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This paper reports theoretical and experimental studies on spatio-temporal dynamics in the choruses of
male Japanese tree frogs. First, we theoretically model their calling times and positions as a system of
coupled mobile oscillators. Numerical simulation of the model as well as calculation of the order parameters
show that the spatio-temporal dynamics exhibits bistability between two-cluster antisynchronization and
wavy antisynchronization, by assuming that the frogs are attracted to the edge of a simple circular breeding
site. Second, we change the shape of the breeding site from the circle to rectangles including a straight line,
and evaluate the stability of two-cluster and wavy antisynchronization. Numerical simulation shows that
two-cluster antisynchronization is more frequently observed than wavy antisynchronization. Finally, we
recorded frog choruses at an actual paddy field using our sound-imaging method. Analysis of the video
demonstrated a consistent result with the aforementioned simulation: namely, two-cluster
antisynchronization was more frequently realized.

C
horuses of male frogs can be detected in various places, e.g., the streams in rain forests and the edges of
ponds1–3. The spatial distribution of calling frogs is significantly diverse depending on species and their
habitats. Japanese tree frogs (Hyla japonica) are one of the commonest frog species in Japan4. Choruses of

male Japanese tree frogs are audible at night mainly along edges of paddy fields, which contain rich water suitable
for cultivation of rice, between early spring and late summer. Laboratory experiments have revealed various types
of their synchronized calling behavior, e.g., antisynchronization of two individual frogs5, and 152 antisynchro-
nization and tri-phase synchronization of three individual frogs6. In choruses at a paddy field, male Japanese tree
frogs dynamically change their calling times and positions based on acoustic interactions with other individuals.
The spatio-temporal dynamics in such interactive choruses can be mathematically understood as a system of
coupled oscillators5–8. Our motivation in this study is to investigate the spatio-temporal dynamics of their
choruses in natural habitats.

Spatio-temporal dynamics in coupled-oscillator systems, collective or not, has been studied both experiment-
ally and theoretically. Experimental studies revealed various types of the spatio-temporal structures in the real
world. For instance, the Belousov-Zhabotinsky reaction generated rich examples of pattern formation such as
target patterns and spiral waves8,9; experiments on colliding microtubules yielded self-organized structures of
large-scale vortex lattices10. Furthermore, theoretical studies elucidated plausible nonlinear mechanisms generat-
ing such spatio-temporal dynamics. For example, a phase oscillator model provided a valuable tool describing
synchronization phenomena in coupled-oscillator systems8; the phase oscillator model was then extended to
include a system consisting of mobile oscillators11–13. We previously demonstrated that the synchronized behavior
of male Japanese tree frogs observed in laboratory experiments could be qualitatively explained as a system of
coupled but not mobile oscillators5–7.

On the other hand, the collective behavior of animals, e.g., flashing of fireflies9 and chirping of crickets1, has
been attracting a great deal of attention in the light of biology as well as many other disciplines. These animals
dynamically change their positions and also interact with each other by using various signals such as biolumin-
escence and chirping. Consequently, we can expect to observe various spatio-temporal structures in their posi-
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tions and signals. However, field research of such structures in ani-
mal behavior has been restricted because of the difficulties faced in
carrying out such research, e.g., in finding where many individuals
exist and how they are spatially distributed. Studying the collective
behavior of Japanese tree frogs via field research and mathematical
modeling could contribute to further understanding of collective
animal behavior, and could also aid in extending the framework of
the phase oscillator model.

Results
Numerical simulation of spatio-temporal dynamics in collective
frog choruses at a circular field. We model the spatio-temporal
dynamics inherent in the calling times and positions of male
Japanese tree frogs by using equations (5)–(9) that are mentioned
in Methods. Based on this model, we theoretically examine organized
structures in their choruses at a paddy field. Note that the geometric
shape of a paddy field is first assumed to be a circle in this model, for
simplicity (Fig. 1). The parameter values of the model are then fixed
on the basis of laboratory experiments and field observations. Labo-
ratory experiments have revealed that an isolated male Japanese tree

frog calls about 4 times per second5, so that the intrinsic angular
velocity vn in equation (5) is fixed as vn 5 8p rad/s for all the
individual frogs. Furthermore, in our field observations, the
perimeter of all the edges of a paddy field was typically more than
100 m, and more than about 20 individual frogs simultaneously
called in one paddy field. Therefore, the radius of the paddy field L
and the total number of the male frogs N are fixed as L 5 20 m and N
5 20, for simplicity. However, since the parameter Knm in equations
(7) and (8) is difficult to be estimated from laboratory experiments or
field observations, Knm is fixed to be the unit value as Knm 5 1, for
simplicity.

