦMĜ

/O∞
, M̂ 7→ M̂[1/u]

is fully faithful.

Proof. Since α and β is assumed to be Ĝ-equivariant, 0 → M̂′[1/u] → M̂[1/u] → M̂′′[1/u] → 0

is exact in ΦMĜ
/O∞

if and only if 0 → M′[1/u] → M[1/u] → M′′[1/u] → 0 is exact in ΦM/O∞ .
Thus the same proof as that of [CL1, Lemma 3.3.9] proceeds.

Corollary 5.21. The functor T̂ defined on Maxr,Ĝ/S∞
is exact and fully faithful, and its essential

image is stable under subquotients.

Proof. The former assertion follows from the commutative triangle below:

Maxr,Ĝ/S∞

T̂ //

$$IIIIIIIII
Reptor(G∞)

ΦMĜ
/O∞

≃

T̂

99sssssssssss

Here, Maxr,Ĝ/S∞
→ ΦMĜ

/O∞
is a functor defined by the assignment M̂ 7→ M̂[1/u], which is exact

and fully faithful (by Lemma 5.20). The latter assertion follows from Theorem 4.5.

Corollary 5.22. The functor Maxr : Modr,Ĝ/S∞
→ Maxr,Ĝ/S∞

is exact.

Proof. This follows from Lemma 5.20.

Proposition 5.23. The category Maxr,Ĝ/S∞
is stable under extensions in Modr,Ĝ/S∞

, that is, if

0→ M̂′ → M̂→ M̂′′ → 0

is an exact sequence in Modr,Ĝ/S∞
with M̂′, M̂′′ ∈ Maxr,Ĝ/S∞

, then M̂ ∈ Maxr,Ĝ/S∞
.

Proof. The proof is essentially the same as that of [CL1, Proposition 3.3.13].

Proposition 5.24. Let M̂ ∈ Modr,Ĝ/S∞
and φ∗ : S ⊗φ,S M → M the S-linearization of φ. If

coker(φ∗) is killed by up−2, then M̂ is maximal.

Proof. By Corollary 5.9 and Proposition 5.23, we can reduce the proof to the case where pM = 0,
and then the proof is essentially the same as that of [CL1, Lemma 3.3.14].

Remark 5.25. All results in this subsection hold even if we replace “(φ, Ĝ)-modules” with “weak
(φ, Ĝ)-modules” (e.g. the existence of maximal objects for weak (φ, Ĝ)-modules). Proofs are easier
than that for “(φ, Ĝ)-modules” since we may omit “modulo I+” arguments.
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5.6 Minimal objects for (φ, Ĝ)-modules

Throughout this subsection, we always assume that r < ∞. Here we study minimal objects of
(φ, Ĝ)-modules. Many arguments in this subsection are very similar to those of the maximal case
and of [CL1].

Proposition 5.26. Definition 5.15 gives rise to a functor Minr : Modr,Ĝ/S∞
→ Modr,Ĝ/S∞

.

Proof. We have to show that any morphism f : M̂→ N̂ in Modr,Ĝ/S∞
embeds minr(M̂) into minr(N̂).

Put M̂ = M̂[1/u] and N̂ = N̂[1/u]. Denote by g = f [1/u] : M̂ → N̂ the morphism induced from
f . Then g induces Maxr(f) : Maxr(M) → Maxr(N), we also denote it by g. We know that the
kernel K of the map

h : Maxr(M̂)⊕Minr(N̂)→ Maxr(N̂), (x, y) 7→ g(x)− y

has a structure of a (φ, Ĝ)-module K̂ of height r. Note that the composition map K̂→ Maxr(M̂)⊕
Minr(N̂)→ Maxr(M̂) is an isomorphism, where the first arrow is the natural embedding and the

second arrow is the first projection. In particular, we obtain an isomorphism η : K̂[1/u]
∼−→ M̂ . If

we identify K̂[1/u] and M̂ via η, then K̂ is contained in F r,ĜS (M̂) and thus minr(M) ⊂ K. Taking

any element x = (x, y) of minr(M) ⊂ K, we have h(x, y) = 0 and thus g(x) = y ∈ minr(N̂). This
finishes the proof.

Denote by Minr,Ĝ/S∞
the essential image of the functor Minr : Modr,Ĝ/S∞

→ Modr,Ĝ/S∞
. The follow-

ing can be checked by the same way as that of [CL1, Proposition 3.4.6].

Proposition 5.27. Let M̂ ∈ Modr,Ĝ/S∞
. Then the couple (Minr(M̂), ιM̂min) is characterized by the

following universal property:

• the morphism T̂ (ιM̂min) is an isomorphism;

• for any M̂′ ∈ Modr,Ĝ/S∞
endowed with a morphism f : M̂′ → M̂ such that T̂ (f) is an isomor-

phism, there exists a unique map g : Minr(M̂)→ M̂′ such that f ◦ g = ιM̂min.

