保存された連続反応を用いた

代謝パスウェイのモジュール構造の同定

武藤 愛

2013年

要旨

生物の物質代謝システムは、代謝反応によって結ばれた巨大な化合物ネットワ ークである。生物の物質生産能や分解能など生化学的特性のシステム的理解を 助けるものとして、代謝ネットワークは最も重要な生体ネットワークの一つと されている。代謝ネットワークは酵素遺伝子によって世代間で受け継がれる遺 伝的ネットワークであると同時に、代謝化合物を代謝反応によって繋ぐ化学的 ネットワークでもある。化学的ネットワークの進化には、遺伝的な制限だけで なく、有機化学反応論に基づいた化学反応性という制限が存在すると考えられ る。

代謝ネットワーク中には、異なる化合物の代謝パスウェイに共通した連続反応 のパターンが共通して出現する例が知られている。このような連続反応は酵素 の保存性によって見つけることができ、実際に酵素遺伝子のオペロン様構造と の関連や、機能との結びつきが示されたものもある。一方で、保存された連続 反応は代謝ネットワーク経路に存在する有機化学的禁制律を反映しているとも 考えられる。本研究では、この連続反応パターンを化学反応モジュール(一つ の単位として機能する連続反応)として代謝ネットワークから抽出し、機能と の結びつきをアノテーション(注釈)として付与した代謝単位ライブラリーの リソースを作成することを目指した。

連続反応の保存性は、個々の研究者の知識や研究対象に頼ったボトムアップ的 手法個別解析によって報告されてきた。本研究で私は、反応類似性スコアを定

2

義することで、酵素のアミノ酸配列に依存することなく、保存された連続反応 を代謝ネットワークから抽出する手法を開発した。この手法により、急速に拡 大する生化学ネットワークの知識から、トップダウン的アプローチによって、 化学反応モジュールを網羅的に抽出することが可能になった。開発した代謝反 応比較手法を用いて代謝ネットワークゲノムとパスウェイ中からの連続反応パ ターンの抽出を行った。代謝パスウェイの知識データベース KEGG PATHWAY に蓄積された代謝パスウェイネットワーク中の連続反応から長さ 2~8 の保存さ れた連続反応を網羅的に抽出した。その結果、5.805の代謝反応からなる代謝ネ ットワークから 3.016の連続反応パターンが検出された。これらについて詳しく 解析を行ったところ、化学反応モジュールとゲノム配列上のクラスター遺伝子 との間に多くの対応関係が見られた。よって、これらの代謝の機能単位は、遺 伝的にも一つの単位となって受け渡されている可能性が高い。また、アミノ酸 など多くの代謝の基礎化合物の合成経路は、化学反応モジュールの組み合わせ によって表せることがわかった。このことは、限られた数の反応列の組み合わ せによってこれらの化合物代謝産物のバリエーションが生成されている可能性 を示唆する。

得られた化学反応モジュールの情報は、これまで酵素の進化のみで語られてき た代謝ネットワーク経路の進化研究に、化学反応の進化という新しい観点を与 えるものである。代謝ネットワーク経路がどのような有機化学的禁制律に沿っ て進化してきたかを探ることは、現在の生物の代謝ネットワーク経路予測に有 益な指標を与えるだけでなく、生命の起源の探索に大きな手掛かりとなると考 えられる。本研究で得られた反応モジュールは、KEGG データベース (http://www.genome.jp/kegg/)の一部として公開されている。

要旨		2
第1章 序論		9
1.1	生物と代謝系	9
1.2	代謝酵素	
1.3	代謝パスウェイ	11
1.4	代謝パスウェイの進化	
1.5	代謝パスウェイデータベース	15
1.6	代謝ネットワークのモジュール	19
1.7	パスウェイアライメント	22
1.8	本研究の目的	25
第2章 デー	タセット	27
2.1	仕軸パスウェイデータベース	27
2.1	「「「「「「」」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、	28
2.2	KEGG atom type	
2.3	RDM 化学構造変換表記法	
2.5	反応クラス	
第3章 結果	1:代謝反応クラス類似性比較手法の開発	
3.1	フィンガープリント表記	
3.2	RC エントリの類似性スコア	
3.3	RCLASS エントリの類似性によるグループ化	41
3.4	RCLASS 保存配列パターンの抽出	41
第4章 結果	2 : 化学反応モジュール	44
4.1	抽出された保存反応列パターン	44
4.2	反応モジュールの出現頻度	44
4.3	反応モジュールの一般的特性	47
4.4	各化学反応モジュールの生化学的意味付け	47
4.4.1	1 2-オキソカルボン酸鎖の伸長	47
	5	

4.4.2	2-オキソカルボン酸の修飾	53
4.4.3	脂肪酸合成とβ酸化	59
4.4.4	微生物の生分解パスウェイにおける芳香族環分解	63
4.5	酵素遺伝子クラスターにコードされる反応モジュール	68
第5章 考察		72
5.1	逆反応の利用	72
5.2	モジュール間の包含関係	75
5.3	リン酸化と配糖化	76
5.4	一次代謝と二次代謝のモジュール情報の相違	79
5.5	EC 分類体系との比較	82
5.6	モジュール情報の利用	85
5.7	代謝ネットワークの進化	85
第6章 総括.		89
謝辞		91

図目	次
----	---

図 1-1 代謝パスウェイの進化仮説	.14
図 1-2 KEGG(Kyoto Encyclopedia of Genes and Genomes) データベース	.17
図 1-3 KEGG PATHWAY map	.18
図 1-4 ネットワークモジュール	.20
図 1-5 EC 階層分類の問題点の例	.24
図 2-1 反応ペアグラフ	.29
図 2-2 RDM	.33
図 3-1 RDM 表記のフィンガープリント表記への変換	.37
図 3-2 パスウェイからの連続反応の抽出	.42
図 4-1 代謝カテゴリ特異的に出現する反応モジュールの割合	.45
図 4-2 2-オキソカルボン酸伸長モジュール	50
⊠ 4-3 EC 1.1.1.42 と EC 1.1.1.41	.51
図 4-4 アミノ酸生成モジュール	.54
図 4-5 グルコシノレート生合成パスウェイ	.55
図 4-6 カルボキシル基をアミノ基へ変換するモジュール	.58
図 4-7 脂肪酸生合成モジュール	.61
図 4-8 β酸化モジュール	.62
図 4-9 微生物分解パスウェイを構成する芳香族環分解モジュール	.64
図 4-10 トルエン分解における好気性モジュール RM003 と	
嫌気性モジュール RM015 の比較	.66
図 4-11 反応モジュール RM001 に対応する	
Pyrococcus furiosus の二つの遺伝子クラスター	.71
図 5-1 アミノ基-カルボキシル基変換モジュール	.74
図 5-2 糖ヌクレオチド生合成モジュール	.78
図 5-3 フェニルプロパノイド生合成	.81
図 5-4 モノオキシゲナーゼの EC 分類と RCLASS の比較	.84

表目次

表 2-1 KEGG atom type	31
表 3-1 フィンガープリントキー	36
表 3-2 KEGG atom type とフィンガープリントキーの対応	40
表 4-1 KEGG 代謝パスウェイ中に見つかった RCLASS 保存配列パターンの数	45
表 4-2 反応モジュールの一覧	46
表 4-3 2-オキソカルボン酸関連反応モジュール群	52
表 4-4 KEGG モジュールに対応する生分解反応モジュール	67
表 4-5 酵素遺伝子クラスターと対応する反応モジュール	70
表 5-1 最大の RC エントリを包含する EC 番号	83

第1章 序論

1.1 生物と代謝系

代謝は生命の最も基本的な要素の一つである。ある化合物を別の化合物へと変 換する代謝能を有することは、自己複製能や外界と隔離された膜を持つことと 並び、生命の定義の一つとされている。原始地球には単純な化合物しか存在し なかったと考えられており、現在地球上に存在する数十万種類もの化合物は、 生物の代謝機能の発達と共に生み出されて来たものと思われる。我々が必須栄 養素とするアミノ酸や糖、脂質なども、全て何らかの生物の代謝機能によって 作られたものである。

代謝系とは、化学反応を通して生きた細胞中の全ての必須化合物を作り上げ、 維持する化学システムである。ヒトの代謝系では2万ほど、植物では20万から 100万もの代謝化合物が生成されており[1]、生体は多種多様な化合物が混ざり合 い反応しあう巨大な系であるとも言える。しかしながら、代謝系と混合物との 大きな違いは、系の中の恒常性が維持されていることにある。代謝系の化学反 応はほぼ全てが代謝酵素により触媒されるが、代謝系の化学反応は酵素の量や 活性を調節することによって、厳密に管理されている。代謝系は調節システム を持つ反応系であると言える。

代謝酵素はゲノム上にコードされ、世代を越えて伝えられることから、代謝系 は化学反応の集合体であると同時に、遺伝的システムでもある。全ての生物種 は祖先から綿々と受け継がれてきた酵素遺伝子のレパートリによって、異なる 生合成能や生分解能、環境への適応能を持つ。生物間の生息地の棲み分けや食性の違い、従属栄養に代表される依存関係のような、我々が目にすることので きる生物の様々な特性は、それぞれの生物種の代謝系の相違によりもたらされ ている。化学システムとしての代謝系と、遺伝システムとしての代謝系は、代 謝系を考える上で欠かすことのできない二つの側面である。

1.2 代謝酵素

代謝系の化学反応のほとんどを担うのが、ゲノム上にコードされたタンパク 質から成る代謝酵素である。代謝酵素はタンパク質表面に位置するアミノ酸残 基によって基質化合物に特異的に結合し、反応を触媒する。酵素の階層分類を 1961 年から行っている The International Union of Biochemistry and Molecular Biology (IUBMB)の酵素委員会(Enzyme Committee)によれば、酵素はおおまか に、オキシドリダクターゼ(酸化還元酵素)、トランスフェラーゼ(転移酵素)、 ヒドラーゼ(加水分解酵素)、リアーゼ(付加脱離酵素)、イソメラーゼ(異性 化酵素)、リガーゼ(合成酵素)の6つのECクラスに分けられる[2]。それぞれ のクラスに属する酵素はさらに詳細に分類され、EC番号(酵素番号)と呼ばれ る数字列で酵素分類が表現される。代謝系に存在する酵素はこれらの反応のう ちいずれかの触媒活性を持つが、これらの分類は必ずしも相互に排他的でない ため、全ての酵素が1つの分類群にのみ所属するとは限らない。

分子系統学的観点からは、酵素はアミノ酸配列および構造の類似性によって、 スーパーファミリーと呼ばれる同一の祖先遺伝子から生まれたとみなされる酵 素遺伝子群に分類される。タンパク質の構造分類データベース CATH データベ ース(CATH v3.5)[3]及び SCOP データベース(SCOP 1.75)[4]では現在 2,626 及び 1,962 のスーパーファミリーが定義されている。では、これらの分子系統的分類 と、反応による酵素分類は一致するのであろうか。2003 年の Schmidt らによる スーパーファミリーと EC 番号の一致を調べた研究[5]によれば、ファミリー中 の酵素の EC 番号が保存されていたスーパーファミリーは全スーパーファミリ ーの 36%にすぎず、多くのスーパーファミリーは複数の EC クラスに分類される 酵素を含んでいた。また、全スーパーファミリーの 20%には全く異なる反応を 触媒する酵素が存在した。つまり、同一の祖先遺伝子から生まれた酵素であっ ても、その触媒する化学反応や基質特異性が一致するとは限らない。

1.3 代謝パスウェイ

細胞中で起こる連鎖的な化学反応は代謝パスウェイと呼ばれる。代謝パスウ エイでは、1つの化学反応の生成物が続く反応の基質となり、出発点の化合物 は経路を通りながら段階的に修飾を受け、別の物質に変化する。一連の化学反 応の途中で生じる様々な中間体は代謝中間体と呼ばれる。ほとんどの代謝反応 は可逆的であるが、多くの代謝パスウェイは一方向に進むと考えられている。 代謝パスウェイ中の化学反応は、多くの場合それぞれ個別の酵素が担っている。 つまり、代謝パスウェイは出発点の化合物から最終産物を生みだすために、複 数の酵素が協調してはたらく生産ラインであると言える。 バクテリアでは、代謝パスウェイ上で連続した反応を担う酵素群が、ゲノム 上でも連続して位置している例が多く知られている。このようにゲノム上で連 続して並ぶ遺伝子群は遺伝子クラスターと呼ばれる。遺伝子クラスターのうち、 一つの転写因子によって同時に発現が制御される遺伝子群をオペロンと呼ぶ。 オペロンや遺伝子クラスターを形成する遺伝子群は、代謝系において機能的関 連性を持つ可能性が高い。

1.4 代謝パスウェイの進化

代謝パスウェイは基質が連鎖的な触媒反応を経て目的の化合物へと変化する 一連の反応列であり、各反応を酵素が触媒する。このような経路は、基質を目 的の産物へと変換するまでのひと揃いの代謝酵素群が揃って初めて機能する。 それぞれの酵素が単独で存在しても、基質は目的化合物に辿りつけず、その細 胞の生命活動に寄与しないため、酵素が単独で進化してきたとは考えにくい。 代謝パスウェイがどのように進化してきたのかという問いについては、長年に 渡り議論が続いている。

代謝パスウェイの進化仮説としては、これまで様々なモデルが提唱されている (図 1-1)。1945年にHorowitzが提唱したRetrograde model[6]は、代謝パスウェイ は後ろから前に向けて伸長してきたという説である。原始地球には様々な化合 物が環境中に潤沢に存在し、基質にあたる化合物だけでなく基質に類似した化 合物も豊富に存在したとする。目的の基質が全て反応に使われ、環境中から基 質が得られなくなった後には、基質を使い切った酵素から、環境下にある別の 化合物を目的の基質に変換する酵素が tandem duplication により生まれ、上流の 反応を行う酵素へと特化していく。それを繰り返すことで代謝パスウェイが拡 大してきたとする。この仮説は、環境中には現在中間産物にあたる化合物が豊 富に存在したという仮定に基づいており、原始地球における代謝パスウェイの 初期進化のモデルとしては妥当とされるものの、現在の地球環境には当てはま らない。また、新規酵素が tandem duplication によって獲得されたならば、隣接 する酵素は互いにホモログ遺伝子であるはずである。オペロンの発見により Horowitz (1965)は仮説を改め、任意のパスウェイの酵素をコードする遺伝子のク ラスター構造は、代謝系初期において tandem duplication が起こったと考えるこ とで説明されうるとした[7]。しかしながら Lawrence と Roth が 1996 年に発表し たデータ解析の結果はこの可能性を否定している[8]。原核生物のゲノム上での ホモログ遺伝子のペアの隣接関係が保存されている例はわずかしか知られてい ない。[9]

代謝パスウェイデータベースの解析結果から最も支持されているのが、 Jensen が 1976年に提唱した Patchwork model[10]である。Patchwork model によれ ば、現在の代謝パスウェイは、幅広い基質に対し反応を行う酵素が特定の代謝 パスウェイに特化してきた結果だとされる。このような基質特異性の低い酵素 は低効率であるため、細胞の生命活動に通常はあまり寄与しない。しかし、基 質の枯渇などによって他の代謝パスウェイが機能しなくなった場合に、その代 替経路として機能するよう淘汰が働き、より高い特異性と効率的な反応を達成 するようになる可能性は十分に考えられる。近年の全ゲノム比較研究から、代 謝酵素の遺伝子には遺伝子重複により生じたと考えられるものがかなりの割合 で存在することが明らかになっている。このことは、共通の祖先遺伝子に由来 する遺伝子群が別の代謝パスウェイにリクルートされることで代謝パスウェイ が拡大してきたという Patchwork model に強い支持を与えている。但し、このモ デルは既に利用可能な酵素群が存在したということを前提としているため、原 始地球における代謝パスウェイの初期の進化には当てはまらない。

