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Torsion representations arising from (¢, G)-modules

Yoshiyasu Ozeki*

Abstract

The notion of a (¢, G)-module is defined by Tong Liu in 2010 to classify lattices in semi-

stable representations. In this paper, we study torsion (¢, G)-modules, and torsion p-adic
representations associated with them, including the case where p = 2. First we prove that the

category of torsion p-adic representations arising from torsion (¢, G)-modules is an abelian

category. Secondly, we construct a maximal (minimal) theory for (¢, G)-modules by using
the theory of étale (p, G)-modules, essentially proved by Xavier Caruso, which is an analogue
of Fontaine’s theory of étale (p,I')-modules. Non-isomorphic two maximal (minimal) objects

give non-isomorphic two torsion p-adic representations.
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1 Introduction

The notion of a (¢, é)—module was introduced by T. Liu in [Li3] to classify lattices in semi-stable
representations. In this paper, we give various properties of torsion (¢, G’)—modules such as the
Cartier duality theorem. Furthermore, we study the category of torsion representations arising
from torsion (i, G)-modules. Let G be the absolute Galois group of a complete discrete valuation
field K of mixed characteristic (0, p) with perfect residue field. Fix r € {0,1,2,...,00}. Our study

is motivated by the following question:

Is any torsion Z,-representation of G a torsion semi-stable representation with
Hodge-Tate weights in [0,7]?

Here, a torsion Z,-representation of G is said to be torsion semi-stable with Hodge-Tate weights in
[0, r] if it can be written as the quotient of two lattices in a semi-stable p-adic representation of G
with Hodge-Tate weights in [0, 7]. It is known that the above question does not have an affirmative
answer if 7 < co and thus it makes sense only if r = co. We propose an approach to this question
by using (¢, G)-modules which give descriptions of (torsion) semi-stable p-adic representations
with Hodge-Tate weights in [0,7]. The theory of Breuil modules also gives descriptions of these
representations in terms of linear algebra (cf. [Li2]), however, for technical reasons, we have to
assume r < p — 1 when we use this theory for integral or torsion representations. On the other

hand, there is no restriction on r in the theory of (¢, G)-modules. This is the main reason why we

focus on (p, G)-modules.
Let Repy,,(G) be the category of torsion Z,-representations. Let Rep’ (G) be the category of

tor
r,G A
d/Goo

of height  and 7': MOd;g)o — Rep,,, (G) the associated functor (see Section 2). Let Repgr(G) be

the category of torsion representations arising from torsion (¢, G)-modules, that is, the essential

torsion semi-stable representations. We denote by Mo the category of torsion (¢, G)-modules

image of T on Mod%i. Then inclusions

Repjt, (G) C Rep,,.(G) C Repyo(G)

are known (cf. [CL2, Theorem 3.1.3]). Since our interest is related with the equality of cate-
gories Repit (G) and Rep,,, (G), we want to know differences between above three categories. The
following is the first main result of this paper:

Theorem 1.1. The category Repgr(G) is an abelian full subcategory of Repy.,(G) which is stable
under subquotients, &, ® and the dual.

To show the category Repgr(G) is abelian, we give two different proofs. The first one uses a
deep relation, proved by T. Liu, between (¢, G)-modules and representations associated with them
(cf. Lemma 4.2). The second proof is based on a result on mazimal (minimal) objects of (v, G)-

modules. In general, the category Mod;‘g is not abelian and T Mod?’g — Repio, (G) is not
fully faithful. The theory of maximal (minimal) objects allows us to avoid this problem. Denote by

Max;’goo the full subcateg?ry of Mod;’gw

Max": Mod;’gw
and commutes with T'. We prove

whose objects are maximal. Then we obtain the functor

— Max;’g which is a retraction of the natural inclusion Max?’g — Mod;’g

Theorem 1.2. The category Max;g is abelian and, if r < oo, it is Artinian. Furthermore,

T7

the restriction ofT on Max/g is exact and fully faithful, and its essential image is stable under
subquotients.



In particular, we immediately find that the category Repgr(G) is abelian. If r < oo, we can

also define the full subcategory Min;’g of Mod;’g whose objects are minimal and the functor

Min": Mod;goc — Min;gm; they satisfy analogous properties as those stated in Theorem 1.2. Fur-
thermore, the Cartier duality theorem gives a connection between maximal objects and minimal
objects (cf. Proposition 5.28). Maximal (minimal) objects are first defined for finite flat group
schemes by M. Raynaud [Ra]. X. Caruso and T. Liu generalized Raynaud’s theory, with respect to
finite flat group schemes killed by a power of p, to torsion Kisin modules [CL1], whose representa-
tions are defined on G,. Here G, = Gal(K/K,) and Ko, = Un>0K (7)), mo = 7 a uniformizer
of K, 7t 41 = Tp. Furthermore, a categorical interpretation of maximal (minimal) objects is given
in [Ca3]. Our theorem described above is an extended result of [CL1] in a certain sense. In the
case where r = oo, we obtain the following:

Corollary 1.3. The functorT: Mod?’éé — Rep,.(G) induces an equivalence of abelian categories

between the category Max?‘éc of mazximal torsion (o, G)—modules of finite height and the category

Repgr(G) of torsion Z,-representations of G arising from (@, G)-modules.

To define maximal (minimal) objects of torsion (p,G)-modules, we introduce an étale (¢, G)-
module, which is an étale p-module (in the sense of J.-M. Fontaine [Fo]) equipped with certain
Galois action. Arguments in the theory of (¢, 7)-modules of [Cad] give us the fact that the category
of torsion étale (i, G)-modules is equivalent to Rep,,, (G).

Now denote by e the absolute ramification index of K. If er < p — 1, then all torsion (¢, G)-
modules of height r are automatically maximal and minimal. Therefore, we have

Corollary 1.4 (= Corollary 5.34). Suppose er < p — 1. Then the category Mod;goo s abelian

P Repio, (G) is exact and fully faithful, and

and Artinian. Furthermore, the functor T Mod/G

its essential image is stable under subquotients.

The corresponding result on torsion Breuil modules has been proven by X. Caruso (cf. [Ca2,
Théoreme 1.0.4]).
We hope our study will be useful to solve the question described in the beginning of this paper (cf.
Section 5.7).

Now we describe an organization of this paper. In Section 2, we recall some results on Kisin
modules and (¢, G)—rnodules7 and prove some fundamental properties of them which are often used

in this paper. In Section 3, we prove the Cartier duality theorem for (¢, G)-modules. In Section

4, we prove Theorem 1.1. Finally in Section 5, we give a theory of étale (¢, G)-modules, define

maximal (minimal) objects for (¢, G)-modules, and prove Theorem 1.2.

Convention. For any Z-module M, we always use M,, to denote M /p™M for a positive integer
n and Mo = M ®z, Q, /Z,. We reserve ¢ to represent various Frobenius structures and ¢
will denote the Frobenius on M. However, we often drop the subscript if no confusion arises. All
representations and actions are assumed to be continuous.

Acknowledgements. The author wants to thank Shin Hattori who gave him useful advice and
comments throughout this paper, in particular, Section 5.6. This work is supported by the Grant-
in-Aid for Young Scientists Start-up.

2 Preliminaries

In this section, we recall some notions and results which will be used throughout this paper.



2.1 Notation

Let k be a perfect field of characteristic p > 2, W (k) its ring of Witt vectors, Ko = W (k)[1/p],
K a finite totally ramified extension of Ky, K a fixed algebraic closure of K and G = Gal(K/K).
Throughout this paper, we fix a uniformizer # € K and denote by E(u) its Eisenstein polynomial
over Ky. Put & = W(k)[u]. We define a Frobenius endomorphism ¢ of & by u — u?, extending
the Frobenius on W (k).

Let R= l&n O /p where O is the integer ring of K and the transition maps are given by the
p-th power map. By the universal property of the ring of Witt vectors W(R) of R, there exists a
unique surjective projection map 6: W(R) — @K which lifts the projection R — O /p onto the
first factor in the inverse limit, where @) & is the p-adic completion of Og. We denote by Ac.is the
p-adic completion of the divided power envelope of W(R) with respect to the kernel of §. We put
B;ls = Aeis[1/p]. For any integer n > 0, let 7, € K be a p"-th root of 7 such that nh ., =m, and
write T = (T )n>0 € R. Let [x] € W(R) be the Teichmiiller representative of . We embed the
W (k)-algebra W (k)[u] into W (R) by the map w — [z]. This embedding extends to an embedding
& — W(R), which is compatible with Frobenius endomorphisms.

Let O be the p-adic completion of &[1/u], which is a discrete valuation ring with uniformizer p
and residue field k((u)). Denote by £ the field of fractions of O. The inclusion & < W(R) extends
to inclusions O — W (FrR) and £ < W (FrR)[1/p]. Here FrR is the field of fractions of R. It is
not difficult to see that FrR is algebraically closed. We denote by £** the maximal unramified ﬁeld
extension of £ in W (FrR)[1/p] and O™ its s integer ring. Let £ be the p-adic completion of £Y a
OW its integer ring. The ring £V (resp. O“r) is equal to the closure of £ in W (FrR)[1/p] (resp
the closure of O in W (FrR)). Put 6" = ov N W(R). We regard all these rings as subrings of
W(RR)[1/p). )

Let Koo = Up>0K(m,) and Goo = Gal(K /K ). Then G, acts on &" and " continuously
and fixes the subring & C W(R). We denote by Rep;, (Goo) (resp. Repg, (Gos)) the category of
continuous Z,-representations of G, on Z,-modules of finite type (resp. the category of continuous
Qp-representations of G, on finite dimensional Q,-vector spaces). We denote by Rep,,(Gso) (resp.
Repg, (Goo)) the full subcategory of Rep;, (Goo) consisting of Z,-modules killed by some power of
p (resp. free Zp-modules). Similarly, we define categories Rep; (G),Repg, (Goo), Repy, (G) and
Repy, (G) by replacing G with G.

2.2 Etale p-modules

In this subsection, We recall the theory of Fontaine’s étale p-modules. For more precise information,
see [Fo, A 1.2].

An étale p-module over O is an O-module M of finite type, equipped with a p-semi-linear
map @p: M — M such that ¢}, is an isomorphism. Here, ¢}, stands for the O-linearization
1@opm: O®Qpo M — M of ppr. An étale p-module over £ is a finite dimensional £-vector space
M, equipped with a p-semi-linear map ¢p;: M — M such that there exists a y-stable O-lattice L
of M and that L is an étale p-module over O. We denote by '®M /o (resp. M ¢ ) the category of
étale p-modules over O (resp. the category of étale p-modules over £) with the obvious morphisms.
Note that the extension K /K is a strictly APF extension in the sense of [Wi] and thus G is
naturally isomorphic to the absolute Galois group of k((u)) by the theory of norm fields. Combining
this fact and Fontaine’s theory in [Fo, A 1.2.6], we have that functors

To:'®Mo = Repy, (Goo), M = (O o M)#~!

and
Te: @M /g — Repg, (Goo), M = (EW7 @¢ M)#="

are equivalences of abelian categories and there exist natural O _linear isomorphisms which are
compatible with p-structures and G -actions:

O @y T.(M) =5 0% ©p M for M € '®M 0 (2.2.1)



and
EW ®q, To(M) = & ®@c M for M € ®M j¢. (2.2.2)

On the other hand, define functors
M.: Repy, (Goo) = '®M)o, T+ (OWF @7, T)C=

and
M..: Repg, (Goo) = ®M g, T (E™ ®g, T)%>.

There exist natural O™ -linear isomorphisms which are compatible with @-structures and G-
actions:

O ®o M, (T) 5 O @z, T for T € Repy, (Goo) (2.2.3)
and e -
£ @ ML(T) — €W @q, T for T € Repg, (Goo)- (2.2.4)

We denote by @M /o (resp. @M ) the category of étale p-modules over O which are killed by
some power of p (resp. the category of étale p-modules over @ which are p-torsion free). We call

objects of ®M _ (resp. ®M /) torsion étale p-modules over O (resp. free étale p-modules over
0).

Proposition 2.1. The functor T, induces equivalences of categories between ®M o __ (resp. M 0,
resp. ®M ¢) and Repy,, (Goo) (resp. Repg, (Goo), Tesp. Repr(GOO)). Furthermore, M, is a quasi-
inverse of T.

The contravariant version of the functor 7. is useful for integral theory. For any T' € Rep;,, (G ),
put
M(T) = Homg, (T, /O™) if T is killed by some power of p,

M(T') = Homg, (¢ (T, Ouw) if T is free,
and for any T € Repr(Goo)7 put

M(T) = Homg, (g_(T, ™).
Then we can check that 7(M) is the dual representation of 7,(M). For any M € ®M o, put
T (M) =Homp ,(M,EY/O) if M is killed by some power of p,

T (M) =Homop (M, (TJE) if M is p-torsion free,
and for any M € ®M /¢, put
T(M) = Homg ,(M, EWr).

These formulations give us contravariant functors 7 and M (on appropriate categories) such that

MoT ~1d, T o M ~1d.

2.3 Kisin modules

A @-module (over &) is an G-module M equipped with a @-semi-linear map ¢: M — M. A
morphism between two p-modules (M, 1) and (Ms, p2) is an S-linear morphism Ny — Ny
compatible with ¢ and 5. Denote by ’Mod;G the category of ¢-modules M of height r in the
following sense;

o if r < 0o, then 9 is of finite type over & and the cokernel of p* is killed by F(u)", where ¢*
is the G-linearization 1 ® ¢: 6 ®, e M — M of ¢,



e if r = oo, then 9 is of height r’ for some integer 0 < 7’ < oco. In this case, M is called of
finite height.

Let Mod)g__ be the full subcategory of "Mod)g consisting of G-modules 90 of finite type which
satisfy the following;:

e Mt is killed by some power of p,

e M has a two term resolution by finite free G-modules, that is, there exists an exact sequence
0= =N —=>M—=0
of &-modules where 91; and 91y are finite free G-modules.

Let Mod76 be the full subcategory of ’ Mod?G consisting of finite free G-modules. An object of
Mod?Gm (resp. Mod?G) is called a torsion Kisin module (resp. a free Kisin module) of height .