Figures 2 and 3 show the results of numerical simulation, which
are obtained by assuming different initial conditions but the same
parameter values vn 5 8p rad/s, L 5 20 m, N 5 20, and Knm 5 1.
Frogs are indexed from 1 to N along the edge of the circular field in
the counterclockwise direction (Fig. 2A). Our simulation demon-
strates that two kinds of spatio-temporal dynamics are bistable
depending on the initial conditions (Figs. 2 and 3). The first dynam-
ical structure is shown in Figure 2A and B; whereas the male frogs are
positioned along the edge of the field at the same interval (Fig. 2A),
each neighboring pair of male frogs synchronize in anti-phase,
forming two clusters (Fig. 2B). The second structure is shown in
Figure 3A and B; whereas the male frogs are positioned along the
edge of the field as well (Fig. 3A), each neighboring pair of male frogs
synchronize in almost anti-phase with a spatial phase shift (Fig. 3B);
consequently, a wavy state is realized in each cluster, which can be

described as hn{hnz1~pz
2kp
N

by using a nonzero integer k

describing the wave number of this state. We name the spatio-tem-
poral dynamics in Figure 2 as two-cluster antisynchronization, and
that in Figure 3 as wavy antisynchronization.

To detect occurrences of two-cluster and wavy antisynchroniza-
tion, we introduce the following order parameters Rcluster and Rwavy as
the extensions of the order parameter for in-phase synchronization8,

i.e., Rin~
X N

n~1
exp ihnð Þ

����
����
�

N :

Rcluster~
1
N

XN

n~1

exp i2hnð Þ
�����
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Rwavy~
1
N

XN
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exp i2 hnz
2nkp
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Figures 2C and 3C show the time series data of Rcluster, Rwavy, and Rin.
When two-cluster antisynchronization is realized as shown in
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Figure 1 | A schematic diagram describing our mathematical model of
equations (5) and (6) that are mentioned in Methods. The calling times

and position of the nth frog are modeled by using the calling phase hn and

the spatial position rn, respectively. The nth and mth frogs mutually

interact according to the functions Cnm, Cmn, Fnm, and Fmn. The function

Gn is used to explain our field observations that male Japanese tree frogs

aggregate along the edges of paddy fields. The geometric shape of the field

is first assumed to be a circle with the radius L and the origin 0, for

simplicity. This diagram was drawn by I.A.

A B C

x (m)

y 
(m

)

0

0

-20
-20

20

20

Frog index n
1 20

1

2

0
10

θ n /
 π

 

Time(s)

O
rd

er
 p

ar
am

et
er

2500

0.5

0 5000

1.0t=5000 t=5000

Rcluster1
2

345

Figure 2 | Two-cluster antisynchronization obtained from our numerical simulation on the assumption of vn 5 8p rad/s, L 5 20 m, N 5 20, and Knm

5 1 in equations (5)–(9). (A) Spatial structure in a frog chorus. Frogs are positioned along the edge of the circular field at the same interval. An index n is

attached to each frog along the edge of the field in the counterclockwise direction. (B) Two-cluster antisynchronization in a frog chorus. The horizontal

axis represents the frog index n, and the vertical axis represents hn at t 5 5000. Each pair of neighboring frogs synchronize in anti-phase p, and then two-

cluster antisynchronization is realized. (C) Time series data of the order parameters Rcluster and Rwavy defined in equations (1) and (2), and

Rin~
X

N
n~1

exp ihnð Þ
��� ���

�
N8. Red, blue, green, and black lines represent the time series data of Rcluster, Rwavy for k 5 1 and k 5 21, and Rin, respectively.

When two-cluster antisynchronization is realized as shown in Figure 2B, only Rcluster takes a high value around 1.
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Figure 2B, only Rcluster takes a high value around 1 (Fig. 2C). In
contrast, when wavy antisynchronization is realized as shown in
Figure 3B, only Rwavy for k 5 1 reaches a high value around 1
(Fig. 3C). Thus, the order parameters Rcluster and Rwavy can be used
to discriminate between two-cluster antisynchronization and wavy
antisynchronization. In addition, we perform linear stability analysis
by assuming circular distribution of the calling frogs, and show that
both two-cluster antisynchronization and wavy antisynchronization
are asymptotically stable (see Supplementary information). Note that
the same parameter values are assumed for the linear stability ana-
lysis, i.e., vn 5 8p rad/s, L 5 20 m, N 5 20, and Knm 5 1.

Numerical simulation of the stability of two-cluster antisyn
chronization and wavy antisynchronization at a rectangular
field. The usual geometric shape of a paddy field is not a circle but
a rectangle in Japan. In this section, the stability of two-cluster
antisynchronization and wavy antisynchronization is analyzed by
replicating the shape of an actual paddy field in our model.

We describe the shape of a rectangular paddy field by using two
parameters Lx and Ly, which represent the length and width of the

field, respectively (Fig. 4A). In addition, the summation of Lx and Ly

is constrained as Lx 1 Ly 5 60 m, for consistency with the perimeter
of the circular field shown in Figures 2A and 3A. Then, Gn(rn) in
equation (6) is defined as follows:

Gn rnð Þ~r�n{rn, ð3Þ

where r�n represents the vector from the origin 0 to the point on the
edges that is nearest to the position of the nth frog rn, as shown in
Figure 4A. We use the term Gn(rn) in equation (3), which changes its
sign across the boundary condition rn~r�n, to explain the attraction
of the male frogs towards the edges of the field.