Since the couple (Maxr(M̂∨)∨, (ιM̂
∨

max)
∨) satisfies the universality appeared in Proposition 5.27, we

obtain

Corollary 5.28. For M̂ ∈ Modr,Ĝ/S∞
, we have natural isomorphisms

Minr(M̂∨) ≃ Maxr(M̂)∨ and Maxr(M̂∨) ≃ Minr(M̂)∨.

In particular, the duality on Modr,Ĝ/S∞
permutes subcategories Maxr,Ĝ/S∞

and Minr,Ĝ/S∞
.

The following proposition can be proved by essentially the same method of [CL1] (cf. Proposition
3.4.3, 3.4.8, Lemma 3.4.4 and Corollary 3.4.5) and we omit the proof.

Proposition 5.29. (1) The functor Minr : Modr,Ĝ/S∞
→ Modr,Ĝ/S∞

is a projection, that is, Minr ◦
Minr = Minr.
(2) Let f : M̂ → N̂ be a morphism in Modr,Ĝ/S∞

. Then f(Minr(M̂)) = Minr(f̂(M)). (For some

notations, see Proposition 5.8.)

(3) Let f : M̂→ N̂ be a morphism in Modr,Ĝ/S∞
. If f is surjective (resp. injective) as an S-module

morphism, then Minr(f) is also.

(4) The functor Minr : Modr,Ĝ/S∞
→ Minr,Ĝ/S∞

is a right adjoint to the inclusion functor Minr,Ĝ/S∞
→

Modr,Ĝ/S∞
.
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Theorem 5.30. The category Minr,Ĝ/S∞
is abelian. More precisely, if f : M̂ → M̂′ is a morphism

in Minr,Ĝ/S∞
, then

(1) if we denote the kernel of f as a morphism of φ-modules by ker(f), then ker(f) is an object

of Modr/S∞
and has a structure of a (φ, Ĝ)-module of height r. If we denote it by k̂er(f),

then Minr(k̂er(f)) is the kernel of f in the abelian category Minr,Ĝ/S∞
;

(2) if we denote the cokernel of f as a morphism of φ-modules by coker(f), then coker(f)
u-tor is an

object of Modr/S∞
and has a structure of a (φ, Ĝ)-module of height r. If we denote it by

ĉoker(f)
u-tor , then it is minimal and is the cokernel of f in the abelian category Minr,Ĝ/S∞

;

(3) if we denote the image (resp. coimage) of f as a morphism of φ-modules by im(f) (resp.
coim(f)), then im(f) (resp. coim(f)) is an object of Modr/S∞

and has a structure of a (φ, Ĝ)-

module of height r. If we denote it by îm(f) (resp. ̂coim(f)), then it is minimal and is the

image (resp. coimage) of f in the abelian category Minr,Ĝ/S∞
.

Proof. (1) Since the functor Minr is right adjoint (Proposition 5.29 (4)), we see the desired result.

(2) Put C = coker(f)
u-tor . Recall that C is an object of Modr/S∞

and has a structure of a (φ, Ĝ)-module

of height r (Proposition 5.10). If we denote by g the projection M̂′ → Ĉ, by Proposition 5.17 (3),
we have

Ĉ = g(M̂′) = g(Minr(M̂′)) = Minr(g(M̂′)) = Minr(Ĉ)

and thus Ĉ is minimal.
(3) Let g : Ĉ → M̂′ be as in the proof of (2). By (1) and (2), we see that the image of f in

the category Minr,Ĝ/S∞
is Minr(k̂er(g)). Let Mg be the underlying Kisin module of Minr(k̂er(g)).

Then Mg is the inverse image of the u-torsion part of coler(f) with respect to the projection
M′ → coler(f). Since Mg is finitely generated as an S-module, there exists a positive integer N
such that uNMg ⊂ im(f). Hence we obtain Mg[1/u] = im(f)[1/u]. Consequently, by Proposition
5.29 (3), we have

Minr(k̂er(g)) = Minr(M̂g) = Minr(f(M̂)) = f(Minr(M̂)) = f(M̂) = îm(f)

and thus îm(f) is minimal. The proof for coimage is similar and hence we omit it.

Proofs for the following three results are similar to those of the maximal case.

Lemma 5.31. If α : M̂′ → M̂ and β : M̂ → M̂′′ two morphisms in Minr,Ĝ/S∞
such that β ◦ α = 0.

Then the sequence 0→ M̂′ α→ M̂
β→ M̂′′ → 0 is exact in (the abelian category) Minr,Ĝ/S∞

if and only

if 0→ M̂′[1/u]
α[1/u]→ M̂[1/u]

β[1/u]→ M̂′′[1/u]→ 0 is exact in ΦMĜ
/O∞

. Furthermore, the functor

Minr,Ĝ/S∞
→ ΦMĜ

/O∞
, M̂ 7→ M̂[1/u]

is fully faithful.