A p-modules 9 is called p’-torsion free if for any non-zero element z € M, Anng(z) = 0
or Anng(z) = p"G for some integer n. This is equivalent to the natural map M — O s M
being injective. If 91 is killed by some power of p, then 91 is p’-torsion free if and only if 9 is
u-torsion free. Therefore, if M €’ Mod76 is killed by p and p’-torsion free, then 90t is finite free
as a k[u]-module. A ¢-module M is called étale if M is p’-torsion free and O ®s M is an étale
p-module over O. Since E(u) is a unit of O, we see that 9 is étale if and only if 90 is p/-torsion
free for any M € 'Mod)g. Any object of M € Mod) is clearly étale.

For any M € Mod)g__, we define a Z,[Goc]-module by

T@ (M) = Homgw(ﬂﬁ, 622),

where a Go-action on T (M) is given by (0.9)(z) = o(g(x)) for 0 € Goo, g € Te (M), z € M. The
representation T () is an object of Repo, (Goo)-

Proposition 2.2 ([CL1, Corollary 2.1.6]). The functor Te : Mod)g_ — Repy, (Goo) is ezact and
faithful.

Proof. The exactness follows from Proposition 2.4 below and the fact that the functor (91 —
O ®s M) from Mod)g_ to Mo is exact (since O is flat over &). O

Similarly, for any 9t € Mod), we define a Z,[Goc]-module by
T@ (DJT) = HOHI@MD(EDT7 Gur).
The representation T (9M) is an object of Repy, (G ) and rankz, T (9M) = ranks M.

Proposition 2.3 ([Ki, Corollary 2.1.4, Proposition 2.1.12]). The functor Te : Mod)g — Repg(Goo)
is exact and fully faithful.

Let 91 be a torsion Kisin module (resp. a free Kisin module). Since E(u) is a unit in O, we see
that M = M[1/u] := O ®@s M is a torsion étale p-module over O (resp. a free étale p-module over
0). Here a Frobenius @y on M is given by o = po ® von.

Proposition 2.4 ([Br2, Lemma 2.3.3], [Lil, Corollary 2.2.2]). Suppose that I is an object of
Mod)g_ or Mod)g. Then the natural map

Ts(M) = T(O @ M)

is an isomorphism of Zy,-representations of G.



2.4 (p,G)-modules

Let S be the p-adic completion of W (k)[u, %ﬁ‘)i]izo and endow S with the following structures:

e a continuous p-semi-linear Frobenius ¢: S — S defined by ¢(u) = uP.
e a continuous linear derivation N: S — S defined by N(u) = —u.

e a decreasing filtration (FiliS )i>oin S. Here Fil'S is the p-adic closure of the ideal generated
by the divided powers v;(E(u)) = E(u) for all j > 1.

Put Sk, = S[1/p] = Ko Qw ) S. The 1nclus10n S — W(R) induces inclusions & — S — Ais
and Sk, — Bctls (See subsection 2.1 for definitions of rings A..s and Bctls ) We regard all these
rings as subrings of ch

Fix a choice of primitive p’-th root of unity (pi for i > 0 such that Cgiﬂ = (pi. Put g
= ((p1)i>0 € R* and t = log([e]) € Acxis. Denote by v: W(R) — W (k) the unique lift of the
projection R — k. Since v(Ker(#)) is contained in the set pW (k), v extends to maps v: Acs —
W (k) and v: BE, — W(k)[1/p]. For any subrmg AcC B, weput I; A = Ker(von B, )NA. For

any integer n > 0, put t{”}—t”(”)v( )( )wheren—( —1g(n)+rn) with0<r(n)<p-1

z_

and vy, (z) = Z: is the standard divided power.
We define a subring R, of B, as below:

cris

R, = {Z fit" | fi € Sk, and fi — 0 as i — oo}
=0

Put R = Ry, NW(R) and I, = . R.

For any field I over Qp, set Fpe = UpLoF((pn). Recall Koo = Up>0K () and note that
Koo poo = Up>0K (mp, (peo ) is the Ga101s closure of K, over K. Put Hg = Gal(K oo poe /Koo ), Hoo =
Gal(K /K o po ), Gpoo = Gal(K oo poo / Kpoo) and G = Gal(K o o /K).

el
/

G/m
\/-

Figure 1: Galois groups of field extensions

Proposition 2.5 ([Li3, Lemma 2.2.1]). (1) R (resp. R, ) is a p-stable S-algebra as a subring in
W(R) (resp. BL,).

(2) R and I (resp. Rk, and I1Rk,) are G-stable. The G-action on R and I (resp. Rk, and
I, Rk, ) factors through G.

(3) There exist natural isomorphisms Ry, /14 R, ~ Ko and R/I; ~ S/I1,5 ~ &/, & ~ W (k).



For any Kisin module (9, pgn) of height r, we equip R Ry, M with a Frobenius by ¢5 @ g,
It is known that the natural map R
M — R Qe M
is an injection (cf. [CL2, Section 3.1]). By this injection, we regard 9% as a ¢(&)-stable submodule
in R ®yp,e M.

Definition 2.6. A weak (¢, G)-module (of height 1) is a triple M = (M, pon, () where
(1) (M, pon) is a Kisin module (of height r),

(2) G is an R-semi-linear G-action on R ®p,e M which induces a continuous G-action on
W (FrR) ®, e M for the weak topology!,

(3) the G—ziction commutes with ¢5 @ g,
(4) MC (R®y,& o) Hr,

If M is a torsion (resp. free) Kisin module of (height r), we call M a torsion (vesp. free) weak

(¢, G)-module (of height r). A weak (¢, G)-module 0 is called a (@, G)-module if it satisfies the
additional condition

(5) G acts on the W (k)-module (R ®p,6 M) /1 (R Ry, M) trivially.

If 90 is a torsion (resp. free) Kisin module of (height r), we call 9 a torsion (resp. free) (¢, G)-

module (of height 7). If M = (M, pon, G) is a weak (p, G)-module, we often abuse notations by
writing 91 for the underlying module R ®,, & IN.

A morphism f: (M, 0, G) = (M, ¢, G) between two weak (ap,é)—modules is a morphism
[ (M) — (M, ¢') of Kisin-modules such that R ® f: M — M’ is G-equivariant. We denote
by WMod;’GGm (resp. wMod;’g, resp. Mod;’g007 resp. Mod;’g) the category of torsion weak (p, G)-

modules (resp. free weak (p, G)-modules, resp. torsion (¢, G)-modules, resp. free (¢, G)-modules).
We regard M as a G-module via the projection G — G. A sequence 0 — M — M — M" — 0
of (weak) (¢, G)-modules is ezact if it is exact as G-modules and all morphisms are morphisms of

(weak) (¢, G)-modules.
For a weak (¢, G)-module M, we define a Z,[G]-module as below:

T(Sﬁ?) = Homg @(95?, W(R)so) if M is killed by some power of p

and

T(M) = Homg (M, W(R)) if M is free.

Here, G acts on T(9M) by (0.f)(z) = o(f(oc~(2))) for 0 € G, f e T(M), x € M.

Let 9t = (M, pon, G) be a weak (¢, G)-module. There exists a natural map

0: T (M) — T(M)
defined by R
0(f)(a®@m)=ap(f(m)) for f € Ts(M), a € R,m € M,

which is G-equivariant.

Let denote by Rep%p (G) the category of G-stable Z,-lattices in semi-stable p-adic representa-
tions of G with Hodge-Tate weights in [0, r].

1Suppose that 9 is free as an G-module. We equip R R, M (resp. W(FrR) ®,,e M) with the weak topology
using any R-basis (resp. W (FrR)-basis), which is independent of the choice of basis. Then we may replace the
condition (2) with the following condition (2)’:
2y & is a continuous R-semi-linear G-action on R ®p,6 M for the weak topology.
In fact, if G acts on R ®p,c M continuously, then the G-action on ’f“(fﬁt) is continuous for the p-adic topology (the

definition for T'(9M) is given before Theorem 2.7). Since the map  in Lemma 4.2 (4) is a topological isomorphism
for weak topologies on both sides, we see that the G-action on W (FrR) ®, & M is automatically continuous.



Theorem 2.7 ([CL2, Theorem 3.1.3], [Li3, Theorem 2.3.1]). (1) For a weak (o, G)-module M, the
map 0: Te (M) — T(M) is an isomorphism of Z, |G o]-modules.
(2) The functor T induces an anti-equivalence between ModgG and Repy, (G).

Corollary 2.8. The functor T: WModr’é

/6. Repi..(G) is exact and faithful.

Proof. The exactness of the functor 7' follows from Proposition 2.2 and Theorem 2.7 (1). Since
Ts: Mod)g_ — Repio,(Goo) is faithful, the faithfulness of 7' follows from the following commuta-
tive diagram:

Hom oo (90, 90V)—s Homyioar (9, M)"2> Home,__ (T (M), T (M)

VASES) l
Homg (T(90), T'(99))C Homg,_ (T(M), T(M)).

2.5 Some fundamental properties

In this subsection, we give some fundamental, but important, results on Kisin modules and (¢, G)-
modules. We start with the following proposition which plays an important role throughout this

paper.

Proposition 2.9 ([Lil, Proposition 2.3.2]). Let I be an object of ’Mod76 which is killed by p™.
The following statements are equivalent:

(1) M is an object of Modg__ .

(2) M is u-torsion free.

(3) M is étale.

(4) M is a successive extension of finite free k[u[-modules in "Mods_, that is, there exists a
sequence of extensions

0=MoCM C---CHp. =M

mn /MOd;CSx such that M; /9M;_1 is an object of ’Mod;em, and M; /M, is a finite free ku]-
module.
(5) M is the quotient of two finite free &-modules N’ and N with N, N" € Mod)s.

Remark 2.10. By Lemma 2.3.1 of [Lil], it is easy to see that, for any ¢, 9, and 9,/9,;_;
appeared in Proposition 2.9 (4) are in fact objects of Mod)g__ .

Corollary 2.11. Let A be an G-algebra without p-torsion. Then Tory (M, A) = 0 for any Kisin
module M. In particular, the functor M — A Res M is an exact functor from the category of Kisin
modules to the category of A-modules.

Proof. If M is a free Kisin module, then the fact Tor{ (9, A) = 0 is clear. Let M be a tor-
sion Kisin module and let show Tor{ (9%, A) = 0. For this proof, we use Proposition 2.9 (4)
and dévissage to reduce the proof to the case where 9 is killed by p. Then it suffices to show
Tor{ (k[u], A) = 0. The exact sequence 0 — & 2 & — k[u] — 0 induces an exact sequence
Tor$ (&, A) — Tor{ (k[u], A) — A 2 A. Since Tor{ (&, A) = 0 and A has no p-torsion, we obtain
Tor{ (k[u], A) = 0. O

Recall that, for any Z-module M and any positive integer n, we always use M, to denote
M/p™M.



Corollary 2.12. Let 9t be an object of Mod%;oo or Mod}"e. Let A C B be a ring extension of
p-torsion free G-algebras. Suppose that the natural map Ay — Bj is injective. Then the natural
map A Qs M — B @c M is injective.

In this paper, we often regard A ®g M (resp. A ®, e M) as a submodule of B ®s M (resp.
B®y,c M).

Proof. The statement is clear if 91 is free over & or killed by p (since A; C By). Suppose that 91
is killed by some power of p. Take a sequence of extensions 0 =My C My C -+ C M =M as in
Proposition 2.9 (4). Note that 9t; and 90; /9,1 are objects of Mod)g_ (cf. Remark 2.10). Since
two horizontal sequences in the diagram

0—= AR M1 —> ARQes M; — AR®es M1 —=0
0—=BReMi_1 —BRsM; —= BRs M1 ——=0
are exact (see Corollary 2.11), induction on 4 gives the desired result. O

Corollary 2.13. Let 9 be an object of Mod;eoo and N a p-module over & with M C N. Let
& C A C W(FrR) be ring extensions such that Ay — FrR is injective.

(1) The natural map A ®s M — A ®@s N is injective.

(2) If A is p-stable, then the natural map A @, M — A®,.e N is injective.

Proof. We only prove (2) (a proof for (1) is similar). See the following commutative diagram:

A ®¢76 m A ®¢,6 m

l |

W(FrR) ®yp & M —— W(FrR) ®, & N.

The left vertical map is injective by Corollary 2.12 and the bottom horizontal map is also injective
since ¢: & — W(FrR) is flat. Hence we obtain the desired result. O

Remark 2.14. Let n > 0 be an integer.

(1) Let & C A C B C W(FrR) be ring extensions. If the natural map A4,, — W, (FrR) is injective,
then the map A,, — B, is also injective.

(2) (cf. [CL2, Lemma 3.1.1], [Fo, Proposition 1.8.3]) We have the following inclusions:

ﬁn(—> Wy (R)—— W, (FrR)

cjm éTz“ @J

Corollary 2.15. Let 9 be an object of Mod?Goo and n > 0 an integer. Then p"Tg(OMM) = 0 if
and only if p"™ M = 0.

Proof. The sufficiency is clear from the definition of Te. Suppose p"Te(9) = 0. First we prove
the case where n = 0. By Proposition 2.9 and Remark 2.10, there exists a sequence of extensions

0=MyCM C---CHp =M

in Mod)__ such that 91 /M; is an object of Mod) s _ and is a finite free k[u]-module. Applying
Ts to the exact sequence 0 — M; — M1 — M1 /M; — 0, we obtain an exact sequence 0 —
Te(Mip1 /M) = Te(Mig1) = Te(M;) — 0 of Z,|G]-modules. Since T (M) = Ts (M) = 0,
we obtain T (M /Mi—1) = 0. By Lemma 2.1.2 of [Ki], this implies M, = M1 and in particular,
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Tes(Mr—1) = 0. Inductively, we obtain My, = My_; = --- = My = 0. For general n > 0, we
consider the exact sequence 0 — ker(p™) — M 2 o in Mod?gw. Since p" T (M) = 0, we obtain

Ts (M) ~ Te(ker(p™)). Therefore, applying Te to the exact sequence 0 — ker(p”) — M —
M/ker(p™) — 0 in Mod)g__, we obtain T (9 /ker(p™)) = 0 and then 90 /ker(p") = 0. O

Lemma 2.16. Let M be an S-module of finite type. If M is p’-torsion free, then so is IM/pIN.

