()

The tectonic, climatic cycles and the geological disasters on the Chinese Loess Plateau

Li Tonglu

Chang'an University, China

Japan October. 2012

کر کر کرد کرد کرد کرد کرد کرد کرد کرد کر				
Tectonic	Time /X10 ⁴ a	Tectonic Movement	Terraces & Erosion	Loess on terraces
	250.0		Plantation	Weathering
Cycle 1	178.0-250.0	Static	Basins with lakes	S23-S16
	170.0-178.0	Uprising	Lakes outflow, rivers formed	S21-S15
	170.0-178.0	Uprising	Lakes outflow, rivers formed	S21-S15
Cycle 2	123.0-127.0	Uprising	Down cutting, T5 rising	L10
	85.0-123.0	Static	Side erosion, T4 widen	S8-S9
Cycle 3	82.0-85.0	Uprising	Down cutting, T4rising	L7
Cycle 4	66.0-82.0	Static	Side erosion, T3 widen	S3-S6
	62.0-66.0	Uprising	Down cutting, T3 rising	L2
Cycle 5	17.0-62.0	Static	Side erosion, T2 widen	S1-S2
	12.0-17.0	Uprising	Down cutting, T2 rising	L1
Our la C	2.3-12.0	Static	Side erosion, T1 widen	S0
Cycle 6	1.0-2.3	Uprising	Down cutting, T1 rising	L0
- · -	0.4-1.0	Static	Side erosion, Flood beach	Ms
Cycle 7	0-0.4	Uprising	Down cutting, Present river bed	

) *L#±#*

Conclusions

Disasters are socially built, they are the products of a misconception of development processes in developing countries.

As Sergio Mora point out: " Around two thirds of the total damage could have been spared by using space (land, territory) more wisely, taking better care of the environment, and by offering more options to the chronic impoverishment of our populations.

So disaster risk management is more essential than technical mitigation.