Retrograde model や Patchwork model、及びその他の代謝ネットワークの進化モ デルにおける代謝の進化は、これまで酵素の進化として語られてきた。代謝ネ ットワークの進化研究の主なアプローチは、現在の代謝系を担う酵素群の類縁 関係から、どのような共通祖先から代謝酵素が分化してきたかを推測すること にあり、その結果どのような代謝反応が可能になったかということはネットワ ーク進化の「結果」として語られがちである。しかしながら、表現型の進化に より直結しているのは、獲得した新規反応の方である。原始地球において嫌気 性生物から進化して生まれた好気性生物は、酸化反応の利用により多くの有用 な新規反応を獲得した[11]。このとき生まれた酵素反応は、酵素の分化という要 因よりはむしろ、酸化反応というそれまで利用できなかった反応を、様々な基 質に対して利用できるようになったことによって多様化したと言える。このよ うに、酵素の進化と反応の進化は代謝系の進化の両輪であり、代謝ネットワー クの進化を考える際には、酵素のネットワークだけではなく化学的ネットワー

1.5 代謝パスウェイデータベース

KEGG(Kyoto Encyclopedia of Genes and Genomes) データベース(図 1-2)は、 遺伝子、ゲノム、化合物の情報を蓄積するだけでなく、オーソログ遺伝子(異 なる生物種が持つ最終共通祖先が持っていた同一の遺伝子に由来する遺伝子) の情報や酵素遺伝子(および酵素タンパク質)とその反応との対応関係をリン クし、横断的な解析を可能にするリソースを提供している[12]。それらのリソー スの中でも最も利用されているのが、様々な生体内経路の情報を提供する KEGG PATHWAY データベース中の代謝パスウェイ情報である。KEGG PATHWAY では 代謝化合物をノード(頂点)、代謝反応をエッジ(辺)として表す(図 1-3)。ユー ザーはエッジに付与された酵素の情報をもとに、目的の生物種の代謝パスウェ イを再構築して可視化することができる。代謝の再構築は通常、ゲノム中から 既知の酵素のオーソログ遺伝子を見つけ出し、それらを代謝パスウェイのネッ トワークにマッピングすることにより行われる。[13-16]

	KEGG 🔹	Search Help		
		» Japanes		
(EGG Home Release notes Current statistics	KEGG: Kyoto End	cyclopedia of Genes and Genomes		
Plea from KEGG	KEGG is a database utilities of the biolo	e resource for understanding high-level functions and gical system, such as the cell, the organism and the		
KEGG Database KEGG overview Searching KEGG KEGG mapping Color codes	ecosystem, from molecular-level information, especially large-scale molecular datasets generated by genome sequencing and other high-throughput experimental technologies (See Release notes for new and updated features).			
ECC Objects	🥥 Main entry point to	the KEGG web service		
Pathway maps	KEGG2	KEGG Table of Contents Update notes		
Brite hierarchies	Data-oriented entr	y points		
EGG Software KegTools KEGG API KGML	KEGG PATHWAY KEGG BRITE KEGG MODULE KEGG DISEASE	KEGG pathway maps [Pathway list] BRITE functional hierarchies [Brite list] KEGG modules [Module list] Human diseases [Cancer] Infectious disease]		
EGG FTP Subscription	KEGG DRUG KEGG ORTHOLOG	Drugs [ATC drug classification] Y Ortholog groups [KO system] Genomes [KEGG organisms]		
GenomeNet	KEGG GENES	Genes and proteins Release history		
BGET/LinkDB	REGG LIGAND	Chemical Information [Reaction modules]		
eedback	Entry point for wid KECC MEDICUS	er society		
		entre points		
anehisa Labs	KEGG Organisms	Enter org code(s) Go hsa hsa eco		
	Analysis tools			
	KEGG Mapper	KEGG PATHWAY/BRITE/MODULE mapping tools		
	KEGG Atlas	Navigation tool to explore KEGG global maps		
	KAAS	KEGG automatic annotation server		
	BLAST/FASTA	Sequence similarity search		
	SIMCOMP	Chemical structure similarity search		
	PathPred	Biodegradation/biosynthesis pathway prediction		

Copyright 1995-2012 Kanehisa Laboratories

図 1-2 KEGG(Kyoto Encyclopedia of Genes and Genomes) データベース

=0

OH Ôн

HO но

C00103

<u>__</u>

Glycerone phosphate

図 1-3 **KEGG PATHWAY map**

右の赤線で囲われた部分が左の反応経路に相当する。代謝化合物をノード(頂点)、代謝反 応をエッジ(辺)として表す。

1.6 代謝ネットワークのモジュール

近年、ゲノム配列解読手法の発展によりゲノム情報を比較的安価に解読でき るようになったことにより、計算機によってその生物種の代謝パスウェイを予 測する genome-driven な代謝パスウェイ再構築手法は、様々な研究で用いられて いる。このことにより、新規生物種の生合成能や分解能を予測できるようにな っただけでなく、代謝酵素の系統関係を網羅的に調べることで、代謝の進化に ついても解析が可能になりつつある。しかしながら、広範な代謝ネットワーク 中のどの経路が存在すればどのような化合物合成能や分解能と結びつくのかと いう、代謝の機能単位が明確になっていないことにより、計算機によるゲノム からの機能推定や表現型の進化の解明は未だ困難となっている。

ゲノム解読による代謝の再構築技術が広く使われるようになるにつれ、代謝 ネットワーク中の「機能モジュール」の同定への要求が急速に高まっている。 モジュール化は、複雑な問題を概念的に理解しやすい「部分」に分解すること であり、機能に関連付けられるモジュールは機能モジュールと呼ばれる。とこ ろが、モジュールの定義はそれを提唱した研究者によりそれぞれ異なる。

情報学の一分野であるネットワーク解析の領域では、ネットワークが高い頻 度で繋がりあったノードからなるサブネットワークに分割されるとき、それら はモジュール(図 1-4(a))[17]と呼ばれる。これらのノードの集合はネットワーク 中で一体となって振る舞い、一つの単位とみなされる。代謝ネットワークの解 析においては、代謝の挙動の予測や代謝系の頑健性(ロバストネス)を測るこ とを目的とした数理モデルの開発に、代謝のモジュール情報が用いられている。 ここでのモジュールとは、代謝ネットワークを機能的関連性の高いノードの集 合に分割したときに得られるサブパスウェイのことであり、モジュールの中の ノードが高頻度で繋がりあっているとは限らない(図 1-4(b)[18])。むしろ、代謝 パスウェイが分岐していないときそれらは機能的に関連しているとみなされる ため、ほとんどの反応は前後の反応のみとしか繋がっていない。このように、 ネットワーク解析におけるモジュールと代謝ネットワークのモジュールには定 義の違いが存在する(図 1-4)が、機能的単位であるという点では一致している。

図 1-4 ネットワークモジュール

⁽a) トポロジカルモジュール (b) 機能関連モジュール

代謝ネットワークのモジュールは、代謝パスウェイ中の機能の定義により、 様々な階層のモジュールを考えることができる。例えば、複合体を形成する酵 素のサブユニットとなるタンパク質群は物理的相互作用によって定義された機 能モジュールと考えることができるし、複数の酵素が関わる反応群や、複数の 反応から成る代謝系のサブカテゴリも、機能モジュールと考えることができる。 これらの階層的モジュールは、代謝ネットワークを全体から部分へと階層的に 定義することで、下位階層の機能の詳細を知らなくても上位階層の機能を理解 できるようネットワークを簡略化することができ、複雑な代謝ネットワークの 体系的理解を助ける。

先に述べたとおり、代謝ネットワークは遺伝的ネットワークであると同時に、 化学的ネットワークでもある。化学的ネットワークの進化には、遺伝的な制限 だけでなく、有機反応論に基づいた化学反応性という制限が存在すると考えら れる。この制限が存在することは、これまで蓄積された代謝ネットワーク中に、 反応を共有していながら遺伝的類縁関係の見られない連続反応が報告されてい ることからも推測される。

これらの保存された連続反応は、生物の代謝能に対して制限を与える有機化学 的禁制律に従って、酵素が収斂進化してきた結果であると考えられる。重要な ことに、このような禁制律は、好気性・嫌気性や酸性度など生物の生息環境に 依存し、より表現型に直結する機能を反映している。これらのことから、我々 は代謝ネットワークの階層的理解には、化学反応によって機能を定義されたモ ジュール(化学反応モジュール)の階層が必要であると考えた。 1.7 パスウェイアライメント

代謝ネットワークから保存された反応列を見つけ出すためには、異なる基質に 対して起こる反応間の類似性を定義し、経路の類似性を検出するパスウェイア ライメントの手法が必要となる。経路の類似性は、経路を構成する反応の類似 性の総和で定義され、反応間の類似性をどのように定義するかが要となる。パ スウェイアライメント問題に対しては、これまで様々な手法が開発されてきた。 酵素間の類似性には、従来法ではアミノ酸配列類似性や上述のスーパーファミ リーを用い、オーソログ酵素遺伝子をパスウェイ中の該当する反応に当てはめ る。この手法では、酵素タンパク質のアミノ酸配列が決定された代謝反応のみ が対象となる。この方法の限界としては、既に述べたように、配列類似性が必 ずしも反応類似性を意味しないことが挙げられる。Tohsato らは EC 番号の類似 性を酵素間の類似性と定義し、代謝ネットワークから類似した反応ステップを 見つけ出す手法を提案した[19]。Pinter らは Tohsatoの EC 番号による定義を踏襲 し、異なる生物種や多様化した経路の間で保存された経路を検出する手法を開 発した[20]。Wernicke らは Pinter の代謝パスウェイアライメント手法をもとに、 より高速なアルゴリズムを提供し[21]、AyらはEC番号類似性と代謝化合物類似 性とを結びつけ、代謝ネットワークのトポロジーの類似性をパスウェイアライ メントに利用した[22]。

上記の、オーソログ酵素遺伝子を該当する反応に割り当てる方法は、同一の酵素により触媒される同一の反応からなるパスウェイしか扱うことができない。

22

EC 番号類似性を用いた手法では同一の反応だけでなく、EC 番号の階層に基づ き類似した反応も考慮することが可能である。しかしながら、EC 番号は実験的 に活性が確認された酵素とその反応に対し酵素委員会の承認を経て与えられた、 酵素の分類であり、EC 番号の類似性は必ずしも反応の類似性を保証しない。ま た、分類階層の深さと反応の類似度の関連性の高さは異なる分類群間で一致し ておらず、類似性をスコアで定義することが難しい。例えば、一部の EC 階層に おいては、主産物の有機反応の分類よりも補酵素の一致などが優先され、必ず しも有機反応の類似性が反映されていない例が散見される(図 1-5)。さらに、EC 番号は酵素委員会により承認の得られた酵素だけではなく、ゲノム中の遺伝子 に対し配列類似性に基づいてアノテーション(注釈付け)されている例が多い ため、純粋に反応の類似性によって分類されたものではない。実際に多くの解 析において、配列類似性に基づく方法と大きな差が無いことが示されている。 したがって EC 番号の類似性は、酵素触媒反応の化学的多様性の比較のようなシ ステマティックな解析に適した基準であるとは言えない。

(a) 異なる EC sub-sub classes に分類されたヒドロキシラーゼ反応

図 1-5 EC 階層分類の問題点の例

ヒドロキシラーゼの EC 階層分類。(a)基質と産物の有機反応は類似しているにも拘らず、 補酵素の違いによって異なる EC sub-sub classes に分類されたヒドロキシラーゼ反応 (b) 反応中心となる原子種が異なるにも拘らず、補酵素が同一であるために同一の EC sub-sub classes に分類されたヒドロキシラーゼ反応 Reprinted and modified with permission from J Chem Inf Model., (2013)53, 613-622. Copyright 2013 American Chemical Society.

1.8 本研究の目的

本研究では、代謝反応の化学に焦点を当てた。我々はまず、「ゲノム上で連続 して存在する遺伝子クラスターによって明らかにされた遺伝的機能単位は、有 機反応の化学的機能単位を反映している」という作業仮説を立てた。そこで我々 は酵素タンパク質や酵素遺伝子の配列情報を用いることなしに、化学構造変化 だけに基づいて反応モジュールを抽出する手法を開発した。

前項に述べたこれまでのパスウェイアライメントの問題点を考慮し、我々は、 酵素タンパク質や酵素遺伝子の配列情報を用いることなしに、化学構造変化だ けに基づいて反応モジュールを抽出する手法を開発する必要があると考えた。 そこで本著ではまず、パスウェイアライメントのための新規の類似性指標を提 案する。本指標は、代謝パスウェイ中の化学構造変換パターンの類似性に基づ き、タンパク質の配列情報や EC 番号を一切用いない化学的類似性指標である。 本手法では、反応類似性の定義に基質と産物の化合物ペアから抽出された構造 上の局所的変化を利用した。データセットは KEGG データベース[12]中の KEGG RPAIR (reactant pair)データベース及び KEGG RCLASS(reaction class)データベー スから取得した。KEGG RPAIR は既知の酵素触媒反応の基質・産物ペアとその 化学構造変換パターンを集めたものである。KEGG RCLASS は、代謝反応の主 なる基質と産物のペアに相当する"*main*"というタイプ(後述)に分類される化合 物ペアについて、同一の構造変化パターンを有するものを同一の反応クラスと してまとめたデータベースである。 上記の化学反応類似性指標を用いて、代謝ネットワークデータベースから保存 された連続反応の抽出を行った。代謝パスウェイ上の連続反応のパターンが異 なる経路に保存されて出現するとき、本研究ではこの連続反応パターンを反応 モジュールと定義した。この反応モジュールを、RCLASS エントリ間の類似性 スコアを用いて、KEGG 代謝パスウェイから体系的に抽出した。得られた反応 モジュールを、ゲノム上で連続して存在する遺伝子クラスターによって明らか にされた遺伝的機能単位を集めた、KEGG MODULE データベース中のパスウェ イモジュールと比較した。

第2章 データセット

2.1 代謝パスウェイデータベース

本解析ではデータソースとして KEGG データベース(http://www.kegg.jp/) release 62.0+ (May 24, 2012)を使用した。KEGG PATHWAY データベースは、文献 から収集された分子間相互作用や反応ネットワークに関する知識のコレクショ ンであり、集められた知識はマップ上に表記することにより可視化されている。 我々は KEGG PATHWAY データベースの代謝のセクションに蓄積されているパ スウェイ情報を用いた。典型的な KEGG 代謝パスウェイマップは、低分子化合 物が酵素により触媒される反応によってどのように変換されるかを描写してい る。KEGG PATHWAY では代謝化合物をノード(頂点)、代謝反応をエッジ(辺) として表し(図 1-3)、代謝反応に KEGG ORTHOLOG データベース中のオーソロ グ情報との関連付けがなされている。通常、KEGG PATHWAY データベース中の マップは種特異的ではなく、異なる生物種からの情報を統合したリファレンス パスウェイと呼ばれる一つのマップに表わされている。このリファレンスパス ウェイマップ上の反応に関連付けられたオーソログ遺伝子から、目的のゲノム に含まれる遺伝子を探し出すことで、種特異的なパスウェイを生成し利用でき る。つまり、遺伝子のネットワークと反応のネットワークという代謝系の二つ の側面は、KEGG REACTION データベースの酵素反応のエントリに対応する KEGG リファレンスパスウェイマップ上の各々の反応が、KEGG ORTHOLOGY データベースに蓄積された酵素のオーソログ遺伝子エントリと対応付けられる