Proof. We may suppose that 9t # 0. By an elementary ring theory, we obtain /Anng (91/p9) =
Anng (M) + pS = pS and thus Anng (M/pN) = pS. 0

Proposition 2.17. Let M (resp. M') be an object of Mod)g_ (resp. Mod;lgoo) for some r €
{0,1,...,00} (resp. " € {0,1,...,00}). Then MM’ s g, object ofModr'” If we put MM’ =

u-tor

MBeM then there exists a canonical isomorphism Te(M@M') ~ Te (IM) ®z, T (M) of Zy|Go-

u-tor

modules. Furthermore, if 9 or M is killed by p, then M Qe M’ is u-torsion free.

Proof. To check 22 ¢ Mod?gi is not difficult. Putting M = 9M[1/u] and M’ = DM'[1/u], we

u-tor
have %Gorm[l/u] ~ M ®o M’. By Proposition 2.4, we obtain Tg(MM @ M) ~ T(M @0 M') ~
T(M) @z, T(M') ~ T (M) @z, Te (M'). The last assertion follows from Lemma 2.16. O

Proposition 2.18 (Scheme-theoretic closure, [Lil, Lemma 2.3.6]). Let f: 9t — L be a morphism
of p-modules over &. Suppose that MM and L are p’-torsion free and M is an object of’Mod;G.
Then ker(f) andim(f) are étale and belong to "Mod)s. In particular, if M is an object of Mod)s _,
then ker(f) and im(f) are also objects of Modg__

There exists the (¢, é)—analogue of the above proposition.

Corollary 2.19. Let M and M be objects of Mod/G (resp. Mod/b ). Let f: 9 — O be
a morphism of (@, G)-modules. Then, ker(f) and im(f) as @-modules are objects of Mod)g__

Furthermore, the G-action on M gives ker(f) a structure of a weak (i, G’)—module (resp. a (@, G’)—
module) and the G-action on MM gives im(f) a structure of a weak (¢, G)-module (resp. a (p,G)-
module).

Proof. Tt is enough to prove only the case where 93? M’ are objects of Mod"; /6 . By Proposition
2.18, ker(f) and im(f) as ¢p-modules are in Mod/Goo. Consider the image of f. Let f: R ®y &
M — R Qyp,e M be the morphism induced from f. Since R @, & im(f) = f(R B m) (by
Corollary 2.13) and f is compatlble with G-actions, we can define a G-action on R Rp.& im(f)
such that the map R Q.6 m— R Rp6 im(f) induced from f is G-equivariant. Since R Rp,&
M/ I (R H(R ®p6 M) — R Rp,e im(f )/I+(R ®y,e Im(f)) is surjective, it is a routine work to check
that 1m(f) = (im(f), ¢, G) is a (¢, G)-module. The assertion for the kernel of f follows from

the fact that, two exact sequences 0 — R Qe ker(f) — R R, M LR ®p,e im(f) — 0 and

0 — (R/Ly) Ry, ker(f) — (R/L) Ry, M ER (R/L) ®y,& im(f) — 0 arising from the exact
sequence 0 — ker(f) — M — im(f) — 0 are exact by Corollary 2.11 (here, we remark that
R/I, ~ W (k) is p-torsion free). O

Corollary 2.20. Let 0 — 9 — 9 — M’ — 0 be an ezact sequence in wMod;’gm. If M is an
object of Mod;’G then I and M’ are also objects of Mod’ G

Proof. This immediately follows from Corollary 2.11. O

11
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3 Cartier duality for (¢, G)-modules

In this subsection, we give the Cartier duality for (¢, G)—modules. Throughout this section, we fix
an integer r < oo.

3.1 Cartier duality for Kisin modules

In this subsection, we recall Liu’s results on duality theorems for Kisin modules (cf. Section 3 of
[Li1].

Example 3.1. Let ¥ = &-f" be the rank-1 free §-module with ¢(f") = ¢; "E(u)"-f" where pcy is
the constant coefficient of F(u). We denote by ¢V this Frobenius . Then (&Y, ") is a free Kisin
module of height r and there exists an isomorphism T (&) ~ Z,(r) as Z,[Gs]-modules (see [Lil,
Example 2.3.5]). Put 6, = Q,/Z, ®z, 6" = & - {" (vesp. &, = Zy/p" Ly, Rz, &Y = &,, - f" for
any integer n > 0). The Frobenius ¢ on &Y induces Frobenii ¢¥ on 6, and &.

Put &Y = £ ®g &Y = £ - and equip €Y with a Frobenius ¢ arising from those of £ and &V.
Similarly, we put OV = O 7,0, = Oy -7, 0) = O,, -§" and equip them with Frobenii ¢ which
arise from that of £Y. We define 0"V, QY OV and Frobenii ¢¥ on them by the analogous
way.

Let 9t be a Kisin module of height r and denote by M = O ®g 9 the corresponding étale
w-module. Put

MY = Homg (M, S), MY = Home ,(M, Ox) if M is killed by some power of p

and
MY = Homg (M, S), MY =Homp ,(M,0) if M is free.

We then have natural pairings
(oM MY = &L, () M x MY — OF if 9 is killed by some power of p

and
oM MY =&Y, () Mx MY — OV if Mis free.

The Frobenius ¢y, on MY (resp. ¢y, on M"Y ) is defined to be

(pom(2), oon (W) = ¢"((m,y)) for z € M,y € M".

(resp. {par(z), o0 (y) = 9" ((z,y)) forz e M,ye M)

Theorem 3.2 ([Lil]). Let 9 be a Kisin module of height r, M = O @g M the corresponding étale
p-module and (-,-) the pairing as above.

(1) (MY, o4 is a Kisin module of height r. Similarly, M" is an étale @-module.

(2) A natural map O @ MY — MY is an isomorphism and p}; = po ® @i

(3) The assignment M — MY is an anti-self-equivalence on the category of torsion Kisin-modules
(resp. free Kisin-modules) of height v, and the natural map M — (MV)V is an isomorphism.

(4) All pairings {-,-) appeared above are perfect.

(5) The dual preserves short exact sequences of torsion Kisin modules (resp. free Kisin modules,
resp. torsion étale p-modules, resp. free étale p-modules).

Remark 3.3. The assertion (2) of the above theorem says that we have a natural isomorphism
0 ®g MY ~ (O ®g M)Y = MV which is compatible with @-structures. In fact, the pairing (-, )
for M is equal to the pairing which is obtained by tensoring O to the pairing (-, -) for 9.
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3.2 Construction of dual objects

Put N N N N
&Y =R Q& &Y =R ®pe (6-f)=R-{,

@,VL = ZLyp/p" Ly Rz, V=R Rp.5 6, = R Rp,5 (G- f") = R, -§ for any integer n >0
and R R R R
o =0Qp/ %, 27,6 =R ®p6 6% =R®p6 (6 ) =Reo - f,

and we equip them with natural Frobenii arising from those of R and &Y. By Theorem 2.7, we
can define a unique G-action on &Y such that & has a structure of a (¢, G)-module of height, r
and there exists an isomorphism

T(&Y) ~ Z,(r) (3.2.1)
as Z,[G]-modules. This G-action on &Y induces G-actions on &Y and &Y. Then it is not difficult
to see that &) has a structure of a torsion (¢, G’)—module of height r and there exists an isomorphism

T(SY) ~ Ly /p" Zp(r) (3.2.2)

as Zp|G]-modules. We may say that SV (resp. @X ) is the dual (p, G)-module of S (resp. S, )
since (3.2.1) and (3.2.2) hold.

Remark 3.4. If K, N Ko = K (which automatically holds in the case p > 2), then the G-
actions on &Y, &Y and @AXO can be written explicitly as follows (see Example 3.2.3 of [Li3]): If
KpoNKo = K, we have G = Gpo x Hg (see Lemma 5.1.2 in [Li2]). Fixing a topological generator
T € Gpeo, we define G-actions on the above three modules by the relation 7(f") = é" - §". Here

~ c ] n u o) n cg'E(u
(=1 = IL_i¢ (Tg(i))), c=1I_o¢ (W) Example 3.2.3 of [Li3] says that ¢ € A,

cris

and ¢ € R*. It follows from straightforward calculations that SV and 6){ are (i, G)-modules of
height r.

Recall that, for any Z-module M, we put Mo = M ®z, Q,/Z,.

Lemma 3.5. Let A be an &-algebra with characteristic coprime to p. Let MM € Mod;gw (resp.
M € Mod)). Then there exists a natural isomorphism:

ARy e MY — Homa(A ®pe M, As) if M is killed by some power of p,

(resp. A®y,e M’ — Homus(A®,e M A) if M is free).

Proof. If 9t is free, the statement is clear. If p9t = 0, then we may regard 91 as a finite free
G;1-module and thus the statement is clear. Suppose that 9 is a (general) torsion Kisin module
of height r. By Proposition 2.9 of [Lil], there exists a sequence of extensions of p-modules

0=MycH C---CM, =M

such that, for all 1 <1¢ < n, MM;/M,_1 € Mod?Gx and 9; /9N, is a finite free §/pS = k[u]-
module. Furthermore, we have MM; € Mod)e_ by Lemma 2.3.1 in [Lil]. We show that the natural
map

A®p e M — Homa(A @y M, Ax), a® [ (a®z— af(z))

where a € A, f € MY and x € M;, is an isomorphism by induction on i. For i = 0, it is obvious.
Suppose that the above map is an isomorphism for ¢ — 1. We consider the exact sequence of
G-modules

0—9M;_1 — M — mi/mi_l — 0. (323)
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By Corollary 3.1.5 of [Lil], we know that the sequence
0— (9;/M;_1)Y =M =M, —0
is also exact as G-modules. Therefore, we have the following exact sequence of A-modules:
A®pe (Mi/Mi—1)Y = ARy e M = AQpe M| — 0. (3.2.4)
On the other hand, the exact sequence (3.2.3) induces an exact sequence of A-modules

0— HOHlA(A Ryp,& mi/mi,h AOO) — HOIDA(A Rp,& m;, Aoo) — HOInA(A Rp,& M1, Aoo).
(3.2.5)
Combining the sequences (3.2.4) and (3.2.5), we obtain the following commutative diagram of
A-modules:

A®pe (Mi/Mi1)Y A®p e MY A®pe My —0

v v v
0> HOIHA(A ®4p,6 mi/gﬁz‘,h Aoo) > HOHIA(A ®LP,6 Mm;, Aoo) > HOIDA(A ®go,6 Emi,l,Aoo)

where the two rows are exact. Furthermore, the first and the third columns are isomorphisms by the
induction hypothesis. By the snake lemma, we obtain that the second column is an isomorphism,
too. O

Let 9 = (M, pon, G) be a torsion (resp. free) weak (¢, G)-module of height r and (9, o)
the dual Kisin module of (9, ¢on). By Lemma 3.5, we have isomorphisms

R Rp.c MY — Homs (R ®p.e M, SY %) if 9 is killed by some power of p, (3.2.6)

R Ry, MY — Homﬁ(ﬁ R, M, év) if 9 is free. (3.2.7)
We define a G-action on Hom 3 (R Rp, M, SY.) (resp. Homs (R ®p,c M, GV)) by

(0.f)(z) = o(f(o™ (2)))

forceGreR Rp.e Mand f € Homﬁ(ﬁ Rp,c M, SY.) (resp. f € Homﬁ(ﬁ Ry, M, &V)) and
equip R @,.¢ MY with a G-action via the isomorphism (3.2.6) (resp. (3.2.7)).

Theorem 3.6. Let 9 = (zm, o, G) be a torsion (resp. free) weak (g@é) module of height r and
equip R®¢ & MY with a G-action as above. Then the triple mY = (MY, o3, G) is a torsion (resp.
free) weak (@, G)-module of height . If M is a (p, G)-module of height r, then so is M.

Definition 3.7. Let 9 be a weak (¢, G)-module (resp. a (, G)-module). We call MY in Theorem
3.6 the Cartier dual of M.

~

To prove Theorem 3.6, we need the following easy property for Ro, = ﬁ[l /pl/ R

Lemma 3.8. (1) For any integer n, we have
R[1/p] N p"W (FrR) = RN p"W(R) = p"R.

(2) The followmg properties for a € R[l/p] are equivalent:
(i) Ifx € R[l/p] satisfies that ax = 0 in Ra, then © =0 in R
(i) a ¢ pR.
(ii) a ¢ pW ().

(iv) a ¢ pW (FrR).
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Proof. (1) The result follows from relations
R[1/p] N p"W (FrR) = R[1/p] N (W (R)[1/p] N p" W (FrR)) = R[1/p] N p"W (R)
and R R R R
p"R CR[1/p]Np"W(R) C Rk, Np"W(R) =p"(Rr, NW(R)) =p"R.
(2) The equivalence of (ii), (iii) and (iv) follows from the assertion (1). Suppose the condition (iv)
holds. Take any x € R[1/p] such that az € R. Then we have

1~ = 1
gR NR[1/p] C gW(FrR) NW(FrR)[1/p] Cc W(FrR)
since a ¢ pW (FrR). Thus we obtain
1 = = 1 fay ey -~ ~
x € gR NR[1/p] = 573 NR[1/p)NW(FrR) C R[1/p] N W (FtR) =R,

which implies the assertion (i) (the last equality follows from (1)). Suppose the condition (ii) does
not hold, that is, a € pR. Then R[1/p|NiR > %R 2 R and this implies that (i) does not hold. O

Proof of Theorem 3.6. We only prove the case where M is a torsion (o, G’)—module (the free case
can be checked by almost the same method).

