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Abstract 13 

This paper presents a vertical quasi-zero stiffness (QZS) vibration isolator with a 14 

mechanism for adjusting restoring force. QZS vibration isolators have high initial 15 

stiffness and QZS around the static equilibrium position. This way, excessive 16 

deformation due to self-weight can be avoided while having enough vibration reduction 17 

capability to dynamic excitations. One of the main issues left for QZS vibration 18 

isolators is the difficulty in keeping the vibration reduction capability when the 19 

vibration isolated object is replaced. In such a case, adjustment of its restoring force 20 

becomes necessary in accordance with the self-weight of the newly placed vibration 21 

isolated object. This paper attempts to address this issue by proposing a mechanism that 22 

enables quick and easy adjustment of the restoring force of a QZS vibration isolator. 23 

The proposed mechanism consists of cranks and a screw jack. With the present 24 
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mechanism, the restoring force provided by horizontally placed springs can be 25 

converted into the vertical restoring force of the vibration isolator. In the conversion, the 26 

vertical resisting force can be adjusted simply by applying and removing torque to the 27 

screw jack to change and hold the angle of inclined bars placed in the cranks. In this 28 

study, a prototype of a class of QZS vibration isolator having the proposed mechanism 29 

is produced. Shaking table tests are performed to demonstrate the efficacy of the present 30 

mechanism, where the produced prototype is subjected to various sinusoidal and 31 

earthquake ground motions. It is demonstrated through the shaking table tests that the 32 

produced prototype can reduce the response acceleration within the same tolerance even 33 

when the mass of the vibration isolated object is changed. 34 

 35 

Keywords: nonlinear vibration isolator; vertical vibration isolator; constant-force spring; 36 

adjustable restoring force 37 

 38 

1. Introduction 39 

Passive vibration isolation has been an active area of research, and a variety of passive 40 

vibration isolators have been developed so far. For horizontal vibration isolation, low 41 

stiffness elements such as springs are installed between the base of a vibration isolator 42 
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and the objects to be isolated. The low stiffness elements prevent vibration energy from 43 

being transmitted into the isolated object. On the other hand, if low stiffness elements 44 

are used for vertical vibration isolation, large deformations take place due to the 45 

self-weight of the isolated objects. This makes vertical vibration isolation much more 46 

difficult than horizontal vibration isolation. 47 

To overcome the difficulty, quasi-zero-stiffness (QZS) vibration isolators have 48 

been studied for many years [1-25]. QZS vibration isolators are designed so that their 49 

restoring forces satisfy the following two conditions: (1) initial stiffness, which resists 50 

self-weight, is large, and (2) the tangent stiffness, which resists dynamic load, is close to 51 

zero around the static equilibrium position. This way, transmission of vibration energy 52 

due to dynamic load can be prevented while excessive deformation due to self-weight 53 

can be avoided. In most QZS vibration isolators, such nonlinear restoring forces are 54 

realized by effective use of geometric nonlinearity [1-22]. In the past studies, magnets 55 

[23,24] or shape memory alloys [25] were also used to obtain such nonlinear restoring 56 

forces. 57 

One of the main issues left for the QZS vibration isolators is the difficulty in 58 

adjusting their restoring forces to the change of the self-weight, or the mass, of the 59 

isolated object. When the mass changes, it is necessary for the QZS vibration isolators 60 
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to adjust their restoring force by, e.g., replacing springs. The use of balance weight is 61 

another way of dealing with the mass change. In either case, it is not easy and takes 62 

considerable time for the adjustment of the nonlinear restoring force of a QZS vibration 63 

isolator. To the authors’ knowledge, however, no studies have addressed this issue. 64 

This study presents a QZS vibration isolator with a mechanism that enables easy 65 

and quick adjustment of its nonlinear restoring force. In this paper, first, a mechanism is 66 

proposed to change the nonlinear restoring force. Also presented is a combination of the 67 

proposed mechanism and a vertical vibration isolator with flag-shaped restoring force, 68 

which belongs to a class of QZS vibration isolators and was proposed in the authors’ 69 

previous work [26,27]. To show the efficacy of the present mechanism, a prototype of 70 

the proposed vibration isolator is produced to perform quasi-static and dynamic loading 71 

tests. Numerical simulations are also conducted to compare the test and simulation 72 

results with theoretical predictions. 73 

 74 

2. Mechanisms 75 

2.1. Mechanism for adjusting restoring force 76 

Figure 1(a) illustrates a schematic view of the present vibration isolator. As shown in 77 