Figure 4B shows the results of numerical simulation based on
the assumption of vn 5 8p rad/s, N 5 20, Knm 5 1, and Lx 1 Ly

5 60 m in the present mathematical model of equations (3) and
(5)–(8). In this simulation, the parameters Lx and Ly are varied
with an interval of 2 m in the ranges 30 # Lx # 60 and 0 # Ly #
30 under the constraint Lx 1 Ly 5 60. For each parameter set of
Lx and Ly, occurrences of two-cluster antisynchronization and
wavy antisynchronization are calculated for 500 runs of the simu-
lation with different initial conditions: namely, if only Rcluster is
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Figure 3 | Wavy antisynchronization obtained from our numerical simulation with the same parameter values as those in Figure 2 but with a different
initial condition. (A) Spatial structure in a frog chorus. Frogs are positioned along the edge of the circular field at the same interval. (B) Wavy

antisynchronization in a frog chorus. Neighboring frogs synchronize in almost anti-phase p, and then a wavy state is generated in each cluster. (C) Time

series data of the order parameters Rcluster, Rwavy and Rin. Red, blue, green, and black lines represent the time series data of Rcluster, Rwavy for k 5 1 and k 5

21, and Rin, respectively. When wavy antisynchronization is realized as shown in Figure 3B, only Rwavy for k 5 1 takes a high value around 1.
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Figure 4 | Numerical simulation on the stability of two-cluster antisynchronization and wavy antisynchronization. The geometric shape of a field is

assumed to be a rectangle, so as to replicate the shape of an actual paddy field in Japan. Parameters in equations (3) and (5)–(8) are fixed as vn 5 8p rad/s,

N 5 20, Knm 5 1, and Lx 1 Ly 5 60 m. (A) A schematic diagram describing the mathematical model. The two parameters Lx and Ly represent the length

and width of the field, and r�n represents the vector from the origin 0, or the center of the rectangle, to the point on the edges that is nearest to the position

of the nth frog rn. The nth frog is attracted to r�n, according to Gn(rn) described by equation (3). In this simulation, Lx and Ly are varied with an interval of

2 m in the ranges of 30 # Lx # 60 and 0 # Ly # 30 under the constraint Lx 1 Ly 5 60, and occurrences of two-cluster antisynchronization and wavy

antisynchronization are calculated for 500 runs of the simulation with different initial conditions at each parameter set: namely, if only Rcluster is more than

0.9 at t 5 30000, the dynamics is considered as two-cluster antisynchronization; if only Rwavy is more than 0.9 for one of k 5 24, 23, 22, 21, 1, 2, 3, and 4

at t 5 30000, the dynamics is considered as wavy antisynchronization. (B) Results of the numerical simulation on the stability of two-cluster and wavy

antisynchronization. Red bars represent the numbers of detection of two-cluster antisynchronization, and blue bars represent those of wavy

antisynchronization among 500 runs of the simulation. Two-cluster antisynchronization is more frequently observed than wavy antisynchronization,

except for the cases of (Lx, Ly) 5 (52, 8), (54, 6) and (56, 4). The diagram of Figure 4A was drawn by I.A.
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more than 0.9 at t 5 30000, the dynamics is considered as
two-cluster antisynchronization; if only Rwavy is more than 0.9
for one of k 5 24, 23, 22, 21, 1, 2, 3, and 4 at t 5 30000,
the dynamics is considered as wavy antisynchronization. As
shown in Figure 4B, two-cluster antisynchronization is more fre-
quently observed than wavy antisynchronization, except for the
cases of (Lx, Ly) 5 (52, 8), (54, 6), and (56, 4).

When (Lx, Ly) 5 (52, 8), (54, 6), and (56, 4), both two-cluster
antisynchronization and wavy antisynchronization are not or very
rarely detected (Fig. 4B). Why does such instability occur at these
parameter values? Figure 5A and B represents an example of the
spatio-temporal dynamics at (Lx, Ly) 5 (56, 4). As shown in
Figure 5A, almost equilaterally triangular patterns are realized in
many frog trios because of the narrow and long geometric shape of
the rectangular field characterized by (Lx, Ly) 5 (56, 4). Since the
coupling strength of Cnm(hm 2 hn, rm 2 rn) in equation (7) depends
on the distance between frogs, such equilateral-triangle structures
cause the frog trios to interact with almost the same strength.
Moreover, Cnm(hm 2 hn, rm 2 rn) in equation (7) is assumed to be
a sinusoidal function. It has been theoretically shown that almost
the same coupling strength with the sinusoidal function, e.g.,

dhn=dt~vn{
X

3
m~1,m=n

Knm sin hm{hnð Þ with n 5 1, 2, 3, vn

5 v, and K12~K13^K23, can strongly frustrate the calling behavior
of three frogs7. We speculate that such frustration is the source of the
instability of two-cluster and wavy antisynchronization at (Lx, Ly) 5

(52, 8), (54, 6), and (56, 4). In fact, a snapshot of the phases at t 5

20000 does not show any organized structure such as the two-cluster
and wavy antisynchronization (Fig. 5B), and all the order parameters
Rcluster, Rwavy and Rin take considerably less values than 1 (Fig. 5C).

