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We investigate theoretically electromagnetic plane-wave scattering by self-complementary metasurfaces.
By using Babinet’s principle extended to metasurfaces with resistive elements, we show that the frequency-
independent transmission and reflection are realized for normal incidence of a circularly polarized plane
wave onto a self-complementary metasurface, even if there is diffraction. Next, we consider two special
classes of self-complementary metasurfaces. We show that self-complementary metasurfaces with rotational
symmetry can act as coherent perfect absorbers, and those with translational symmetry compatible with their
self-complementarity can split the incident power equally, even for oblique incidences.
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I. INTRODUCTION

Metamaterials are artificially engineered materials com-
posed of lower-level components.1 These components
are called meta-atoms. Various extraordinary electromag-
netic properties of metamaterials have been predicted and
demonstrated, such as negative refractive index,2,3 artifi-
cial magnetism,4 super focusing,5 cloaking,6–8 and giant
chirality.9,10

As in other fields of physics, such as crystallography
and atomic or molecular spectroscopy, symmetry plays a
fundamental role in metamaterials. The symmetry of the
shape or alignment of meta-atoms affects the electromagnetic
response of metamaterials. A group-theoretical method of
treating symmetry in metamaterials has been developed and
applied for designing and optimizing metamaterials.11–14 This
method has also been utilized for designing two-dimensional
metamaterials, called metasurfaces.15,16 However, these stud-
ies dealt only with groups of isometries with a fixed point, that
is to say, point groups.

In addition to isometric symmetry of metamaterials, the
theory of electromagnetism has another symmetry with respect
to the interchange of electric and magnetic fields. This
symmetry is called the electromagnetic duality, and can be
generalized to a continuous symmetry with respect to internal
rotations of electric and magnetic fields. This continuous
symmetry is directly related to a helicity conservation law.17–24

We note that these symmetries had been gradually discovered
since the late 19th century.25–27

The electromagnetic duality is closely related to Babinet’s
principle.28 Given a thin metallic metasurface, we can con-
struct the complementary metasurface by using a structural
inversion to interchange the holes and the metals. Babinet’s
principle relates the scattering fields of the complementary
metasurfaces to those of the original one. This principle is
based on the fact that the structural inversion is consistent
with electromagnetic duality. A rigorous Babinet’s principle
for electromagnetic waves was simultaneously formulated by
several groups.29–33 It was extended to absorbing surfaces,34

impedance surfaces,35 and surfaces with lumped elements.36

It is important to note that the generalization for impedance
surfaces was performed by extending the structural inversion

to the impedance one. Recently, several complementary meta-
surfaces have been fabricated and tested in the microwave,37,38

terahertz,39 and near-infrared regions.40 Near-field images
of complementary metasurfaces have been obtained in the
terahertz range,41 and switching of reflection has been realized
by using a complementary metasurface with a twisted nematic
cell in the near-infrared region.42 Babinet’s principle is also
useful for designing negative refractive index metamaterials.43

Generally, the structure of a metasurface is not invariant
under impedance inversion. If a metasurface is identical
to its complement, it is called a self-complementary meta-
surface. As an application, such self-complementary arti-
ficial surfaces have been used for efficient polarizers.44,45

In the field of antenna design, it is known that a self-
complementary antenna has a constant input impedance.46

Therefore self-complementary metasurfaces are expected to
exhibit a frequency-independent response. It has been shown
that an almost self-complementary spiral terahertz metasurface
has a constant response only in the high-frequency range.47

There have been some efforts to achieve a frequency-
independent response with self-complementary checkerboard
metasurfaces,48,49 but it is known empirically that such a
metasurface does not exist. Self-complementary metasurfaces
have not been analyzed thoroughly enough; for example,
conditions for the frequency-independent response have not
been discussed thoroughly, and an elaborate theory is needed.
In this paper, we study electromagnetic scattering by self-
complementary metasurfaces more rigorously and establish
several useful theorems. In particular, we focus on the
incidences of circularly polarized plane waves onto self-
complementary metasurfaces, because circularly polarized
light matches with electromagnetic duality.

This article is organized as follows. In Sec. II, we start by
discussing the electromagnetic duality. In Sec. III, we review
Babinet’s principle for resistive metasurfaces, and construct
some relations between complex coefficients of transmis-
sion and reflection. We analyze electromagnetic plane-wave
scattering by self-complementary metasurfaces, and derive
their general properties in Sec. IV. Numerical simulations are
performed in order to confirm our theory in Sec. V. Finally,
we summarize the conclusion in Sec. VI.
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II. ELECTROMAGNETIC DUALITY

The electric and magnetic fields are represented by a
polar vector field E and an axial vector field H, respectively.
Under spatial inversion, polar vectors are reversed in direction,
while axial vectors are invariant. If we fix the orientation
of the three-dimensional Euclid space E3, axial vectors
are represented by two polar vectors corresponding to the
two orientations of E3, respectively.50 Two types of vectors
are required in order not to assume specific orientation of
space E3. An electromagnetic field is represented by (E,H).
The set of electromagnetic fields constitutes a vector space,
namely, a direct sum of vector spaces, with the scalar product
defined by s(E,H) := (sE,sH) for a scalar s, and the sum
(E1,H1) + (E2,H2) := (E1 + E2,H1 + H2).