Figure 1(b), the proposed isolator is divided into three portions. The upper portion is a 78 
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table on which the isolated objects are placed. The upper portion consists of one 79 

horizontal top plate and two vertical hexagonal plates. The middle portion is composed 80 

of two shafts connected by elements to provide a nonlinear restoring force. 81 

Constant-force springs, coil springs, and wires are examples of such elements. Here, 82 

constant-force springs are composed of rolled spring steel and have constant restoring 83 

force regardless of their stretch [26,27]. At both ends of each shaft, inner and outer 84 

roller bearings are installed. In the lower portion, one screw jack, two linear bushes, and 85 

four cranks are attached to the base plate. Here, the screw jack and the linear bushes are 86 

connected by two beams. The beams are connected to the cranks using pin connections. 87 

Half of the length of the screw jack is threaded in the opposite direction to that of the 88 

other half. The distance between the two beams can be changed by rotating the screw 89 

jack while keeping the geometry of the mechanism symmetric. The positions of the 90 

beams are automatically locked simply by removing the torque applied to the screw jack. 91 

This way, the angle of the inclined bar in each crank can be changed and held simply by 92 

applying and removing the torque to the screw jack. As depicted in Figure 1(a), the 93 

inclined sides of the hexagonal plates are placed on the inner bearings of the shafts, and 94 

the outer bearings of the shafts are placed on the inclined bars of the cranks. With such a 95 

composition, the horizontal restoring force provided by the middle portion can be 96 
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converted into the vertical restoring force. In the conversion, furthermore, the vertical 97 

resisting force can be adjusted simply by changing the angle of the inclined bars of the 98 

cranks, which is the key ingredient of the present vibration isolator.  99 

The relationship between the restoring force f of the vibration isolator and the 100 

restoring force n provided by the middle portion shown in Figure 2 is derived below. 101 

Here, the positive direction of f is compression while that of n is tension. As shown in 102 

Figures 2(b) and 2(c), let the angles of bar AB and the inclined side of the upper table 103 

be   and  , respectively, with respect to the vertical. Figure 3 illustrates the internal 104 

forces acting on the right shaft shown in Figure 2(b). Figure 3(a) illustrates the internal 105 

force acting on each inner bearing from the inclined side of the upper table. Figure 3(b) 106 

shows the internal force acting on each outer bearing from inclined bar AB of the crank. 107 

As shown in Figure 3(c), the force-balance equation in the horizontal direction for the 108 

shaft can be written as  109 

 
1 1 1

2 tan tan 

 
  

 
n f . (1) 110 

Assume that the mass of the shaft is negligibly small. Then, Eq. (1) is valid even under 111 

dynamic condition. Thus, the amplification factor α is defined as 112 

 
2

( )
1/ tan 1/ tan

f

n
 

 
 


. (2) 113 

Figure 2(c) illustrates the schematic view of a crank. Bars AB and AE are connected by 114 
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a pin at point A. Bars CD and AB are also connected by a pin at point D. Bar AE is 115 

connected rigidly to the base plate at point E. The lengths of AD, AE, and CD are r, s, 116 

and l, respectively. Let h indicate the distance between point C and the base plate. Let 117 

the distance between point C and bar AE be d, which is the key variable to adjust  . 118 

Then, the geometric relationship between θ and d is 119 

    
2 22 sin cosl d r s h r      . (3) 120 

Suppose that d is given. Then,   can be calculated by solving Eq. (3), and   can be 121 

obtained by substituting the calculated   into Eq. (2). 122 

 123 

2.2. Mechanism for flag-shaped restoring force 124 

Figure 4 shows a mechanism for providing a flag-shaped restoring force [26,27]. The 125 

relative vertical displacement between the upper table and the base is defined as u, 126 

whose positive direction is contraction. The relative displacement between the two 127 

shafts is defined as w, whose positive direction is extension. Figure 4(a) depicts the 128 

position where the upper table is at the upper limit of the stroke of the vibration isolator. 129 

At this position, both u and w are set as u=w=0. Figures 4(b) illustrates the static 130 

equilibrium position when an object is placed on the upper table, where u=use and 131 

w=wse. Here, m denotes the mass of the object and g indicates the gravitational 132 
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acceleration. Figure 4(c) illustrates the position where the upper table reaches the lower 133 

limit of the stroke, where u=umax and w=wmax.  134 

In the following, the variation of n is considered when w is increased from 0 to 135 

wmax. When w=0, the restoring force n changes from 0 to N1, where N1 is the sum of the 136 

capacities of constant-force springs 1a and 1b. At all the positions when 0<w<wmax, both 137 

constant-force springs 1a and 1b provide restoring forces equal to their capacities. On 138 

the other hand, constant-force spring 2, which is connected to the shafts via a coil spring 139 

and a wire in series, provides a restoring force between 0 and N2, where N2 denotes the 140 

capacity of constant-force spring 2. When w is small, no restoring force is provided by 141 

constant-force spring 2 due to the sag of the wire. In this case, n is expressed as n=N1. 142 