Thus, our numerical simulation of the present mathematical
model suggests that the two-cluster antisynchronization of the male
frogs can be more frequently observed than wavy antisynchroniza-
tion at a rectangular paddy field.

Field research on collective choruses of male Japanese tree frogs.
Figure 7A shows the time series data of the light pattern of sound-
imaging devices14 deployed at an actual paddy field (see Methods and
Fig. 6), capturing the chorus structures of male Japanese tree frogs.
The colored plots represent the light intensity of each device, which
has been calculated by subtracting the average light intensity of each
device that can slightly vary depending on its tuning14; an index is
attached to each device from one end of the edge, which is closer to
the camera, to the other end (Fig. 6C). The device nearest to each
calling frog was estimated every 15 sec, by analyzing the summation
of the light intensity of the deployed devices: namely, if the
summation at one device exhibited a local peak and exceeded a
threshold, the device was determined to be nearest to one calling
frog. Through this analysis, the threshold was set as 3 3 29.97 fps
(frames per second) 3 15 sec. To estimate the calling times of each
frog, the light pattern of the device nearest to each calling frog was
then analyzed: namely, when the light pattern of the device exceeded
a threshold, the corresponding times were detected as the calling
times of the frog (see supplemental materials of the reference 6). In
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Figure 5 | Spatio-temporal dynamics in a frog chorus obtained from numerical simulation with vn 5 8p, N 5 20, Knm 5 1, and (Lx, Ly) 5 (56, 4) in
equations (3) and (5)–(8). (A) Spatial structure in a frog chorus. Almost equilaterally triangular patterns are generated in many of neighboring frog trios at

t 5 20000, because of the narrow and long geometric shape of the rectangular field characterized by (Lx, Ly) 5 (56, 4). (B) Disordered phase dynamics

in a frog chorus. The horizontal axis represents the frog index n, and the vertical axis represents hn at t 5 20000. A self-organized structure such as two-

cluster or wavy antisynchronization is not realized. (C) Time series data of the order parameters, Rcluster, Rwavy, and Rin. Red, blue, green, and black lines

represent the time series data of Rcluster, Rwavy for k 5 1 and k 5 21, and Rin, respectively. All the order parameters take considerably less values than 1.

Figure 6 | Field research on frog choruses, by using our sound-imaging method14. (A) A photograph of a male Japanese tree frog (Hyla japonica).

(B) A photograph of our sound-imaging device Firefly. The Firefly unit consists of a microphone and a light emitting diode (LED) that is illuminated when

capturing nearby sounds14. (C) A photograph of a paddy field in Japan. Along one edge of this paddy field, we deployed 85 or 86 sound-imaging devices at

intervals of 40 cm. As shown here, an index was attached to each device from one end of the edge, which was closer to the camera, to the other end.

The spatio-temporal light pattern of these devices was recorded by a video camera. Note that the lights of some devices were not detected, when those

devices were deployed far from the camera and were not illuminated by frog calls. We carefully checked all the data, and confirmed that the lights of at least

40 devices close to the camera were stably captured even when those were not strongly illuminated by frog calls. Hence, we used the light patterns of 40

devices close to the camera for data analysis of all the observations. These photographs were taken by I.A. and H.G.O.
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this analysis, 50% of the maximum light intensity of respective
devices was used as a threshold value.

Figure 7B shows the calling times of 6 frogs obtained from the light
pattern shown in Figure 7A. We observed that some pairs called
synchronously. For instance, the 2nd and 3rd frogs stably synchro-
nized in almost anti-phase. The calling times of the nth frog were
then described by tj

n, where j represented the jth calling, and the
phase of the nth frog at time t was evaluated as follows6,9:

hn~2p
t{tj

n

tjz1
n {tj

n

, ð4Þ

where tj
n and tjz1

n described the times of the two calls covering time t.
We did not calculate the phase in the case of tjz1

n {tj
nw1:0 or

tjz1
n {tj

nv0:2, because the inter-call intervals of a single Japanese
tree frog were around 0.25 sec5. Subsequently, the order parameters
Rcluster, Rwavy and Rin were estimated during the collective choruses of
more than 3 frogs, by substituting the time series data of hn to equa-

tions (1) and (2) and to Rin~
X

N
n~1

exp ihnð Þ
��� ���

�
N8. Figure 7C

represents the time series data of Rcluster, Rwavy and Rin. It was
shown that Rcluster stably took considerably larger values than
Rwavy and Rin, which meant that two-cluster antisynchronization
was realized in this chorus of the 6 male frogs. In addition to the
data shown in Figure 7 that were recorded on 15th June in 2011,
we analyzed the data recorded on 12th, 14th, 16th, and 17th June
in 2011, and calculated the order parameters of Rcluster, Rwavy and
Rin. It should be noted that we did not analyze the data recorded
on 11th June in 2011 (see Methods), since the data were too
complicated to precisely estimate the positions of calling frogs
because of the presence of a very large number of calling frogs
(Fig.S7 in Supplementary information).