ことによって表現されている。KEGG は XML (Extensible Markup Language) 形式 でもデータを提供しており、パスウェイマップの XML ファイルは隣り合った酵 素の関係についての情報を含んでいる。本研究ではリファレンスパスウェイの XML ファイルから得た情報を元に、代謝パスウェイからの連続した反応ステッ プの抽出を行った。

2.2 反応ペア

KEGG REACTION データベースは IUBMB(The International Union of Biochemistry and Molecular Biology)の承認した酵素反応[2]および KEGG が独自 に文献より収集した既知の全酵素反応を蓄積する。本研究で用いたバージョン の KEGG リリースには 8,990 の反応が蓄積されている。KEGG 代謝パスウェイ 上に出現する反応に限れば、6,238 の反応が蓄積される。通常、酵素反応は酵素 反応式という形で表され、一つの反応に複数の基質と生成物が関わっている例 も多い。KEGG RPAIR データベースでは酵素反応中の水素以外の原子の流れに 基づいて、基質と生成物の一対一関係を反応ペアとして定義している。つまり、 一つの酵素反応式は、基質・生成物をノード(頂点)とし、それらを結ぶ複数 の反応ペアをエッジ(辺)とする反応ペアグラフ(図 2-1)として表現されている と言える。本研究で用いたバージョンの KEGG RPAIR データベースには、13,448 の反応ペアが蓄積されている。各々の反応ペアの構造変換パターンは、化学構 造比較プログラム SIMCOMP[23]を用い基質・生成物間の原子-原子マッピングを 自動的に計算した後、専門家による修正を加えた結果を元に、RDM 表記法(後述)によって記述されている。

図 2-1 反応ペアグラフ

全ての反応ペアは、反応ペアグラフのトポロジー(接続関係)や原子種の情報 に基づき main、trans、cofac、leave 及び ligase の5 種類のタイプにクラス分けさ れている。原子の主な流れを示す反応ペアグラフ(図 2-1)中で、少なくとも一 つのペアは main に分類される。main に分類される反応ペアは、例えば酸化還元 反応から NAD+などの補酵素を除いた基質・生成物のペアなど、その反応の主 たる反応であると見なされている反応ペアであり、KEGG 代謝パスウェイ上に 現れる化合物ペアと一致する場合が多い。酸化還元反応の補酵素のペアは cofac に分類され、合成反応に関わる ATP などの三リン酸は ligase というタイプが与 えられている。trans に分類される反応ペアは転移酵素によって転移される官能 基(例えばアシル転移酵素におけるアシル基など)を表現するペアであること が多いが、厳密な定義としては「反応ペアグラフ中で二つの化合物(ノード) がそれぞれ二つ以上のエッジ(辺)を持つような反応ペア」である。ただし、 一つの酵素反応式から反応ペアグラフを形成した場合に trans に分類されていた 反応ペアであっても、代謝パスウェイ中の化合物の流れの中で一つのステップ を形成するとき、main に分類し直されることがあることに注意されたい。本研 究では解析の対象を main に分類された反応ペアに限定した。

2.3 KEGG atom type

KEGG 中の低分子化合物は KEGG Chemical Function (KCF)形式のファイルで グラフ構造として記述されている[23]。KCF 形式では、同じ原子種(炭素原子、 窒素原子など)であっても異なる官能基中の原子は異なる KEGG atom type とし て区別されている。(表 2-1) KEGG atom type は原則三つの文字から成る。一文 字目の英大文字は原子種を、二文字目の数字は各々の原子種に対し定義された 原子間結合の種類を、三文字目の英小文字は置換基の数など定義されたトポロ ジー情報を示す。例えばアルデヒドの炭素原子は C4a、第一級アミンの窒素原子 は N1a のように表される。生体低分子中の重要な官能基を区別できるよう、炭 素 23 種類、窒素 16 種類、酸素 18 種類、硫黄 7 種類、リン 2 種類、及びハロゲ ン原子とその他の原子に対して 1 種類ずつの、合計 68 の atom type がこれまで に定義されている。

表 2-1 KEGG atom type

Reprinted with permission from <u>J Chem Inf Model.</u>, (2013)53, 613-622. Copyright(2013) American Chemical Society.

Atom	Atom type	Functional group	Description	Atom	Atom type	Functional group	Description
	C1a	Alkane	R-CH3		O1a		R-OH
	C1b		R-CH2-R		O1b	Hudrova	N-OH
	C1c		R-CH(-R)-R		01c	nyuloxy	Р-ОН
	C1d		R-C(-R)2-R		O1d		S-OH
	C1x		ring-CH2-ring		O2a	- Ether	R-O-R
	C1y	Cyclic alkane	ring-CH(-R)-ring		O2b		P-O-R
	C1z		ring-CH(-R)2-ring		02c		Р-О-Р
	C2a		R=CH2		02x		ring-O-ring
	C2b	Alkene	R=CH-R	~	O3a		N=O
	C2c]	R=C(-R)2	0	O3b	Охо	P=O
	C2x	Cyclic alkono	ring-CH=ring		03c		S=0
С	C2y		ring-C(-R)=ring or ring-C(=R)-ring		O4a	Aldehyde	R-CH=O
	C3a	Allerno	R≡CH		O5a	Katana	R-C(=0)-R
	C3b	Aikyne	R≡C-R		05x	Ketone	ring-C(=O)-ring
	C4a	Aldehyde	R-CH=O		O6a	Carboxylic acid	R-C(=0)-OH
	C5a	Ketone	R-C(=0)-R		07a	Ector	R-C(=0)-O-R
	C5x	Cyclic ketone	ring-C(=O)-ring		07x	ESIEI	ring-C(=0)-O-ring
	C6a	Carboxylic acid	R-C(=0)-OH		00	Undefined O	
	C7a	Carboudia astor	R-C(=O)-O-R	S	S1a	Thiol	R-SH
	C7x	Carboxylic ester	ring-C(=0)-O-ring		S2a	This sale an	R-S-R
	C8x	Aromatic ring	ring-CH=ring		S2x	Inioether	ring-S-ring
	C8y		ring-C(-R)=ring		S3a	Disulfida	R-S-S-R
	C0	Undefined C			S3x	Disullide	ring-S-S-ring
	N1a	Amine	R-NH2		S4a	Sulfate	R-SO3
	N1b		R-NH-R		S0	Undefined S	
	N1c		R-N(-R)2	P	P1a	Attatched to other elements	P-R
	N1d		R-N(-R)3+		P1b	Attatched to oxygen	P-O
	N1x		ring-NH-ring	Other	Х	Halogens	F, Cl, Br, I
	N1y	Cyclic amine	ring-N(-R)-ring		Z	Others	
	N2a		R=N-H				
N	N2b	Imine	R=N-R				
N	N2x		ring-N=ring				
	N2y Cyclic imine	ring-N(-R)+=ring					
	N3a	Cyan	R≡N				
	N4x	Aromatic ring	ring-NH-ring				
	N4y		ring-N(-R)-ring				
	N5x		ring-N=ring				
	N5y	1	ring-N(-R)+=ring				
	N0	Undefined N					

2.4 RDM 化学構造変換表記法

各々の反応ペアは、まず基質と産物の化学構造を重ね合わせることで、一致部 分構造(M-substructure)と相違部分構造(D-substructure)に分けられる。一致部分 構造に位置する原子のうち相違部分構造に隣接する原子を反応中心原子(R 原 子)とし、R 原子と共有結合する原子のうち、相違部分構造側の原子を D 原子、 一致部分構造側の原子を M 原子とする(図 2-2)。反応の前後におけるこれら 3 つ の原子(R 原子、D 原子、M 原子)の KEGG atom の変化を示すことで化学変換 パターンを表現したものを、RDM 表記法と呼ぶ。反応ペア A,B について RDM 表記法は以下のようになる:

RDM(A, B) = RA-RB : DA-DB : MA-MB

例えば、第一級アミンで起こる典型的なアシル転移反応(図 2-2)は以下のよう に表される:

RDM = N1a-N1b:*-C5a:C1b-C1b

上記の表記法中では、*は置換反応における、KEGG atom types で定義されて いない水素原子に対応する。*が表記中に現れることは、水脱離反応を表す RDM (例: Clc-Clb:Ola-*:Clb+Clb-Clb+C4a)など、相違部分構造中に原子が存在し ないことを意味する場合があることに注意されたい。また、一つの RDM 表記法 は通常、反応内で起こった一つの化学結合変化を表す。一つの反応が二つ以上 の化学結合を生成したり分解したりする場合には、二つ以上の RDM 表記が必要 になる。[24]

図 2-2 RDM

化学構造比較プログラム SIMCOMP[23]は与えられた 2 つの分子構造について、それらの 間の最大共通部分構造を計算する。この計算は KEGG atom type をノードとしたグラフ構造 アライメント手法により行われる。得られた共通部分と非共通部分構造の境界に位置する ノードは反応中心原子(Reaction center atom)と定義され、反応中心原子に隣接する非共通部 分側のノードは Difference atom、共通部分側のノードは Matched atom と定義される。図中 のペアに対する Reaction center atom は N1a(C00025)⇔N1b(C00624)となる。Reaction center atom、Difference atom、Matched atom の 3 種類のノードを両構造から抽出し組み合わせたも のを RDM パターンと呼び、本研究ではこれを基質・産物間の構造変換パターンと定義した。 KCF 形式では水素原子は省略されるため、C00025 側の Difference atom は*で表記される。

酵素反応による化学構造変換のパターンを得る最初のステップは、反応ペアの 原子-原子マッピングに基づき反応中心原子を決定することである。SIMCOMP プログラム[23]によって生成された化学構造アライメント結果を基に、反応ペア 間の一致部分構造(M-substructure)を決定する。残りの相違部分構造 (D-substructures) は反応中に付加あるいは脱離した原子グループであるとみな される。上では説明の簡略化のため、M-substructureの原子のうち D-substructure と接する原子が反応中心原子(R原子)であると説明したが、厳密にはR原子の決 定にはより複雑なルールが適用される。(1) D-substructure に相当する原子(また は原子群)が反応ペア中に存在する場合は M-substructure 中の原子のうち D-substructure に結合する原子を R 原子とする。(2) D-substructure に相当する原 子が存在せず、少なくとも一つの原子の酸化数が変化している場合には、酸化 還元反応(又は水素付加/脱離)が起こっているとみなし、酸化数の変化した原 子をR原子とする。(3) D-substructure に相当する原子が存在せず、酸化数の変 化した原子も存在しない場合には、立体異性(R/S 異性)のキラル中心または 幾何異性(E/Z 異性)した二重結合原子を R 原子とする。

反応中心原子(R 原子)が決定したら、それに隣接する原子が定義される。R 原 子に隣接する原子のうち、D-substructure 中で R 原子に最も近傍に存在する原子 が D 原子、M-substructure 中のそれに M 原子と見なされる。反応ペアの化学構 造変換は R, D 及び M 原子の KEGG atom 変化を示す RDM 化学構造変換表記法 により表現される。

2.5 反応クラス

KEGG RCLASS データベースは、KEGG 代謝パスウェイマップ上に現れる反応 の化学構造変換パターンをクラス分けしたものである。ここでいう化学構造変 換パターンとは、一つの "main" 反応ペア中に含まれる RDM であり、ペアによ っては複数の RDM から構成されていることがある。データベース中のエントリ は RC 番号 ("RC"というアルファベットとそれに続く五桁の数字) という ID 番 号で識別される。言い換えれば、各々の RCLASS エントリは KEGG 代謝パスウ ェイマップ上に現れる基質-生成物ペアのうち、化学変換パターンが同一である ものの集合を示すことになる。RCLASS エントリは RPAIR データベースから自 動的に生成され、化学構造変換パターンを表す図やその他の情報は手作業で付 加されている。本研究で用いた RCLASS データベース中の RCLASS エントリ数 は 2,481 である。

第3章 結果1:代謝反応クラス類似性比較手法の開発

3.1 フィンガープリント表記

RDM 化学変換パターン及びそれに対応する RCLASS エントリは、本研究の目 的に対しては分類が細かすぎるため、本研究では RCLASS エントリ間の類似性 スコアリング手法を導入した。そのためにまず、KEGG atom type を 12 のキーを 用いたフィンガープリント(表 3-1)で表記した。

これらのキーは炭素原子、カルボニル基の炭素原子、π結合に参加する炭素原 子、酸素原子、不対電子を持つ酸素原子、窒素原子、リン原子、硫黄原子、ハ ロゲン、その他の金属原子及び芳香族環原子や環構造中の原子の存在の有無を 示す。KEGG atom type とキーの対応を表 3-2 に示す。次に RDM 表記を 72 ビ ットのフィンガープリント表記に変換した(図 3-1)。例えば、メチル(Cla)、メチ レン(Clb)及びその他の sp3 炭素原子 (Clc、Cld) は異なる KEGG atom types が 与えられているが、フィン

ガープリント表記では同一

のものとした。

表 3-1 フィンガープリントキー

Key	Feature	Exam ple
С	Carbon atom	A kane, A kene, A kyne
К	Carbonyl	Aldehyde, Ketone, Ester
E	C with pielectron	A kene, A kyne
0	0 xygen atom	Hydroxy, Ether, 0xo
U	0 with unpaired electron	0 xo, A ldehyde, Ketone, Ester
Ν	N itrogen atom	Amine, imine, Cyan
Р	Phosphorus atom	Phosphate
S	Sulfur atom	Thiol, sulfate
Х	Habgen	F, Cl, Br, I
Z	0 thers	Min, Zin
Α	Arom atic Ring	Arom atic
R	Ring	Cyclic

図 3-1 RDM 表記のフィンガープリント表記への変換

ピルビン酸とアセト乳酸(上)及びオキソブタン酸と2-アセト-2-ヒドロキシブタン酸(下) の反応ペアに対応する二つの RCLASS エントリ:RC00106及び RC01192 を示す。これらの RCLASS エントリに対する RDM 表記は M 原子(円で囲んだ)に相違があるものの、フィンガ ープリント表記では同一として扱われる。図では簡単のため、12 のキーのうちこれらの反 応ペアに関与する5つのキーのみを表示している。Reprinted with permission from J Chem Inf Model., (2013)53, 613-622. Copyright 2013 American Chemical Society.