When the upper tables moves downward beyond the position where the wire sag stops 143 

to take place, the length of the coil spring changes linearly with respect to w. The 144 

present vibration isolator is designed so that the static equilibrium position lies in this 145 

linear range. Here, the coil spring is used to avoid high frequency accelerations caused 146 

by sudden, or discontinuous, change of the restoring force. When the upper table moves 147 

downward further and exceeds the position where the restoring force of the coil spring 148 

reaches N2, the restoring force provided by constant-force spring 2 becomes N2. In this 149 

case, n is expressed as n= N1+ N2.  150 
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Figures 5(a) and 5(b) illustrate the f-u and n-w relationships. These figures also 151 

illustrate the shifts of axes. In this paper,       indicates that the reference position 152 

of the variable is the static equilibrium position. More specifically, f , n , u , and 153 

w  are defined as 154 

 ,   / ,   ,   se sef f mg n n mg u u u w w w            . (4) 155 

Such shifts of axes are introduced here to consider the vibration around the static 156 

equilibrium position. Figure 5(c) depicts the geometric relationship between u and w 157 

when the upper table is moved downward while the base is fixed. The thicker line 158 

indicates the upper side of bar AB, and the thinner lines indicate the inclined side of the 159 

upper table before and after the movement. From this figure, the geometric relationship 160 

can be written as 161 

 
1 1 1 1

2 tan tan
u w w

  

 
   

 
. (5) 162 

Figure 6(a) shows the relationship between the shifted restoring force NFn  and 163 

the shifted relative displacement w , where no friction is assumed. Let k be the 164 

stiffness of the coil spring. Then, the relationship can be written as 165 

 

1

1 2 max

/ if

if

/ if

se L

NF NF L U

U se

N mg w w w
mg

n n k w w w w

N N mg w w w w

 

    


 

   


    
     

, (6) 166 

where 167 
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  1 2 / /Uw N N mg k    ,  1 / /Lw N mg k   . (7) 168 

Figure 6(b) illustrates the relationship between the friction force q and w  assuming 169 

Coulomb’s friction [28]. Here, the overdot indicates the differentiation with respect to 170 

time. The friction force q can be written as 171 

 

if 0

0 if 0

if 0

Q w

q w

Q w







 


 
 

. (8) 172 

Then the shifted restoring force n  including Coulomb’s friction can be written as 173 

 ( , ) ( ) ( )      NFn w w n w q w , (9) 174 

Figure 7 illustrates this relationship. The restoring force curve shown in Figure 7(c) is 175 

called as “flag-shaped restoring force” because the shape of the restoring force curve in 176 

the region of 0n   and 0w   looks like a flag [29].  177 

     From Eq. (2), the relationship between n  and f  can be written as 178 

  f n . (10) 179 

And, from Eq. (5), the relationship between u  and w  can be written as 180 

 
1

 


u w . (11) 181 

From Eqs. (10) and (11),  f  can be written as 182 

 

 

 

1

2

1 2 max

( ) if /

( , ) ( ) if / /

( ) if /

se L

L U

U se

N q u mg u u w

f u u k u q u w u w

N N q u mg w u u u

   

         

   

    


   
      

, (12) 183 
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Note that, when mg changes,  should be adjusted so that the following inequality  184 

    1 1 2     N Q mg N N Q , or 
1 2 1

 
  

mg mg

N N Q N Q
 (13) 185 

holds to make the vibration isolator self-centering, or to make the upper table return to 186 

the static equilibrium position when the external force other than the gravity force is 187 

removed. 188 

     The strengths of the present mechanism and the flag-shaped restoring force can be 189 

summarized as follows: 190 

1. The use of constant-force springs allows the mechanism to have a long stroke of 191 

more than several centimeters while keeping the mechanism compact. 192 

2. Existence of plateau in the restoring force curve limits the response acceleration 193 

within a specified tolerance regardless of the amplitude and frequency of an input 194 

motion.  195 

3. The flag-shaped restoring force provides the isolator with the self-centering 196 

capability. This is because static equilibrium can be achieved only at the origin of 197 

the restoring force curve. The self-centering capability prevents the displacement 198 

from accumulating in one direction in vibration, which may be seen when friction 199 

damping is applied [29]. 200 

4. The flag-shaped restoring force avoids resonance. The proposed isolator responses 201 
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linearly in the neighborhood of the static equilibrium point. In this linear range, the 202 

isolator has a potential of resonance. Nevertheless, this does not lead to serious 203 

problems because the displacement amplitude of interest in this paper is well 204 

beyond the linear range. Even if resonance takes place in the linear range, the 205 