Maxwell’s theory of electromagnetism has an internal
symmetry between electric and magnetic fields, but the
symmetry operation is not a simple exchange. Maxwell’s equa-
tions without sources and the vacuum constitutive relations
(D = ε0E and B = μ0H) are invariant under the following
transformation:

E → Z0H, H → −E/Z0, (1)

D → B/Z0, B → −Z0D, (2)

with an electric displacement D and magnetic flux
density B. The permittivity, permeability, and impedance
of vacuum are represented by ε0, μ0, and Z0 = √

μ0/ε0,
respectively. This internal symmetry is called the “electro-
magnetic duality.” Note that we need to fix an orientation
of E3 to exchange polar and axial vectors by using Eqs. (1)
and (2). This is similar to considering an imaginary number
i as an anti-clockwise rotation by π/2, which determines
an orientation of the complex plane. It is also valid to use
j = −i as an anticlockwise rotation (this is the convention in
engineering). In the rest of this work, we use the right-handed
system for internal transformations.

The electromagnetic duality extends to a continuous sym-
metry of electromagnetic fields. The duality rotation by θ is
defined by

Rθ (E,H) =
(

E cos θ + Z0H sin θ, − E
Z0

sin θ + H cos θ

)
.

(3)

This transformation is considered to be a rotation with respect
to the internal degree of freedom. The transformation given by
Eqs. (1) and (2) corresponds to the duality rotation by θ = π/2.
The duality rotation mixes the two linear polarized plane
waves. Here, we use tildes to represent the complex amplitudes
for sinusoidally oscillating fields with angular frequency ω.
For example, a sinusoidally oscillating real-valued scalar field
F is represented by F = F̃ e−iωt + F̃ ∗eiωt , where F̃ is the
complex amplitude and F̃ ∗ is its complex conjugate. With
this notation, we have Rθ (ẼLCP,H̃LCP) = e−iθ (ẼLCP,H̃LCP) for
a left circularly polarized wave (ẼLCP,H̃LCP) from the point
of view of the receiver. For a right circularly polarized wave
(ẼRCP,H̃RCP), Rθ (ẼRCP,H̃RCP) = eiθ (ẼRCP,H̃RCP) is satisfied.
Therefore circularly polarized plane waves are eigenstates
of Rθ .

FIG. 1. (Color online) Two problems for Babinet’s principle.

III. BABINET’S PRINCIPLE FOR METASURFACES
WITH RESISTIVE ELEMENTS

In this section, we derive Babinet’s principle for metasur-
faces with resistive elements. In deriving Babinet’s principle,
we consider two scattering problems. We assume that a
metasurface is placed in a vacuum for each problem. In
the first problem [problem (a)], an incident electromagnetic
wave (Ein,Hin) is scattered by the metasurface with a surface
impedance Zsurf on the surface z = 0 [see Fig. 1(a)]. Note
that Zsurf is a function of (x,y), but we omit the parameters
for simplicity. The incident wave radiates from the sources
in z � 0. If there was no metasurface, the source would
produce (Ein,Hin) in z � 0 and (ETT,HTT) in z � 0. Here,
TT represents a totally transmitted wave. The incident wave is
not restricted to plane waves and can even include near-field
components. If there is a metasurface, surface currents and
charges are induced by the incident wave. They radiate the
following scattered fields: (E−

s ,H−
s ) in z � 0 and (E+

s ,H+
s )

in z � 0.
Next, we set up the second problem [problem (b)]. In this

problem, an incident wave (E′
in,H

′
in) from sources in z � 0

enters the metasurface at z = 0 with a surface impedance Z′
surf

varying on z = 0 [see Fig. 1(b)]. Here, (E′
in,H

′
in) is defined in

z � 0. If a perfect electric conductor (PEC) sheet is placed
at z = 0, the incident wave is totally reflected. This totally
reflected wave in z � 0 is represented by (E′

TR,H′
TR). The

effect of the metasurface that differs from the PEC sheet
emerges as the remaining fields (E′±

s ,H′±
s ), where − and +

represent the fields in z � 0 and z � 0, respectively.
In general, these two problems are completely distinct. If

we assume a specific condition for the surface impedances, the
scattering fields of the two problems are related as described
in the following theorem.

