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1 Introduction 

1.1 Rotating annulus experiments 

[n the field of geophysical Auid d ynamics, rotating annulus experimen ts have been done 

to investigate thermal convection in a rotating system (see, e.g., Hide and i'viason, 1975). 

The experiment. is usually done as follows. Water or water-glycerol so lution is filled as 

a working fluid into a container made of two coaxial cylinders and a t hermally insulated 

bottom which is usually horizontal. .\ temperature difference between the cylinders is 

maintained and a ll of the system are rotated about the vertical axis of t he cylinders at a 

constant rotation rate. A driven thermal convection is observed in a rotating frame with 

the system. 

(a) (b) (c) 

Figure l: Surface flow patterns (Hide a nd rvlason, 197.=J). (a) Axisymmetric flow, (b) steady 

wave, (c) irregular flow. 

Genc~ra.lly. the flow observed in the experiment is classified into four regimes: steady 

axisynnnetric !low , steady waves, vacillation , and irregular Aow . Flow patterns at t he 

top surl'<tce are s hown in Fig. L for t hese regimes except for va.cilla.tion. Selection of 

the regi me depends on several experiment.al parameters , such as the ro tation rate D , the 

temperat.mc diffe ren ce between the cylinJcrs ~'J' , physi cal properties of Lhc lluid, and the 

dirncr1sions of the container. Fowlis and llidc ([<)().))listed a ll the ph ysi cal varia.blcs and 

the dirncnsio11Cd experimental parnmct.ers rcq11ircd to specify the sysl.crn in I.heir Table l 

and dcll 11ccl <t pr;L(: i.ic;d set of sixteen imlcpcr1dcn1. dirncnsionl<~ss p<H<trndcrs rcq11ircd to 

specify Li1 <~ sysl.clll in their Table 2. The sdcct. ion of I.he regime is 11s t1<d ly cl cscribcd on a 

regime di<tgram which s hows the dcpcnclcncc on two important di11wn sio11l<'ss p<tr<llnet.ers: 

Taylor 1111rnlwr ('/'11) and thermal H.osshy 1111rrilwr (!?.or). These n111r1bcrs arc dcllncd as 

2 2 -= .r;rln Sl' /O (h - a) , 

•) 

( 1 ) 

(2) 
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Figure 2: Typical regime diagram for water. II4 = Ror and II5 =Ta (Fowlis and Hide, 1965). 

where a is the radius of the inner cylinder, b the radius of the outer cylinder, d the depth 

of the fluid, v the kinematic viscosity, a the coefficient of volume expansion, and g the 

acceleration due to gravity. 

Figure 2 is a well-known regime diagram for water obtained by Fowlis and Hide 

(1965). Steady axisymmetric fl.ow, which is often called as the Hadley regime, occupies 

a region on the lefthand side of the anvil-shaped transition curve. The axisymmetric 

regime is subdivided into upper symmetric regime above the transition curve and lower 

symmetric regime below the curve. On the other hand, non-axisymmetric flow called as 

the Rossby regime occupies on the righthand side of the curve, where steady waves appear 

near the transition curve and vacillation and irregular flows appear at higher values of Ta. 

In some experiments, a hysteresis phenomenon is observed at the regime transition 

between the axisymmetric flow and the steady wave; the criterion for the disappearance of 

an established fl.ow differs from that for the onset of the flow. Hysteresis is also observed 

within the steady waves of different wavenumber. Hysteresis is interpreted as the result 

of presence of two or more stable solutions for the same experimental condition. 

1.2 Theoretical and numerical studies 

Fluid motion in a rotating annulus can be described by the Na.vier-Stokes equations for 

the·Boussinesq fluid. A large number of theoretical (analytic) and numerical studies have 



been done with the equations. 

The analytic study is limited to the investigation of highly symmetric phenomena, 

such as the axisyrnrnctric flow and linear stability analysis of the flow, because of math

ema.tica.I difficulties of handling the equations. Hunter (1967) analytically obtained the 

axisymmetric flow in the lower symmetric regime assuming that the heat transfer is purely 

conductive. On the other hand, Mcintyre (1968) analytically obtained the axisymmetric 

flow in the upper symmetric regime assuming the predominance of heat convection. 