We check the properties (1) to (5) of Definition 2.6 for 9V, It is clear that (1) and (2) hold
for MY. Take any f € MY. Regard MY as a submodule of R @, & MY. Then, in R @, s MY, we
see that f is equal to the map

f 7€®%@; 9ﬁ—>7€-fr7 a®x— ap(f(x))
for a € R and = € M. Since M C (R ®p.6 M)Ax | we have

(0.f)a® )

= o(f(oe (@@ ) = o(f(o ()1 8 2))) = o((0~ (@) f(1 @ 2))

=ao(f(1©x)) = ao(p(f(2)) ") = ap(f(z)) -§" = fla @ ).

for any a € R,z € 9 and o € Hg. This implies MY C (R ®,.6 MY)Hx and hence (4) holds for
M. Check the property (5), that is, the condition that G acts trivially on 9/, 9. By Lemma
3.5, we know that there exists the following natural isomorphism:

R @, MY /(R @pe MY) = Homg (R @p.e M/ L1 (R Dp6 M), 6% /1,6),

which is in fact G-equivariant by the definition of the G-action on R Rp,e MY. Since G acts on
R Ry,& M/I (R Ry, M) and SY, /1.6, trivially, we obtain the desired result.

Finally we prove the property (3) for MV. First we note that, if we take any f € MY =
Homg (M, S ) and regard f as a map with values in &Y, then we have

WV (flopm=p o f: M- &Y. (3.2.8)
Recall that there exists a natural isomorphism
7% Ryp,& mY ~ Homﬁ(ﬁ Ryp,& m, égo)

by Lemma 3.5. We equip Homﬁ(ﬁ R, M, @Y.O) with a @-structure ¢V via this isomorphism.
Then it is enough to show that 0¥ = ¢¥o on Homz (R ®,.6 M, EY,) for any o € G. Take any
fe Hom(R ®,,6 M, SY) and consider the following diagram:

R @ M—2o R @y M (3.2.9)

fi ls@v(f)

SV 3V
&L — &L
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By (3.2.8), we obtain that the diagram (3.2.9) is also commutative. To check the relation o (¢ (f)) =
cpv(a(f)), it suffices to show that a(cpv(f))(cpgﬁ(x)) = cpv(a(f))(goim(x)) for any x € R Rp,c M
since 9N is of finite E(u)-height and, for any a € Reo, ©(E(u))a = 0 if and only if a = 0 by Lemma
3.8. By (3.2.9), we have

(9" (M) em (@) = a(@"(Ho (em () = o (Hem(oc™ (@) = o (" (fe " (@)))).
By replacing f with a(f) in the diagram (3.2.9), we have

eV (@ (/) eq(@) = ¢V (0()))(2) = ¢V (0(floe™ (2)) = a(¢" (f(o7"(2))))

and this finishes the proof. O

3.3 Cartier duality theorem
Let 90 be a weak (¢, G)—module of height r. We have natural pairings

() (R Rp,& M) x (R Qe M) — SY, if M is killed by some power of p (3.3.1)

and
() (R @ps M) X (R Dy MY) = &Y if M is free. (3.3.2)

It is not difficult to see that these pairings commute with the Frobenii and the G-actions.

Here we describe the Cartier duality theorem for (¢, G)-modules.

Theorem 3.9 (Cartier duality theorem). Let 90 be a weak (@, G)-module (resp. a (¢, G)-module)
of height r.

(1) The assignment M — MY is an anti-self-equivalence on the category of torsion weak (gp,@)-
modules (resp. free weak (@,G)-modules, resp. torsion (Lp,é)-modules, resp. free weak ((p,é)-
modules) of height r, and the natural map M — (iﬁTV)V is an tsomorphism.

(2) Pairings (3.5.1) and (3.5.2) are perfect.

(3) The dual preserves short exact sequences of torsion weak (@, G)-modules (resp. free weak (p, G)-

modules, Tesp. torsion (¢, G)-modules, resp. free weak (@, G)-modules).

Proof. By Theorem 3.2 (3), we have already known that the natural map 91 — (9Y)V is an
isomorphism as ¢-modules. Furthermore, straightforward calculations show that the map 9 —
(M) is compatible with the Galois actions after tensoring R. Thus we obtain that 9t — (91¥)Y
is an isomorphism, and the assertion (1) follows immediately. The assertion (3) follows from
Theorem 3.2 (5). Consequently, we have to show the assertion (2). We leave a proof to the next
section. O

3.4 Compatibility with Galois actions

The goal of this subsection is to prove the following which is equivalent to Theorem 3.9 (2):

Proposition 3.10. Let 9 be a weak (p, G)-module. Then we have
TENY) ~ TV (M) (r) (3.4.1)

as Zp|G]-modules where TV(9M) is the dual representation of T(OM) and the symbol “(r)” stands
for the r-th Tate twist.

First we construct a covariant functor on the category of weak (p,G)-modules. Recall that,
it M = (M, pom, G) is a weak (¢, G)-module, we often abuse notations by writing 9t for the

o~

underlying module R ®, e M.
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Proposition 3.11. Let M be a weak (@, G)-module. Then the natural W (FrR)-linear map
W (FrR) ®z, (W (FtR) @5 9M)*~' — W(FIR) @5 M, a®z — ax, (3.4.2)

for any a € W(FrR) and x € (W(FrR) ®5 OM)¥=1, is an isomorphism, which is compatible with
the @-structures and the G-actions.

Proof. A non-trivial assertion of this proposition is only the bijectivity of the map (3.4.2). First
we note the following natural g-equivariant isomorphisms:

W(FtR) ®5 M ~ W(F1R) @, M
~ W(FI‘R) XRo (O R, M)

"N W (FeR) @0 M

where M = O ®g M is the étale p-module corresponding to M. Here the bijectivity of 1 ® ¢},
where @3, is the O-linearization of ¢y, follows from the étaleness of M. Combining the above
isomorphisms with the relation (2.2.1), we obtain the following natural ¢-equivariant bijective
maps . -

W(FrR) @5 M — W(FrR) @0 M <— W (FrR) ®z, (O™ ®o M)#=t (3.4.3)

and hence we obtain . -
(W(FrR) ®5 M)~ =~ (O @0 M)#=". (3.4.4)

By (3.4.3) and (3.4.4), we obtain
W (FrR) ®z, (W (FrR) @5 M)¢~" =5 W(FrR) @5 M

and the desired result follows from the fact that this isomorphism coincides with the natural map
(3.4.2). O

For any weak (i, G)-module 9, we set

T,() = (W(FrR) @5 D)2,

Since the Frobenius action on W (FrR) ®5 M commutes with the G-action, we see that T} (9) is
stable under the G-action. We have shown in the proof of Proposition 3.11 (see (3.4.4)) that
T, (9M) ~ T.(M)

as Z,[Goo]-modules for M = O ®g M (the functor 7 is defined in Section 2.2). In particular, if 9
is free and d = rankg (9), 1% (9M) is free of rank d as a Z,-module. The association 9 — T (9N)

is a covariant functor from the category of (¢, G)-modules of height r to the category Repy (G) of

finite Z,[G]-modules. By the exactness of the functor 7., the functor T* is an exact functor.

Corollary 3.12. The Zjy-representation T*(Z)ﬁt) of G is the dual of T(S)ﬁ“(), that is,

TV(90t) ~ T, ()
as Z,|G)-modules where TV (9M) is the dual representation of T(IM).

Proof. Suppose 901 is killed by some power of p. By Proposition 3.11 and the relation W (FrR)£-! =
Q,/Z,, we have

Homg, (T.(9M), Q,/Zy) ~ Homyy gy o (W (FLR) @z, (W (FLR) @5 D)=L, W (FrR).)
~ Homyy (rrpy o (W (FLR) @5 O, W (FrR).0)
~ Homg (M, W(FrR)s) = T(9).
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The last equality follows from the proof of [Li3, Lemma 3.1.1], but we include a proof here for

the sake of completeness. Take any h € Homg 90(5)5?,I/V(F]rR)o(,). It is enough to prove that h

has in fact its values in W(R)s. Put g = hlon. Since g is a ¢(&)-linear homomorphism from 90
to W(R)oo = p(W(R)oo), there exists an &-linear homomorphism g: 9t — W (FrR) such that
»(g) = g. Furthermore, we see that g is p-equivariant. Note that g(9t) C W (FrR) is an G-finite
type -stable submodule with F(u)-height r. By [Fo, Proposition B.1.8.3], we have g(9) C GL.

Since h(a ® x) = ap(g(x)) for any a € R and z € 9, we obtain that & has values in W (R)q.

In the case M is free, we obtain the desired result by the same proof as above if we replace
W(FrR)oo (resp. Qp/Z,) with W(FrR) (resp. Z,). O

In the rest of this subsection, we prove Proposition 3.10. We only prove the case where 9 is
killed by p™ for some integer n > 1 (we can prove the free case by an analogous way and the free
case is easier than the torsion case).

First we consider natural pairings

(o) Mx MY — &y (3.4.5)

and
() M x MY — 0O (3.4.6)

which are perfect and compatible with ¢-structures. Here M = O ®¢ M is the étale p-module
corresponding to 9. We can extend the pairing (3.4.6) to a p-equivariant perfect pairing

(O™ @0 M) x (O ®@p MY) — OV,
Since the above pairing is p-equivariant and (OV)¢=! ~ 7, /p"7Z,(—r), we have a pairing
(O™ @0 M)?=! x (O™ @0 MV)¢=! = Z,/p"Zy(—r) (3.4.7)

compatible with the G-actions. Liu showed in the proof of [Lil, Lemma 3.1.2] that this pairing
is perfect. By a similar way, we obtain a pairing

(W (FrR) @ M)#=! x (W(FrR) @0 MY)?=t = Z,/p"Z,(—7). (3.4.8)
On the other hand, the pairing (3.4.5) induces a pairing
(R @p.s M) X (R Dy MY) = &Y. (3.4.9)
We can extend the pairing (3.4.9) to a g-equivariant perfect pairing
(W(FtR) @5 (R @6 M) x (W(FrR) ®5 (R @pe MY)) — W(FIR) @5 &Y.

Since the above pairing is ¢-equivariant and (W (FrRR) @5 é){)*":l ~ Z,/p"Zy(—r), we have a
pairing

(W(FtR) @5 (R @6 M)~ x (W(FIR) @5 (R @p6 MY))¢~! = Z,/p"Zy(—7)  (3.4.10)

compatible with the G-actions. Since we have a natural isomorphism O™ ®z, (O™ ®o M )=t =
O™ ®o M, we obtain p-equivariant isomorphisms

W(FrR) @5 M — W(FIR) ®0 M «— W (FIR) @z, (O™ ®0 M)¥=". (3.4.11)

Therefore, combining (3.4.7), (3.4.8), (3.4.10) and (3.4.11), we have the following diagram
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(W(FtR) @5 9)#=!  x  (W(FrR)®

| |

(W(FrR) ®o M)*=1  x  (W(FrR) ®p MV)¢=! —— 7, /p"Z,(—7)

1 1
(0™ @0 M)#=! x (O™ @0 MY)?P=! ———=Lp[p"Lp(=7)

It is a straightforward calculation to check that the above diagram is commutative. Since the
bottom pairing is perfect, we see that the top pairing is also perfect. This implies T, (9Y) ~
T, (9M)(—r) and therefore, we have the desired result by Corollary 3.12.

A

4 Category of representations arising from torsion (¢, G)-
modules

A

4.1 Relations between (y,G)-modules and their representations

Choose an element t € G"™ such that t ¢ p&"™ and ¢(t) = ¢; ' E(u)t where pcy = E(0). Such t is
unique up to units of Z,, see Example 2.3.5 in [Lil] for details.

Let 9 be an object of Modg__. We construct a map te which connects M to T (M) (cf. [Lil,
Section 3.2]). First observe that there exists a natural isomorphism of Z,[G]-modules

Te (M) = Home (M, 6%) ~ Homewr (6™ @ M, GY)

where G acts on Homgur (6" ®g M, SL) by (0.f)(z) = o(f(c™(x))) for 0 € G, f €
Homgur ,, (6" ®e M, G5),z € 6" ®s M and G acts on M trivial. Thus we can define a
morphism (g : 6" ®g M — Homz, (Ts(IM), SL) by

x= (fe flx), €Y RsM, fels(M).

Since Tis (M) ~ @1 Zy/p™ Ly as finite Z,-modules, we have a natural isomorphism Homz, (T (90), 8Y) ~
& @z, TE (M) where TE(M) = Homg, (Ts (M), Qp/Zy) is the dual representation of T (IM).
Composing this isomorphism with ¢, we obtain the desired map

lg: 6V s M — &Y ®Zp Té (EUI)

For M € Mod)g, we also construct itg: 6" ®g M — 6" @z, TE(M) by the same way except
only for replacing G with G"".

Lemma 4.1. Let A be a ring with & C A C W(FrR) which yields a ring extension A; C FrR.
Let M be an object of Mod)g_ or Mod)g. Let 1s be as above.
(1) 1t is Goo-equivariant and p-equivariant. Furthermore, A Qg Lg is injective.
(2) If r < 00, then t"(A®z, Tg(M)) C (ARew ts)(A®esM). If r = oo, then ¢ (A®z, TE(OM)) C
(AQguw ts)(A ®s M) for ' >0 such that M is of height r'.
(3) The map

W (FrR) @guw te: W(FrR) @s M — W (FrR) @z, T (M)

is bijective.
Proof. We may suppose that r < co. The assertion that tg is G w-equivariant and p-equivariant is
aresult of [Lil, Theorem 3.2.2]. Liu showed loc. cit., that there exists a map & : 6" ®z, T&(IM) —

G" ® M such that 1 ote = t", in particular, (A ®@gu 1g) 0 (A ®gu L) = t". Moreover, in the
proof loc. cit, Liu also showed that the composite (O™ @gu tg) 0 (O™ @gur 1§): O™ Qew (6™ ®z,
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TE(M)) = O™ @ (6™ ®z, TE(IM)) is equal to the map O @guw (t” ®z, Id). Hence we obtain
e o LG =t" and then the assertion (2) follows.