3.2 RC エントリの類似性スコア

比較する二つのRCLASSエントリがそれぞれ一つずつのRDMしか持たない場合には、エントリ間の類似性スコアは二つのRDM間の類似性スコアに等しい。 比較対象のRDMはフィンガープリントキー(表 3-1、図 3-1)で定義された二値特 徴ベクトルのセットへと変換される。

$$F_{1} = RDM_{1} = \begin{bmatrix} v_{R1x} & v_{R1y} \\ v_{D1x} & v_{D1y} \\ v_{M1x} & v_{M1y} \end{bmatrix}, \quad F_{2} = RDM_{2} = \begin{bmatrix} v_{R2x} & v_{R2y} \\ v_{D2x} & v_{D2y} \\ v_{M2x} & v_{M2y} \end{bmatrix}$$

ここで、xとyは反応式中の左辺と右辺の化合物から定義されたベクトルを 指す。 二値特徴ベクトル $v_1 \ge v_2$ の間の類似性スコアは以下のジャッカード係数で定義した:

$$J(v_1, v_2) = \frac{|v_1^{*}v_2|}{|v_1| + |v_2| - |v_1^{*}v_2|}$$
|v|:特徴ベクトルッ中の1の数(キーの存在数)
|v_1^v_2|: 特徴ベクトルv_1とv_2の双方に1がアサインされているキーの

数

$$RDM_1$$
 と RDM_2 の間の類似性スコア S は以下のように定義した:

$$S(RDM_1, RDM_2) = w_R J_a(v_{R1}, v_{R2}) + w_D J_a(v_{D1}, v_{D2}) + w_M J_a(v_{M1}, v_{M2})$$
$$= S(RC_1, RC_2)$$

ただし

$$J_a(v_1, v_2) = \frac{J(v_{1x}, v_{2x}) + J(v_{1y}, v_{2y})}{2}$$

また

フィンガープリント v は R, D 及び M 毎にそれぞれ独立して比較される。また、ジャッカード係数 Ja は例えば D 原子が存在するかどうかなどによって重みづけした。

少なくとも一つの RCLASS エントリが複数の RDM を持つ場合には、類似性ス コアは以下のように定義した。(1)まず全ての可能な RDM の組み合わせ (RDM ペア) について類似性スコアを計算し、スコアの大きい順に並べる。このとき、 スコア 0.7 未満のペアは捨てる。(2) RDM ペアのうち、どちらか片方の RDM で も既に選択済みであれば、そのペアを捨て、次のペアを見る。(3) RDM ペアの うち、どちらの RDM とも未選択であれば、そのペアを選択し、次のペアを見る。 (4) プロセス 2 と 3 を、RDM ペアが無くなるまで繰り返す。(5) 以上のようにし て、選択された(マッチした)全ての RDM ペアについて類似性スコアの平均値 を計算し、マッチしなかった RDM に対するペナルティスコアを滅じたものを、 その RC1 と RC2 の類似性スコアと定義する。

$$S(\text{RC}_{1}, \text{RC}_{2}) = \frac{\sum_{i=0}^{N_{m}} S(RDM_{1}, RDM_{2})}{N_{m}} - w_{p} \cdot \frac{N_{u}}{N_{m} + N_{u}}$$

$$w_{p}$$
: アンマッチペナルティ = 0.5
 N_{m} : マッチした RDM の数($S(RDM_{x}, RDM_{y}) \ge 0.7$) RDMs
 N_{u} : マッチしなかった RDM の数

表 3-2 KEGG atom type と フィンガープリントキーの対応

Reprinted with permission from <u>J Chem Inf Model.</u>, (2013)53, 613-622. Copyright(2013) American Chemical Society.

C1a C O1a O C1b C O O1b O C1c C O O1b O C1d C R O1d O C1y C R O2a O C1z C R O2a O C2a C E O O2c O C2b C E R O3a O U C2c C E R O3a O U C3a C E O3a O U C3b C E O5a O U C5a C K R O7a O U C6a C K R S2a S S3a S C0 C C K R S3a S S C7x C K R S2a S <th>Atom</th> <th>Atom type</th> <th colspan="2">Fingerprint keys</th> <th>Atom</th> <th>Atom type</th> <th colspan="2">Fingerprint keys</th> <th></th>	Atom	Atom type	Fingerprint keys		Atom	Atom type	Fingerprint keys			
C1b C O		C1a	С				O1a	0		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		C1b	С				O1b	0		
$\begin{tabular}{ c c c c c c c } \hline C & C & C & R & C & C & R & C & C & C &$		C1c	С				O1c	0		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		C1d	С				O1d	0		
C1y C R O2b O C1z C R O2c O O2c O C2a C E O O2c O O O C2b C E C O O O U C2c C E R O3c O U C2c C E R O3c O U C3a C E O O U O O U C3a C E O O U O O U O O U O O U O O U O O U O O U O O U O O U O O O U O O O O O O O O O O O O O		C1x	С	R			O2a	0		
C1z C R O2c O C2a C E O2x O Ozx O C2b C E O3a O U Ozx O U C2c C E R O3a O U Ozx O U C2z C E R O3a O U Ozz O U C3a C E R O4a O U Ozz O U C3a C E N O5a O U Ozz O U Ozz O U Ozz Ozz O U Ozz O U Ozz O U Ozz Ozz O U Ozz <t< td=""><td></td><td>C1y</td><td>С</td><td>R</td><td></td><td></td><td>O2b</td><td>0</td><td></td><td></td></t<>		C1y	С	R			O2b	0		
C2a C E O O2x O C2b C E O O3a O U C2c C E R O O3b O U C2y C E R O O4a O U C3a C E R O5a O U C3b C E O5a O U C3b C E O5a O U C5a C K R Ofa O U C6a C K R O7a O U C6a C K R S S1a S C7x C K R S2a S S3a S C6b C A S S3a S S S N1b N N N S0 S S		C1z	С	R			O2c	0		
C2b C E O O3a O U C2c C E R 03b O U C2x C E R 03c O U C2y C E R 03c O U C3a C E 05x O U C3b C E 05x O U C3b C E 05x O U C5a C K R 06a O U C5a C K R 07a O U C5a C K R 22a S S C7a C K R S2a S S C8y C A S S3a S S C0 C C S S3a S S N1a N N		C2a	С	Е			O2x	0		
C2c C E O O3b O U C2x C E R O3c O U C3a C E R O4a O U C3b C E R O5a O U C3b C E O5a O U C3b C E O5a O U C3b C K O6a O U C5a C K R O7a O U C5a C K R O7a O U C6a C K R S2a S S C7a C K R S3a S S C8x C A S S3a S S C0 C A S S3a S S N1a N R		C2b	С	Е			O3a	0	U	
C2x C E R O3c O U C3a C E R O4a O U C3a C E R O5s O U C3b C E O5s O U C3b C E Offa O U C4a C K Offa O U C5s C K R Offa O U C5s C K R O77a O U C6a C K R S2a S S3a C7x C K R S2a S S3a C8x C A S S3a S S C8y C A S S3a S S N1t N R P P1a P N11d N R V </td <td></td> <td>C2c</td> <td>С</td> <td>Е</td> <td></td> <td></td> <td>O3b</td> <td>0</td> <td>U</td> <td></td>		C2c	С	Е			O3b	0	U	
C C2y C E R O4a O U C3a C E 05a O U C3b C E 05a O U C3b C E 06a O U C4a C K 06a O U C5a C K R 07a O U C5a C K R 07a O U C6a C K R 000 O O C7a C K R S2a S S3a S C8x C A S S3a S S S3a S C0 C K R S3a S S S C8y C A S S3a S S S N1t N R P P1a P		C2x	С	Е	R		O3c	0	U	
C3a C E O5a O U C3b C E 05a O U C3b C E 05a O U C4a C K 06a O U C5a C K R 07a O U C5x C K R 07a O U C6a C K R 00 O U C6a C K R S1a S S C7a C K R S22a S S C8x C A S S3a S S C0 C S S3a S S S N1a N R S S S S N1d N R Other Z Z Z N2a N A N	С	C2y	С	Е	R		O4a	0	U	
C3b C E O5x O U C4a C K 06a O U C5a C K 07a O U C5x C K R 07a O U C6a C K R 07a O U C6a C K R 000 O U C7a C K R S1a S S C7x C K R S2a S S C8x C A S S3a S S C0 C S S3a S S S N1a N S S0 S S S N1d N R Other Z Z Z N2a N R N N N N N N2x N		C3a	С	Е			O5a	0	U	
C4a C K O6a O U C5a C K R O7a O U C5x C K R O7a O U C6a C K R O7a O U C6a C K R O0 O U C7a C K R S1a S S C7x C K R S22a S S C8x C A S S3a S S C0 C S S3a S S S N1a N S S0 S S S N1d N R P P1a P N1d N R Other Z Z Z N2a N R S S S S N2y N		C3b	С	Е			O5x	0	U	
C5a C K O7a O U C5x C K R O7a O U C6a C K R O0 O U C6a C K R O0 O U C7a C K R S1a S S C7x C K R S2a S S C8x C A S S3a S S C0 C S S3a S S S C0 C S S3a S S S N1a N S S S S S N1c N R P P1a P N1d N R Other Z Z N2x N R S S S N2x N R S <td< td=""><td></td><td>C4a</td><td>С</td><td>к</td><td></td><td></td><td>O6a</td><td>0</td><td>U</td><td></td></td<>		C4a	С	к			O6a	0	U	
C5x C K R O7x O U C6a C K N O0 O<		C5a	С	к			O7a	0	U	
C6a C K O0 O C7a C K N \$1a \$ C7x C K R \$22a \$ C8x C A \$22x \$ C8y C A \$ \$33a \$ C0 C S \$33a \$ \$ N1a N \$ \$ \$ \$ N1b N \$ \$ \$ \$ N1c N \$ \$ \$ \$ N1d N \$ \$ \$ \$ N1d N \$ \$ \$ \$ N1x N \$ \$ \$ \$ N1x N \$ \$ \$ \$ N2a N \$ \$ \$ \$ N2a N \$ \$ \$ \$ N4y N		C5x	С	к	R		O7x	0	U	
C7a C K S1a S C7x C K R S2a S C8x C A S S2a S C8y C A S S3a S C0 C S S3a S N1a N S0 S N1b N S0 S N1c N P P1a P N1d N R Other Z Z N1x N R Other Z Z N2a N R N N N N2a N R N N N N2x N R N N N N3a N A N A N N5x N A N A N N5y N A N N Im <		C6a	С	к			00	0		
C7x C K R S2a S C8x C A S S2x S C8y C A S S3a S C0 C S S3a S N1a N S0 S N1b N S0 S N1c N P P1a P N1d N R Other Z Z N1x N R Other Z Z N2a N R N N N N2b N R N N N N2x N R N N N N4x N A N N N N N5x N A N N N N N0 N N N N N N N N N <td< td=""><td></td><td>C7a</td><td>С</td><td>к</td><td></td><td></td><td>S1a</td><td>S</td><td></td><td></td></td<>		C7a	С	к			S1a	S		
C8x C A S S1a S C0 C A S S3a S C0 C S S3a S N1a N S0 S N1b N S0 S N1d N P P1a P N1d N R Other Z Z N1x N R Other Z Z N2a N N N N N N2x N R N N N N3a N A N N N N4x N A N A N A N5x N A N A N A N5x N A N A N A N5y N A N A N A A A A		C7x	С	к	R		S2a	s		
C8y C A S S3a S C0 C S3x S S3x S N1a N S0 S S S N1b N S0 S S S N1c N P P1a P N1d N R Other Z Z N1x N R Other Z Z N2a N N N N N N2b N R N N N N2x N R N N N N3a N A N A N A N5x N A N A N A N5y N A N A N A N5y N A N A N A N5y N A		C8x	С	А			S2x	s		
C0 C S3x S N1a N S4a S N1b N S0 S N1c N P P1a P N1d N P P1b P N1x N R Other Z Z N2a N N N N N N2z N R N N N N2y N R N N N N N3a N A N		C8y	С	А		s	S3a	s		
N1a N S4a S N1b N S0 S N1c N P P1a P N1d N P P1b P N1x N R Other Z Z N2a N N N N N N2x N R N N N N2x N R N		C0	С				S3x	s		
N1b N S0 S N1c N P P1a P N1d N P P1b P N1x N R Other Z Z N2a N N R Other Z Z N2x N R N3a N N N N N3a N A N4x N A N A N5x N A N N A N A N5y N A N		N1a	N			1	S4a	S		
N1c N P P1a P N1d N P P1b P N1x N R Other Z Z N1y N R Other Z Z N2a N N R N R N2x N R N R N N3a N A N4x N A N5x N A N A N5y N A N A N5y N A N A N5y N A N A		N1b	N				S0	s		
N1d N P P1b P N1x N R Other X X N1y N R Other Z Z N2a N N R Image: Constraint of the state of the sta		N1c	N				P1a	P		
N1x N R Other X X N1y N R Other Z Z N2a N Z Z Z N2b N Z Z Z N2x N R Z Z N2y N R Z Z N3a N Z Z Z N4x N A Z Z Z N4x N A Z Z Z N5x N A Z Z Z N5y N A Z Z Z		N1d	N				P1b	Р		
N1y N R Other Z Z N2a N		N1x	N	R		011-0-0	Х	Х		
N2a N N2b N N2x N N2y N N3a N N4x N N4y N N5x N N5y N N0 N		N1y	N	R		Other	Z	z		
N2b N N2x N R N2y N R N3a N N N4x N A N4y N A N5x N A N5y N A N0 N A		N2a	N							
N N2x N R N2y N R N3a N	N	N2b	N							
N2y N R N3a N N4x N A N4y N A N5x N A N5y N A N0 N	N	N2x	N	R						
N3a N N4x N A N4y N A N5x N A N5y N A N0 N A		N2y	N	R						
N4x N A N4y N A N5x N A N5y N A N0 N A		N3a	N							
N4y N A N5x N A N5y N A N0 N A		N4x	N	А						
N5x N A N5y N A N0 N A		N4y	N	А						
N5y N A N0 N		N5x	N	А						
NO N		N5y	N	А						
		N0	N							

3.3 RCLASS エントリの類似性によるグループ化

本解析では RCLASS エントリの類似性スコアの閾値を 1.0 としてグループ化 した(他の閾値は他の解析で利用した)。この閾値の意味するところは、RCLASS エントリをグループ分けするために、RDM 表記をフィンガープリント表記に変 換し、その表記の完全一致するものを同じグループと見なしたということにな る。グループ化の結果、2,481 の RCLASS エントリは 376 の類似グループ(複数 のエントリから成るグループ)と、1,190 のシングルトン(単一のエントリから 成る、他のどのエントリともグループ化されなかったもの)に分けられた。

3.4 RCLASS 保存配列パターンの抽出

上で定義された RCLASS エントリ間の類似性指標を用い、我々は代謝ネット ワークからの連続反応パターンの抽出を行った。ここで連続反応パターンとは、 異なる代謝パスウェイから抽出された連続反応に共通して出現する RCLASS の 保存配列パターンと定義した。連続反応パターンの抽出は以下の方法で行った。 KEGG PATHWAY データベース中の既知の代謝パスウェイを、全ての可能な 2~8 個の線形な連続反応列に分割した。例えば、5 つの連続反応(A-B-C-D-E)から

なる線形経路からは、長さ2の反応列が4つ(A-B, B-C, C-D, D-E)、長さ3の反 応列が3つ(A-B-C, B-C-D, C-D-E)、長さ4の反応列が2つ(A-B-C-D, B-C-D-E)、 及び長さ5の反応列が1つ(A-B-C-D-E)得られ、それ以外の長さの反応列は得ら れない。分岐を含むパスウェイの場合は、全ての組み合わせの線形な連続反応 列へと分割した(図 3-2 (a))。経路が不可逆反応を含む場合には、逆方向の反応を 含む連続反応列は除外した。環状経路については、全ての可能な連続反応列を 生成したが、同一の反応が二度以上出現するような反応列は除外した。

図 3-2 パスウェイからの保存連続反応パターンの抽出

(a) 代謝パスウェイからの長さ 3~8(図中では 3)の反応列の抽出(b)反応(R番号)列の
 RCLASS(RC番号)配列への変換及び共通 RCLASS(RC番号)配列パターンの抽出
 Reprinted with permission from <u>J Chem Inf Model.</u>, (2013)53, 613-622. Copyright 2013 American Chemical Society.