Regime transitions are essentially explained by instability of the flow. One flow 

regime gives way to another when the flow becomes unstable for perturbation at given 

external para.meters. Linear stability analysis of a baroclinic basic state has been done 

to study the transition from the axisymmetric flow to the steady wave. Barcilon ( 1964) 

obtained the anvil-shaped transition curve by modifying the Eady problem with friction 

in the top and bottom boundary layers. 

Numerical experiments are great help to study the result obtained in the labora

tory experiments. A little discrepancy between the results in numerical experiments and 

those in the laboratory experiments exists owing to inevitable imperfection included in 

each experiment, such as finite difference approximations, Boussinesq approximations, 

limited number of grids, and neglect of the variation of the physical properties of the 

fluid with temperature in the former, and leak of the heat from the insulated top and 

bottom boundaries, fluctuation of the temperature at side boundaries, and distortion of 

the apparatus in the latter. However, the numerical experiments provide many data of 

the number of grids for each computed variable without suffering the disturbance due 

to measurement probes. This advantage outweighs the disadvantage mentioned above. 

Williams ( 1967 a, b) investigated the axisymmetric flow by numerical time integrations of 

the two-dimensional nonlinear Navier-Stokes equations for Boussinesq fluid . He also stud

ied the steady waves with a similar three dimensional model (Williams, 1969, 1971, 1972). 

Tokioka ( 1970) numerically investigated the linear stability of the axisymmetric flow ob

tained by the two-dimensional model and showed that the flow is unstable in the wave 

regime. Recently, Miller and Butler (1991) reproduced the hysteresis phenomenon by us

ing a. nonlinear semi-spectral model including zonal flow and a dominant wave. Ukaji and 

Tamaki ( 1990) simulated a tilted trough vacillation with a full three-dimensional model. 

1.3 Purpose of this thesis 

Understanding of the thermal convection m the rotating annu lus of fluid provides a 

starting-point for understanding of the basic dynamics on the general circulation of the 

atmosphere, because both fluid motions in the experiment and in the atmosphere are 

essentially thermal convection due to horizontal differential heating under influence of 

the rotation of each system. Despite a large number of previous studies described in the 

preceding subsections, lots of subjects on the thermal convection in the rotating annulus 
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have not yet been solved, pa.rticula.rly on its non linear dynamics. St 11 dies in th is t. hes is 

were intended to investigate some of the unsolved subjects mainly by numerical approach 

to understand the thermal convection more deeply. 

Transition of the flow regime is one of the most attractive and important subject on 

the thermal convection in the rota.ting annulus and has been discussed by a. large number of 

analytic a.nd numerical studies. Although the transition of solution has been investigated 

by stability and bifurcation analyses in some simplified systems of the rotating annulus 

of ftuid, few numerical studies have been done on realistic flow systems in the rotating 

annulus. In section 3, stability of the axisymmetric flow is numerically investigated for 

highly viscous fluid. This part has appeared as a. pa.per in the Journal of Fluid Mechanics 

(Suga.ta and Yoden , 1991 ). In section 4, stepwise transition from the axisymmetric flow 

to vacillation via steady waves is investigated numerically. This part has appeared as a 

paper in the Journal of the Meteorological Society of Japan (Suga.ta. and Yoden, 1993a.) . 

Individual flow regime, in itself, is also important to be understood. Fields of 

velocity, temperature, and pressure are balanced with each other in each steady flow 

depending on given external conditions. The flow transports momentum, heat, and so on, 

and these transports must be also consistent with the fields and the boundary conditions. 