We show the injectivity of A @guw tg. Since (ARgur 1g) 0 (A®@gu 1g) = t7, if M is free over &,
we see that A ®gur tg is injective. Next we suppose that 91 is killed by p. In this case, the proof is
almost the same as the free case, except one needs to note that 91 is free as a kfu]-module, t # 0
in Ay (since G C Aj; see Remark 2.14) and A; is a domain (since Ay C FrR). Suppose that 9
is killed by some power of p. By Proposition 2.9 (4) and Remark 2.10, there exists a sequence of
extensions

0=My M C---CHpe =M
in Mod)_ such that M;, M;11/9M; € Mod)g_ and M;41/M; is a finite free k[u]-module. We
have a commutative diagram

0—— AR M1 ——— AR M, ————— A®es M;/Mi_1 ——>0
A®Gﬂ”6,i1i A@eﬂlrb‘s,il A®6ﬂ”6,i,ill
0——=A ®Zp Té(i)ﬁz_l) — s A ®Zp Té(gﬁz) — s A ®Zp Té/(ml/ml_l) — 0

where (g ;-1,ts,; and tg,;—1 are the maps tg for M, M,;_1 and M;/M;_1, respectively. By
Corollary 2.11 and the exactness of T, the two horizontal sequences are exact. By induction on
i, we see that A Qguw ts (for M) is injective.

Finally, if we put A = W(FrR), we see the bijectivity of W(FrR) ®guw ts from (1), (2) and
te W(FrR)*. O

Let 9 be an object of WMod;’goo. We construct a map i which connects 9t to 7'(9) (cf. [Li2,
Section 3.1]). First, we recall that we abuse notations by writing M for the underlying module
R @4 e M. Observe that there exists a natural isomorphism of Z,[G]-modules

T(9M) = Homp (M, W(R)s) ~ Homy (g) o (W(R) @z M, W(R))
where G acts on Homyy (g, (W(R) ®5 M, W(R)so) by (0.f)(x) = o(f(o~(x))) for 0 € G, f €
Homyy (), (W(R)®5 M, W(R)so), 2 € W(R) ®7€95?. Thus we can define a morphism i": W(R)®5

M — Homg, (T(9M), W(R)wo) by
z (f e f(2), o€ W(R)oz M, feT(O).

Since T(9M) =~ Bye1Z,/p" L, as finite Z,-modules, we have a natural isomorphism Homyg,, (T(9M), W (R)oo) =
W(R) ®z, V(M) where TV(M) = Homyg,, (T(9M),Q,/Z,) is the dual representation of T'(9N).
Composing this isomorphism with i’, we obtain the desired map

it W(R) @5 M — W(R) @z, TV(M).
For 9 € WMod;g, we also construct i: W(R)®45 M — W(R) ®z, TV (9M) by the same way except
only for replacing W (R)o, with W(R).

Lemma 4.2. Let A be a ring with & C A C W(FrR) which yields a ring extension A; C FrR.

Suppose that A is oy (e g)-stable. Let M be an object ofwMod;’gm or WMod;’g. Let © be as above.
(1) i @ W(R) Qy e ta, that is, the following diagram commutes:

W(R) ®,.6 M ‘ W (R) @z, TV (90)

O(®Id§mT2 a®(9v)1T2

W(R)®, curte
WL) W(R) Ry, ur (Gur ®Zp ngﬁ)

W(R) ®yp,cu (6™ ®c M)
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Here, oa: W(R) @y, 8" — W(R) is the isomorphism given by a(_, a; ® b;) =Y. a;p(b;) with
a; € W(R),bZ € Gvr,
(2) i is G-equivariant and -equivariant. Furthermore, A @y (g) i is injective.
(3) If r < oo, then p(t)" (A ®z, V(M) c (A Qw(r) L)(A®z M). If r = oo, then ot)" (A Rz,
V(M) C (A Qw (r) )(A®@z M) for r' >0 such that M is of E(u)-height r'.
(4) The map

W(FrR) Qw (g i: W(FrR) @5 9 — W(FrR) ®z, TV (9M)
1s bijective.
Proof. The statement (1) follows from the same proof as that of Proposition 3.1.3 (2) of [Li2]. To see
that A®w ()i is injective, by (1), it is enough to check that A®, suwie: ARy eM — ARz, TL(M)

is injective. This can be checked by almost the same method as the proof of Lemma 4.1 (1). The
rest statements follow from (1) and Lemma 4.1. O

Let 90 be an object of WI\/Iod;’GGoo or WModT’G Then T (M) has a natural G-action via

/6"
0: Te(OM) = T(M) (see Theorem 2.7).
Corollary 4.3. Let M and M be objects of WMod;gx (resp. WModjg). Let f: M — M be

a morphism in Mod)s . If Te(f) is G-equivariant, then f is in fact a morphism in WMod;g
(resp. WMod;’g).

Proof. Consider a commutative diagram

W(R) ®@z, TV (V)

W (R) @z, T"(90)
AR i
W(R) ®z (R ®p6 M) —= W(R) @z (R @y M)
where the top and bottom arrows are morphisms induced from f. By our assumption on f and

the result that ¢ is injective, we see that the bottom arrow commutes with the G-actions and then
we have done. O

4.2 Proof of Theorem 1.1

Lemma 4.4. Let 0 - T — T — T" — 0 be an exact sequence in Rep,,,(Goo). Suppose that there
exist M € Mod?Goo and an isomorphism ¢: Te(IM) — T of Z,-representations of Goo. Then
there exists an exact sequence 0 — M’ — M — M’ — 0 in Mod)s_ which makes the following
commutative diagram:

0 T T T 0

N

0 ——=Te(M') —— T (M) —— Ts(M") —0.

Proof. Put M = O ®¢ M and let ¥ be the composite T (M) ~ T (9N) 5. By Proposition 2.1,
there exists an exact sequence 0 — M” — M 2% M’ — 0 in ®M . which makes the following
commutative diagram:

0 T T T 0




By abuse of notation we denote by ¢ the composite 9 < M % M’. Put 9" = 9N M" and
M’ = g(M). Since M € Mod)__ and M’ is p'-torsion free, it follows from Proposition 2.18 that
M" and M” are in Mods_. The inclusion map M — M induces an injection M” — M" and
thus we have the following commutative diagram

0 M M M’ 0

| |

0—0ResM —0Rs M —= 0 Re M ——=0

where the two horizontal sequences of étale p-modules are exact. By a diagram chasing, we see
that the map O ®g M’ — M’ is surjective. Since M’ C M’ is p-stable and finite as an &-module,
we know that the map O ®s M’ — M’ is injective (cf. [Fo, B. 1.4.2]) and thus, it is bijective.
By the snake lemma, we know that the left vertical arrow of the above diagram is also bijective.
Applying the functor T' to the above diagram, we obtain the desired result. O

Theorem 4.5. Let 0 - T/ — T — T" — 0 be an ezact sequence in Rep,.,(G). Suppose that

there exist M € Mod?g and an tsomorphism 1 : T(Sﬁ?) =T of Zy-representations of G. Then

there exists an exact sequence 0 — M — M — M — 0 in Mod;’g which makes the following
commutative diagram:

0 T T T 0
L
0 —= T(9) () (o) — 0.

Proof. A short argument shows that we may suppose T' = T(iﬁ?) and 1 is the identity map on T
Let
0: Ts(9) — T(9M)

be as in Section 2.4, which is a G-equivariant isomorphism. By Lemma 4.4, we have an exact
sequence 0 — 9" — M — M’ — 0 in Mod)g_ which makes the following commutative diagram:

0 T T T 0

]
0 ——Te(M') —— T (M) —— Ts(M") ——0.

We want to equip 9 and 9" with structures of (¢, G)-modules. Combining the above diagram
with Lemma 4.2, we obtain the following diagram all of whose squares commute:

W(R) @, & MmC

W(R) ®z, TV

W(R) ®, & M’ a®Idgy W(R) @z, (T"")Y a—lgoV |

W(R)®tg

W(R) ®, gur (6" @z, TE (M)

(/

W(R) ®, gur (8" @z, TE(M')).

a®lIdgprr ]Z W(R) @, gur (6" @& o) C

(/

W(R)®¢
W(R) ®, gur (6" @ m')C ©

Here, a: W(R) ®,,cw 6" — W(R) is the isomorphism given by (3", a; @ b;) = >, a;(b;) with
a; € W(R),b; € ™. Define a map W(R) ®,,6 M’ — W(R) ®z, (I"")" such that all squares in
the above diagram commute. Tensoring W (FrR) to the ceiling, we obtain the following diagram
(note that all maps in the diagram are injective (cf. Corollary 2.11 and 2.12)):
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M W(FrR) ©3 M—— W(FrR) @z, TV (M)

J )

R @ps M W(RR) @5 (R @ps M) —> W(FR) &z, (T")"

Moreover, the map ¢ = W(FrR) ®yw g i is bijective by Lemma 4.2 (4), and the map " is also
bijective by Lemma 4.1 (3). Define a G-action on W(FrR) ®5 (R ®p,e M") via . Then the
injection W(FrR) ®5 (R Rp,e M') — W(FrR) @5 M is automatically G-equivariant. On the
other hand, see the diagram

S ®p.e M’ G ®y e M 6 Ry M —0

| | i

0—=RQueM ———RR e M————> R, MW ——=0

| | l

0)—— W(FI‘R) Rp,& m’ —— W(FI‘R) Ryp,& M — W(FI'R) Rp,& M ——— 0.

0

By Corollary 2.11 and 2.12, we see that all the horizontal sequences are exact and all the vertical
arrows are injective. Hence we may regard R @, ¢ M, R Qp e M’ and W(FrR) @, M" as
submodules of W(FrR) ®, ¢ M = W(FrR) ®5 M. In particular, we have

R®pc M = (R®pe M) N (W(FR) 2,c M. (4.2.1)

Since the G-actions on R Ry M and W(FrR) @, M’ are restrictions of the G-action on
W(FrR) ®,,6 M = W(FrR) @5 M, the equation (4.2.1) gives an well-defined G-action on R Ry,
OM”. Since the G-action on R @, ¢ M factors through G, the G-action on R @, ¢ M also fac-
tors through G. We also define a G-action on R ®p,e M via the natural isomorphism R Rp,&
M ~ (R ®pe M')/(R@p.e M'). Tt is not difficult to check that triples M = (M, , G) and

M’ = (M”, p, G) are weak (¢, G)-modules. Obviously, we have an exact sequences
0= M = M—M -0 (4.2.2)

of weak (i, G)—modules. By Corollary 2.20, we know that 9 and 9" are in fact (¢, G’)—modules.
Now we check that the exact sequence (4.2.2) satisfies the desired property. Projections 9t — 9V
and MM — M induce injections Te (M) — Te (M) of Z,|Goo]-modules and T(M) — T(M) of
Zp|G]-modules. Furthermore, the diagram below is commutative:

T(f)ﬁ’{/) % Ts (m/) BN T

L

T(M) < — Te(M) ——T.

This induces the commutative diagram
7"~———T
i

TEW)—=T () =T

and thus we see that the left vertical arrow in just the above square is G-equivariant. The desired

result follows from this. O
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Remark 4.6. By using the theory of étale (i, G) modules, we will give a more natural interpre-
tation of the sequence 0 — M — M — M’ — 0 appeared in Theorem 4.5, see Remark 5.11.
By Theorem 4.5, the essential image of the functor 7': Mod’; /G — Repyo, (G) is stable under

subquotients. In particular, we see that the category Reptor(G) is also stable under subquotients.

Clearly, the category Rep$ (G) is also stable under direct sums. We show that RepS (G) is stable
under the dual and tensor products.

Lemma 4.7. The full subcategory ReptG:)r(G) of Repyo, (G) is stable under the dual.

Proof. Let T € Repgr(G) and take some M € Mod;’goo (for some 7 < oo) such that 7' = T'(9N).
Take an integer n > 0 such that 9 is killed by p”. For any integer k > 0, denote by én(k) the
Cartier dual of the trivial (¢, G)-module &,, in Modl/ﬁ’goo and by &,,(k) its underlying p-module.
Then it can be seen immediately that 9 ®e S, (k) has a structure of a (¢, G)-module of height
r + k, and if we denote it by M (k), then T(M(k)) = T(M)(k). Take an integer m > r which is
divisible by p"~!(p — 1). Then

TV = T(Dfnv) ®ZP ZP(_T) = T(S)fnv) ®Zp Zp(m - T)
TNY) @z, T(Gy(m — 7)) = T(OMY (m — 7))

and we have done. O

Finally we consider the assertion related with a tensor product of Theorem 1.1. It is enough to
prove the following lemma.

Lemma 4.8. Let O € ModTG (resp. M € Mod/6 ) and M’ e Mod;GG (resp. M € Mod/6 )

/S0
for some 1,7’ € {0,1,...., 00} Then 282 is an object of WModj"" (resp. M € Mod7 ") and
has a structure of a weak (@,G)—module (resp. a (go,é)—module). If we put MM = mffo?t/;
then there exists a canonical isomorphism T(OM @ M') ~ T'(M) @z T(iﬁ“{') of Zp|G]-modules.

,
MWD i yy-torsion free, we see D2eM ¢ Mod“” by Proposition 2.9. We equip

R R, (Moe M) (resp W(FrR) ®,, (M s M) with a G—action (resp. a G-action) via the
canonical isomorphism R®¢ s (Mee M) ~ (R R, M) e (R Rp.e (M)). (resp. W(FrR) ®,.a
(Mee M) ~ (W(FrR) @5 (R Rp,e M) ®s (W(FrR) @5 (R Rp,e M'))). If we denote by (u-tor)
by the u-torsion part of 9 @ M’, then we obtain the exact sequence

~ m om’
R ® (u-tor) = R @y 6 (Moe M) 5 ROy6 (®76

Proof. Since

)—0
u-tor

as R-modules. Note that u is a unit of W(FrR). Since the natural map R R, & Moem’ _,

u-tor
W(FrR) ®@,,& % = W(FrR) ®,,6 (M @e M) is injective (cf. Corollary 2.12), we see that
the equality ker(n) = ker(R Rp,s (Me M) = W(FrR) ®,,6 (M @e M')) holds and thus ker(n)
is stable under the G-action on R Rp,e (M s M). Therefore we can define a G-action on

R Ry, m?@@in’ via the canonical isomorphism R Ry ¢ Le ~ (R Q.6 (M s M'))/ker(n).

u-to u-tor

Then it is not difficult to see that Emffo?ﬁ/ has a structure of a (¢, G)—module. Finally we prove

TN @ M) ~ T(MN) Rz, T(9'). By Proposition 3.11, we obtain ¢-equivariant and G-compatible
isomorphisms

W (FrR) @z, (T.(9N) @ Tu (M) ~ W(FIR) @5 (M @5 M)
~ W(FrR) @ (R Qe (MR M'))
M e M

~ W(FrR) ®5 (R @y ( ).

u-tor
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Seeing “p = 17-part of the above modules, we have that T, (9) @ T, () ~ T, (M @ M). Taking
the dual of both sides, we obtain the desired result. O

5 Maximal objects and minimal objects

Caruso and Liu defined maximal objects for Kisin modules and Breuil modules in [CL1] and they
proved that the category of maximal objects can be regarded as a full subcategory of Repy,, (G oo )-

In this section, we discuss maximal objects for (¢, G)-modules and prove that the category of them
can be regarded as a full subcategory of Rep,,,(G).