equivalent natural frequency (computed either by the secant stiffness or by the 206 

tangent stiffness) decreases significantly as the displacement amplitude increases 207 

beyond the linear range. The change of the equivalent natural frequency with 208 

respect to the displacement amplitude avoids resonance. 209 

 210 

2.3. Upper bound of response acceleration 211 

As pointed out in Section 2.2, one of the key features of the present vibration isolator is 212 

that it can limit the response acceleration within a specified tolerance regardless of the 213 

magnitude and frequency of an input motion. This subsection presents basic equations 214 

for this feature. Suppose that the vibration isolator is subject to the (absolute) ground 215 

acceleration gu . Then, the equation of motion for the present vibration isolator can be 216 

written as 217 

   ( , ) 0gm u u c u f u u        . (14) 218 

Assume that the vibration isolator is designed so that c is negligibly small. Then, from 219 
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Eqs.(8), (12), and (14), the magnitude of the absolute response acceleration 
gu u   220 

can be bounded as 221 

 ( )gu u h   , (15) 222 

where 223 

    1 1 2( ) max ,
 


 

      
 

h g N Q N N Q g
m m

. (16) 224 

From Eqs. (15) and (16), it can be said that the proposed vibration isolator can specify 225 

the peak response accelerations by adjusting / m . This implies that the present 226 

vibration isolator can reduce the peak response acceleration to the same value by 227 

adjusting the amplification factor α when m is changed. 228 

Consider the range of variation of ( )h  when α changes in the range of Eq. (13). 229 

Both  1 / g N Q m  and  1 2 /   N N Q m g are linear functions of α, and 230 

hence ( )h is a piecewise linear function of α. The range of variation of ( )h  can be 231 

obtained as 232 

 2 2

1 2 1

/ 2
( )

/ 2



 

 

N Q N
g h g

N N N Q
. (17) 233 

It should be noted here that, from Eqs. (15) to (17), the response acceleration can be 234 

reduced to less than  2 1/ N g N Q  regardless of m as far as the assumptions made in 235 

this section are valid.  236 

 237 
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3. Experiments 238 

3.1 Prototype design 239 

Figure 8 shows a photograph of a prototype of the present vibration isolator produced 240 

for testing the effectiveness of the proposed mechanisms. The height of the vibration 241 

isolator at the static equilibrium position is about 400 mm. To suppress the rocking 242 

response of the upper table, 2 plates are fixed with pin connections to each side of the 243 

vibration isolator. Note that, although the screw jack is rotated by hand in the present 244 

prototype of the vibration isolator, it is possible to use a combination of sensing devices 245 

and an electric motor to rotate the screw jack for sensing the mass change and adjusting 246 

the restoring force automatically. 247 

The parameters for the mechanism for the flag-shaped restoring force are as 248 

follows. The nominal values of N1 and N2 are 235.5 N and 31.4 N, respectively, and that 249 

of k is 1.5 N/mm. It is difficult to determine the value of Q prior to the quasi-static 250 

loading tests because friction takes place at many locations. Hence, as explained later in 251 

Section 3.2, the reference value of Q is determined as 6.8 N from the quasi-static 252 

loading tests. Substituting these values into Eq. (17), the theoretical prediction of the 253 

upper bound of the response acceleration can be obtained as 0.13 g. 254 

The parameters for the mechanism for changing the restoring force are provided 255 
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as tan 1.6  , l = 150 mm, r = 75 mm, and s h  = 150 mm. Figure 9 shows the 256 

relationship between the amplification factor   and d. Here, recall that d is the 257 

distance between point C and bar AE as shown in Figure 2. Table 1 shows the reference 258 

values that define the amplified restoring forces, where 1( )N , 2( )N , ( )Q , ( )Ru , and 259 

( )k are defined as 260 

 1( ) 1 N N , 2( ) 2 N N , ( ) Q Q , 
( )




 U L

R

w w
u , 2

( ) k k . (18) 261 

 262 

3.2 Quasi-static loading tests 263 

To obtain the parameters for constructing a numerical model of the proposed vibration 264 

isolator, quasi-static loading tests are carried out. The quasi-static loading tests are 265 

performed by changing the value of d parametrically from 15 mm to 65 mm with an 266 

increment of 5 mm. In each quasi-static loading test, forced displacement is applied to 267 

the upper table manually. The origin is set to the equilibrium position for each test. The 268 

displacement of the upper table is obtained by using non-contact laser displacement 269 

sensors. The restoring force f is obtained by the load cells inserted between the ground 270 

and the base of the vibration isolator.  271 

Figure 10(a) shows the restoring force curves obtained from the quasi-static 272 

loading tests for the cases of d = 60, 40, and 20 mm. Here, the results are shown only 273 
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for the region of 50mm< u <50mm while the applied displacement amplitude of 274 

u  was more than 50mm. From the figure, it is clear that the restoring force is 275 

amplified by adjusting the value of d. Figure 10(b) shows the numerical models of the 276 

restoring force curves, where 1( )S  and 2( )S are the upper and lower values of the 277 

restoring force when ( ) / 2   Ru u , and 3( )S  and 4( )S  are the values when 278 