Corollary 5.32. The functor T̂ defined on Minr,Ĝ/S∞
is exact and fully faithful, and its essential

image is stable under subquotients.

Corollary 5.33. The functor Minr : Modr,Ĝ/S∞
→ Minr,Ĝ/S∞

is exact.

Put e = [K : K0], the absolute ramification index of K. If er < p− 1, then F rS(M̂) contains at

most one element (cf. [CL1], Remark just after Corollary 3.2.6) and hence all torsion (φ, Ĝ)-modules
of height r are automatically maximal and minimal. Therefore, we obtain
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Corollary 5.34. Suppose er < p − 1. Then Maxr,Ĝ/S∞
= Modr,Ĝ/S∞

= Minr,Ĝ/S∞
. In particular, the

category Modr,Ĝ/S∞
is abelian and the functor T̂ : Modr,Ĝ/S∞

→ Reptor(G) is exact and fully faithful,

and its essential image is stable under subquotients.

Remark 5.35. Similar to Remark 5.25, all results in this subsection hold even if we replace
“(φ, Ĝ)-modules” with “weak (φ, Ĝ)-modules”.

5.7 Some remarks

First the reader should be careful that there are no new results in this subsection.

5.7.1 Connection with a lifting problem

Let r ∈ {0, 1, 2, . . . ,∞}. Let Repst,rfr (G) be the category of lattices inside semi-stable p-adic rep-

resentations with Hodge-Tate weights in [0, r]. Let Repst,rtor (G) be the category of torsion Zp-
representations T such that there exists lattices Λ1,Λ2 ∈ Repst,rfr (G) satisfying Λ1 ⊂ Λ2 and
T ≃ Λ2/Λ1. The pair Λ1 ⊂ Λ2 is called a lift of T . We are interested in the following question:

Question 5.36. For any T ∈ Reptor(G), does there exists an integer r ≥ 0 such that T ∈
Repst,rtor (G)?

If T is a tamely ramified Fp-representation, then Caruso and Liu proved that the question has an
affirmative answer (cf. [CL2, Theorem 5.7]). If we fix the choice of r < ∞, they also proved that
Question 5.36 has a non-affirmative answer, which follows from a result on ramification bounds of
torsion representations (cf. [CL2, Theorem 5.4]).

We connect Question 5.36 to our results in this paper. Recall that RepĜtor(G) is the essen-

tial image of T̂ : Mod∞,Ĝ
/S∞

→ Reptor(G), which is an abelian full subcategory of Reptor(G). For

simplicity, put Repsttor(G) = Repst,∞tor (G). Then inclusions

Repsttor(G) ⊂ RepĜtor(G) ⊂ Reptor(G)

are known (cf. [CL2, Theorem 3.1.3]). Thus Question 5.36 has an affirmative answer if and only if

Repsttor(G) = RepĜtor(G) and RepĜtor(G) = Reptor(G). On the other hand, we have seen the following
commutative diagram:

Mod∞,Ĝ
/S∞

Max∞
//

forgetful

��

Max∞,Ĝ
/S∞

� � //
T̂

// Reptor(G)

restriction

��
Mod∞/S∞

Max∞
// Max∞/S∞

∼
TS

// Reptor(G∞).

Here, the equivalence between categories Max∞/S∞
and Reptor(G∞) in the above diagram is proved

in [CL2, Proposition 5.6]. Since the essential image of T̂ : Max∞,Ĝ
/S∞

↪→ Reptor(G) is RepĜtor(G), it

seems natural to suggest

Question 5.37. Is the functor T̂ : Max∞,Ĝ
/S∞

↪→ Reptor(G) essentially surjective, that is, an equiv-

alence of categories? This is equivalent to say that, for any M̂ ∈ ΦMĜ
/O∞

, does there exist a sub

(φ, Ĝ)-module M̂, of finite height, of M̂ such that M[1/u] =M?

If this has an affirmative answer, then we obtain RepĜtor(G) = Reptor(G). In particular, we obtain

an equivalence of abelian categories Max∞,Ĝ
/S∞

≃ Reptor(G), which implies that maximal objects of

torsion (φ, Ĝ)-modules completely classify torsion p-adic representations of G. On the other hand,
we ask following questions:
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Question 5.38. Does any torsion (φ, Ĝ)-module have a resolution of free (φ, Ĝ)-modules?

Question 5.39. Is the category RepĜtor(G) closed under extensions in Reptor(G)?

Theorem 4.5 might be related with Question 5.39. If one of these questions has an affirmative

answer, then we obtain Repsttor(G) = RepĜtor(G).

5.7.2 Connection with torsion Breuil modules

If we obtain an explicit relation between the categories of torsion Breuil modules and the category
of torsion (φ, Ĝ)-modules, then our main result in this paper will give a partial answer of Question
2 in [CL1].
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