5.1 Maximal objects and minimal objects for Kisin modules

In this subsection, we recall the theory of maximal (minimal) objects given in [CL1]. For M €
@M ., we denote by Fg (M) the (partially) ordered set (by inclusion) of 9t € Mod)g_ contained
in M such that 9M[1/u] = M. Then FZ(M) has a greatest element and a smallest element (cf.
[CL1, Corollary 3.2.6]).

Definition 5.1. Let 9t be an object of Mod?gm. We denote by Max" (99t) the greatest element

of FL(M[1/u]). It is endowed with a morphism (2 : 90T < Max" (9) of Kisin modules. We say
that 90 is mazimal if (2% is an isomorphism.

Maximal objects are characterized by the following universality ([CL1, Proposition 3.3.5]): Let
M be an object of Mod)s . The couple (Max" (M), (M ) is characterized by the following universal
property:
o

max

e The morphism Tg( ) is an isomorphism.

e For each couple (M, f) where M’ € Mod)g_ and f: 9 — I’ becomes an isomorphism
under T, there exists a unique map g: MM’ — Max” (9M) such that go f = 7%

This property gives rise to a functor Max": Mod}"gm — Mod?GM. If we denote by Max?Gx its
essential image, Caruso and Liu proved

Theorem 5.2 ([CL1, Theorem 3.3.8]). The category Maxg_ is abelian and, if r < oo, it is
Artinian. Moreover, kernels, cokernels, images and coimages in the abelian category Max’;Gw
have explicit descriptions.

The restriction T on Max)g__ is exact and fully faithful (cf. [CL1, Corollary 3.3.10]):

Mod)g Te

Reptor (GOO )
Max" Ts

MaX;GOO .

In the case r < 0o, we obtain the theory for minimal objects if we apply the “dual” to the above
theory. By Proposition 5.6 of [CL2], if r = oo, the functor Tg gives an anti-equivalence of abelian
categories:

Te: Max7g  — Repyo,(Goo)-

For more precise properties, see Section 3 of [CL1].
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5.2 Etale (¢, G)-modules

In this subsection, we introduce a notion of étale (¢, G)—modules. The idea in this subsection follows
from the (¢, 7)-theory given in [Cad]. As one of main theorems in [Cad], we prove that the category
of various étale (¢, é)—modules are equivalent to the category of various Z,-representations of G,
including the case where p = 2.

Here?, we put On = W (FrR)H= which is absolutely unramified and a complete discrete
valuation ring with perfect residue field FrR~. Furthermore O is a closed subring of W (FrR)
for the weak topology. Put £ = FrOs = Ox[1/p]. By definition, oy (per)[1/p) is stable on O and
&g which is bijective on themselves. Furthermore, G acts on O and &g continuously. Since the
inclusion O — O (resp. £ = £p) is faithfully flat, for any étale p-module M over O (resp. over
&), the natural map M — Op ®o M (resp. M — £z ®¢ M) is an injection. By this embedding,
we regard M as a sub O-module of Ops ®o M (resp. a sub £-module of £ ®¢ M). Similarly, the
natural map M — Og ®p.0 M (resp. M — £z @, ¢ M) is an injection and by this embedding we
regard M as a sub p(Oz)-module of Op ®y 0 M (resp. a sub ¢(&s)-module of £x ®y, e M).

Definition 5.3. An étale (¢ ,G)'-module over O (resp. an étale (o, G)-module over O) is a triple
'M = (M, o, G) (vesp. M = (M, oy, () where

(1) (M,@nr) is an étale p-module over O,

(2) G is a continuous O -semi-linear G-action on Op @0 M (resp. Op ®@p,0 M) for the weak

topology,

(3) the G-action commutes with Yo ® PM,

(4) M C (Ogf @0 M)Hx (resp. M C (O ®¢0M)HK)
If M is killed by some power of p, then 'M (resp. M) is called a torsion étale (@, G) -module (resp.
a torsion étale (¢, G)-module). If M is a free O-module, then "M (resp. M) is called a free étale
(¢, Q) -module (resp. a free étale (p, G)-module).

By replacing £ and £ with O and O, respectively, we define an étale (¢, é)’—module over €

(resp. an étale (@, G)-module over £).

Denote by "IJM%oo (resp. ’@M?@, resp. ’@M%) the category of torsion étale (¢, G)-modules
over O (resp. the category of free étale (p, G)'-modules over O, resp. the category of étale (¢, G)'-
modules over £). Similarly, we denote by @Mfow (resp. @M?O, resp. @M?&') the category of

torsion étale (¢, G)-modules over O (resp. the category of free étale (¢, G)-modules over O, resp.
the category of étale (¢, G) modules over &). R
If 'M is an étale (p, G)’-module over @, then G acts on O¢ ®p,0, (Og @0 M) by a natural

way. Hence we obtain a G-action on Oa ®yp,0 M via the isomorphism
Op ®p,05 (0g ®0 M) = 0ps®p0M, a® (b® ) ap(d) @z

where a,b € Opn, v € M. This G-action equips M with a structure of an étale (p, G)-rnodule over

0. Conversely, if M is an étale (p, é)—module over O, we obtain a G-action on Oa ®o M via the
isomorphism

Og ®@p-1,0, (0g ®p0 M) = 0g 00 M, a®(b®) ap () @

where a,b € Op, x € M. This G-action equips M with a structure of an étale (¢, G)’—module over
0. Consequently, we have canonical equivalences of categories

‘MG, ~ MG, , '®MG, ~ &MY, (5.2.1)
By the same way, we obtain
’<I>M/g ~ q)M/g (5.2.2)
In the following proposition, M and 7T are functors defined in Section 2.2.

2In [Cad], rings Og and Eg are denoted by &int and &, respectively.
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Lemma 5.4. (1) For any finite torsion Z,-representation T of G (resp. finite free Z,-representation
T of Goo, resp. finite Qp-representation T' of G ), the natural map

Og @0 M(T) — Homg, () (T, W(FrR) o)
(resp. Op ®@o M(T) — Homg, g (T, W(FrR)),
resp. £4 ®e M(T) — Homg, 1 1(7, W(FrR)[1/p]))
is an isomorphism.

(2) For any torsion étale o-module M over O (resp. free étale p-module M over O, resp. étale
p-module M over £), the natural map

T(M) — Hom@é’w(oé ®Ro M, W(FI“R)OO)
(resp. T(M) — Homo,, »(Og ®0 M, W (FrR)),
resp. T(M) — Homgé,gp(é'é ®e M, W(FrR)[1/p]))

is an isomorphism.

Proof. We only prove the torsion case. The rest cases can be checked by a similar manner. First
we consider (1). Applying the tensor product W(FrR) over O™ to (2.2.3) and picking up Hoo-fixed
parts, we obtain a bijection

O ®o (O™ @z, T)9> — (W(FtR) @z, T)"~. (5.2.3)

If we replace T in (5.2.3) with its dual representation, we obtain the desired result. Using (2.2.1),

we can check (2) by a similar way.
O

We define a contravariant functor ’M: Rep,, (G) — ' @M?Om as below: for any T' € Repy,, (G),
define .
'M(T) = M(T) = Homg__ (T, E™ JO™)
as a ¢-module over O, and we equip Og ®o M(T) with a G-action via the isomorphism Og ®o
M(T) ~ Homg, (T, W (FrR)) (cf. Lemma 5.4 (1)). Here G acts on the right hand side by the

formula (o.f)(z) = 6(f(67(z))) foro € G and é € G any lift of o, f € Homgz, g (T, W(FrR) ), x €
T. )
On the other hand, we define a contravariant functor 7 : ’ ‘I’M?o(x, — Repyo, (G) as below: for

any 'M € ’(I’M%w, define

"T(M)=T(M)=Homp ,(M,E"/O")

as a Z,-module, and we equip "7 ("M ) with a G-action via the isomorphism 7 (M) = Homo,, ,(0Os®0
M, W (FrR)s) (cf. Lemma 5.4 (2)). Here G acts on the right hand side by the formula (o.f)(x) =
o(f(o=(x))) for o € G, f € Homo,, ,(Op @0 M, W (FrR) ),z € Op ®0 M.

We also define a contravariant functor 'M: Repg(G) — <I>M§"o (resp. 'M: Repg, (G) —
’@Mf‘g) and 'T: ’@Mfow — Repy, (G) (resp. 'T: ’@Mfg — Repg, (G)) by a similar manner.
Combining T, M with (5.2.1) or (5.2.2), we obtain contravariant functors

M: Rep,,(G) — ‘I’Mfom, M: Repy, (G) — @Mfo, M: Repg, (G) — @Mfg

and . 5 . A
T: ‘I)M?Ooo — Rep,.(G), T: @M?Q — Rep;, (G), T: @M?g — Repg, (@).

Proposition 5.5. The contravariant functor T is an anti-equivalence of categories between @M/GOOO
(resp. @M?@, resp. @Mfg) and Repy,, (G) (resp. Repg(G), resp. Repg, (G))). Furthermore, M

is a quasi-inverse of T .
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Proof. By Proposition 2.1, we have already known that, for an étale (¢,é)—module M and a
representation T' of G, natural morphisms M — M(T(M)) and T — T (M(T)) are isomorphisms
as étale p-modules and G.-representations, respectively. It is enough to prove that the former
is compatible with G-action and the latter is G-equivariant. In the following, we only prove the
torsion case; the same proofs proceed for rest cases. It is enough to prove that functors T and

' M are inverses of each other. Take any ‘M €’ @M/Gow. We show the canonical isomorphism
n: Op @0 M — Opf @0 M(T(M))
is G-equivariant. By definitions of functors '7 and 'M, the following composition map

Op ®o M(T(M)) — Homy, (T (M), W(FrR)o)
= HOIHZP[HOQ](HOIH(QCA;,SG,((’)GV Ko M, W(FI‘R)OO), W(FI‘R)OO)

is G-equivariant. By composing this map with 1, we obtain a bijection
n: OG’ ®o M AN HOHIZP[HOO](HOHIOG,LP(OG ®Ro M, W(FI“R)OO), W(FI“R)OO)

which is given by x — (f = f(z)) for z € Og ®o M, f € Homo,, ,(Og @0 M, W (FrR)). It
is a straightforward calculation to check that 7 is compatible with é—actiogs, and thus so is 7.
Consequently, we obtain 'M o’ ~ Id. By a similar argument we can check 'T o’ M ~ Id and this

finishes a proof.
O

Remark 5.6. By definitions of 7 and M and the theory of Fontaine’s étale p-modules, we see that
these functors preserves various structures of categories. For example, these functors are exact and
commute with formations of tensor products and the dual. Here the notion of the tensor product

of étale (¢, G)-modules and that of dual étale (¢, G)-modules are defined by natural manners.

A ~

5.3 Link between Liu’s (¢, G)-modules and étale (¢, G)-modules

In this subsection, we connect the theory of Liu’s (@,G)—modules and the theory of our étale

(¢, G)-modules.
Let M = (M, ¢, G) be a (¢, G)-module, or a weak (¢, G)-module, in the sense of Definition

2.6. Extending the G-action on R Rp,e M to Op @5 (’fé ®p,c M) by a natural way, we see
that M[1/u] = O @ M has a structure of an étale (¢, G)-module over O (recall that G acts on
W (FrR) ®,.¢ M continuously for the weak topology by Definition 2.6). This is the reason why a

G-action in the definition of an étale (o, G)—module is defined not on O ®o M but on Op ®,.0 M.

— ~

In the below, we denote by 9[1/u] the étale (¢, G)-module over O obtained as above. Note that
there exists a natural isomorphism of Z,-representations of G:

In fact, we have isomorphisms

T(M[1/u]) ~ Homo,, (O ©p,0 (M[1/u]), W (FrR).)

~ Homp (R ®p.& M, W (FrR)s)

~ Homﬁw('}% Rp,e MW (R)x)

T(9)

by Lemma 5.4 (1) and [Fo, Proposition B. 1.8.3] (see also the proof of Corollary 3.12).

In the below, we want to use various morphisms between Liu’s (¢, G)-modules and étale (¢, G‘)—
modules. To do this, we need to define some notions. Let Mod(yp,G) be the category whose
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objects are ¢-modules 9 over & killed by a power of p equipped with an O4-semilinear G-action
on Op ®p,& . Morphlsms in Mod(<p7G) are defined by a natural manner. Then categories

Mod/’b Mod?’6 and (I>M/@oo can be regarded as full subcategories of Mod(ap,é). We call

a morphism f: 9 — M in the category Mod(p, G) a morphism of (¢, G)-modules, and we often
denote f by f: 9T — M.

Definition 5.7. Let 9 be an object of Mod/6 or Mod/’e, , and M an object of ‘I’Mfooo

equipped with a morphism f: M — M of (¢, G) modules. If f is an injection as a morphism of
G-modules, then 9T can be regarded as a subobject of M in the category Mod(p, G‘) In this case,
(the image of) I is said to be a sub (p, G)-module of M.

Proposition 5.8 (Analogue of scheme theoretic closure). Let M be in Mod;g (resp. ModT ¢

L)
and M an object of @M?Om, Let f: M — M be a morphism of (o, ) modules. Then, ker(f)
and im(f) as p-modules are contained in Mod)g . Furthermore, the G-action on M gives ker(f)
a structure of a weak (p,G)-module (resp. a (¢, G)-module) and the G-action on M gives im(f) a
structure of a weak (v, G)-module (resp. a (¢, G)-module).