次に、連続反応列を構成する反応の ID 変換を行った。生成された反応列は、 KEGG の酵素反応を意味する R 番号 (アルファベット R とそれに続く5桁の数 字)が2~8個だけ連なった列から成っている。その R 番号を、それが属する RCLASS を意味する RC 番号 (アルファベット RC とそれに続く5桁の数字)の 配列に変換した。こうすることで、連続反応列を構成する個々の反応が違って いても (R 番号が違っていても)、同じ化学構造変換を連続して起こす^{*}(同じ RC 番号を持つ)場合には、それらは同一であるとみなされるようにした。また、 RC 番号が違っていても、フィンガープリント表記により同じ類似グループに属 する場合には類似した化学構造変換であるとみなした。以上のようにして、 KEGG 代謝パスウェイ全体からそれぞれの長さについての RCLASS 保存配列パ ターンを抽出した。

第4章 結果2:化学反応モジュール

4.1 抽出された保存反応列パターン

代謝パスウェイデータベースから抽出した 2~8 個の長さの連続反応配列をそ れぞれの長さごとに独立に計算し、得られた保存配列パターンのうち短いパタ ーンが長いパターンに完全に含まれている場合にはそれらを取り除いた。その 結果、3,016の保存配列パターンが得られた。得られた保存配列の長さと数を表 4-1に示した。パスウェイを構成する 6,238 反応中で RCLASS のアサインされて いる 5,805 反応のうち、およそ 60%が保存された配列パターンに含まれていた。 我々は手作業で結果を精査し、生化学的意味付けしたものを反応モジュールと 定義した。(表4-2)

4.2 反応モジュールの出現頻度

反応モジュールの分布の傾向として、短いものほど多種類のパスウェイに出現 し、長いものほど一部の代謝系に偏って存在していた(図 4-1)。最も多くのパス ウェイから得られたのはリン酸化の繰り返し反応であった。本研究では最長 8 反応までのモジュールを抽出したが、8反応のモジュールの多くはリン酸化ま たは配糖化の繰り返しを含むモジュールであった。繰り返し反応を除くと、最 も長い反応モジュールは生分解経路に出現するキシレン分解モジュールであっ た。

表 4-1	KEGG 代謝パスウェ	イ中に見つかった RC	LASS 保存配列パターンの	⊃数
-------	-------------	-------------	----------------	----

Length	# of conserved	# of reactions	Coverage*
	patterns	included	
2	928	3,479	0.599
3	770	2,503	0.431
4	534	1,662	0.286
5	338	1,074	0.185
6	218	765	0.132
7	140	527	0.091
8	88	399	0.069
Total	3,016		

* KEGG 代謝パスウェイ上で RC が与えられた反応の総数 5,805 反応に対する割合

図 4-1 代謝カテゴリ特異的に出現する反応モジュールの割合

表 4-2 反応モジュールの一覧

それぞれの詳細は KEGG Reaction Module データベース

(http://www.genome.jp/kegg/reaction/rmodule.html)において公開されている。Reprinted with

permission from <u>J Chem Inf Model.</u>, (2013)53, 613-622. Copyright 2013 American Chemical

Society.

Catego	ry I	RC	Description	Length	
Carbox	cylic ac	rid metabo	blism		
2	l-Oxoc	arboxylic	acid chain extension		
	F	RM001	2-Oxocarboxylic acid chain extension by tricarboxylic acid pathway	5	
2-Oxocarboxylic acid chain modification					
	H	RM002	Carboxyl to amino conversion using protective N-acetyl group (basic amino acid syn	5	
	F	RM032	Carboxyl to amino conversion	5	
	F	RM033	Branched-chain addition (branched-chain amino acid synthesis)	3	
	H	RM030	Glucosinolate synthesis	4	
F	atty a	cid synths:	is and degradation		
	H	RM018	Beta oxidation in acyl-CoA degradation	5	
	H	RM019	Acyl-CoA synthesis and degradation via 3-hydroxy-acyl-CoA	4	
	H	RM020	Fatty acid synthesis using acetyl-CoA (reversal of RM018)	4	
	H	RM021	Fatty acid synthesis using malonyl-CoA	4	
Aromat	tics de	gradation			
Ν	viethyl	to carbox	yl conversion on aromatic ring (preprocessing module)		
	H	RM003	Methyl to carboxyl conversion on aromatic ring	3	
	H	RM015	Methyl to carboxyl conversion on aromatic ring, anaerobic	6	
Γ	Dihydro	oxylation	of aromatic ring		
	Ē	RM004	Dihydroxylation of aromatic ring, type 1 (dioxygenase and dehydrogenase reactions)	2	
	H	RM005	Dihydroxylation of aromatic ring, type 1a (dioxygenase and decarboxylating dehydro	2	
	F	RM006	Dihydroxylation of aromatic ring, type 2 (two monooxygenase reactions)	2	
	H	RM007	Dihydroxylation of aromatic ring, type 3 (dealkylation and monooxygenase reactions)	2	
C	leava	ge of arom	natic ring		
	H	RM008	Ortho-cleavage of catechol (beta-ketoadipate pathway)	4	
	H	RM009	Meta-cleavage of catechol	6	
	F	RM013	Ortho-cleavage of halogenated aromatic ring	3	
	F	RM016	Ring cleavage via beta oxidation, anaerobic	3	
	H	RM017	Ring cleavage via Baeyer-Villiger oxidation	5	
Γ	Dihydro	oxylation	and cleavage of aromatic ring		
	Ē	RM010	Dihydroxylation and meta-cleavage of aromatic ring, type 1	4	
	H	RM011	Dihydroxylation and meta-cleavage of aromatic ring, type 1b	3	
	H	RM012	Dihydroxylation and meta-cleavage of aromatic ring, type 3a	5	
	H	RM014	Ring removal from polycyclic aromatic ring	7	
Other					
A	Amino	acid metal	bolism		
	H	RM025	Conversion of amino acid moiety to carboxyl group (biogenic amine metabolism)	3	
N	Vucleo	tide metab	polism		
	F	RM024	Pyrimidine degradation	3	
Sugar metabolism					
	H	RM022	Nucleotide sugar biosynthesis, type 1	3	
	F	RM023	Nucleotide sugar biosynthesis, type 2	2	
	F	RM034	Sugar degradation to aldehyde and pyruvate	4	
A	Aromat	tics metab	olism		
	H	RM027	Hydroxylation and methylation motif	2	
	H	RM026	Hydroxylation and decarboxylation motif	2	
	F	RM028	Flavonoid synthesis	3	
	H	RM029	Pterocarpan synthesis	3	
	F	RM031	Oxime to acetate conversion	3	

4.3 反応モジュールの一般的特性

表 4-2 に示した反応モジュールについて 3 つの一般的特性が見出された。第一 に、反応モジュールは異なる化学物質を生成する異なるパスウェイで繰り返し 出現していた。第二に、反応モジュールは代謝ネットワークの基本構成要素で あるかのように組み合わせられて用いられていることが分かった。第三に、も っとも重要なことには、反応モジュール(RC モジュールと呼ぶ)は基質・生成 物の化学構造変化という化学的特性のみから得られたにも関わらず、ゲノム上 の酵素のオーソログ遺伝子クラスターにより定義された KEGG パスウェイモジ ュール(KO モジュールと呼ぶ)、特に酵素群をコードするオペロン様構造の遺 伝子クラスターと対応する傾向があった。言い換えれば、我々が導入部で言及 した作業仮説「ゲノム上で連続して存在する遺伝子クラスターによって明らか にされた遺伝的機能単位は、有機反応の化学的機能単位を反映している」と矛 盾しない結果が得られたと言える。次節で、表 4-2 のうち Carboxylic acid metabolism と Aromatics degradation について詳しく述べる。

4.4 各化学反応モジュールの生化学的意味付け

4.4.1 2-オキソカルボン酸鎖の伸長

最も特徴的な反応モジュールの一つが、重要な前駆体代謝化合物クラスである2-オキソカルボン酸の主鎖伸長モジュール RM001 であった(図 4-2)。この モジュールは TCA 回路中のクエン酸やその他のトリカルボン酸に関係する良く 知られた連続反応列に対応しており、アセチル CoA 中のアセチル基の炭素がオ キサロ酢酸(oxaloacetate)から2-オキソグルタル酸へ、つまり4炭素化合物(C4)か ら 5 炭素化合物(C5)へと 2-オキシカルボン酸鎖を伸長するのに用いられる(図 4-2:i)。実際にこのモジュールはトリカルボン酸を含む TCA 回路の一部として抽 出された。興味深いことに、我々は同じ RM001 反応モジュールを異なる3つの パスウェイから同定した。一つはリジン生合成パスウェイ(map00300)における 2-オキソグルタル酸(C5)の 2-オキソアジピン酸(C6)への更なる伸長である(図 4-2:ii)。もう一つはバリン、ロイシン、イソロイシン生合成経路(map00290)で見 つかる、ピルビン酸の 2-オキソブタン酸への伸長(図 4-2:iii)、及び 2-オキソイ ソ吉草酸の 2-オキソカプロン酸への伸長である(図 4-2:iv)[25]。更に、植物二 次代謝化合物であるグルコシノレートの合成パスウェイ(map00966)では、2-オキ ソ-4-メチルチオブタン酸から 2-オキソ-10-メチルチオデカン酸までの経路に RM001 モジュールが6回、繰り返し並んでいることが見つかった。クエン酸回 路の KEGG パスウェイマップでのオキサロ酢酸から 2-オキソグルタル酸への変 換(RM001)は次のように表される:まずオキサロ酢酸とアセチル CoA がクエン 酸を生成し(RC00067)、次に cis-aconitate へと変換され(RC00498)、さらにイソク エン酸へと変換され(RC00618)、最後に2反応ステップ(RC00084+RC00626)もし くはその全体反応(RC00114)で2-オキソグルタル酸へと変換される(図4-2:i)。 このように、最後の変換が2ステップの連続反応として表されたり全体反応と して表されたりするのは、EC 番号が必ずしも反応だけに着目した分類法ではな いことによる。同じ構造変換を起こす反応であっても、EC 1.1.1.42 (isocitrate dehydrogenase (NADP+))では 2 ステップの反応が詳細に記述され、EC 1.1.1.41 (isocitrate dehydrogenase (NAD+)) はそれらを 1 つの反応とみなした反応式しか 定義されていない(RC00114)(図 4-3)。同様に、2 番目と 3 番目の反応 (RC00498+RC00618)は同一の酵素 EC 4.2.1.3 によって触媒されるひとつの反応

(クエン酸からイソクエン酸への1ステップの反応)と見なすこともできるが、 このように詳細ステップが明らかになっている反応は、全体反応よりも各反応 ステップに対しR番号やRC番号などのIDが割り当てられているため、KEGG の代謝パスウェイ中には含まれていない。表 4-3 に示すように、RM001反応モ ジュールは明らかに異なる RCLASS 配列から成るが、これらの背景を考慮する と実際には同じものと言うことが出来る。 (i)

図 4-2 2-オキソカルボン酸伸長モジュール(RM001)

2-オキソカルボン酸伸長モジュールは1分子の acetyl-CoA を消費して 2-オキソカルボン酸鎖を伸長する。(i)オキサロ酢酸から 2-オキソグルタル酸への伸長 (ii)2-オキソグルタル酸から 2-オキソアジピン酸への伸長 (ii)ピルビン酸の 2-オキソブタン酸への伸長 (iv)2-オキソイソ吉草 酸の 2-オキソカプロン酸への伸長. (v) 2-オキソ-4-メチルチオブタン酸から 2-オキソ-5-メチルチオデカン酸までの伸長 Reprinted with permission from J Chem Inf Model., (2013)53, 613-622. Copyright 2013 American Chemical Society.

EC 1.1.1.42 (isocitrate dehydrogenase (NADP+))では2ステップの反応が詳細に記述され、EC 1.1.1.41 (isocitrate dehydrogenase (NAD+)) はそれ らを 1 つの反応とみなした反応式しか定義されていない(RC00114) Reprinted with permission from <u>J Chem Inf Model., (2013)53, 613-622.</u> Copyright 2013 American Chemical Society.

表 4-3 2-オキソカルボン酸関連反応モジュール群

Reprinted with permission from <u>J Chem Inf Model.</u>, (2013)53, 613-622. Copyright 2013 American Chemical Society.

RC module	Pathway	Overall reaction	RCLASS sequence
RM001	Citrate cycle (map00020)	oxaloacetate \rightarrow 2-oxoglutarate	RC00067 RC00498 RC00618 RC00084+RC00626
	Lysine biosynthesis (map00300)	2-oxoglutarate \rightarrow 2-oxoadipate	RC00067 RC00498 RC00618 RC00114
	Isoleucine biosynthesis (map00290)	pyruvate \rightarrow 2-oxobutanoate	RC01205 RC00976 RC00977 RC00417
	Leucine biosynthesis (map00290)	2-oxoisovalerate → 2-oxoisocaproate	RC00470 RC01041 RC01046 RC00084+RC00577
	Glucosinolate biosynthesis (map00966)	2-oxo-4-methylthiobutanoate → 2 -oxo-10-methylthiodecanoate	RC00067 RC00497 RC00114 (six repeats)
RM002	Lysine biosynthesis (map00300)	2-aminoadipate →lysine	RC00064 RC00043 RC00684 RC00062 RC00064
	Arginine biosynthesis (map00330)	glutamate →ornithine	RC00064 RC00043 RC00684 RC00062 RC00064
RM032	Ectoine biosynthesis (map00260)	aspartate → 2,4-diaminobutanoate	RC00043 RC00684 RC00062
RM033	Valine biosynthesis (map00290)	pyruvate \rightarrow 2-oxoisovalerate	RC01192 RC00837 RC00726 RC00468
	Isoleucine biosynthesis (map00290)	2-oxobutanoate→ 3-methyl-2-oxopentanoate	RC01192 RC01726 RC00726 RC01714
RM030	Glucosinolate biosynthesis (map00966)	homomethionine \rightarrow glucoiberverin	RC02295 RC02210 RC02265 RC00882 RC00883

4.4.2 2-オキソカルボン酸鎖の修飾

2-オキソカルボン酸の代謝系について反応モジュールを詳しく調べると、トリ カルボン酸パスウェイによる2-オキソカルボン酸鎖の伸長モジュール RM001 は、 還元的アミノ化ステップ(RC00006 又は RC00036)と、それに連続して起こる RM002 (類似反応モジュールである RM032 を含む)、RM033 及び RM030 の 3 つの修飾モジュールとの組み合わせで用いられていることがわかった。図 4-4 に示す、種々のアミノ酸を生成する反応モジュールの構造はその一例である。 カルボキシル基をアミノ基に変換する反応モジュール RM002 (類似反応モジュ ールである RM032 を含む)はオルニチン関連アミノ酸生合成において、分岐鎖 を付加するための反応モジュール RM033 は分岐アミノ酸(バリン、ロイシン、イ ソロイシン)生合成において、ともに RM001 との組み合わせで様々なアミノ酸を 生成する。グルコシノレート生合成パスウェイにおいては、オキシムへの変換 ののちチオ-グルコース部分構造を付加する反応モジュール RM030 が RM001 と 組み合わさって様々なグルコシノレートを生成する。(図 4-5)

図 4-4 アミノ酸生成モジュール

A)オルニチン関連アミノ酸、B)分岐アミノ酸を生成する、2-オキソカルボン酸鎖伸長及び修飾からなる反応モジュール構造。垂直方向の矢印 は伸長モジュール RM001 を示す。水平方向の矢印は還元アミノ化ステップ(RC00006 又は RC00036)と連続する修飾モジュール RM002, RM032 及び RM033 を示す。Reprinted with permission from <u>J Chem Inf Model.</u>, (2013)53, 613-622. Copyright 2013 American Chemical Society.

図 4-5 グルコシノレート生合成パスウェイモジュール

RM001 (オキソカルボン酸関連反応モジュール) と RM030 (オキシムへの変換ののちチオ-グルコース部分構造を付加する反応モジュール) を含むメッシュ様構造。RC00006 と RC00036 は還元アミノ化に対応する。Reprinted with permission from <u>J Chem Inf Model.</u>, (2013)53, 613-622. Copyright 2013 American Chemical Society.