In this thesis, heat transport is particularly focused because the horizontal temperature 

difference between the cylinders is essential to induce the flow. An attractive subject 

is to understand how much of heat is transported toward inward to keep balance with 

the flow fields and the boundary conditions at the walls. In section ,1, dependence of 

the axisymmetric flow on the experimental parameters is numerically investigated, and 

a simple diagnostic model is constructed to understand the dependence intuitively. T his 

part has appeared as a paper in the Journal of the Meteorological Society of Japan (Sugata 

and Yoden, 1992). In section 6, Lagrangian motion of a fluid particle is investigated in 

a steady wave solution, and a new interpretation of heat transport is proposed from a 

Lagrangian viewpoint. This part will be published in the Journal of the Meteorological 

Society of Japan. 

2 Numerical models 

The fluid motion in the rotating annulus can be described by the Na.vier-Stokes equations, 

the heat equation, and the continuity equation for Boussinesq fluid: 

vu;. v2 [ 2 u 2v;.] p 2 
Ut + uur + -- + wuz - - - 2nv = - p r + 11 \7 u - 2 - - 2 + 1:-rn , 

r r r r Po 
(3) 

vv;. uv P>. 2 v 2u, 
Vt + U Vr + - + WVz + - + 2nu = - - + 11[\7 v - - + _, ], 

r r r r 2 r 2 
( 4) 

VW>. 2 p 
Wt+ UWr + -- + WW2 = - p z + v\J W - -g, 

r Po 
(5) 
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11 v >. 
\7 · U = 11r + - + - + Wz = 0, 

T" T" 

p = po[l - a~TO], 

where 
;y i a i a2 a2 

\72 = -+--+--+-. 8r2 r or r 2 f)).. 2 8z2 . 

(6) 

(7) 

(8) 

(r, >.., z) are cylindrical coordinates, and t time. The corresponding velocity components 

are (u, v, w). Dimensionless temperature 0 is defined as()= (T - Tlinner wan)/ ~T, where 

T is the temperature and ~T the imposed temperature difference between the inner and 

outer cylinders. Density is denoted by p, and p is pressure divided by the mean density 

p0 . Parameter l is an index of the treatment of the centrifugal force term; the index 

was set as e: = 0 in almost of previous numerical studies since the effect of the term is 

commonly negligible. However, computations with l = 1 are done in a part of this thesis 

to consider the effect. Physical parameters of the fluid, v, K and a, are assumed to be 

constant, where 11 is the kinematic viscosity, K the thermometric diffusivity, and a the 

coefficient of volume expansion of the fluid. All of these assumptions and approximations 

are justified as far as ~T is not so large. 

Three different numerical models were developed in this study by transforming the 

governing equations into a finite difference form with each approximation of different 

levels. The first one is a two-dimensional model for seeking the axisymmetric flow on the 

assumption that all variables do not depend on the azimuth ,\ (see Sugata and Yoden, 

1991, 1992). Another one is a model for linear stability analysis, which examines the 

linear stability of the axisymmetric flow with respect to wave perturbations as an initial

value problem of the linearized perturbation equations (see Sugata and Yoden 1991 ). The 

analysis clarifies where the transition from axisymmetric flow to steady waves occurs. The 

last one is a three-dimensional semi-spectral model, in which zonal component, dominant 

wave, and its first harmonics are considered (see Suga.ta and Yoden, l 993a). The model 

can describe steady waves and some types of vacillation in addition to the axisymmetric 

flow. The set of these models almost covers phenomena observed in the rotating annulus 

of fluid from the axisymrnetric flow to steady waves and partly to vacillation. 

3 Transition from axisymmetric flow to steady waves 

for highly viscous fluid 

Fein and Pfeffer ( 1976) did an experiment using two different fluids from popular working 

fluid, mercury (Pr = v / K = 0.0246) and silicone oil (Pr = 63): and obtained regime 

diagrams for each fluid. The shape of the transition curve for silicone oil is not an 
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anvil-shape but is rather independent of thermal Hossby rrnrnbcr. It is believed that the 

Prandtl number Pr is the key parameter to explain this dependence of the transition 

curve on the working fluid. However, an anvii-shaped transition curve is obtained even 

for the parameters of silicone oil if we use the Barcilon 's model. Fein and Pfeffer ( l 976) 

suggested the possibility that the slope of the geopotentials due to the centrifugal force, 

the effects of which are neglected in the Barcilon 's model. plays a vital role. However, no 

numerical studies have yet been done to support their suggest.ion. 