( ) / 2 Ru u . Table 2 summarizes the values of the parameters that determine the 279 

flag-shaped restoring force. The procedure used for determining these values is 280 

summarized as follows: 281 

1. The values of 1( )S  and 2( )S  are determined by averaging the upper and lower 282 

values of the restoring force curve, respectively, in the range of 283 

( )50 mm / 2    Ru u . The values of 3( )S  and 4( )S  are determined similarly 284 

in the range of ( ) / 2 50 mm  Ru u .  285 

2. The amplified capacities 1( )N  and 2( )N  are obtained as 286 

 
1( ) 2( )

1( )
2

 






S S
N , 

3( ) 4( )

2( ) 1( )
2

 

 


 

S S
N N . (19) 287 

3. The amplified stiffness ( )k  around the static equilibrium position is determined 288 

by 289 

 
2( )

( )

( )








R

N
k

u
. (20) 290 
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4. The amplified friction force ( )Q  is determined by  291 

 
   1( ) 2( ) 3( ) 4( )

( )
2

   



  


S S S S
Q . (21) 292 

The experimentally observed restoring force curves shown in Figure 10(a) are not so 293 

smooth as their numerical models shown in Figure 10(b) because it is difficult to realize 294 

such ideal restoring force curves shown in Figure 9(b) due to many factors. Uncertainty 295 

of the restoring force provided by the constant-force springs is one of the main reasons. 296 

Backlash and friction in the bearings and pin-connections are other obstacles to realize 297 

such ideal restoring force curves. 298 

Figure 11 compares the nominal values of 1( )N  and 2( )N with those obtained 299 

experimentally. Good agreement can be seen between these values. In Figure 12, the 300 

cross mark plots the relationship between 1( )N  and ( )Q , both of which are obtained 301 

from the experiments. The solid line shows the linear relationship  302 

 ( ) 1( ) Q N , (22) 303 

where the value of   is obtained by the least-squares fit as 0.029. The reference value 304 

( )Q  shown in Table 1 is obtained by multiplying the obtained value of   and the 305 

nominal value of 1( )N . 306 

 307 

3.3. Shaking table tests 308 
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Figure 13 illustrates the configuration of the experimental setup. Only vertical ground 309 

motions are applied to the vibration isolator. To investigate the vibration reduction 310 

capability of the present vibration isolator when the mass of the isolated object is 311 

changed, shaking table tests are performed for the cases of d = 60, 40, and 20 mm. 312 

These values correspond to the amplification factor  of 1.25, 1.57, and 1.91, and the 313 

mass m of 32.0 kg, 40.2 kg, and 49.0 kg, respectively. Acceleration sensors are installed 314 

on the upper table of the vibration isolator to measure response acceleration (RA), and 315 

on the shaking table to record ground acceleration (GA). Non-contact laser 316 

displacement sensors are fixed to a measurement frame to measure response absolute 317 

displacement (RAD) and ground displacement (GD). Response relative displacement 318 

(RRD) is obtained by subtracting GD from RAD. The primary natural frequencies in the 319 

neighborhood of the static equilibrium position are 2.74, 3.26, and 3.68 Hz for the cases 320 

of d = 60, 40, and 20 mm, respectively. These values are obtained from the free 321 

vibration measurements. 322 

Table 3 summarizes input excitations. The input waves are 2, 3, 4, 5, and 6 Hz 323 

sine waves, and the vertical, or up-down (UD), component of the earthquake ground 324 

motion recorded at K-NET Ojiya station in Japan during the 2004 Mid Niigata 325 

Prefecture earthquake. The peak ground accelerations (PGAs) are normalized to 0.25 g 326 
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and 0.50 g for 2 Hz sine wave, 0.25 g, 0.50 g, 0.75 g, and 1.00 g for 3, 4, 5, and 6 Hz 327 

sine waves. The PGAs are normalized to 0.50 g, 0.75 g, and 1.00 g for the K-NET Ojiya 328 

UD earthquake ground motion, whose PGA is 0.83 g.  329 

Table 4 reports all the PGAs and the peak response accelerations (PRAs) 330 

measured in the shaking table tests. Due to the limitations of the capability of the 331 

shaking table, there are small differences between the intended and the measured PGAs. 332 

Figure 14 compares the PRAs with the PGAs. As can be observed in Table 4 and Figure 333 