図 4-5 (続き)

図 4-6 に表 4-3 と図 4-4 中で述べた化学修飾モジュール RM002 と、類似反応モジュー ルである RM032 の詳細を示す。RM002 を構成する連続反応配列の最初と最後のステッ プ(RC00064)は保護基としての N-アセチル基の修飾及び脱修飾反応であった。我々は同 じ変換反応を行うが保護基の修飾・脱修飾を含まない反応モジュール(RM032)を、エク トイン生合成パスウェイ(map00260) 中の、アスパラギン酸塩を4-ジアミノブタン酸へ変 換する経路(図 4-6)に発見した。これらの経路は反応モジュールの多様性あるいは進 化を示唆するものであり興味深い。RM032(RC00043 RC00684 RC00062) が短鎖カルボン 酸鎖に使われるのに対し、RM032の前後にNアセチル化とN脱アセチル化ステップを 持つ RM002 (RC00064 RC00043 RC00684 RC00062 RC00064)はより長いカルボン酸鎖に 対して使われていた。さらに、2-アミノアジピン酸をリジンへ変換するリジン合成パス ウェイでは、保存反応列を囲むステップは(アセチル基による修飾ではなく)酵素タン パク質のN末端による修飾になっていた[25]。つまり、全体を眺めると同一に見える連 続反応であっても、その連続反応は基質の種類に応じて、修飾基が不要であったり、簡 単な修飾基(アセチル基)を用いていたり、複雑な修飾基(キャリアタンパク質)を用 いていたりするなど、異なる複雑さによって達成されていることが明らかになった。こ れは長い鎖を持つ基質に対処するための代謝パスウェイの化学進化を示しているのかも しれない。

RM032

図 4-6 カルボキシル基をアミノ基へ変換するモジュール RM002 と RM032

短い主鎖の化合物を基質とするモジュール RM032 と、より長鎖の化合物を基質とするモジュール RM002 の中央の3 反応は同一の反応列で ある。RM002 はタンパク質の N 末端の N-アセチル基の付加反応と脱離反応(RC00064)を両端に持つことで、RM002 よりも2 反応長いモ ジュールとなっている。このアセチル基は基質の自発的な分子内環化を妨げるための、保護基としてはたらいていると考えられる。 Reprinted with permission from J Chem Inf Model., (2013)53, 613-622. Copyright 2013 American Chemical Society.

4.4.3 脂肪酸合成とβ酸化

脂肪酸は長鎖炭化水素の1価のカルボン酸である。脂肪酸の合成はケトアシル合成酵素(KS)、ケトリダクターゼ(KR)、デヒドラーゼ(DH)及びエノイルリダクターゼ(ER)反応の4段階の連続反応列の繰り返しであり、4反応ごとに炭化水素鎖を炭素2つ分ずつ伸長する。生物種によってこの4つの酵素の遺伝子構成は異なり、4つの独立した遺伝子を持つ生物、KS+KRドメインとDH+ERドメインから成る2つの遺伝子を持つ生物、もしくは全てのドメインからなる一つの遺伝子を持つ生物が知られている。よって、脂肪酸合成遺伝子の構成には遺伝学的な面からみた進化的関連性が考えられる。脂肪酸合成には主経路と副経路があり、アシルキャリアータンパク質が関与するマロニル CoAを炭素源とする主経路(map00061)に対し、ミトコンドリアで起こる副経路(map00062)ではアシルキャリアータンパク質が関与する。この副経路は後述する脂肪酸分解で現れるβ酸化のモジュール(RM018)の逆反応と見なすことが出来る。これら主経路及び副経路にあたる反応モジュール RM021及び RM020 は、以下のRCLASS 配列として得られた。(図 4-7)

- $\begin{array}{ll} \text{RM021:} & (\text{RC02729 RC00117 RC00831 RC00076}) & \text{for } n=2 \\ & (\text{RC02728 RC00029 RC01095 RC00052}) & \text{for } n\geq 4 \\ \end{array}$
- $\begin{array}{ll} \text{RM020:} & (\text{RC00326 RC00117 RC00831 RC00076}) & \text{for } n=2 \\ & (\text{RC00326 RC00029 RC01095 RC00052}) & \text{for } n\geq 4 \\ \end{array}$

ここでマロニル CoA とアセチル CoA を区別する KS 反応ステップ(RC02729, RC02728 及び RC00326)以外は、RM021 と RM020 は完全に同一であった。我々はアシルキャリアー タンパク質の関与は、上述の「2-オキソカルボン酸の修飾」と同様、反応の特異性と効 率性を高める脂肪酸合成の化学的観点からみた進化であると考えている。

59

β酸化モジュール RM018 (RM020 の逆反応) は、次の RCLASS 配列から成っていた(図 4-8) :

RM018: (RC00052 RC01095 RC00029 RC00326) for $n \ge 4$ (RC00076 RC00831 RC00117 RC00326) for n = 2

脂肪酸分解経路(map00071)だけでなく、RM018 はカプロラクタム分解(map00930)におけ るアジピル CoA からスクシニル CoA への反応や、イソロイシン分解(map00280)におけ る 2-メチルブタノイル CoA からプロパノイル CoA への反応にも見つかった。様々な開 裂反応に関わる RM018 類似反応列は、嫌気性安息香酸分解パスウェイ(map00362)におけ るピメロイル CoA からグルタリル CoA への反応や、一次胆汁酸合成(map00120)におい てケノデオキシコロイル CoA やコロイル CoA への反応にもみられた。

より興味深いことに、類似性のやや低いモジュール RM016 (RC02034 RC00154 RC01429)(図 4-8)は嫌気性安息香酸分解パスウェイ(map00362)及びリモネン・ピネン分解 パスウェイ(map00903)にも見つけることができた。RM016 はアシル鎖切断 (チオール開 裂) と言うよりはむしろ芳香族環開裂(加水分解)のモジュールであるが、開裂反応に先 だって酸素を付加する戦略は類似していた。RC02034 と RC01095 (又は RC00831)の類似 性スコアは 0.8 であり、RC00154 と RC00029 (又は RC00117)の類似性スコアは 0.7 であ った。さらに、嫌気的安息香酸分解パスウェイにおける RC00154 の遺伝子と脂肪酸合成 パスウェイにおける RC00029 では遺伝子間にも類似性が見られた[26]。

図 4-7 脂肪酸生合成モジュール RM021 (主経路) と RM020 (副経路)

Reprinted with permission from J Chem Inf Model., (2013)53, 613-622. Copyright 2013 American Chemical Society.

図 4-8 β酸化モジュール

β酸化モジュール RM018 は脱水素化、水和反応、酸化、開裂反応の4反応からなる。(i, iii)脂肪酸分解パスウェイ(map00071)に見られる RM018 モジュール (ii) カプロラクタム分解パスウェイ(map00930), (iv) イソロイシン分解パスウェイ(map00280), (v) 安息香酸エステル分解パスウ ェイ(map00362), and (vi) 一次胆汁酸生合成パスウェイ(map00120)。 RM016 は良く似たモジュールで、環状化合物に対して働く。(vii) 安息 香酸エステル分解パスウェイ(map00362) と(viii)リモネン・ピネン分解パスウェイ (map00903)から得られている。Reprinted with permission from J Chem Inf Model., (2013)53, 613-622. Copyright 2013 American Chemical Society.

4.4.4 微生物の生分解パスウェイにおける芳香族環分解

微生物は環境中の人工化合物を含む幅広い化学物質の分解能を持つことが知られている。本研究の解析の結果、環ジヒドロキシル化モジュール(RM004-RM006)や環開裂モジュール(RM008 及び RM009)、そして前処理モジュール(RM003)の芳香族環分解モジュールが得られた(図 4-9)。前処理モジュールは例えば芳香族環に隣接したメチル基をカルボキシル基に変換するなど、置換基の酸化に働く。RM003 はモノオキシゲナーゼ反応(EC 1.14.13)とデヒドロゲナーゼ反応(EC 1.1.1 及び 1.2.1)の2 段階反応からなり、図中のトルエンから安息香酸、p-シメンから p-クミン酸への変換に示すように、それに環ジヒドロキシル化モジュールが続く。

図 4-9 微生物分解パスウェイを構成する芳香族環分解モジュール

芳香族環は次の3つの段階(反応モジュール)を経て分解される。最初のステップは補助的な前処理 段階(RM003)であり、芳香族環上のメチル基をカルボキシル基に変換する。第二段階はジヒドロキ シル化のステップであり、芳香族環に二つのヒドロキシル基がどのように付加されるかにより3つの タイプ(RM006, RM004 及び RM005)に分類される。第三段階は芳香環が開裂する場所によってオル ト開裂(RM008)とメタ開裂(RM009)のどちらかに分類され、それぞれに TCA 回路代謝中間体へと至る。 Reprinted with permission from J Chem Inf Model., (2013)53, 613-622. Copyright 2013 American Chemical Society. RCLASS エントリの類似性グループに基づき、我々はジヒドロキシル化反応のステッ プを3つのモジュールにカテゴリ分けした(RM004、RM005及びRM006:図4-9)。RM004 (type 1)とRM005 (type 1a) がジオキジゲナーゼ反応に続くデヒドロゲナーゼ反応を用い ていたのに対し、RM006 (type 2)は2ステップのモノオキシゲナーゼ反応を利用していた。 前処理モジュール RM003の後に続く例の多い RM005 モジュールでは、ヒドロキシル基 の一つはカルボキシル基のα位に付加され、続くデヒドロゲナーゼ反応時に脱カルボキ シル化も起こる。それぞれのジヒドロキシル化反応モジュールの後には、二つのヒドロ キシル基のメタ位又はオルト位のどちらかで起こるヒドロキシル環開裂ジオキシゲナー ゼ反応が続く。

RM008 及び RM009 はそれぞれ、カテコールや関連化合物のオルト及びメタ開裂モジ ュールに相当し、開裂反応とそれに続く TCA 回路中間体を生成する反応を含んでいた。 オルト開裂パスウェイは β ケトアジピン酸パスウェイ[27]として知られており、カテコ ールはスクシニル CoA とアセチル CoA に変換される。それに対しメタ開裂パスウェイ ではカテコールはピルビン酸とアセチル CoA に変換される。置換基の大きな分子の場合 オルト開裂が立体障害等の影響で難しいこともあるのに対し、メタ開裂はより大きな分 子にも反応しやすいと考えられ、より広い基質に対応できる一般的な分解戦略であると 考えられる。我々はジヒドロキシル化モジュール RM004 とカテコールメタ開裂モジュ ール RM009 の一部から構成される大きなモジュールを RM010 反応モジュール(図 4-9) と定義した。trans-ケイ皮酸、p-クミン酸、エチルベンゼン、スチレン及びダイオキシン を含む様々な化合物が、このモジュールによって RM009 によるさらなる処理を受ける

65

2-オキソペント4-エン酸へと分解される。例えば、二つの環をもつビフェニルは安息香酸へと部分処理され、その後他の分解モジュールによってさらなる分解を受ける。

これらの環のヒジドロキシル化によるカテコール形成を経た芳香族環分解モジュール は好気的経路において起こると考えられるが、我々は嫌気的経路からも芳香族環分解モ ジュールを検出した。前述のβ酸化様モジュール RM016 は芳香族環分解モジュールの 嫌気性版[28]である。我々はメチル酸化前処理モジュールの CoA を利用する嫌気性版 RM015 も同定した(トルエン分解における好気性モジュール RM003 と嫌気性モジュー ル RM015 の比較は図 4-10 に示した)。

Reprinted with permission from <u>J Chem Inf Model.</u>, (2013)53, 613-622. Copyright 2013 American Chemical Society.

表 4-4 KEGG モジュールに対応する生分解反応モジュール

Reprinted with permission from <u>J Chem Inf Model.</u>, (2013)53, 613-622. Copyright 2013 American Chemical Society.

RC module	KO module	Overall reaction	
RM003	M00538	toluene \rightarrow benzoate	
	M00537	o -xylene \rightarrow o -methylbenzoate	
	M00419	p -cymene \rightarrow p -cumate	
RM004	M00547	benzoate \rightarrow catechol	
RM005	M00551	benzoate \rightarrow catechol	
RM006	M00548	benzene \rightarrow catechol	
RM008	M00568	catechol \rightarrow 3-oxoadipate	
RM009	M00569	$catechol \rightarrow pyruvate + acetaldehyde$	
RM010	M00539	p-cumate \rightarrow 2-oxopent-4-enoate + methylpropanoate	
	M00543	biphenyl \rightarrow 2-oxopent-4-enoate + benzoate	
RM011	M00544	carbazole \rightarrow 2-oxopent-4-enoate + anthranilate	
RM015	M00418	toluene \rightarrow benzoyl-CoA	

ベンゼン、トルエン、エチルベンゼンやキシレン(BTEX 化合物)などの生体異物の生分 解能は主にプラスミド上に適切な遺伝子セットを持つ特定の生物種に限られている。よ って、ここで同定された反応モジュールはゲノム上のオペロン様遺伝子クラスターとの 対応が期待された。表 4-4 に、KEGG モジュール (KO modules) 多数がオペロン様遺伝 子クラスターにコードされているときの、微生物の生分解パスウェイの反応モジュール (RC modules) と KEGG モジュールの対応を示す(各々の KEGG モジュールに属する遺 伝子は、http://www.kegg.jp/module/M00548 などそれぞれのエントリのウェブページにあ る「Ortholog table」というリンクから閲覧できる)。例えば、*Pseudoxanthomonas spadix* BD-a59[29] (KEGG organism code: psd, T01643)は、トルエン及びキシレンの各前処理モジ ュール M00538 及び M00537、ジオキシゲナーゼ及びモノオキシゲナーゼ触媒ジヒドロ キシル化モジュール M00548、メタ開裂モジュール M00569、そしてダイオキシン分解モ ジュール M00543 及び M00544 を持つため、BTEX 分解能を持つことを示している。

4.5 酵素遺伝子クラスターにコードされる反応モジュール

KEGG MODULE データベース中の KEGG パスウェイモジュール(KO モジュール)は、 KEGG データベースを維持管理する専門キュレーターにより手作業で整理された、酵素 オーソログ遺伝子のセットであり、原核生物ゲノム中でオペロン様遺伝子クラスターと の対応なども考慮されている。我々は本解析で抽出された反応モジュール(RC モジュー ル)と、既に定義されていた KO モジュールとの関係を調べた。KO モジュールについて は手作業による定義の揺れを除くため、遺伝子クラスター(ゲノム上の並びが保存され ているもの)を構成するものだけに限定した。その結果、例えば反応モジュール RM001 は KO モジュール M00010、M00432 及び M00535 とよく対応する生物種が多いことを発 見した。表 4-5 に示すように、Pyrococcus furiosus[30]のゲノムでは二つの遺伝子クラス ターが反応モジュール RM001 に対応する:遺伝子クラスター(PF0203 PF0201 PF0202)は クエン酸回路のRCLASS配列(RC00067 RC00498+RC00618 RC00084+RC00626)に対応し、 遺伝子クラスター(PF0937 PF0938+PF0939 PF0940)はロイシン生合成の RCLASS 配列 (RC00470 RC01041+RC01046 RC00084+RC00577)に対応する。最初の酵素(クエン酸合成 酵素 PF0203 とイソプロピルリンゴ酸合成酵素 PF0937) については配列類似性が見られ ないにも拘らず、2番目のヒドラターゼ(PF0201及び PF0938+PF0939)と3番目のデヒド ロゲナーゼ群(PF0202 及び PF0940)は 35%程度で配列が一致しておりパラログ遺伝子グ ループを形成していることは、遺伝的多様性と化学的多様性の繋がりを示唆すると考え

られ興味深い(図 4-11)。表 4-5 には RM001 に加えて RM002 の酵素遺伝子クラスターの 例のごく一部を示した。他の多くの例は KEGG データベース中の KEGG MODULE エン トリのオーソログテーブルで閲覧可能である。全てのエントリは http://www.kegg.jp/module/M00010 等からアクセス可能である。

表 4-5 酵素遺伝子クラスターと対応する反応モジュール

RC	Overall reaction	КО	Gene cluster example*
module		module	-
RM001	oxaloacetate \rightarrow 2-oxoglutarate	M00010	(pfu)PF0203 PF0201 PF0202
	2-oxoisovalerate → 2-oxoisocaproate	M00432	(pfu)PF0937 PF0938+PF0939 PF0940
	pyruvate \rightarrow 2-oxobutanoate	M00535	(bth)BT_1858 BT_1860+BT_1859 BT_1857
RM002	glutamate \rightarrow ornithine	M00028	(bsu)BSU11200 BSU11210+BSU11190 BSU11220
	2-aminoadipate \rightarrow lysine	M00031	(ttr)Tter_0315+Tter_0316 Tter_0320 Tter_0319 Tter_0321 Tter_0317

* KEGG データベース中で生物種はアルファベット3文字 (またはアルファベットのTとそれに続 く5桁の数字)で次のように表されている: pfu (T00075), *Pyrococcus furiosus* DSM 3638; bth (T00122), *Bacteroides thetaiotaomicron* VPI-5482; bsu (T00010), *Bacillus subtilis* 168; ttr (T01134), *Thermobaculum terrenum* ATCC BAA-798. Reprinted with permission from <u>J Chem Inf Model.</u>, (2013)53, 613-622. Copyright 2013 American Chemical Society.