In this paper, we often denote E(?) by f(MN) or ﬁm\t)

Proof. The same proof as that of Corollary 2.19 proceeds. O

The above proposition gives us a result on a successive extension for (¢, é)—modules, which is
an analogue of Proposition 2.9 (4).

Corollary 5.9. Let M be an object of ‘,\,Mod;’goo (resp. Mod;’gm). Then there exists a sequence
of extensions

0=My M C---CHpe =M
mn Mod;eoo which satisfies the following; for any i,
(i) O, /9,1 is a finite free k[u]-module, ) )
(ii) 9, and MM, /OM;_1 have structures of weak (p, G)-modules of height r (resp. (¢, G)-modules of
height r) which make an exact sequence

O—)Sﬁ?i_léﬂﬁti%mjﬁﬁ\i_l —0
in WMod;gx (resp. Mod/6 ).

Proof. Putting M = 9M[1/u], we have seen that MA: m] is an étale (¢, G)-module. We
see that pM and M/pM have structures of étale (¢, G)-modules, and we have an exact sequence

0 — ;5]-\\4 - M2 W — 0 of étale ((p,é)—modules. We also denote by pr a composition
m— M2 Z\4//p\JW which is a morphism of (¢, G)-modules. By Proposition 5.8, we know that
M’ = ker(prlon) and M” = pr(IM) have structures of weak (¢, G)-modules of height r (resp.
(¢, G)-modules of height ). Furthermore, we have an exact sequence 0 — 9 — M — M” — 0 in
V\,Mod;’gf}o (resp. Mod;’gm). Since p" 1M = 0 and pPN” = 0, we can obtain the desired sequence
of extensions inductively. O

Before starting the maximal (minimal) theory, we give one result on the “cokernel” of a mor-
phism of (¢, G)-modules, which will be used in the proof of Theorem 1.2.

Proposition 5.10. Let f: MM — N be a morphism in Modr’é (resp. Mod;’g@o). Denote by
coker(f) the cokernel of f as a morphism of p-modules. Then COker(f) s an object of Mod?Goo

u-tor
coker(f)
u-tor

Furthermore, has a structure of a weak (¢, G)-module (resp. a (¢, G)-module) induced from

N.
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Proof. It is enough to check the case where f is a morphism in Mod"; /6 . Put C = coker(f) and

denote by Cy tor the u-torsion part of C. By Proposition 2.9, we see that - is an object of
Mod", /.- Since C' is finitely generated as an G-module, there exists an mteger n > 0 such that
U"Cytor = 0. Then C’ = u™C is u-torsion free and thus C'is a tormon Kisin module of finite
height. By Corollary 2.13, we see that the natural map R®¢ sC' >R ®4,e C is injective. Since
the composition map R ®p,e C o R Rp,e C' — R ®g,e C is the multiplication-by-u"? map,
if we regard R ®yp, C' as a submodule of R Ry, C, we obtain u”p(ﬁ ®yp.e C) C R Qe C'.
Since C' € MOd?OGOO, we know that R Rp,e C' C O ®y e C' and thus R ®y,& C' is u-torsion free.

Therefore, denoting by (7/@ ®4p,& C)u-tor the u-torsion part of R ®e,& C, we obtain
"P(R @6 C)uctor = 0. (5.3.1)
The exact sequence 0 — Cytor — C ﬁ C’ — 0 of &-modules induces an exact sequence
0—>R ®yp,6 Cu-tor = R Ry, C R Rpe C' =0 (5.3.2)

since Tor} (C” R) =0 (sce Corollary 2.11). By (5.3.1) and (5.3.2), we obtain the equahty R ®p,&
Cu-tor = (R®<p GC)U tor 111 R®¢ & C. On the other hand, we remark that the G-action on R®¢ R
induces that on ’R®¢ &C. Since this G-action preserves (R®¢ S C’)u tor, WE can equip R®¢ S Cucwr

with a G-action by using the exact sequence 0 — R®¢ & Cutor — R®¢ sC — R@Sa S Cucm — 0.
Then it is not difficult to check that <) — _C g4 (¢, G)-module.

u-tor Cu-tor

O

Remark 5.11. Let 0 —» 7" — T — T” — 0 and 9 be as in Theorem 4.5. Admitting notions of
étale (o, G)-modules, the proof of Theorem 4.5 implies that the sequence (x) : 0 — 9" — M %
M — 0 appeared in the theorem is obtained by the following mannar: let 0 — M" — M — M' —

0 be a sequence of étale (¢, G)-modules corresponding to (). Then 9 is a sub (p, G)-module of
M, and M = g(M) (resp. M" = M N M) has a structure of a sub (¢ ,G)-module of M’ (resp.
M//).

5.4 Definitions of maximality and minimality

In this subsection, we construct maximal objects (resp. minimal objects) for (g,é)—moduleAs by
using the theory of étale (p,G)-modules given in the previous section. Let M = (M, p,G) €
‘I’M?o be a torsion étale (¢, G’) module over O. We denote by FéG(M) the (partially) ordered
set (by inclusion) of 9 € Mod/b which is a sub (¢, G)-modules of an étale (¢, G)-module M

such that sm[1 Ju] = M. Note that 9 is a sub (¢, G)-modules of M if and only if the natural
inclusion® R Rp,e M — Op @p,0 M is G- equivariant.

Lemma 5.12. Let M be a torsion étale (Lp,é)-module Let M, and M, be objects of Moer

endowed with injections 93?1 — M and 93?2 — M gf (¢, ) modules. Then Mo = Ny + Mo (resp.
12 = NMy) in M has a structure of a (p, G)-module of height r. In particular, the ordered

set FéG(M) has finite supremum and finite infimum.

Proof. First we note that Mz (resp. M,) is an object of Mod)g  and we have Myo[1/u] = M
(resp. M)5[1/u] = M) (see the proof of [CL1, Proposition 3.2.3]). Furthermore, 2}, is canonically
isomorphic to the underlying Kisin module of the kernel of the morphism of (¢, G)-modules

9511@9312%95?1+9512CM, (z,y) =~ x —y.

3The natural map R ®p,6 M — Og ®y,0 M is injective by Corollary 2.12.
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Thus we obtain the desired result for 9ﬁ12 by Pr0p0s1t10n 5.8. Hence it is enough to prove the
result for 9;5. Since the G-actions on R®<p s My and R®<p & My are restrictions of the G-action
on Op ®, 0 M, we see that the G-action on Oa ®p0o M preserves R Rp,e Mo = R ®g, s My +
R®¢69ﬁg For any o € G and z € R@S(,g Mo, take x1 € R®W69ﬁl and 9 € R@wg Mo
such that = 1 + x2. Then we have o(z) —z = (0(z1) — 1) + (0(22) — x2) € I+(R Ry, M) +

I (R ®pe My) = [ (R @p.s Mia) and thus G acts on (R @p.e Miz)/ I (R @y Mia) trivial.
Hence Myy = (M2, 0, G) is a (i, G)-module and we obtain the desired result. O

Proposition 5.13. FgG(M) has a mazimum element. If r < oo, then it also has a minimum
element.
Proof. Assume that FgG(M ) does not have a maximum element. Take any 9 = 0, € FgG(M ).

Since My is not maximum, there exists an element MY, € FéG(M ) such that 9y ¢ M. Put
My = Mo + M, (the sum is taken in M). By Lemma 5.12, M, has a structure of (o, G)-module.

We denote this (¢, G)-module by 90t;. We see that 0, € FéG(M) and My C M. Inductively, we
find M; € F, éG(M ) with an infinite length increasing sequence

Mo €My €My C

in FE(M). However, this is a contradiction by [CL1, Lemma 3.2.4]. The proof of the assertion for
a minimum element is the same except only for that we use [CL1, Lemma 3.2.5]. O

Remark 5.14. If FéoG(M) is not empty, then FgoG(M) does not have a minimum element. In

fact, if 9N is an object of Fg G(M ), then we obtain an infinite length decreasing sequence
M > ut > w2 > - --
in F2C (M),
Definition 5.15. Let 9 € Modr’é . We denote by Max"(9) (resp. Min" (90)) the maximum

element (resp minimum element) of F; TG( m]) It is endowed with a morphism of (¢, G)-
modules (2% : 9 — Max" (9) (resp. L?fm Min(9t) — 90). We often denote by max”(90) (resp.

min” (9)) the underlylng Kisin module of Max" (90) (resp. Min" (901)). We say that 90 is mazimal

(resp. minimal) if ™% (resp. ¢ is an isomorphism.

max mln)

5.5 Maximal objects for (¢, G)-modules

In this section, we prove various properties of maximal objects.

Proposition 5.16. Definition 5.15 gives rise to a functor Max" : Mod;g — Mod;g

Proof. We have to > prove that L any map [ — o induces a map Max" (M) — Max" (90'). The
map g = f[1/u]: [l/u] — W’[l/u] is a morphism in ‘I’M/o By Corollary 5.8, g(Max" (901)) is
asub (¢ G) module over & of im’[l/u]. Since M is maximal and g(Max" (90)) 4+ 90 is an object

of FCG(Sﬁ’[l/u]), we see the underlying Kisin module of g(Max"(90)) is contained in 9% and we
have done. O

Denote by Max;’g the essential image of the functor Max": Mod"; ¢ s Mod?% . Ttis a full

JASES ASES
subcategory of Mod? G . The following two propositions can be shown by essentially the same
method of [CL1] (cf. Proposmon 3.3.2, 3.3.3, 3.3.4 and 3.3.5) and we omit proofs.
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Proposition 5.17. (1) The functor Max": Mod”S — Mod”¢ s a projection, that is, Max" o

/G oo =™
Max" = Max".
e functor Max" o — Mo 18 left exact.
2) The f M Md;g MdjC left
(3) The functor Max" : Mod/ — Max/ G(x, is a left adjoint to the inclusion functor Max;gx —
ModS .
/S o

Proposition 5.18. Let M € Mod/G . Then the couple (Max" (900 S ) is characterized by the

? Ymax

following universal property:

max) is an isomorphism;

e the morphism T
e for any M’ e Mod;g endowed with a morphism f: M — M’ such that T(f) 18 an isomor-
phism, there ezists a unique map g: M — Maxr(ﬂfn) such that go f =

max

Here we are ready to prove the essential part of Theorem 1.2.

Theorem 5.19. The category Max;’gm 1s abelian. More precisely, if f: M — M is a morphism
in Max;g then

(1) if we denote the kernel of f as a morphism of p-modules by ker(f), then ker(f) is an object

of Mod)g__ and has a structure of a (¢, G)-module of height r. If we denote it by ker(f),
then it is mazimal and is the kernel of f in the abelian category Max;’goo,
coker(f)

(2) if we denote the cokernel of f as a morphism of p-modules by coker(f), then =——-=> is an

object of Mod?G and has a structure of a (@,G’)-module of height r. If we denote it by

%, then Max" (Coictro(f)) is the cokernel of f in the abelian category Max;’gx; moreover,
if [ is injective as a morphism of @-modules, then coker(f) has no u-torsion;

(3) if we denote the image (resp. coimage) of f as a morphism of p-modules by im(f) (resp.
coim(f)), then im(f) (resp. coim(f)) is an object of Mod)s_ and has a structure of a

(¢, G)-module of height r. If we denote it by m (resp. cm)), then Maxr(i;-(?)) (resp.
Max" (coim(f))) is the image (resp. coimage) of f in the abelian category Max;’goo

Proof. (1) By Corollary 2.19, we know that ker(f) has a structure of a (¢, G)-module of height 7.

We have to show that ker(f) is maximal. Consider the diagram below:

0 ker(f) !

L

0——> maxr(lgr-(\f)) — max" (M) — max’“(ﬁ’)

T

0 — ker(f)[1/u] ———= M[1/u] —— M'[1/u].

The top and bottom horizontal sequences are exact as p-modules over &. Put Myax = max” (@)4—
M in M[1/u] and observe that M.y € Mod7C0c and M.y has a structure of a (¢, G)-module

with injection of G-modules Moo im[l/u] Since M C Myyax C M[1/u], we have Mpax[l/u] =

M[1/u] and thus Moax € FZ G( [1/u]) Since M is maximal, we obtain M.y C M. Therefore,
we have Mpyax C DM N ker(f )[1/u] = ker(f) (where the equality 9 Nker(f)[1/u] = ker(f) follows

from the above diagram) and hence ker(f) is maximal.
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Coulﬁ((j{ ) has a structure of a (¢, G)-module of height r

(2) By Proposition 5.10, we know that
induced from that of 9. By Proposition 5.17 (3), it is not difficult to check that Maxr(m)

u—tor
r7

is the cokernel of f in the category Max /goo.

Next we prove the latter assertion; suppose f: M — M is injective as a morphism of p-modules.
Put C' = coker(f) (as an &-module). The following diagram of exact sequences of ¢-modules are

commutative;
0 ! C 0
|

0 —— M[1/u] —— M'[1/u] — C[1/u] —0.

Put 91 = M[1/u] N M. We claim that 9 = N. If we admit this claim, we see that ¢ is injective
and thus C' is u-torsion free, which is the desired result. Hence it suffices to prove the claim.
The inclusion M C N is clear. To prove I C M, it is enough to prove that M has a structure
of a (¢, G)-module and 9 € FgG(Dﬁ[l/u]) By the proof of [CL1, Proposition 3.3.4], we know
that 9 € Mod)g__. Furthermore, we see that M[1/u] = M[1/u] since M C N C M[1/u]. If we
denote by C’ the cokernel of the inclusion map 91 < 9, then we know that C'[1/u] = C[1/u]
and M — PV'[1/u] induces an injection C' < C’[1/u], in particular, C’ is u-torsion free and
C’ € Mod)g__ . By Corollary 2.12 and 2.11, two horizontal sequences of the diagram

0—> RPN ————> Ry MW ————>R®,6 ' —0

| | |

0—= R, (N1/u]) —>=R&pe M[1/u]) —>R@ye (C'[1/u]) —0
are exact as R-modules and all vertical arrows are injective. Since MN[1/u] = M[1/u], we obtain
R@peN=(REpe (N1/u]) N (R e M)

in R Dp.s (M[1/u]). Tt is not difficult to check that the G-action on R ®p,c M extends to
R .6 (M[1/u]), which coincides with the restriction of the G-action on Op Ry (M'[1/u]).
Hence the G-action on Op @6 (M'[1/u]) preserves 7/€®¢76 O and N has a structure of a weak sub
(¢, G)-module of M. Since €’ € Mod)g__, the exact sequence 0 — R R, N — R Rp,e M —
R 4.6 O — 0 gives O’ a structure of a weak (p, G)-module. By Corollary 2.20, we know that
9 is in fact a (¢, G)-module. Therefore, maximality of 9 implies that 9T C 9. This proves the
claim and we finish a proof of the latter assertion of (2).