Theorem 1. If Zsurf and Z′
surf satisfy Zsurf Z

′
surf =

(Z0/2)2 at any point with z = 0, the scattering fields of
problem (b) are given by (E′±

s ,H′±
s ) = R±π/2(E±

s ,H±
s ) =

±(Z0H±
s , − E±

s /Z0) for the incident wave (E′
in,H

′
in) =

R−π/2(Ein,Hin) = (−Z0Hin,Ein/Z0) using the solution of
problem (a).

Proof. Here, we define a unit vector ez parallel to the z axis,
and the projection operator P = −ez × ez×, which eliminates
z components of vectors. First, we consider problem (a).
The scattered fields (E±

s ,H±
s ) are symmetric with respect to

z = 0. Then, PE+
s = PE−

s and PH+
s = −PH−

s are satisfied
on z = 0. The electric boundary condition P(ETT + E+

s ) =
P(Ein + E−

s ) on z = 0 is automatically satisfied. Another
boundary condition on z = 0 is given by P(Ein + E−

s ) =
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Zsurf ez × (H+
s − H−

s ). With PH+
s = −PH−

s , we obtain the
following equation for z = 0:

P(Ein + E−
s ) = 2Zsurf ez × H+

s . (4)

In problem (b), we show that the fields (E′±
s ,H′±

s ) defined by
R±π/2(E±

s ,H±
s ) satisfy all boundary conditions for the incident

wave (E′
in,H

′
in) = R−π/2(Ein,Hin). The fields (E′±

s ,H′±
s ) =

±(Z0H±
s , − E±

s /Z0) are also symmetric with respect to
z = 0. From PE′

in = −PE′
TR and PE′−

s = PE′+
s on z = 0,

the electric boundary condition P(E′
in + E′

TR + E′−
s ) = PE′+

s
is satisfied. Additionally, the following boundary condition
should be satisfied on z = 0:

PE′+
s = Z′

surf ez × (H′+
s − H′−

s − H′
in − H′

TR)

= −2Z′
surf ez × (H′

in + H′−
s ), (5)

where we use PH′+
s = −PH′−

s and PH′
in = PH′

TR on z = 0
(the derivation of PH′

in = PH′
TR is shown in Appendix A).

Operating with ez× on Eq. (5) and comparing with Eq. (4), we
have Zsurf Z

′
surf = (Z0/2)2. Thus all boundary conditions are

satisfied for problem (b) with Z′
surf = Z0

2/(4Zsurf). �
For the case of Zsurf = ∞ (hole), the complementary

surface is PEC with Z′
surf = 0, and vice versa. Therefore the

above theorem includes the standard Babinet’s principle. The
extensions for tensor impedances35 and lumped elements36

have also been investigated.
Next, we discuss the relationship of the transmission and

reflection coefficients in problems (a) and (b). From here on,
we assume that all fields oscillate sinusoidally with angular
frequency ω and are represented by complex amplitudes.
We consider a periodic metasurface with lattice vectors a1

and a2. Physically, a metasurface without periodicity can be
regarded as |a1|, |a2| → ∞. This corresponds to the transition
from box quantization to free space quantization in quantum
mechanics. The reciprocal vectors are represented by b1

and b2 satisfying ai · bj = 2πδij (δij is the Kronecker δ).
Additionally, we assume that the incident wave is a plane wave
(Ẽin,H̃in) = (Ě0eik0·x,Ȟ0eik0·x) with Ȟ0 = Z0

−1k0 × Ě0/|k0|
for a wave vector k0. Here, we use the check mark symbol
in order to express complex amplitudes for a plane wave with
a definite wave vector.

In problem (a), the scattered wave (Ẽ+
s ,H̃+

s ) on z = 0 has
Fourier components with the in-plane wave vector kpq :=
pb1 + qb2 + Pk0 for (p,q) ∈ Z2. In this paper, we focus on
the 0th-order modes with (p,q) = (0,0) in order to simplify
the notation. The general case is summarized in Appendix B.
We decompose the 0th-order complex fields of problem (a)
in z � 0 as

∑
α=1,2 tα(Ẽ+

α ,H̃+
α ) with complex transmission

coefficients tα , where we define (Ẽ+
1 ,H̃+

1 ) := (ẼTT,H̃TT),
and its perpendicular polarization state (Ẽ+

2 ,H̃+
2 ). The mode

(Ẽ+
2 ,H̃+

2 ) is normalized to carry the same power flow of
(Ẽ+

1 ,H̃+
1 ). We also define (Ẽ−

α ,H̃−
α ) as the mirror symmetric

field of (Ẽ+
α ,H̃+

α ) with respect to z = 0. In z � 0, the 0th-
order field is represented by (Ẽin,H̃in) + ∑

α=1,2 rα(Ẽ−
α ,H̃−

α )
with complex reflection coefficients rα . For problem (b),
we define (Ẽ′±

α ,H̃′±
α ) := R∓π/2(Ẽ±

α ,H̃±
α ). The 0th-order fields

are written as
∑

α=1,2 t ′α(Ẽ′+
α ,H̃′+

α ) in z � 0, and (Ẽ′
in,H̃

′
in) +∑

α=1,2 r ′
α(Ẽ′−

α ,H̃′−
α ) in z � 0.