Transition from the axisymmetric regime to the wave regime for silicone oil was 

studied by a linear stability analysis of the steady axisyrnrnctric flow with respect to 

wave perturbations. If the analysis is done with the centrifuga.I force term. which has 

been neglected in the previous numerical studies, the transition curve is similar to that. 

obtained in the laboratory experiment. However, if the term is neglected, the transition 

curve is not similar, but it shows an anvil-shape. This difference indicates the importance 

of the centrifugal force in determining the transition curve for highly viscous fluids. A 

further numerical experiment shows that the centrifugal force term in the axisyrnmetric 

flow is important in obtaining a transition curve similar to the laboratory experiment for 

large ~T while the term in the perturbation equations is important for small ~1'. 

Moreover, it is pointed out that a dimensionless parameter v 2(a + b)/Sg(b - a)4 , 

which equals the ratio of the centrifugal force to the gravity force divided by the Taylor 

number, is a fundamental parameter instead of the Prandtl number in describing the 

dependence of the shape of the transition curve on the working fluid. 

4 Stepwise transitions from axisymmetric flow to 

vacillation 

Some of the laboratory experiments show stepwise transitions of flow regimes from steady 

axisymmetric flow to vacillation via steady wave regime as the rotation rate increases. 

The transition from axisymmetric flow to wave regime was firstly investigated by Lorenz 

( 1962) with a low-order model of a two-layer quasi-geostrophic fluid system. Lorenz ( 1963) 

modified the model to explore further transitions of regimes. Numerical solutions of vac

illations and irregular flows were obtained by time integrations in addition to analytic 

solutions of axi-symmetric flows and steady waves in the low-order model. Detailed anal

ysis of the regime transitions in Lorenz's model was done by Ghil and Childress ( 1987 ) 

with bifurcation theories. The sequence of bifurcations leads to solutions of increasing 

spatial and temporal complexity, as the simpler solutions lose their stability. 

In this study, stepwise regime transitions was numerically investigated with the semi

spectral model, and the results were interpreted with bifurcation theories. The transition 

between axisymmetric flow and steady wave regime is characterized by hysteresis; the 
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criterion for the disappearance of an established steady wave differs from the criterion 

for the onset of the steady wave. Branch of the steady wave solution does not bifurcate 

from that of the axisymmetric Aow al the point where the axisymrnetric flow becomes 

unstable. Instead, the steady wave branch has another type of critical point (interpreted 

as a "limit point") at which it disappears. The transition from steady wave to vacillation 

is interpreted as a Hopf bifurcation; a periodically fluctuating solution bifurcates from the 

steady wave branch when the steady wave solution loses its stability. 

5 Steady axisymmetric flow - Dependence of the 

flow on the experimental parameters -

Since the steady axisymmetric flow has the highest spatial symmetry in the flow regimes, 

the governing equations for the flow are simpler than those for other flow regimes and 

easier to handle because of its symmetry. Some analytic studies have been done with 

assuming the dominance of the conduction or the advection in heat transfer (Hunter, 

l96i and Mcintyre, 1968) . 

On the assumption that the heat transfer is purely conductive, Hunter (1967) ana

lytically obtained the axisymmetric flow in the lower symmetric regime. The temperature 

field is primarily determined as a solution of the heat equation. Zonal flow is in the 

thermal wind balance with the temperature field in the interior region. The Ekman layer 

is formed in contact with the top and bottom boundaries, while the flow in the side 

boundary layers is determined as a balance among the viscosity, buoyancy, and Coriolis 

forces. 

On the assumption that the convection is predominant in the heat transfer, on the 

other hand, Mcintyre (1968) analyzed the axisymmetric flow in the upper symmetric 

regime. Flow in the top and bottom Ekman layers and in the side boundary layers is 

determined separately, if two integra l constants on the temperature field and a constant 

on the circulation are given appropriately. In determining the constants, he used the 

thermal wind relation in the interior region and assumed that the top and bottom of the 

interior are isothermal, respectively. 