14, the PRAs are reduced to under 0.2 g for all the sine waves except the case of d = 20 334 

mm and S4-4 input. On the other hand, the PRAs were dropped to under 0.15 g for all 335 

the scaled earthquake ground motions. These results demonstrate that the proposed 336 

vibration isolator can reduce the response acceleration effectively in a wide range of 337 

input frequency and amplitude. Table 5 summarizes the peak response absolute 338 

displacements (PRADs) and the peak ground displacements (PGDs). It is seen in Table 339 

5 that significant reduction was achieved in PRAD to all sine waves. On the other hand, 340 

reductions are not observed for the K-Net Ojiya UD records. In fact, the PRADs were 341 

amplified by the vibration isolator. Figure 15 shows examples of the time histories of 342 

the GA, RA, GD, RAD, RRD for the case of d = 40 mm. The input excitations are S4-4 343 

and O-3. Figure 15 shows that the RAs were reduced sufficiently during the entire 344 
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excitation for both cases. The reduction of the RAD to S4-4 excitation and the 345 

amplification to O-3 excitation were confirmed through the plots of the time histories.  346 

 347 

4. Numerical Simulations 348 

In this section, numerical simulations are performed to compare their results with the 349 

experimental results. For the numerical simulations, the values of 1( )N , 2( )N , ( )Q , 350 

and ( )k obtained from the quasi-static loading tests (shown in Table 2) are used. The 351 

values of the mass used in the shaking table test are substituted into m, i.e., 32.04 kg, 352 

40.24 kg, and 48.95 kg for the cases of d = 60 mm, 40 mm, and 20 mm, respectively. 353 

The damping factor c is assumed to be 0.01 Ns/mm for d = 60 mm, 0.04 Ns/mm for d = 354 

40 mm, and 0.06 Ns/mm for d = 20 mm. These values are determined by trial and error 355 

to fit the simulations results to the experimental data. To avoid singular points in 356 

numerical simulations, the friction force q is approximated by q*, defined as 357 

 

if /

* if / /

if /

Q w Q b

q b w Q b w Q b

Q w Q b



 



  


   
 

, (23) 358 

The slope b is determined as 1 Ns/mm for all the cases by trial and error as well. 359 

Numerical integrations are performed using the Runge-Kutta method.  360 

Figure 16 compares the time history responses of the RAs calculated from the 361 
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simulations with the experimental results when the input excitations are S4-4 and O-3 362 

and the value of d is 40 mm. Figure 16 demonstrates that the RA waves obtained from 363 

the simulations agree reasonably well with the experimental results.  364 

The PRAs obtained from the experiments and the simulations for the cases of d = 365 

60, 40, and 20 mm are compared in Figure 17, where the input excitations are S2-2, 366 

S3-4, S4-4, S5-4, S6-4, and O-3. For reference, the theoretical prediction of the upper 367 

bound of the response acceleration obtained by using Eq. (17) is plotted by the solid line. 368 

As shown in Figure 17, the theoretical prediction agrees well with the simulation results. 369 

On the other hand, there are a couple of cases where the PRAs obtained from the 370 

shaking table tests exceed the theoretical predictions.  371 

Figure 18 compares the response acceleration spectra [30] to study the potential 372 

of the measured waves to shake the objects placed on the shaking table and the upper 373 

table of the isolator. In the figure, the case of S4-4 and d = 20 mm where the highest 374 

PRA are measured is investigated and the damping ratio is assumed as 5 %. As can be 375 

seen from Figure 18, the difference between the experimental and simulation results of 376 

the response acceleration appears mainly in the frequency range higher than 20 Hz. This 377 

verifies that the low frequency vibrations, which are important for avoiding large 378 

displacement of the isolated object, are suppressed effectively by the present vibration 379 
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isolator, although scrutiny of the source of the unintended high-frequency vibrations is 380 

still necessary. Backlash and friction in the bearings and pin-connections are potential 381 

sources of the unintended high-frequency vibrations. 382 

 383 

5. Conclusions 384 

This study has presented a passive vertical vibration isolator with nonlinear restoring 385 

force adjustable to the change of the mass of the isolated object. A simple mechanism to 386 

change the nonlinear restoring force has been introduced. One of the main features of 387 

the present vibration isolator is that quick and easy adjustment is possible when the 388 

mass of the isolated object is changed while keeping the peak response acceleration 389 

within the same tolerance. The efficacy of the proposed vibration isolator has been 390 

demonstrated through shaking table tests and numerical simulations, where the vibration 391 

isolator was subjected to sine waves and scaled earthquake ground motions under 392 

different values of the mass of the isolated object. 393 
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486 