To examine the reproducibility of two-cluster antisynchroniza-
tion, we performed two kinds of analyses. First, the mean values of
the order parameters were calculated as �Rcluster , �Rwavy for k 5 1
and 21, and �Rin, from the 15 min video data of the 5 field obser-
vations (Table 1A). It was shown that �Rcluster was larger than �Rwavy

for k 5 1 and 21, and �Rin in all the data. Second, the ratio of each
state was calculated from the same data (Table 1B), by estimating
the total duration when the order parameters exceeded a threshold
value of 0.8. This analysis demonstrated that the ratio of two-
cluster antisynchronization was considerably larger than the ratios
of the other states. Thus, two-cluster antisynchronization of male
Japanese tree frogs was more frequently observed at an actual
paddy field.

Discussion
This paper presents theoretical and experimental studies on spatio-
temporal dynamics in collective frog choruses. First, a mathematical
model is proposed to describe the nonlinear dynamics inherent in the
calling times and positions of male Japanese tree frogs. The numer-
ical simulation shows that organized spatio-temporal dynamics, i.e.,
two-cluster antisynchronization and wavy antisynchronization, are
realized in the mathematical model (Figs. 2 and 3). Second, the
stability of two-cluster and wavy antisynchronization is analyzed
by numerically varying the length parameters of a rectangular paddy
field. It is demonstrated that two-cluster antisynchronization is more
frequently observed than wavy antisynchronization (Fig. 4B).
Finally, field research was performed on actual choruses of male
Japanese tree frogs at a paddy field by using our sound-imaging
method14. Analysis of the recorded video showed that two-cluster
antisynchronization was more frequently detected in choruses of
male Japanese tree frogs (Fig. 7 and Table 1). Thus, the present
mathematical model qualitatively explains the result of the field
research, i.e., the existence of two-cluster antisynchronization in
the choruses of male Japanese tree frogs.

As for the spatial structures in frog choruses, our field research
revealed that calling frogs were sparsely positioned along an edge of a
paddy field at an interval ranging from 0.8 to 3.2 m (Fig. 7B), using
the spatial resolution by the devices deployed at intervals of 40 cm. In
general, most frog species can be classified as either explosive
or prolonged breeders2,15. Experimental studies have shown that,
whereas explosive breeders exhibit considerably denser distribution
in their breeding site, prolonged breeders exhibit sparser distri-
bution2,15. Since Japanese tree frogs are classified as prolonged bree-
ders4,15, their sparse spatial distribution revealed by our field research
can be well understood on the basis of their breeding type. Moreover,
as shown in Figures 2A, 3A, and 5A, our mathematical model qua-
litatively explains the sparse distribution of male Japanese tree frogs
according to the competitive interaction terms described by equa-
tions (7) and (8).

As for the spatio-temporal dynamics in frog choruses, wavy anti-
synchronization was rarely detected in the field research, although it
appeared as a stable solution in the numerical simulation (see Figs. 3
and 4B). This inconsistency may be explained by a specific field
condition observed during our recordings. At the paddy field shown
in Figure 6C, the sound-imaging devices were deployed along one
edge of the field where a considerably larger number of male frogs
aggregated than along the other 3 edges of the field (see Methods).
Therefore, the calling frogs mainly aligned along the one edge cov-
ered by our recording system, and then straight-line distribution of

Figure 7 | Spatio-temporal structure in an actual frog chorus obtained by our field research on 15th June in 2011. (A) A light pattern of the sound-

imaging devices deployed at the paddy field. While the horizontal and vertical axes represent the time and device index, the colored plots represent the

light intensities of the devices14. An index was placed on each device from one end of the edge, which was closer to the camera, to the other end. The

attached right panel shows the summation of light intensity of each device. This data set represents the calls of 6 frogs numbered from 1 to 6.

(B) Calling times and positions of male Japanese tree frogs. Each black dot represents the calling times and positions of the 6 frogs. We observed that some

pairs of these frogs called synchronously. For instance, the 2nd and 3rd frogs stably synchronized in almost anti-phase p (see the two red arrows).

(C) Time series data of the order parameters, Rcluster, Rwavy, and Rin, which were calculated from the calling times of the 6 male Japanese tree frogs. Red,

blue, green, and black lines represent the time series data of Rcluster, Rwavy for k 5 1 and k 5 21, and Rin, respectively. Rcluster stably took considerably larger

values than Rwavy and Rin, which meant that two-cluster antisynchronization was realized in this chorus.

www.nature.com/scientificreports
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the male frogs was approximately realized at the paddy field. Our
numerical simulation suggests that, in such straight-line distribution
of the male frogs, wavy antisynchronization is not observed, and only
two-cluster antisynchronization is observed (see the case of (Lx, Ly)
5 (60, 0) in Fig. 4B). Furthermore, linear stability analysis has shown
that two-cluster antisynchronization is asymptotically stable for the
straight-line distribution (Fig.S2C in Supplementary information).