Now we formulate Babinet’s principle for complex coeffi-
cients as follows.

Theorem 2. The coefficients of the two problems are related
as t1 + t ′1 = 1, r1 + r ′

1 = −1, and t2 + t ′2 = 0, r2 + r ′
2 = 0.

Proof. For problem (a), the 0th-order component of the
scattered field in z � 0 is given by

(Ẽ+
s0,H̃

+
s0) = −(Ẽ+

1 ,H̃+
1 ) +

∑
α=1,2

tα(Ẽ+
α ,H̃+

α ). (6)

In problem (b), the 0th-order component of (Ẽ′+
s ,H̃′+

s ) is

(Ẽ′+
s0 ,H̃′+

s0 ) =
∑

α=1,2

t ′α(Ẽ′+
α ,H̃′+

α ). (7)

Applying R−π/2 to Eq. (7), we have

(Ẽ+
s0,H̃

+
s0) = −

∑
α=1,2

t ′α(Ẽ+
α ,H̃+

α ), (8)

where we use (E′+
s0 ,H′+

s0 ) = Rπ/2(E+
s0,H

+
s0) and (E′+

α ,H′+
α ) =

R−π/2(E+
α ,H+

α ). Comparing Eq. (8) with Eq. (6), we obtain
t1 + t ′1 = 1 and t2 + t ′2 = 0. The remaining equations are
derived from a similar discussion for z � 0. �

IV. SELF-COMPLEMENTARY METASURFACES

For a metasurface with a surface impedance Zsurf, we
can create the complementary metasurface with Z′

surf =
Z0

2/(4Zsurf). This operation is called an impedance inversion
about Z0/2. Two metasurfaces are congruent if one can be
transformed into the other by a combination of translations,
rotations and reflections. When a metasurface is congruent to
its complementary one, we say that it is self-complementary.
We emphasize that the self-complementarity is not the same
as the point-group symmetry. Several examples of self-
complementary metasurfaces are shown in Fig. 2.

For a left circularly polarized incident wave, we define
tLL := t1, tRL := t2, and rRL := r1, rLL := r2. We also use
tRR := t1, tLR := t2, and rLR := r1, rRR := r2 for a right
circularly polarized incident wave. From reciprocity and the
mirror symmetry of a metasurface with respect to z = 0, the
following theorem is derived.

Theorem 3. In the case of normal incidence of a circularly
polarized plane wave onto a metasurface, tRR = tLL and rLR =
rRL are satisfied.

Proof. We consider two situations. In the first, the incident
wave is a left circularly polarized wave (Ẽin,H̃in) = (Ě0e+, −
iȞ0e+)eik0z from z � 0, where Ȟ0 = Ě0/Z0 and e± := (ex ±
iey)/

√
2 with unit vectors ex and ey along x and y axes. The

total field is represented by (Ẽf,H̃f). In the second situation, an
incident wave from z � 0 is (Ẽin,H̃in) = (Ě0e−,iȞ0e−)e−ik0z,
and the total field is denoted by (Ẽb,H̃b). If we perform the
coordinate transformation z → −z, the second situation can
be transformed to the scattering problem for a right circularly
polarized incident wave from z � 0, because of the symmetry
between the front and back of the metasurface. Then, t1 of the
second situation is equivalent to tRR.

We represent the unit cell on z = 0 by U , and consider
V = U × [h/2,h/2] with h > 0. For the normal incidence,
we can impose periodic boundary conditions on two pairs
of opposite faces of ∂U × [h/2,h/2]. From the Lorentz

205138-3



NAKATA, URADE, NAKANISHI, AND KITANO PHYSICAL REVIEW B 88, 205138 (2013)

FIG. 2. (Color online) Examples of self-complementary metasurfaces. The class of self-complementary metasurfaces includes two specific
subclasses with (a) n-fold rotational symmetry (n � 3) and (b) translational self-complementarity.

reciprocity theorem51∫
∂V

(Ẽf × H̃b − Ẽb × H̃f) · dS = 0 (9)

and e+ × e− = −iez, we obtain tRR = tLL. Because electric
fields are continuous on z = 0, 1 + rLR = tRR and 1 + rRL =
tLL are satisfied. Then, rLR = rRL is proved. �

By using Theorems 2 and 3, we can arrive at the following
theorem.