RM001

図 4-11 反応モジュール RM001 に対応する Pyrococcus furiosus の二つの遺伝子クラスター

第5章 考察

本解析では、代謝ネットワークが保存された反応列からなる化学的反応モジュール (RC modules)を含むこと、それらが様々な代謝系で組み合わせられて用いられている こと、また伝統的な機能モジュール (KO modules)や原核生物ゲノム上の遺伝子クラス ターとよく一致することを示した。代謝ネットワークのモジュール性についてはこれま でに様々な研究で言及されてきた[17, 31-32]が、我々の知る限り、本研究は代謝のネット ワークについて化学的ネットワークと遺伝子ネットワークという二つの視点からみたモ ジュール性を報告し、それらの共進化を示唆した初めての例である。結果の項目で言及 しなかったいくつかのモジュールの特徴についてここに簡単に述べる。

5.1 逆反応の利用

ネットワークは、エッジに向きの情報の与えられた有向グラフによるネットワークと、 向きの情報を持たず繋がりだけを示す無向グラフによるネットワークに分けられる。代 謝ネットワークは、可逆反応は両向きの、不可逆反応は片方向きの情報が与えられた有 向グラフで表される。我々は、連続反応の保存性によって代謝ネットワークから化学的 反応モジュールを抽出した。このとき連続反応を正しい向きでアラインメントするため には、反応だけでなくそれらを繋ぐエッジの向きについてもマッチングを行わなくては ならない。しかしながら、KEGG PATHWAY 上の反応は、約2割が可逆反応、約8割が 不可逆反応として記載されている。代謝の流れから恐らく一方向に進むと考えられる経 路であっても、可逆反応についてはデータベースから方向を読み取れないため、やむな
く可逆反応については両方向でマッチングを行った。しかしこのことにより、われわれ は興味深い特徴を捕えることができた。高頻度で出現する反応モジュールに関しては、 多くの場合その逆反応の反応モジュールが存在したのである。

例としてアミノ酸から生体アミンやその他の重要な代謝化合物を生成する反応モジュ ール RM025 を挙げる。(図 5-1)リン酸化のステップ(RC00043)に続きカルボキシル基をア ミノ基に変換する(RC00684 RC00062)モジュール RM002(保護基あり)と RM032(保護基な し)については既に4章で述べた。(図 4-6)RM025 の脱カルボキシル基ステップ(RC00299) に続くアミノ基をカルボキシル基に変換する2反応(RC00062 RC00080)は、RM032 のカ ルボキシル基をアミノ基に変換する2反応(RC00684 RC00062)の逆反応配列である。 R00080 はフィンガープリント表現では RC00684 と同一であり、アミノ基をカルボキシ ル基に変換する。RM025 の全体反応は新しく導入されたカルボキシル基を側鎖部に残し て効率的にアミノ酸の主鎖の一部を除去する。

Reprinted with permission from <u>J Chem Inf Model.</u>, (2013)53, 613-622. Copyright 2013 American Chemical Society.

代謝の進化における逆経路の利用については、これまで様々な研究で言及されている。 1976年のJensenらによる総説では、逆方向の反応を触媒する酵素の遺伝子から遺伝子重 複によって生まれたと考えられるホモログタンパク質の例が挙げられている。また、実 験室において酵素活性を逆反応に転換させた研究についても言及している。1974年の Cocks らの実験によって、 嫌気的条件下ではたらく L-lactaldehyde reductase が L-1,2-propanediol dehydrogenase に転換できることが示されている。

本研究で得られた逆経路の保存性は、生体内の化学変換における有機化学的制限が、 逆反応においても成立する可能性を示唆している。また、代謝パスウェイの進化を考え る際には、逆反応または逆経路を採用したことによる多様化についても考慮する必要が ある。

5.2 モジュール間の包含関係

抽出された反応モジュールは、その多くが他のモジュールと包含関係にあるモジュー ルであった。代謝パスウェイ中の 5,805 の反応のうち約 60%が反応モジュールに対応す ることは既に述べたが、そのうち約 70%の反応は、他のモジュールを包含するモジュー ルに含まれていた。

4章で述べたとおり、Caboxyl to amino conversion using protective N-acetyl group (RM002) と Caboxyl to amino conversion (RM032)の伸長モジュール(図 4-6)は興味深い知見を与え てくれる。RM002の5反応のうち前後一反応ずつを除いた3反応はRM032と一致する。 つまり RM002は RM032を内含する反応モジュールであるが、アスパラギン酸のような 短鎖分子に比べ、2-アミノアジピン酸のような長鎖分子では伸長反応は選択的に起こら ず、分子内環化反応が自発的に起こってしまう。前の一反応はアセチル基をマスクする ことでこの分子内環化を防ぎ、後の一反応は先に加えた N-アセチル基を除去することで 分子修飾を外す。

これらの例から、代謝パスウェイの形成においては、逆反応を含め様々なモジュール が組み合わされることで、有機反応の遷移状態の構造最適化が起こっていると考えられ る。例えば、分子が大きく目的の反応が選択的に起こらない場合には、特異性を増大さ せるよう保護基を導入する。遷移状態までの活性化エネルギーが高すぎるようであれば、 より低い活性化エネルギーで遷移状態を達成できる構造へ基質を変化させ、反応後に元 の構造へ戻す。このような有機反応経路の最適化が代謝系の進化において淘汰圧として 働いてきた結果、連続反応の保存性が生まれてきたものと考えられる。

5.3 リン酸化と配糖化

最も多くの反応ペアを含んでいた RCLASS エントリはリン酸やグリコシル化に関連し たものであった。局所的な構造パターンに焦点を当てた我々のアプローチは変化する構 造の複雑さに対する化学反応の進化を推察するのに成功したが、リン酸化やグリコシル 化を含む反応モジュールを特徴づけるには、局所的な反応クラスに加え全体的な構造ク ラスを考慮する必要があるかもしれない。しかしながら、特定のクラスの全体構造がリ ン酸化配列のパターンから効率的に抽出できるケースも存在する。その一つの例は糖ヌ クレオチドの生合成に見つけることができる。糖ヌクレオチドは多糖や糖化物質の生合 成に用いられる単糖の活性型である。我々は二種類のリン酸反応モジュール RM022 (RC00017 RC00408 RC00002)と RM023 (RC00078 RC00002)を発見した。前者のモジュー

76

ルは6位の炭素上にあったリン酸基が1位の炭素へと移動する異性化反応を含み、1位の炭素上のリン酸基がヌクレオチドと結合される。(図 5-2)後者のモジュールではリン酸基は直接1位に付き、RM022と同様に1位の炭素上のリン酸基がヌクレオチドとの結合を受ける。

RM022

図 5-2 糖ヌクレオチド生合成モジュール

Reprinted with permission from <u>J Chem Inf Model.</u>, (2013)53, 613-622. Copyright 2013 American Chemical Society.

5.4 一次代謝と二次代謝のモジュール情報の相違

代謝ネットワークは、生命を維持するための保存された中心部分(原始代謝系)と環 境と相互作用するための多様な表面部分(二次代謝系)からなると見ることもできる。 微生物の生分解モジュールは様々な構造の生体異物を、一次代謝系の限られた数の化合 物へと変換する。対照的に、特に植物二次代謝産物の生合成パスウェイは、限られた数 の一次代謝化合物から多様な化合物を生成するパスウェイである。図 5-3 は、今回の手 法で検出した短い反応モジュール RM027(表 4-2)を含む、KEGG(map00940)に示されるフ ェニルプロパノイド生合成パスウェイの中心部分を示したものである。反応モジュール RM027 はヒドロキシル化とメチル化反応からなり、シトクロム P450 モノオキシゲナー ゼと 0-メチルトランスフェラーゼに関連するよく知られた反応列である。このフェニル プロパノイド生合成パスウェイは、水平方向の RM027 の連続モジュールと、垂直方向 の CoA が関わる酸-アルデヒド-アルコール変換のモジュールが交差するメッシュ様構造 になっている。芳香環の3.5-位の2か所でヒドロキシル化(RC00046)とメチル化(RC00392) の部分修飾が並列に起こる反応列であり、連続的な変化だけを検出する今回の手法では RM027 は検出できるが RM027 の 2 回繰り返しを 1 つのモジュールとして検出すること が難しい。そのため、植物生合成パスウェイを解析した結果、生分解モジュールでは抽 出できたような長いモジュールを発見することはできなかった。図 5-3 に示したような、 同一分子上の異なる部分において反応が並列に起こる場合には、化合物を部分構造に分 割して、部分構造毎の構造変換を検出することでパターン抽出ができる可能性がある [34]。植物二次代謝産物生合成パスウェイマップを詳細に検討すると、分子修飾に関与 する短い化学反応モジュールが化合物上の複数の部位で並行に進行することで、多様な

化合物を生み出している例を見出すことができる。分子修飾モジュールに関与する可能 性がある、P450 や *O*-メチルトランスフェラーゼに代表される修飾酵素は、植物では特 に大きな遺伝子ファミリーを構成しており、植物はこれらの修飾酵素の多数のパラログ を保有している。二次代謝生合成経路では、例に挙げたような、複数の反応部で並列に 修飾が進行するモジュールの組み合わせが顕著に観察され、植物の多様な化合物合成能 の一因となっていると考えられる。

図 5-3 フェニルプロパノイド生合成

水平方向の RM027 の連続モジュールと、垂直方向の CoA が関わる酸-アルデヒド-アルコール変換のモジュールが交差するメッシュ様構造。 RM027 の連続モジュールは芳香族環上でヒドロキシル化(RC00046)とメチル化(RC00392)を行い、メトキシ基を生成する。CoA が関わる酸-アルデヒド-アルコール変換(RC00131+R00566+RC00649)はカルボン酸の還元を行う。Reprinted with permission from <u>J Chem Inf Model.</u>, (2013)53, 613-622. Copyright 2013 American Chemical Society.

5.5 EC 番号による分類体系との比較

EC体系は酵素反応の分類であり、4桁の番号のうち最初の3桁の数字は反応をクラス、 sub クラス、sub-sub クラスへと階層的に分類する。4桁目の番号は基質特異性を区別す るために付けられた番号である。KEGG には 8,990の反応が蓄積されているが、本研究 で用いた反応のうち EC 番号が与えられているものは 4,321 であった。EC 番号は生化学 的に検証され文献に報告された反応にのみ与えられているため、EC 体系の対象となる 範囲はより限られている。それに対し KEGG データベースは、反応が明らかになってい るものに関しては、酵素や遺伝子が同定されていないものであっても収集・蓄積してい る。我々は EC 体系の中でもっとも細かい反応分類である EC sub-sub クラスを KEGG RCLASS(RC)と比較した。EC sub-sub クラス 249 に対し 2,481 の RC エントリの対応を調 べたところ、平均して 13 の RC エントリが KEGG パスウェイ上の EC sub-sub クラスに 対応していた。明らかに、RC体系はEC体系よりも細分化された反応分類となっている。 表 5-1 中に最も多い RC エントリに対応した EC sub-sub クラスの一覧を示す。

1章で述べたとおり、一部の EC 階層においては、主産物の有機反応の分類よりも補酵素の一致などが優先され、必ずしも有機反応の類似性が反映されていない(図 1-5)。例 えば、CYP モノオキシゲナーゼの反応は有機反応としてはヒドロキシラーゼ、エポキシ ダーゼ (エポキシゲナーゼ)、ベイヤー・ビリガー モノオキシゲナーゼその他に分類す ることができるが、これらの有機反応分類と EC 体系は一致していない。本研究で定義 した反応の類似性指標を使い、これらの反応クラスをグルーピングしたところ、類似性 スコアの閾値=0.9の時に8~40の反応クラスを2~6のグループにまとめることが出来た。 (図 5-4i)。また、1章で挙げた、基質と産物の有機反応は類似しているにも拘らず、補 酵素の違いによって異なる EC sub-sub classes に分類されたヒドロキシラーゼ反応(図 1-5a)、反応中心となる原子種が異なるにも拘らず、補酵素が同一であるために同一の EC sub-sub classes に分類されたヒドロキシラーゼ反応(図 1-5a)、についても、RCLASS では 有機反応により分類できていることを図 5-4(ii), (iii)に示す。

表 5-1 最大の RC エントリを包含する EC 番号

Reprinted with permission from <u>J Chem Inf Model.</u>, (2013)53, 613-622. Copyright 2013 American Chemical Society.

EC	# of RC	Enzymes involved
sub-sub	entries	
class		
1.14.13	150	monooxygenases
4.2.1	129	hydratase/dehydratases, terpenecyclases (hydrating)
1.1.1	117	alcohol,NAD(P)+ dehydrogenases
4.2.3	86	phospho-lyases, terpenecyclases (diphosphate-eliminating)
1.14.14	83	monooxygenases
2.1.1	79	methyltransferases
1.13.11	72	dioxygenases
1.3.1	68	saturases/desaturases
4.1.1	65	carboxylases/decarboxylases
2.5.1	60	prenyltransferases,
		1-carboxyvinyltransferases, aminocarboxyethyltransferases,
		aminocarboxypropyltransferases, adenosyltransferases

(i)Number of RClass entries (or similarity groups of RClass entries)

corresponding	to various	types of	monoox	vgenases
		- /		

	ec1.14.13			ec1.14.14			ec1.14.15		
reaction	RC	RG1.0	RG0.9	RC	RG1.0	RG0.9	RC	RG1.0	RG0.9
hydroxylase	40	19	6	21	14	4	8	4	2
epoxidase	8	4	2	13	9	2			
BVMO	14	6	4						
other	77	63	48	46	40	30	10	8	5

*RG: Group in which RClass entries were grouped by single linkage

(ii)Some type of hydroxylase reactions in different EC sub-sub classes

図 5-4 モノオキシゲナーゼの EC 分類と RCLASS の比較

(i)CYP モノオキシゲナーゼの反応クラスの EC sub-sub クラス分類と RCLASS 類似性スコアによるグ ルーピングの結果。(ii)基質と産物の有機反応は類似しているにも拘らず、補酵素の違いによって異 なる EC sub-sub classes に分類されたヒドロキシラーゼ反応と対応する RCLASS。 (iii) 反応中心と なる原子種が異なるにも拘らず、補酵素が同一であるために同一の EC sub-sub classes に分類された ヒドロキシラーゼ反応と、対応する RCLASS。Reprinted with permission from J Chem Inf Model., (2013)53, 613-622. Copyright 2013 American Chemical Society.