(3) Let f: 9 — 90 be a morphism in Max”;S . Corollary 2.19 says that im(f) has a structure

/Goc
—

of a sub (@,G)—module of M. The map f induces a map g: im(f) — M. It is clear that

coker(f) = coker(g) as G-modules. Consider the map Max"(g): Max(im(f)) — 9. By (2)
and Proposition 5.10, we see that coker(Max'(g)) (as an G-module) is u-torsion free and it has

a structure of a (¢, G)-module induced from that of 9. Note that there exists an isomorphism

coker(/Mgf (9)) = coker(f) of (¢, G)-modules. We have the exact sequence of (¢, G)-modules below:

u—tor

o — o —

0 — Max"(im(f)) — 9" — coker(Max"(g)) — 0.

Since the functor Max": Mod;’g — Mod;’g is left exact (cf. Proposition 5.17), we obtain an

exact sequence of (¢, G)-modules

o — —

0 — Max" (im(f)) — 9" — Max" (coker(Max"(g))).
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Combining this with the description of kernels and cokernels in the category Max;’g , we obtain

T’

that Maxr(i;—(?)) is the image of f in the category Max/goo. The assertion for the coimage can
be checked by a similar way. O

Lemma 5.20. If a: 9 — 9 and B: M — M two morphisms in Max;’goo such that foa = 0.
Then the sequence 0 — M’ = M Zoom 5 0 is exact in (the abelian category) Max;’g if and only

if 0 — 937[1%] oL Dﬂm] ol E)ﬁf[ﬁu} — 0 is ezact in @M?Om. Furthermore, the functor

Max""

Ve, @M%&, <M+ m}

is fully faithful.
Proof. Since a and 3 is assumed to be G-equivariant, 0 — m] — W] — E)ﬁmu] -0

is exact in ‘I)M?Ooo if and only if 0 — 9V [1/u] — M[1/u] — M"[1/u] — 0 is exact in ®M o _.
Thus the same proof as that of [CL1, Lemma 3.3.9] proceeds. O

Corollary 5.21. The functor T defined on Max;’gw 1s exact and fully faithful, and its essential

image is stable under subquotients.

Proof. The former assertion follows from the commutative triangle below:

T

Max$ Repyor (Goo)
\ -
MY,
Here, Max;’g — (I)Mf(’)oo is a functor defined by the assignment 9 m], which is exact
and fully faithful (by Lemma 5.20). The latter assertion follows from Theorem 4.5. O
Corollary 5.22. The functor Max" : Mod;’g — Max;’g is ezact.
Proof. This follows from Lemma 5.20. O

Proposition 5.23. The category MaX;’GGOO 1s stable under extensions in Mod;’gw, that is, if

0— M — M- M =0

is an exact sequence in Mod;’g with M, M € Max;’g , then M € Max;’g )

Proof. The proof is essentially the same as that of [CL1, Proposition 3.3.13]. O

Proposition 5.24. Let M € Mod;’goo and ¢*: 6 Qe M — M the &-linearization of p. If

coker(¢*) is killed by uP=2, then M is mazimal.

Proof. By Corollary 5.9 and Proposition 5.23, we can reduce the proof to the case where p9t = 0,
and then the proof is essentially the same as that of [CL1, Lemma 3.3.14]. O

Remark 5.25. All results in this subsection hold even if we replace “(p, G)-modules” with “weak

(¢, G)-modules” (e.g. the existence of maximal objects for weak (¢, G)-modules). Proofs are easier

than that for “(¢p, G’)—modules77 since we may omit “modulo I;” arguments.
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5.6 Minimal objects for (¢, G)-modules

Throughout this subsection, we always assume that r < oco. Here we study minimal objects of

(¢, G)-modules. Many arguments in this subsection are very similar to those of the maximal case
and of [CL1].

Proposition 5.26. Definition 5.15 gives rise to a functor Min" : 1\/Iod7/”’goo — Mod;’gw.

Proof. We have to show that any morphism f: 9t — 9t in Mod;’goc embeds min” (90) into min” (N).

Put M = m] and N = m} Denote by g = f[1/u]: M — N the morphism induced from
f. Then g induces Max" (f): Max"(9) — Max"(N), we also denote it by g. We know that the
kernel R of the map

h: Max” (900) @ Min"(9) — Max"(N), (z,y) — g(z) —y

has a structure of a (¢, G)-module 8 of height r. Note that the composition map & — Max" (90) &

Min" (M) — Max" () is an isomorphism, where the first arrow is the natural embedding and the
second arrow is the first projection. In particular, we obtair} an isomorphism 7: &[1/u] — M. If
we identify R[1/u] and M via 7, then 8 is contained in FéG(M) and thus min” (9) C K. Taking

any element z = (z,y) of min"(9M) C K, we have h(x,y) = 0 and thus g(z) = y € min"(N). This
finishes the proof. O

Denote by Min;’goo the essential image of the functor Min" : Mod;’goo — Mod;’gw. The follow-

ing can be checked by the same way as that of [CL1, Proposition 3.4.6].

Proposition 5.27. Let 9 € Mod;’gx. Then the couple (Minr(,‘m),L?gTin) is characterized by the
following universal property:

tonin)

e the morphism T( 18 an tsomorphism;

o for any M € Mod;’goo endowed with a morphism f: M — M such that T(f) is an isomor-
o

min *

phism, there exists a unique map g: Min" (95?) — M such that fog=1

Since the couple (Max"(9Y)Y, (Lﬁgx)v) satisfies the universality appeared in Proposition 5.27, we
obtain

Corollary 5.28. For M e Mod;’gx, we have natural isomorphisms

Min" (91") ~ Max" (90%)" and Max"(9") ~ Min"(901)".

In particular, the duality on Mod;’goc permutes subcategories Max;’goo and Min?gm.

The following proposition can be proved by essentially the same method of [CL1] (cf. Proposition
3.4.3, 3.4.8, Lemma 3.4.4 and Corollary 3.4.5) and we omit the proof.

Proposition 5.29. (1) The functor Min": Mod;’goo — Mod;gm is a projection, that is, Min" o

Min" = Min". R . R -

(2) Let f: 9 — N be a morphism in Mod;’gm. Then f(Min"(9)) = Min"(f(9M)). (For some

notations, see Proposition 5.8.)

(3) Let f: M — N be a morphism in Mod;’g . If f is surjective (resp. injective) as an S-module

morphism, then Min" (f) is also.
e functor Min" : Mod '/ — Min 18 a right adjoint to the inclusion functor Min'; —

4) Th Min": Mod)g — Min} s a right adjoi he inclusi Min’g

A /6o S
r,G
Mod/Gw.
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Theorem 5.30. The category Min;’g is abelian. More precisely, if f: M — M is a morphism

in Min";, G , then

/6o
(1) if we denote the kernel of f as a morphism of ¢-modules by ker(f), then ker(f) is an object

of Mods_ and has a structure of a (¢, G)-module of height r. If we denote it by ker(f),
then Minr(lw/r(\ﬂ) is the kernel of f in the abelian category Mln/b
coker(f)

(2) if we denote the cokernel of f as a morphism of ¢-modules by coker(f), then === is an

object of Mod)g_ and has a structure of a (gp,é)—module of height r. If we denote it by

%, then it is minimal and is the cokernel of f in the abelian category Mln/g
(3) if we denote the image (resp. coimage) of f as a morphism of p-modules by im(f) (resp.

coim(f)), then im(f) (resp. coim(f)) is an object ofMod/G and has a structure of a (¢, G)-

module of height v. If we denote it by 1m(f) (resp. coml(f)) then it is minimal and is the
G

image (resp. coimage) of f in the abelian category Min/’Gm
Proof. (1) Since the functor Min" is right adjoint (Proposition 5.29 (4)), we see the desired result.
(2) Put € = <) Recall that C is an object of Mod)g_ and has a structure of a (¢, G)-module

u-tor

of height r (Proposition 5.10). If we denote by g the projection 9 — C, by Proposition 5.17 (3),

we have R A R . .
C = g(M') = g(Min" (")) = Min" (g(M")) = Min"(C)
and thus C is minimal.
(3) Let g: C — im’ be as in the proof of (2). By (1) and (2), we see that the image of f in
the category Mln/Gm is Min" (ker(g)). Let 91, be the underlying Kisin module of Min" (ker( ).

Then 9, is the inverse image of the u-torsion part of coler(f) with respect to the projection
M’ — coler(f). Since M, is finitely generated as an G-module, there exists a positive integer N
such that uV9, C im(f). Hence we obtain 9,[1/u] = im(f)[1/u]. Consequently, by Proposition
5.29 (3), we have

N o —

Min" (ker(g)) = Min" () = Min” (£(50)) = f(Min’ (50)) = £(90) = im(f)
and thus m is minimal. The proof for coimage is similar and hence we omit it. O

Proofs for the following three results are similar to those of the maximal case.

Lemma 5.31. If a: M — M and B: M — M’ two morphisms in Min;’ém such that Boa=0.

Then the sequence 0 S fm P 0 s exact in (the abelian category) Mln _ if and only
if 0 — m?/[l/u] [l/u] 1] im“[l/u] — 0 is ezact in ‘I>M/O Furthermore, the functor
Min}E — ®MG, 90 M1/4)

is fully faithful.

Corollary 5.32. The functor T' defined on Min;
image is stable under subquotients.

/b 1s exact and fully faithful, and its essential

Corollary 5.33. The functor Min": Mod;CG — Mm/6 s exact.

Put e = [K : Ky], the absolute ramification index of K. If er < p—1, then Fg (M) contains at
most one element (cf. [CL1], Remark just after Corollary 3.2.6) and hence all torsion (¢, G)-modules
of height r are automatically maximal and minimal. Therefore, we obtain
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Corollary 5.34. Suppose er < p—1. Then Max;’goo = Mod?gm = Min;gm

category Mod;gm is abelian and the functor T': Mod;’gm — Repy,, (G) is exact and fully faithful,

and its essential image is stable under subquotients.

. In particular, the

Remark 5.35. Similar to Remark 5.25, all results in this subsection hold even if we replace

“(¢, @)-modules” with “weak (¢, G)-modules”.

5.7 Some remarks

First the reader should be careful that there are no new results in this subsection.

5.7.1 Connection with a lifting problem

Let r € {0,1,2,...,00}. Let Rep?:’T(G) be the category of lattices inside semi-stable p-adic rep-
resentations with Hodge-Tate weights in [0,7]. Let Repi.’ (G) be the category of torsion Z,-
representations 7' such that there exists lattices Aj, Ay € Repi"(G) satisfying Ay C Ay and
T ~ Ay/A;. The pair Ay C Ag is called a lift of T. We are interested in the following question:

Question 5.36. For any T € Repy,,(G), does there exists an integer v > 0 such that T €
Repjgy (G)?

If T is a tamely ramified F,-representation, then Caruso and Liu proved that the question has an
affirmative answer (cf. [CL2, Theorem 5.7]). If we fix the choice of r < oo, they also proved that
Question 5.36 has a non-affirmative answer, which follows from a result on ramification bounds of
torsion representations (cf. [CL2, Theorem 5.4]).

We connect Question 5.36 to our results in this paper. Recall that Rep$ (G) is the essen-

Ne
d?ogx
simplicity, put Repi® (G) = Rep;2>(G). Then inclusions

tial image of T': Mo — Repyo, (G), which is an abelian full subcategory of Rep,.,(G). For

Repjs, (G) C Rep,,.(G) C Repyo(G)

are known (cf. [CL2, Theorem 3.1.3]). Thus Question 5.36 has an affirmative answer if and only if

Rept! (G) = Rep% (@) and RepS (G) = Repy,, (G). On the other hand, we have seen the following
commutative diagram:

Mod %% 5 Max3e? > Repyu(G)

forgctfuli irestriction
M doo Max > Max ~ R e
0 /G /G0 Ts eptor( 00)

Here, the equivalence between categories Max s and Repy,, (Goo) in the above diagram is proved

in [CL2, Proposition 5.6]. Since the essential image of 7': Max?%i — Rep,,, (G) is ReptC:’;r(G)7 it
seems natural to suggest

Question 5.37. Is the functor T: MaX?OG;G — Rep,,(G) essentially surjective, that is, an equiv-
alence of categories? This is equivalent to say that, for any M e @M?OOC, does there exist a sub

(¢, G)-module 9, of finite height, of M such that M[1/u] = M ?

If this has an affirmative answer, then we obtain Repgr(G) = Rep,.,(G). In particular, we obtain

an equivalence of abelian categories Max?%i =~ Rep,.,(G), which implies that maximal objects of

torsion (¢, G)-modules completely classify torsion p-adic representations of G. On the other hand,
we ask following questions:
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Question 5.38. Does any torsion (¢, G)-module have a resolution of free (¢, G)-modules?

Question 5.39. Is the category Repgr(G) closed under extensions in Rep,,(G)?

Theorem 4.5 might be related with Question 5.39. If one of these questions has an affirmative
answer, then we obtain Rep® (G) = RepZ (G).

tor

5.7.2 Connection with torsion Breuil modules

If we obtain an explicit relation between the categories of torsion Breuil modules and the category

of torsion (¢, G)-modules, then our main result in this paper will give a partial answer of Question
2 in [CL1].
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