   487 

Figure 1: Schematic view of the proposed vibration isolator. (a) Whole view. (b) Each 488 

component. 489 

 490 

 491 

Figure 2: Schematic illustration of the proposed device. (a) Front side. (b) Lateral side. (c) 492 

Crank. 493 

 494 
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 495 

Figure 3: Internal force on the right shaft. (a) Inner bearing. (b) Outer bearing. (c) Equilibrium 496 

of horizontal forces acting on the right shaft. 497 

 498 

 499 

Figure 4: Mechanism for producing nonlinear restoring force. (a) Upper limit position. (b) Static 500 

equilibrium position. (c) Lower limit position. 501 
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 502 

 503 

Figure 5: Coordinates. (a) u-f and Δu-Δf. (b) w-n and Δw-Δn. (c) Geometric relationship between u 504 

and w. 505 

 506 

 507 

Figure 6: Numerical models. (a) Restoring force. (b) Friction force. 508 

 509 

  510 

Figure 7: Schematic illustration of the restoring force model including friction. 511 

 512 
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 513 

Figure 8: Photograph of a prototype of the vibration isolator. 514 

 515 

 516 

Figure 9: Amplification factor α. (a) α of θ. (b) α of d. 517 

 518 
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 519 

Figure 10: Restoring forces for the cases of d = 60 mm, d = 40 mm, and d = 20 mm. (a) 520 

Quasi-static loading test results. (b) Numerical models.  521 

 522 

 523 

Figure 11: Comparisons between the experimental and nominal capacities of the constant-force 524 

springs. (a) N1(α). (b) N2(α). 525 

 526 

 527 

Figure 12: Relationship between N1(α) and Q(α). 528 

 529 
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 530 

Figure 13: Experimental setup for the shaking table tests. 531 

 532 

 533 

Figure 14: Comparisons of peak accelerations measured in shaking table tests. (a) d = 60 mm. 534 

(b) d = 40 mm. (c) d = 20 mm. 535 

 536 
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 537 

Figure 15: Time histories of shaking table tests for the case of d = 40 mm. (a) S4-4. (b) O-3. 538 

 539 
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 540 

Figure 16: Comparisons of time histories between shaking table tests and simulations for the 541 

case of d = 40 mm. (a) S4-4. (b) O-3. 542 

 543 

 544 

Figure 17: Comparisons of peak response accelerations. (a) d = 60 mm. (b) d = 40 mm. (c) d = 545 

20 mm. 546 

 547 
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 548 

Figure 18: Response acceleration spectra for the case of S4-4 and d = 20 mm. 549 

 550 

Table 1: Reference values of parameters. 551 

d (mm) α N1(α) (N) N2(α) (N) Q(α) (N) ( )Ru (mm) k(α) (N/mm) 

65 1.18 277.9 37.1 8.0 17.7 2.09 

60 1.25 294.4 39.3 8.5 16.7 2.34 

55 1.33 313.2 41.8 9.1 15.7 2.65 

50 1.41 332.1 44.3 9.6 14.8 2.98 

45 1.49 350.9 46.8 10.1 14.0 3.33 

40 1.57 369.7 49.3 10.7 13.3 3.70 

35 1.65 388.6 51.8 11.2 12.7 4.08 

30 1.73 407.4 54.3 11.8 12.1 4.49 

25 1.82 428.6 57.1 12.4 11.5 4.97 

20 1.91 468.6 60.0 13.0 11.0 5.47 

15 1.99 449.8 62.5 13.5 10.5 5.94 

 552 

Table 2: Experimental values of parameters. 553 

d S1(α) (N) S2(α) (N) S3(α) (N) S4(α) (N) N1(α) (N) N2(α) (N) Q(α) (N) k(α) 
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(mm) (N/mm) 

65 264.1 252.0 298.9 284.9 258.1 33.8 6.5 2.09 

60 284.2 270.5 320.3 306.2 277.3 35.7 7.0 2.34 

55 306.9 292.3 344.2 328.9 299.6 37.0 7.5 2.65 

50 323.3 306.0 362.0 342.4 314.6 37.6 9.2 2.98 

45 344.1 324.4 384.4 365.7 334.3 40.8 9.6 3.33 

40 354.8 339.1 406.7 386.2 347.0 49.5 9.1 3.70 

35 373.4 354.6 424.6 403.5 364.0 50.0 10.0 4.08 

30 399.9 374.6 447.7 423.4 387.2 48.7 12.4 4.49 

25 417.3 392.4 469.3 445.4 404.9 52.5 12.2 4.97 

20 433.0 407.4 486.4 462.5 420.2 54.3 12.4 5.47 

15 454.2 422.8 506.2 480.6 438.5 54.9 14.2 5.94 

 554 

Table 3: Input excitations. 555 

Name Input 
Intended 

PGA (g) 
Name Input 

Intended 

PGA (g) 