Theorem 4. In the case of normal incidence of a circularly
polarized plane wave onto a self-complementary metasurface,
tRR = tLL = 1/2 and rLR = rRL = −1/2 are satisfied.

Proof. This situation is regarded as problem (a) shown in
Fig. 1. Because the metasurface is self-complementary, its
complement returns to the original metasurface by the finite
numbers of reflections. The product of these operations is
denoted byX . Problem (b) related to problem (a) through The-
orem 1 is considered. Applying X to all fields and structures
of problem (b), we have problem (c). Now, we consider the
two cases where even and odd numbers of the reflections are
involved in X . In the even case, (Ẽin,H̃in) is an eigenmode for
X . Therefore, problem (c) is identical to problem (a) except for
the total phase, and t ′1 = t1 is satisfied, where the transmission
coefficient t ′1 of problem (b) is defined in Sec. III. In the case of
odd reflections, the polarization is changed by X (for example,
from LCP to RCP), but Theorem 3 assures t ′1 = t1. Finally, we
obtain t ′1 = t1 = 1/2 from Theorem 2 for both cases. �

We note that the frequency-independent transmission
of self-complementary metasurfaces is valid in the high-
frequency range with diffraction. In the following, we consider
subclasses of self-complementary metasurfaces shown in
Fig. 2.

If a metasurface has rotational symmetry in addition to
self-complementarity [see Fig. 2(a)], we have the following
theorem.

Theorem 5. For normal incidence of a plane wave with an
arbitrary polarization onto a self-complementary metasurface
with n-fold rotational symmetry (n � 3), t1 = 1/2, r1 = −1/2
and t2 = 0, r2 = 0 are satisfied. Half the incident power is
absorbed by the metasurface in the frequency range without
diffraction.

Proof. We consider two incident waves in z �
0: (ẼL

in,H̃
L
in) = (Ě0e+, − iȞ0e+)eik0z and (ẼR

in,H̃
R
in) = (Ě0e−,

iȞ0e−)eik0z. Here, we define (Ẽ+,β
α ,H̃+,β

α ) as (Ẽ+
α,H̃+

α) for
an incident wave with polarization β. We adjust the phase
of (Ẽ+

2,H̃
+
2) so as to satisfy (Ẽ+,R

2 ,H̃+,R
2 ) = (Ẽ+,L

1 ,H̃+,L
1 ) and

(Ẽ+,L
2 ,H̃+,L

2 ) = (Ẽ+,R
1 ,H̃+,R

1 ) on z = 0, for each incident wave.
In this situation, we can define a complex transmittance matrix

τ =
[

tLL tLR

tRL tRR

]
. (10)

For a circularly polarized basis, a rotation by 2π/n about z

axis is represented by

P :=
[

e−i 2π
n 0

0 ei 2π
n

]
. (11)

Because of n-fold symmetry, P −1τP = τ is satisfied, and then
tRL = tLR = 0. Therefore we obtain

τ =
[

1
2 0

0 1
2

]
, (12)

from Theorem 4. Because τ is proportional to the identity
matrix, t1 = 1/2, r1 = −1/2 and t2 = 0, r2 = 0 are satisfied
for an incident plane wave with an arbitrary polarization.

In the frequency range without diffraction, the Fourier
components of (Ẽ±

s ,H̃±
s ) with (p,q) 	= 0 are evanescent waves.

For evanescent waves, the real part of the z component of
Poyinting vectors is zero; therefore, they do not carry energy
out of z = 0. The remaining power A = 1 − |t1|2 − |r1|2 =
1/2 is absorbed in the metasurface. �

From Theorem 5, we find that the metasurface can absorb
total incident energy as follows.

Theorem 6. If we excite a self-complementary metasurface
with n-fold rotational symmetry (n � 3) by two in-phase plane
waves (Ě0,Ȟ0)eik0z from z � 0 and (Ě0, − Ȟ0)e−ik0z from z �
0 with an arbitrary polarization (Ě0,Ȟ0), the incident power is
perfectly absorbed in the frequency range without diffraction.

Proof. In the case of one excitation (Ě0,Ȟ0)eik0z from z � 0,
half of the power is absorbed in the frequency range without
diffraction. If we excite from both sides in phase, the electric
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field is doubled, and then absorption is quadrupled. Therefore
all of the incident power is absorbed. �

If we excite the above self-complementary metasurface by
two antiphase plane waves, there is no absorption. This is
because boundary conditions at z = 0 are already satisfied
without induced currents and charges. The perfect absorption
is only realized when two beams have the correct relative phase
and amplitude. This function is referred to as coherent perfect
absorption.52,53 We note that self-complementarity is not a nec-
essary condition for the frequency-independent response de-
scribed in Theorem 7 because a similar frequency-independent
response can be seen in other systems, such as percolated
metallic films54–60 and two identical lamellar gratings.61

There is another interesting class of self-complementary
metasurfaces. If a metasurface returns to the original one by
just a translation after the impedance inversion about Z0/2,
we say that it has translational self-complementarity [see
Fig. 2(b)]. This subclass of self-complementary metasurfaces
has the following property.