From the mathematical point of view, it is an important future
problem to examine the stability of two-cluster and wavy antisyn-
chronization by varying the parameter values in the present math-
ematical model. In particular, we expect that the stability can be
affected by the number of the male frogs, N, which is fixed as N 5

20 in this study. For example, exact two-cluster antisynchronization
cannot exist for circular distribution with odd values of N, because of
frustration that all the neighboring pairs cannot synchronize in
anti-phase7. In contrast, two-cluster antisynchronization for the
straight-line distribution can remain as a stable equilibrium state
even for odd values of N, because all the neighboring pairs along
the straight line can synchronize in anti-phase as hn 2 hn11 5 p
(mod 2p), for n 5 1, 2, …, N 2 1.

As shown in Figure 7C, the order parameters Rcluster, Rwavy and Rin

showed complex dynamics during the recording at the paddy field.

This result suggests that male Japanese tree frogs dynamically change
their calling times even in the same chorus beyond the expectation of
the present mathematical model. Further studies are required to
derive a mathematical model explaining such complex dynamics
observed in an actual field. For the modification of the present math-
ematical model, it is useful to estimate three functions, Cnm(hm 2 hn,
rm 2 rn), Fnm(hm 2 hn, rm 2 rn), and Gn(rn), on the basis of labor-
atory experiments and field research. The functions Cnm(hm 2 hn, rm

2 rn) and Fnm(hm 2 hn, rm 2 rn) may be estimated by laboratory
experiments. For instance, recording of two calling frogs that hop
around a room can be used to represent fundamental data to study
the interactions between two individuals. Subsequently, Cnm(hm 2

hn, rm 2 rn) may be estimated according to the method provided in
the reference 16 that makes it possible to calculate the interaction
terms in the phase oscillator model from the desynchronized time
series data of two interacting elements. However, it seems to be
difficult to experimentally determine Gn(rn), because male
Japanese tree frogs move to a paddy field without emitting calls
according to our field observations. A sound-imaging method can-
not be applied to such silent frogs, and other tracking methods need
to be developed.

Advertisement calls of male frogs have two roles, i.e., attracting
conspecific females and defending their own territories2. In this sec-
tion, the behavioral meanings of two-cluster antisynchronization are
discussed based on these two roles of advertisement calls. As regards
the first role of attracting conspecific females, two-cluster antisyn-
chronization of male frogs can strengthen the sound-pressure level of
their chorus, because male frogs involved in the same cluster call
synchronously almost in-phase. Such a collective chorus with a high
sound-pressure level may attract more females far from the chorus
site. After the females arrive at the breeding site, the males must
compete against each other to mate with one of the females. In this
final step, the calling properties of individual male frogs, e.g., sound-
pressure level and frequency, can be also important for attracting
females2, because such calling properties can include information
about body sizes and physical conditions of the male frogs. As
regards the second role of defending their territories, Figure 7B has
demonstrated that neighboring pairs of male frogs, e.g., the pair of
the 2nd and 3rd frogs and the pair of the 5th and 6th frogs, tend to call
alternately in anti-phase. Such antisynchronization between neigh-
boring males can help them to claim their own territories each other
because of a small amount of call overlap5,6,17. If neighboring pairs of
male frogs synchronize in anti-phase respectively, two-cluster anti-
synchronization is automatically realized. Therefore, antisynchroni-
zation of neighboring pairs can be the origin of global two-cluster
antisynchronization. However, in-phase synchronization between a
neighboring pair was also detected. For example, the pair of the 1st
and 2nd frogs synchronized almost in-phase (Fig. 7B). The role of
such cooperative behavior is still unknown and needs to be further
examined.

The present mathematical model can be applied to theoretical
studies on the collective behavior of other species of animals. For
instance, several species of insects, such as fireflies, crickets and
cicadas, interact with each other by periodically emitting signals
involving lights and sounds9. The nonlinear dynamics in the collect-
ive behavior of such animals can be examined on the basis of our
mathematical model, by varying the interaction terms Cnm(hm 2 hn,
rm 2 rn) and Fnm(hm 2 hn, rm 2 rn), and the geometric shape of their
habitats. In addition, when the target animals are nocturnal and
interact through sounds, our sound-imaging method can be similarly
applied to detect their calling times and positions14. However, it
should be noted that the present method has several limitations.
One of the limitations is that we had to manually tune the gain of
each Firefly14, and then the response of each Firefly to the same sound
could have been slightly different. Such a difference in the tuning can
cause the problem that the position of a single frog is detected twice.