S2-1 2 Hz sine wave 0.25 S5-1 5 Hz sine wave 0.25 

S2-2 2 Hz sine wave 0.50 S5-2 5 Hz sine wave 0.50 

S3-1 3 Hz sine wave 0.25 S5-3 5 Hz sine wave 0.75 

S3-2 3 Hz sine wave 0.50 S5-4 5 Hz sine wave 1.00 

S3-3 3 Hz sine wave 0.75 S6-1 6 Hz sine wave 0.25 

S3-4 3 Hz sine wave 1.00 S6-2 6 Hz sine wave 0.50 

S4-1 4 Hz sine wave 0.25 S6-3 6 Hz sine wave 0.75 

S4-2 4 Hz sine wave 0.50 S6-4 6 Hz sine wave 1.00 

S4-3 4 Hz sine wave 0.75 O-1 K-NET Ojiya UD 0.50 

S4-4 4 Hz sine wave 1.00 O-2 K-NET Ojiya UD 0.75 

   O-3 K-NET Ojiya UD 1.00 

 556 

Table 4: Comparisons between peak ground accelerations and peak response accelerations (g). 557 

d 60 mm 40 mm 20 mm 

Excitation PGA PRA PGA PRA PGA PRA 

S2-1 0.261 0.073 0.274 0.130 0.257 0.122 
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S2-2 0.531 0.116 0.519 0.147 0.518 0.154 

S3-1 0.261 0.054 0.300 0.082 0.271 0.108 

S3-2 0.522 0.086 0.525 0.122 0.631 0.129 

S3-3 0.809 0.111 0.800 0.134 0.835 0.144 

S3-4 1.092 0.116 1.073 0.148 1.159 0.158 

S4-1 0.267 0.040 0.264 0.079 0.262 0.075 

S4-2 0.537 0.063 0.565 0.077 0.525 0.094 

S4-3 0.808 0.088 0.830 0.116 0.817 0.160 

S4-4 1.083 0.126 1.076 0.148 1.079 0.214 

S5-1 0.273 0.034 0.271 0.044 0.270 0.056 

S5-2 0.535 0.046 0.529 0.068 0.532 0.087 

S5-3 0.826 0.061 0.804 0.090 0.812 0.116 

S5-4 1.071 0.077 1.068 0.109 1.248 0.130 

S6-1 0.299 0.034 0.262 0.061 0.260 0.055 

S6-2 0.548 0.045 0.614 0.087 0.547 0.070 

S6-3 0.874 0.067 0.852 0.133 0.870 0.079 

S6-4 1.156 0.082 1.166 0.146 1.240 0.084 

O-1 0.429 0.061 0.473 0.146 0.494 0.132 

O-2 0.680 0.072 0.706 0.160 0.698 0.133 

O-3 0.913 0.083 0.960 0.178 0.968 0.144 

 558 

Table 5: Comparisons between peak ground displacements and peak response absolute 559 

displacements (mm). 560 

d 60 mm 40 mm 20 mm 

Excitation PGD PRAD PGD PRAD PGD PRAD 

S2-1 14.089 6.084 13.691 8.919 13.608 9.647 

S2-2 28.213 11.744 27.947 8.106 27.831 9.931 

S3-1 6.366 1.622 6.167 2.994 6.092 3.094 

S3-2 12.566 2.431 12.552 5.291 12.605 5.341 

S3-3 18.883 2.569 18.700 6.697 18.661 6.981 

S3-4 25.022 6.841 24.717 6.722 24.503 6.831 

S4-1 3.650 1.428 3.573 1.175 3.595 1.209 

S4-2 7.250 0.894 7.223 2.784 7.209 2.509 

S4-3 10.923 1.219 10.636 4.550 10.863 3.806 
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S4-4 14.552 1.922 14.248 7.138 14.475 4.650 

S5-1 2.341 0.913 2.327 0.613 2.338 0.691 

S5-2 4.711 1.116 4.763 1.034 4.694 1.206 

S5-3 7.141 1.319 7.081 1.641 7.128 2.066 

S5-4 9.358 1.456 9.313 2.384 11.006 2.347 

S6-1 1.677 0.344 1.641 0.406 1.663 0.378 

S6-2 3.325 0.453 3.320 0.528 3.319 0.491 

S6-3 5.009 0.469 5.000 0.978 4.994 1.066 

S6-4 6.586 0.563 7.027 1.228 6.630 1.550 

O-1 8.163 12.378 8.345 21.709 12.084 28.863 

O-2 12.175 13.300 12.267 32.478 12.170 28.922 

O-3 16.297 17.122 16.322 35.975 16.211 30.013 

 561 