Theorem 7. In the case of an oblique incidence of a
circularly polarized plane wave onto a metasurface with trans-
lational self-complementarity, tRR = tLL = 1/2 and rLR =
rRL = −1/2 are satisfied.

Proof. We regard this situation as problem (a) shown
in Fig. 1. The metasurface returns to the original position
by a translation T together with the impedance inversion.
Problem (b) can be related to problem (a) through Theorem
1. We introduce problem (c) in which the incident wave and
the metasurface of problem (b) are translated by T . From the
definition of T , the metasurface of problem (c) is the same as
that in problem (a). The incident field of problem (c) is written
as T R−π/2(Ẽin,H̃in). Because (Ẽin,H̃in) is an eigenmode for
T R−π/2, the incident wave of problem (c) is identical to
that of problem (a) except for the total phase. In this way,
t ′1 = t1 and r ′

1 = r1 are confirmed. From Theorem 2, we have
t ′1 = t1 = 1/2 and r ′

1 = r1 = −1/2. �
This theorem shows that self-complementary metasurfaces

can be used as beam splitters. The extension for general
diffraction orders is discussed in Appendix C.

V. EXAMPLES: CHECKERBOARD METASURFACES

In this section, we apply the current theory for checkerboard
metasurfaces48,49,62–64 and confirm its validity by simulations.
First, we consider an ideal checkerboard metasurface shown in
Fig. 3(a). It is expected that the ideal checkerboard metasurface
should exhibit a frequency-independent response because
of its self-complementarity. However, it is known that the
ideal checkerboard metasurface cannot be realized. This is
explained as follows.49 The electromagnetic response of the
checkerboard metasurface drastically changes depending on
whether the square metals are connected or not. The trans-
mittance and reflectance do not converge when the structure
approaches the ideal checkerboard metasurface. Furthermore,
it has also been reported that there is an instability in numerical
calculations for the ideal checkerboard metasurface, and the
checkerboard metasurfaces exhibit percolation effects near the
ideal checkerboard metasurface.63

By using our theory, we can give another explanation
without relying on asymptotic behaviors. From Theorem 5,

FIG. 3. (Color online) (a) Ideal checkerboard metasurface.
(b) Resistive checkerboard metasurface.

the power transmission T = |t1|2 and reflection R = |r1|2
should satisfy T = R = 1/4 for the ideal checkerboard meta-
surface with fourfold rotational symmetry. However, energy
conservation means T + R = 1 in the frequency range without
diffraction, because there is no absorption in the perfect
checkerboard metasurface. This contradiction implies that the
ideal checkerboard metasurface is unphysical.

The above explanation gives us another insight: we may
realize the frequency-independent response of a checkerboard
metasurface if resistive elements are introduced. We replace
the singular contacts with tiny resistive sheets with a surface
impedance Zc and obtain a resistive checkerboard metasur-
face shown in Fig. 3(b). When Zc = Z0/2 is satisfied, the
resistive checkerboard metasurface is self-complementary and
is expected to exhibit a frequency-independent response.

For confirmation of our theory, we calculate the electro-
magnetic response of resistive checkerboard metasurfaces on
z = 0 by a commercial finite-element method solver (ANSOFT

HFSS). In the simulation, normal incident x-polarized plane
wave is injected onto resistive checkerboard metasurfaces with
d/a = 0.2, where a and d are the side length of the square unit
cell and that of impedance sheet, respectively. By imposing
periodic boundaries on four sides, the electromagnetic fields
in the unit cell are calculated for Zc = 0, Z0/2, and ∞. We
take into account diffracted modes with {(p,q,α)| − 1 � p �
1, − 1 � q � 1, α = 1,2} (18 modes), where (p,q) and α are
defined in Sec. III and Appendix B.