Table 1 | Stability analyses of synchronization states on the basis of
the 5 field observations. In this table, Data (1)–(5) correspond to the
15 min video data recorded on 12th, 14th, 15th, 16th, and 17th
June in 2011, respectively. Note that we did not use the data
recorded on 11th June in 2011, since the data were too compli-
cated to precisely estimate the positions of calling frogs because of
the presence of a very large number of calling frogs at the paddy
field (Fig.S7 in Supplementary information). (A) The averaged
order parameters of two-cluster antisynchronization, in-phase syn-
chronization, and wavy antisynchronization. The total duration of
choruses including more than 3 frogs were 11.5 min, 1.7 min,
5.2 min, 0.9 min, and 12.34 min, respectively. By using these data
sets of the choruses, we estimated the mean values of the order
parameters as �Rcluster, �Rin, and �Rwavy. It was shown that �Rcluster

was larger than �Rwavy for k 5 1 and 21, and �Rin in all the field
observations. (B) Ratios of two-cluster antisynchronization, in-
phase synchronization, and wavy antisynchronization. In this
analysis, we summed up the times when each order parameter
exceeded a threshold value of 0.8, and then divided the duration
of each state by the total chorus duration of more than 3 frogs. The
ratio of two-cluster antisynchronization was considerably larger
than those of in-phase synchronization and wavy antisynchroni-
zation

A

�Rcluster �Rin �Rwavy for k ¼ 1 �Rwavy for k ¼ �1

Data (1) 0.432 0.358 0.336 0.324
Data (2) 0.567 0.414 0.348 0.348
Data (3) 0.550 0.343 0.350 0.345
Data (4) 0.573 0.336 0.356 0.356
Data (5) 0.484 0.368 0.305 0.312

B

Two-cluster
antisync Insync

Wavy antisync
for k 5 1

Wavy antisync
for k 5 21

Data (1) 4.48% 1.84% 0.85% 0.76%
Data (2) 19.88% 9.03% 1.09% 1.19%
Data (3) 17.70% 1.36% 2.00% 2.01%
Data (4) 23.64% 1.39% 2.46% 2.46%
Data (5) 7.87% 2.90% 0.25% 0.32%
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For example, in the data of Figure S4 shown in Supplementary
information, two close peaks at the 31st and 33rd devices were
detected as the positions of calling frogs, respectively. In addition,
the calling times estimated from the light patterns of the two devices
were almost the same. We speculate that these signals of the 31st and
33rd devices originated from the calls of a single frog, since the 32nd
device weakly responded to the calls because of bad device tuning. In
this study, we carefully chose suitable threshold values in the data
analysis to avoid this problem. However, further studies to improve
the device performance and data analysis method are required.

Methods
Mathematical modeling of collective frog choruses. To theoretically examine the
spatio-temporal structures realized in the choruses of male Japanese tree frogs, we
propose a mathematical model describing their behavior in an actual field. Whereas a
single male Japanese tree frog calls periodically, a pair of the male frogs interact
through sounds5,6. In addition, the male frogs hop around fields in natural habitats.
We model such dynamics in calling times and positions of the male frogs originating
from their acoustic interactions, as follows (Fig. 1):

dhn

dt
~vnz

XN

m~1,m=n

Cnm hm{hn,rm{rnð Þ, ð5Þ

drn

dt
~

XN

m~1,m=n

F nm hm{hn,rm{rnð ÞzGn rnð Þ, ð6Þ

where hn (n 5 1, 2, …, N) represents the phase of the calling of the nth frog5–7, and the
vector rn represents the position of the nth frog in a two-dimensional space. The
parameter vn represents the angular velocity of the calling of the nth frog. It is then
assumed that hn 5 0 (mod 2p) corresponds to the timing of the calls emitted by the
nth frog, so as to explain the periodic calling behavior of the isolated male frogs5,6. The
functions Cnm(hm 2 hn, rm 2 rn) and Fnm(hm 2 hn, rm 2 rn) (n, m 5 1, 2, …, N and n
? m) represent the effects from the mth frog to the nth frog. By simply extending the
phase oscillator model described by dhn=dt~vnz

XN
m~1,m=n

Cnm hm{hnð Þ8,
Cnm(hm 2 hn, rm 2 rn) and Fnm(hm 2 hn, rm 2 rn) are defined as 2p-periodic
functions of the phase difference, hm 2 hn, and also functions of the relative position
between the nth and mth frogs, rm 2 rn. The function Gn(rn) is used to explain our
field observations that male Japanese tree frogs aggregate along the edges of paddy
fields in natural habitats14. Moreover, the geometric shape of the field is first assumed
to be a circle, for simplicity; the radius of the field is described by the positive constant
L, and the center of the field is set at the origin 0 in the two-dimensional space (Fig. 1).

Then, we determine the three functions Cnm(hm 2 hn, rm 2 rn), Fnm(hm 2 hn, rm 2

rn), and Gn(rn) in equations (5) and (6), based on experimental results and field
observations of the behavior of male Japanese tree frogs.