These analytic studies dealt with the governing equations precisely with mathemat

ical technique and obtained solutions corresponding well to the numerically obtained ones 

(Williams, l 967a,b ). However, it is not easy to understand intuitively how the balance of 

the flow field is kept in each flow. In this study, therefore, a simple diagnostic model of the 

steady axisymmetric flow was constructed to understand intuitively how the velocity and 

temperature fields are determined for given external parameters. The model consists of 

three equations: the equation of the thermal wind relation, the equation relating the mass 

flux in the Ekman layers with the zonal velocity in the interior by the Ekman boundary 
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theory, and the equation for the heat flux a.cross the annulus. The la.st equation is derived 

from the fa.ct that the in ward heat flux integrated rrom the bottom to the top at any 

radius must be equal in an equilibrium state, which equation has not been used in pre

vious analytic studies. The model gives relationships between three important quantities 

characterizing the axisymmetric flow: intensity of the meridional circulation, intensity of 

the zonal flow and horizontal temperature difference in the interior. The model is applica

ble to both the conduction-dominated flow and convection-dominated flow, and explains 

qualitatively how the heat transport process is determined in each flow. The results of 

the three important quantities and total inward heat transport in the simple model agree 

well with those obtained in the full-nonlinear two-dimensional model for a. wide range of 

external parameters. 

6 Steady wave - Lagrangian motion and heat trans

port -

Detailed structure of the steady wave has been investigated numerically with several 

nonlinear models based on the Na.vier-Stokes equations for Boussinesq fluid (Williams, 

1969, 1971, 1972, Ukaji and Tamaki , 1989). Williams (1972) showed that the structure 

of the steady wave is characterized by quasi-geostrophic and quasi-hydrostatic balances 

nearly everywhere and that the spatial structure is similar in some respects to that of 

a linear baroclinic wave of unstable two-dimensional axisymmetric flows. Inward heat 

transport in the steady wave, or the baroclinic annulus wave is commonly explained by 

correlation between a warm (cold) temperature and inward (outward) velocity in the 

azimuthal direction. It has been widely expected that heat is transported in every one 

cycle of the wavy motion in a jet stream; a particle in the jet stream obtains heat near 

the warm boundary, moves inward along the jet stream, releases the heat near the cold 

boundary, and moves outward again along the jet stream. However, no study has been 

done on the heat transport based on Lagrangian motion of particles in the steady wave. 

In this study, Lagrangian motion of a fluid particle in a three-dimensional flow in the 

steady wave regime was computed for a long time interval. Obtained trajectory shows 

a chaotic nature but has several typical organized behavior depending on its position 

in the wavy flow. The annulus of fluid is divided into seven regions according to the 

particle behavior: an upper-level jet, a lov;er-level jet, a cyclonically trapped-region, an 

anticyclonically trapped-region, an inner boundary layer, an outer boundary layer, and a 

lower boundary layer. Cores of the cyclonical:y trapped-region and the anticyclonically 

trapped-region are found to be nearly isolated from the other regions. 

Residence time of a fluid particle in each region and frequency of the transition 

between the regions were investigated. A cyclic route of transition which is remarkably 
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preferred was found: the outer boundary layer~ the upper-level jet~ the inner boundary 

layer ~ the lower-level jet or the lower boundary layer ~ the outer boundary layer. 

Temperature of a fluid particle changes largely in both the inner boundary layer 

and the outer boundary layer during it has a large vertical motion. On the other hand, it 

changes little in the other regions, that is, temperature is nearly conserved following the 

Lagrangian motion. Lagrangian description of the horizontal heat transport in the steady 

wave is that a fluid particle which obtained heat during the upward motion in the outer 

boundary layer is a.dvected nearly adiabatically a.cross the interior region of the fluid and 

releases the heat during the downward motion in the inner boundary layer. Inward heat 

flux estimated from the Lagrangian description accounts for more than four-fifth of the 

total inward heat flux obtained in conventional Eulerian description. 