The left panel of Fig. 4(a) displays the spectra of power
transmission |t1|2 for resistive checkerboard metasurfaces with
Zc = 0, Z0/2, and ∞. The frequency in the horizontal axis is
normalized by f0 := c0/a (c0 is the speed of light in a vacuum).
Above the frequency f0, diffracted waves can propagate in
free space. The checkerboard metasurfaces with Zc = 0 and
∞ resonate at the same frequency f/f0 = 0.89. Babinet’s
principle assures that the sum of these transmission spectra
equals 1 in the region of f � f0, because the checkerboard
metasurface with Zc = ∞ is complementary to that with Zc =
0. For the resistive checkerboard metasurface with Zc = Z0/2,
transmission equals to 1/4 independent of frequency, even
when diffraction takes place (f � f0). This constant response
seems very strange, because metasurfaces made from metal
usually exhibit a resonant response, but it can be explained by
Theorem 5. In addition to the magnitude of transmission, we
also confirm the phase of t1. For 0 < f/f0 � 1.25, we have
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FIG. 4. (Color online) (a) Power transmission and loss spectra for normally incident x-polarized plane waves entering into resistive
checkerboard metasurfaces with d/a = 0.2. The left graph shows power transmission spectra for resistive checkerboard metasurfaces with
Zc = 0, Z0/2, and ∞. The right graph shows the loss spectrum calculated for the self-complementary resistive checkerboard metasurface
with Zc = Z0/2. (b) The calculated spectra of |t1|2 and |t2|2 for an oblique incident circularly polarized plane wave entering into the resistive
checkerboard metasurfaces with Zc = Z0/2 and d/a = 0.2. The incident wave has a wave vector k0 = (k0 sin θ,0,k0 cos θ ) with θ = π/4. In
these simulations, the frequencies are normalized by f0 = c0/a.

| Im[t1]/ Re[t1]| < 1.2 × 10−2. This result shows t1 = 1/2
expected by Theorem 5.

The right panel of Fig. 4(a) shows the spectrum of energy
loss for the resistive checkerboard metasurface with Zc =
Z0/2. The loss is calculated by integration of the Poyinting
vector over the resistive sheets. In the frequency range f � f0,
we can see that half the incident power is absorbed by the
metasurface, while the electromagnetic energy is converted to
diffracted modes in f � f0. These results agree with Theorem
5, and coherent perfect absorption can be realized for the
two-side excitations. Perfect absorption occurs for any d/a.
The resistive checkerboard metasurface with tiny resistive
sheets can absorb energy in very small regions. This property
can be useful for the enhancement of nonlinearity of resistance.

The resistive checkerboard metasurface with Zc = Z0/2
also has translational self-complementarity. Then, it exhibits
frequency-independent response for oblique incident waves.
By using HFSS, we calculated the response of the resistive
checkerboard metasurfaces with Zc = Z0/2 for an oblique
incidence of a circularly polarized plane wave with incident
angle 45◦ in the xz plane. In this case, we obtain the same
transmission spectra for the right and left circularly polarized
incident waves.65

The obtained spectra of |t1|2 and |t2|2 are shown in Fig. 4(b).
We can see that |t1|2 = 1/4, while |t2|2 has two non-zero
resonant peaks at f/f0 = 0.58 and 1.02. Slight changes of |t1|2
are considered as numerical errors. For 0 < f/f0 � 1.25, we
have | Im[t1]/ Re[t1]| < 1.7 × 10−2. This result supports the
validity of Theorem 7. The two peaks of |t2|2 are originated
from the interaction between lattice sites. Periodic systems
exhibit such singular behaviors when a diffracted beam grazes
to the plane z = 0 (Rayleigh condition),66 and in our system,
the Rayleigh condition is satisfied at f/f0 = 1 and f/f0 =
2 − √

2 = 0.586. These frequencies correspond to the peaks
shown in the graph. Then, |t2|2 shows resonant behaviors near
these frequencies, while |t1|2 should be constant because of
translational self-complementarity.

VI. SUMMARY

In this paper, we analyzed theoretically electromagnetic
plane-wave scattering by self-complementary metasurfaces.

In order to study the response of self-complementary meta-
surfaces, we first described the electromagnetic duality and
Babinet’s principle with resistive elements. Next, by applying
Babinet’s principle, we obtained the relation of scattering coef-
ficients for a metasurface and its complement. Using this result,
we revealed that the frequency-independent transmission and
reflection are realized for self-complementary metasurfaces.
In the case of normal incidence of a circularly polarized plane
wave onto a self-complementary metasurface, complex trans-
mission and reflection coefficients of the 0th-order diffraction
must be 1/2 and −1/2, respectively. If a self-complementary
metasurface additionally has n-fold rotational symmetry (n �
3), the above result is valid for normal incidence of a plane
wave with an arbitrary polarization. Furthermore, we found
that this type of metasurface acts as a coherent perfect
absorber. We also studied metasurfaces with translational
self-complementarity. For an oblique incidence of a circularly
polarized plane wave to a metasurface with translational
self-complementarity, complex transmission and reflection
coefficients of the 0th diffraction order also equal to 1/2 and
−1/2, respectively. These results are confirmed by numerical
simulations for resistive checkerboard metasurfaces.
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APPENDIX A: THE RELATION BETWEEN TOTALLY
TRANSMITTED AND TOTALLY REFLECTED WAVES