Laboratory experiments revealed that two individuals of male Japanese tree frogs,
which were placed in small cages respectively, called alternately almost in anti-phase
p5,6. To qualitatively explain this antisynchronization (or call alternation) unique to
male Japanese tree frogs, we used the phase oscillator model with a simple sinusoidal
function7, i.e., dhn=dt~vn{

XN
m~1,m=n

Knm sin hm{hnð Þ. By extending the model,

we define Cnm(hm 2 hn, rm 2 rn) in equation (5) as follows:

Cnm hm{hn,rm{rnð Þ~{
Knm

rm{rnj j2
sin hm{hnð Þ: ð7Þ

Because the male frogs interact through sounds that decay proportional to the inverse
of the square of their distance, Cnm(hm 2 hn, rm 2 rn) is assumed to be a function of 1/
jrm 2 rnj2. The parameter Knm represents a positive symmetrical coupling coefficient
between the nth and mth frogs, i.e., Knm 5 Kmn.

The calling behavior of male Japanese tree frogs studied here is classified as
advertisement calls. In general, advertisement calls of male frogs have two roles of
attracting conspecific females and also claiming their own territories to other con-
specific males2. The important point is that, during antisynchronization of two
individuals, information included in calls of one individual is not masked by calls of
the other individual because of a small amount of call overlap17. These two properties
of advertisement calls and call overlap suggest that antisynchronization is capable of
helping each pair of male frogs to mutually interact and then robustly defend their
own territories5,6. To model this conjecture about antisynchronization, Fnm(hm 2 hn,
rm 2 rn) in equation (6) is defined as follows:

Fnm hm{hn,rm{rnð Þ~ Knm

rm{rnj j2
1{ cos hm{hnð Þð Þenm: ð8Þ

Here, Fnm(hm 2 hn, rm 2 rn) is assumed to include the factor Knm/jrm 2 rnj2 as in the
case of Cnm(hm 2 hn, rm 2 rn), because Fnm(hm 2 hn, rm 2 rn) also models the
interaction of the male frogs via calling sounds. Moreover, Fnm(hm 2 hn, rm 2 rn) is
assumed to include the factor (1 2 cos(hm 2 hn))enm, where enm is a unit vector

between rn and rm, i.e., enm~{
rm{rn

rm{rnj j . In this term, 1 2 cos(hm 2 hn) takes the

maximum positive value at hm 2 hn 5 p, which means that the nth and mth frogs
attempt to move towards the opposite directions during antisynchronization; 1 2

cos(hm 2 hn) takes the minimum value of 0 at hm 2 hn 5 0, which means that the nth
and mth frogs do not affect their positions each other during in-phase synchron-
ization. It should be noted that male frogs face difficulties in their acoustic interaction
during in-phase synchronization because of a large amount of call overlap.

We previously observed that male Japanese tree frogs aggregated along the edges of
paddy fields14. To explain such localized spatial distribution of male Japanese tree
frogs, Gn(rn) is defined as follows:

Gn rnð Þ~ L{ rnj jð Þen, ð9Þ

where en represents a unit vector between the position of the nth frog rn and the center

of the paddy field 0, i.e., en~
rn

rnj j
. Furthermore, Gn(rn) is assumed to include the

factor L 2 jrnj. Here, L 2 jrnj is negative when the nth frog is positioned outside the
circular paddy field, and then the frog is attracted to the edge of the field; on the other
hand, L 2 jrnj is positive when the nth frog is positioned inside the circular paddy
field, and the frog is attracted to the edge of the field as well. Equation (3) of
Gn rnð Þ~r�n{rn is used instead of equation (9) for a rectangular paddy field.

Recording of frog choruses at an actual paddy field. To test the hypothesis of our
numerical simulation suggesting that two-cluster antisynchronization can be
frequently observed in the choruses of male Japanese tree frogs (Fig. 4B), the positions
and calling times of individual frogs must be obtained. For this purpose, we used a
sound-imaging method14. The imaging method is based on the device named Firefly
consisting of a microphone and a light emitting diode (LED)14 (Fig. 6B); the LED of
the Firefly unit is illuminated, when capturing nearby sounds. Along one edge of a
paddy field where a considerably larger number of male Japanese tree frogs were
calling than along the other three edges, 85 or 86 devices were deployed at intervals of
40 cm (Fig. 6C); the illumination pattern of the devices was recorded by a Sony video
camera (HDR- XR550V, 29.97 fps). Note that the lights of some devices were not
detected, when those devices were deployed far from the camera and were not
illuminated by frog calls. We carefully checked all the data, and confirmed that the
lights of at least 40 devices close to the camera were stably captured even when those
devices were not strongly illuminated by frog calls. Hence, we used the light patterns
of 40 devices close to the camera for data analysis. An index was attached to each
device from one end of the edge, which was closer to the camera, to the other end.

Recordings were carried out between 20500 h and 24500 h on 11th, 12th, 14th,
15th, 16th, and 17th June, 2011, in Oki island, Shimane, Japan. The ambient tem-
perature ranged between 15uC and 21.5uC, and the humidity ranged between 49% and
93%. The data corresponding to the first 15 min of all the recorded video were then
divided into dozens of pictures. All the field observations in this study were performed
in accordance with the guidelines approved by the Wako Animal Experiments
Committee of RIKEN and the Animal Experimental Committee of Kyoto
University.
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