5.6 モジュール情報の応用

遺伝的ネットワークと化学的ネットワークという代謝系についての二つの見方には実 用上の価値がある。これまで遺伝子やタンパク質に関する知識から化合物や反応の予測 が行われてきたが、化合物や反応についての知識の蓄積によって、これまでとは逆に反 応から遺伝子やタンパク質を予測することも可能であると考える。KEGG データベース では、全ての利用可能な完全ゲノムについて既知遺伝子のオーソログを探索した結果が KEGG オーソロジー(KO)システムによってカテゴリ分けされており、生命のゲノム空間 の理解を目指している。本研究では、生命とそれを取り巻く環境の化学空間を理解する 試みとして、反応クラス(RC)体系によって、全ての既知の反応のカテゴリ分けを行っ た。我々は、特に代謝ネットワークのモジュール構造について、KO 体系と RC 体系の 関連性の検出を試みている。化学反応モジュールとして抽出された代謝ネットワーク上 の生化学的禁制律と、生物の持つオーソログ情報の両方を考慮することにより、より正 確な代謝パスウェイ予測が可能になると考える。本研究で得られた化学反応モジュール は、KEGG データベース(http://www.genome.jp/kegg/)の一部として Reaction Module (http://www.genome.jp/kegg/reaction/rmodule.html) に公開されている。

5.7 代謝ネットワークの進化

これまで提唱されてきた代謝ネットワークの進化モデルは、酵素の進化として代謝進 化を表してきた。しかしながら、酵素の進化と反応の進化は代謝系の進化の両輪であり、 代謝ネットワークの進化を考える際には、酵素のネットワークだけではなく化学的ネッ トワークの進化という観点に基づいても考える必要がある。本研究で抽出した化学反応 モジュールは、酵素のアミノ酸配列非依存に、反応パターンのみに基づいた類似性指標 によって定義されている。よって代謝ネットワークを化学的ネットワークとして捉え、 反応列の多様性によって網羅的に代謝ネットワークからの特徴抽出を行った初めての例 である。

抽出された反応モジュールは、その多くが他のモジュールと包含関係にあるモジュー ルであった。代謝パスウェイ中の反応 5,805 のうち、およそ 60%が反応モジュールに含 まれ、そのうち約 70%にあたる反応が、他のモジュールを包含するモジュールに含まれ ていた。また、短いモジュールは幅広い代謝系から抽出され、抽出される数も多いのに 対し、モジュールが長いほど抽出される数は少なく、かつ限られた代謝系のみから抽出 された(図 4-1)。このことから、短いモジュールほど全代謝系の中で一般的な反応列であ り、長いモジュールになるほど一部の代謝系に特異的に出現する反応列であることがわ かる。

4章で述べたとおり、Caboxyl to amino conversion using protective N-acetyl group (RM002) と Caboxyl to amino conversion (RM032) の伸長モジュール(図 4-6)は興味深い知見を与え てくれる。RM002 の5反応のうち前後一反応ずつを除いた3反応はRM032 と一致する。 つまり RM002 は RM032 を包含する反応モジュールである。アスパラギン酸のような短 鎖分子に比べ、2-アミノアジピン酸のような長鎖分子では伸長反応は選択的に起こらず、 自発的に分子内環化反応が起こってしまうことで伸長反応が妨げられる。RM002 では前 の一反応が N-アセチル基を付加し環化反応を起こす官能基をマスクすることで分子内 環化を防ぎ、後の一反応が先に加えた N-アセチル基を除去することで分子修飾を外す。

86

よって、RM002 はコアとなる RM032 の反応列に、それらを補助する反応が加わったモ ジュールであると言える。

このようなコア反応を補助する反応が加わった反応モジュールの存在は、代謝ネット ワークの進化に関して次のような考察を与える。反応ネットワークの進化として代謝の 進化を考えると、化学反応モジュールが抽出された経路は共通の反応列からなる姉妹パ スウェイである。RM002のような、コア反応を補助する反応が加わった反応モジュール が検出されることは、それまでコア反応の対象とならなかった基質に対し、酵素の進化 だけでなく代謝パスウェイが新たな反応列を形成することによってコア反応を行うこと が可能になった可能性を示唆する。またこのモジュールが複数の代謝パスウェイから検 出されることから、それ自体が単位となって新たな姉妹パスウェイが生じていることを 示す。これらのことから、反応列の多様化に基づく代謝ネットワークの進化には、短い 反応列のコアに対しそれを補助する反応が付け加わっていくことにより、化学反応ネッ トワークが拡大してきたというモデルが考えられる。これを酵素の進化に置き換えると、 まず、酵素の基質非特異性によって、ある基質を変換していた酵素群が新規の基質にも 同じ反応を行うようになる。但しこのとき生じた新規経路は特異性の低い非効率な反応 列である。これらの非効率的な反応列が効率的な経路へと変化するには以下の2つの可 能性が考えられる。一つ目は酵素の進化である。遺伝子重複などが起こることにより、 以前の基質への特異性に縛られず新規基質のみに適応すれば、それらの酵素群は高い効 率で新規基質を変換できるようになる。もう一つは反応列の進化である。別の経路で使 われていた酵素が、新規経路が反応を特異的に成しうるよう補助的な役割を果たすこと

87

で、コア反応が効率よく起こるようになる。こうして出来上がった新規経路は、新規基 質に特化した結果、旧経路では対象になり得なかった新たな基質を対象にすることがで きるようになるかもしれない。この繰り返しによって、代謝パスウェイはより長く、よ り多様になってきたという進化の仮説が考えられる。このモデルでは従来の patchwork model[10]を踏襲しつつ、化学ネットワークの進化についての観点を取り入れている。

第6章 総括

本研究では、代謝パスウェイデータベースから保存された連続反応のパターンを抽出 し、代謝の機能単位と考えられるものに機能アノテーションを与え、化学反応モジュー ルとしてデータベース化した。これらの化学反応モジュールから、実用的にも理学的に も興味深い特徴が得られた。第一に、化学反応モジュールは異なる化学物質を生成する 異なるパスウェイで繰り返し出現する。第二に、化学反応モジュールは代謝ネットワー クの基本構成要素であるかのように組み合わせられて用いられている。第三に、反応モ ジュールはゲノム上の酵素のオーソログ遺伝子クラスターにより定義された KEGG パ スウェイモジュール、特に酵素群をコードするオペロン様構造の遺伝子クラスターと対 応する傾向がある。

また、抽出された反応モジュールは、その多くが他のモジュールと包含関係にあるモ ジュールであった。代謝パスウェイ中の反応 5,805 のうち、およそ 60%が反応モジュー ルに対応し、そのうち約 70%にあたる反応が、他のモジュールを包含するモジュールに 含まれていた。また、短いモジュールは幅広い代謝系から抽出され、抽出される数も多 いのに対し、モジュールの長さが長いほど抽出される数は少なく、かつ限られた代謝系 のみから抽出された。このことから、短いモジュールほど全代謝系の中で一般的な反応 列であり、長いモジュールになるほど一部の代謝系に特異的に出現する反応列であるこ とがわかる。本研究ではこの傾向から、コア反応に補助的な反応が加わることの繰り返 しによって、代謝パスウェイは伸長し多様化してきたという進化の仮説を考えた。この 仮説はこれまでの酵素の進化という観点に加え、有機化学的禁制律に基づいた代謝反応 の進化という観点を提案するものである。

本研究において得られた化学反応モジュール情報は、genome-driven な代謝パスウェイ 再構築手法による生体機能予測や、新規化合物に対する合成・分解経路の予測に有力な 材料となると考えられる。本研究で得られた反応モジュールは、KEGG データベース (http://www.genome.jp/kegg/)の一部として公開されている。

謝辞

本研究は、京都大学化学研究所バイオインフォマティクスセンター生命知識システム 領域(現 化学生命科学研究領域)において、金久實教授の指導のもとに行われました。 本研究を遂行するにあたり、長期に渡りご指導頂きました金久教授に心より感謝致しま す。同研究室の五斗進准教授には結果の考察や論文の推敲において細やかなご指導を頂 きました。小寺正明助教には日頃から多くの助言と激励を頂き、論文の推敲に関しご助 力を頂きました。時松敏明助教には結果の解釈に関し助言を頂き、特に二次代謝経路に 関して貴重なご意見を頂きました。中川善一研究員にはデータ整備を行なって頂き、結 果の解釈に関し貴重なご意見を下さいました。皆様に深く感謝の意を表したく思います。 また、日頃から様々な面でお世話になりました秘書の皆様、活発な議論によって多くの 発想を与えてくださった研究室の皆様にも感謝申し上げます。最後に、長きにわたり研 究生活を支えて下さった両親、家族、友人の皆様に心より感謝致します。

参考文献

[1]榊原圭子、斉藤和季:メタボロミクスを基盤とした植物ゲノム機能科学、メタボロミ クスの先端技術と応用 pp.204-211、CMC 出版、2008

[2] McDonald, A.G.; Boyce, S.; Tipton, K.F. ExplorEnz: the primary source of the IUBMB enzyme list. *Nucleic Acids Res*.**2009**, 37, D593–D597.

[3]Orengo, C.A. et al.; (1997) CATH – a hierarchic classification of protein

domain structures. Structure 5, 1093-1108

[4]Murzin, A.G. et al. (1995) SCOP: a structural classification of proteins

database for the

[5]Schmidt S, Sunyaev S, Bork P, Dandekar T.; Metabolites: a helping hand for pathway evolution? Trends Biochem Sci. 2003 Jun;28(6):336-41.

[6]Horowitz NH.;On the Evolution of Biochemical Syntheses.Proc NatlAcadSci U S A. 1945 Jun;31(6):153-7.

[7] Horowitz NH., Netzenberg RL.; Biochemial Aspects of Genetics. Annu Rev Biochem.1965;34:527-64.

[8]Lawrence JG, Roth JR.; Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics. 1996 Aug;143(4):1843-60.

[9]Siefert JL, Martin KA, Abdi F, Widger WR, Fox GE.; Conserved gene clusters in bacterial genomes provide further support for the primacy of RNA. J Mol Evol. 1997 Nov;45(5):467-72.

[10]Jensen RA.; Enzyme recruitment in evolution of new function. Annu Rev Microbiol.1976;30:409-25.

[11]Anbar AD.; Elements and evolution. Science. 2008 Dec 5;322(5907):1481-3. doi: 10.1126/science.1163100.

[12]Kanehisa, M.; Goto, S.; Sato, Y.; Furumichi, M.; Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. *Nucleic Acids Res.***2012**, 40, D109-D114.

[13] Bono, H.; Ogata, H.; Goto, S.; Kanehisa, M. Reconstruction of amino acid biosynthesis pathways from the complete genome sequence. *Genome Res*. **1998**, 8, 203-210.

[14]Galperin, M.Y.; Koonin, E.V. Functional genomics and enzyme evolution. Homologous and analogous enzymes encoded in microbial genomes. *Genetica***1999**, 106, 159-170.

[15]Dandekar, T.; Schuster, S.; Snel, B.; Huynen, M.; Bork, P. Pathway alignment: application to the comparative analysis of glycolytic enzymes. *Biochem. J.* **1999**, 343, 115-124.

[16]Forst, C.V.; Schulten, K. Evolution of metabolisms: a new method for the comparison of metabolic pathways using genomics information. *J. Comput. Biol.* **1999**, 6, 343-360.

[17]Ravasz, E.; Somera, A.L.; Mongru, D.A.; Oltvai, Z.N.; Barabási, A.L. Hierarchical organization of modularity in metabolic networks. *Science***2002**, 297, 1551-1555.

[18]Papin JA, Reed JL, Palsson BO.; Hierarchical thinking in network biology: the unbiased modularization of biochemical networks. Trends Biochem Sci. 2004 Dec;29(12):641-7.

[19]Tohsato, Y.; Matsuda, H.; Hashimoto, A. A multiple alignment algorithm for metabolic pathway analysis using enzyme hierarchy. *Proc. Int. Conf. Intell. Syst. Mol. Biol.* **2000**, 8, 376-383.

[20] Pinter, R.Y.; Rokhlenko, O.; Yeger-Lotem, E.; Ziv-Ukelson, M. Alignment of metabolic pathways. *Bioinformatics***2005**, 21, 3401-3408.

[21]Wernicke, S.; Rasche, F. Simple and fast alignment of metabolic pathways by exploiting local diversity. *Bioinformatics***2007**, 23, 1978-1985.

[22] Ay, Y.; Kellis, M.; Kahveci, T. SubMAP: aligning metabolic pathways with subnetworkmappings. *J. Comput. Biol.* **2011**, 18, 219–235.

[23] Hattori, M.; Okuno, Y.; Goto, S.; Kanehisa, M. Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. *J. Am. Chem. Soc.***2003**, 125, 11853-11865.

[24]Kotera, M.; Okuno, Y.; Hattori, M.; Goto, S.; Kanehisa, M. Computational assignment of the EC numbers for genomic-scale analysis of enzymatic reactions. *J. Am. Chem. Soc.***2004**, 126, 16487-16498.

[25]Horie, A.; Tomita, T.; Saiki, A.; Kono, H.; Taka, H.; Mineki, R.; Fujimura, T.; Nishiyama,
C.; Kuzuyama, T.; Nishiyama, M. Discovery of proteinaceous N-modification in lysine
biosynthesis of Thermusthermophilus. *Nat. Chem. Biol.*2009, 5, 673-679.

[26] Pelletier, D.A.; Harwood, C.S. 2-Hydroxycyclohexanecarboxyl coenzyme A dehydrogenase, an enzyme characteristic of the anaerobic benzoate degradation pathway used by *Rhodopseudomonaspalustris*. *J.Bacteriol*.**2000**, 182, 2753-2760.

[27] Harwood, C.S.; Parales, R.E. The beta-ketoadipate pathway and the biology of self-identity. *Annu. Rev. Microbiol.* **1996**, 50, 553-590.

[28]Rabus, R.; Kube, M.; Heider, J.; Beck, A.; Heitmann, K.; Widdel, F.; Reinhardt, R. The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. *Arch. Microbiol.***2005**, 183, 27-36.

[29] Lee, S.H.; Jin, H.M.; Lee, H.J.; Kim, J.M.; Jeon, C.O. Complete genome sequence of the BTEX-degrading bacterium *Pseudoxanthomonasspadix* BD-a59. *J. Bacteriol.* **2012**, 194, 544.

[30]Maeder, D.L.; Weiss, R.B.; Dunn, D.M.; Cherry, J.L.; González, J.M.; DiRuggiero, J.; Robb, F.T. Divergence of the hyperthermophilicarchaea*Pyrococcusfuriosus* and *P. horikoshii* inferred from complete genomic sequences. *Genetics***1999**, 152, 1299-1305.

[31]Papin, J.A.; Reed, J.L.; Palsson, B.O. Hierarchical thinking in network biology: the unbiased modularization of biochemical networks. *Trends Biochem. Sci.* **2004**, 29, 641-647.

[32] Schuster, S.; Pfeiffer, T.; Moldenhauer, F.; Koch, I.; Dandekar, T. Exploring the pathway structure of metabolism: decomposition into subnetworks and application to *Mycoplasmapneumoniae*. *Bioinformatics***2002**, 18, 351-361.

[33] Yamada, T.; Kanehisa, M.; Goto, S. Extraction of phylogenetic network modules from the metabolic network. *BMC Bioinformatics***2006**, *7*, 130.

[34] Chu, H.Y.; Wegel, E.; Osbourn, A. From hormones to secondary metabolism: the emergence of metabolic gene clusters in plants. *Plant J.***2011**, 66, 66-79.