We consider an incident wave (Ein,Hin) in z � 0 and the
totally transmitted wave (ETT,HTT) in z � 0. If there is a
surface made of PEC on z = 0, the incident wave is totally
reflected. This totally reflected wave is denoted by (ETR,HTR).
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We show that (ETR,HTR) can be represented by (ETT,HTT) like
the method of images used in electrostatics. We define M as
the mirror reflection with respect to z = 0. If we assume

(ETR,HTR) = −(METT,MHTT), (A1)

the boundary condition of perfect electric conductor is sat-
isfied. This is because P(Ein + ETR) = P(Ein − METT) =
0 for z = 0. Then, the definition of Eq. (A1) is valid.
Because magnetic fields are axial vectors, PMHTT = −PHin

is satisfied on z = 0. From this equation and Eq. (A1),

PHTR = PHin (A2)

is satisfied for z = 0.

APPENDIX B: RELATION OF SCATTERING
COEFFICIENTS FOR ALL DIFFRACTED COMPONENTS

We generalize Theorem 2 to include all diffracted modes.
The two problems discussed in Sec. III are considered. For
(p,q) = (0,0), we define (Ẽ+

pq,1,H̃
+
pq,1) := (ẼTT,H̃TT) and its

perpendicular polarization state (Ẽ+
pq,2,H̃

+
pq,2). For (p,q) 	=

(0,0), we also define (Ẽ+
pq,1,H̃

+
pq,1) and (Ẽ+

pq,2,H̃
+
pq,2) that are

two orthogonal polarized modes with the factor eikpq ·xeikzz,

where kz =
√

|k0|2 − |kpq |2 (Im kz � 0). The mirror symmet-

ric fields of (Ẽ+
pq,α,H̃+

pq,α) with respect to z = 0 are denoted
by (Ẽ−

pq,α,H̃−
pq,α).

We then decompose the complex field of problem (a) in
z � 0 as ∑

(p,q)∈Z2

∑
α=1,2

tpq,α(Ẽ+
pq,α,H̃+

pq,α)

with complex transmission coefficients tpq,α . In z � 0, the field
is given by

(Ẽin,H̃in) +
∑

(p,q)∈Z2

∑
α=1,2

rpq,α(Ẽ−
pq,α,H̃−

pq,α).

For problem (b), we define (Ẽ′±
pq,α,H̃′±

pq,α) := R∓π/2

(Ẽ±
pq,α,H̃±

pq,α). The fields in problem (b) are represented as
follows: ∑

(p,q)∈Z2

∑
α=1,2

t ′pq,α(Ẽ′+
pq,α,H̃′+

pq,α)

in z � 0, and

(Ẽ′
in,H̃

′
in) +

∑
(p,q)∈Z2

∑
α=1,2

r ′
pq,α(Ẽ′−

pq,α,H̃′−
pq,α)

in z � 0. Now, we can generalize Theorem 2 as follows.
Theorem 8. t00,1 + t ′00,1 = 1, r00,1 + r ′

00,1 = −1, and tpq,α +
t ′pq,α = 0, rpq,α + r ′

pq,α = 0 for (p,q,α) 	= (0,0,1).
The proof of Theorem 8 is similar to that of Theorem 2.

APPENDIX C: GENERAL ORDER DIFFRACTION BY
METASURFACES WITH TRANSLATIONAL

SELF-COMPLEMENTARITY

We discuss the general scattering components of
diffracted waves by metasurfaces with translational self-
complementarity. An oblique incidence of a circularly po-
larized plane wave is considered. We define W := {(p,q) ∈
Z2; |kpq | < |k0|}. For (p,q) ∈ W , the waves with the wave

vector kpq ±
√

|k0|2 − |kpq |2 ez are not evanescent but prop-

agating plane waves. (Ẽ+
00,1,H̃

+
00,1) represents the totally trans-

mitted plane wave with the circular polarization. For (p,q) ∈
W satisfying (p,q) 	= (0,0), (Ẽ+

pq,1,H̃
+
pq,1) are selected to be

the circularly polarized plane waves with the same helicity of
(Ẽ+

00,1,H̃
+
00,1). Now, Theorem 7 is extended as follows.

Theorem 9. For the 0th-order modes, we have t00,1 =
t ′00,1 = 1/2 and r00,1 = r ′

00,1 = −1/2. For (p,q) ∈ W satis-
fying (p,q) 	= (0,0), we have tpq,1 = t ′pq,1 = 0 and rpq,1 =
r ′
pq,1 = 0.

This theorem is proved in the same manner as Theorem 7.
The latter part of this theorem shows that helicities must be
converted for propagating waves with (p,q) 	= (0,0) diffracted
by metasurfaces with translational self-complementarity.
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