7 Conclusions 

In this thesis, thermal convection in the rotating annulus of fluid was investigated sys

tematically from axisymmetric flow to vacillation ma.inly with numerical approaches and 

partly with analytic ones. Some new insights were obtained for problems which had not 

yet been solved by previous studies. 

Numerical experiments were done on the transitions of flow regimes in sections 3 

and 4 to assess the propriety of hypotheses in previous theoretical studies; some of them 

were justified and others were overthrown. As was suggested by the theoretical studies, it 

was clarified that the transition from the axisymmetric flow to the steady wave is largely 

influenced by the effect of the centrifugal force for highly viscous fluid. Moreover, stepwise 

transitions from axisymmetric flow to vacillation via steady wave were investigated with 

a three-dimensional numerical model and the present result shows that some previous 

results obtained by simplified system are spurious. 

Individual flow field itself was investigated in sections 5 and 6. Clues to understand

ing each flow was to regard it as a heat transport system. Considering explicitly the heat 

transport in addition to the thermal wind balance in the interior and the Ekman boundary 

layers at the top and bottom boundaries gave us intuitive understanding of the balance 

kept in the axisyrnrnetric flow for wide parameter ranges. Moreover, new interpretation 

of the heat transport was presented for a steady wave from Lagrangian viewpoint, which 

result is consistent with conventional knowledge of nearly adiabatic motion of particle in 

the quasi-geostrophic flow . 

All of the studies in this thesis were ma.de through intensive discussions with the 

author's supervisor, Dr. S. Yaden. Therefore, it is rather difficult to separate the author's 

original contribution in each study. However, most part of the simple diagnostic model 

in section 5 was developed by the author and basic idea on the Lagrangian description 

of the horizontal heat transport in section 6 was got by himself. All of the cornpu ta.tion 
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were done by the author. 
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Axisymmetric flow in a rotating annulus with differential heating is computed for a 
high-kinematic-viscosity fluid, such as silicone oil, by numerical integration of the 
Na vier-Stokes equations. Linear stability analysis of the steady axisymmetric ftow 
with respect to a wave perturbation gives a transition curve from the axisymmetric 
regime to the wave regime; the transition curve is similar to that obtained 
experimentally by Fein & Pfeffer (1976). However, if we neglect the centrifugal force 
term, the transiti9n curve is not similar, but it resembles the curve for water (a 
familiar 'anvil shape' in the regime diagram). A dimensionless parameter 
v2 (a + b)/8g(b- a) 4 (where a and bare the radii of the inner and outer cylinders, d the 
depth of the fluid, v the kinematic viscosity, g the acceleration due to gravityL which 
equals the ratio of the centrifugal force to the gravity force divided by the Taylor 
number, is more fundamental than the Prandtl number in determining the shape of 
the transition curve. 

1. Introduction 

Rotating annulus experiments with horizontal differential heating have been done 
to investigate the fundamental dynamics of sloping convection (see e.g. Hide & 
Mason 1975). Several flow regimes appear, which depend mainly on the following 
dimensionless parameters: Taylor number (Ta= 4Q2 (b-a)5 /v2d), thermal Rossby 
number (Ro1' = gda !1T /Q2(b - a) 2), Prandtl number (Pr = v/ K) and the aspect ratio 
(I'= (b - a)/d), where a and bare the radii of the inner and outer cylinders , d the 
depth of the fluid, g the acceleration due to gravity, Q the rotation rate of the 
annulus, eirp the imposed radial temperature difference, a the coefficient of volume 
expansion of the fluid, K the thermometric diffusivity, v the kinematic viscosity. In 
a regime diagram plotted in the (log10 Ta, log10 Ror )-plane, axisymmetric flow is 
found outside the anvil -shaped region (broken line in figure 1) for the case of water 
(Pr = 7.16) . Barcilon (1964) obtained the anvil shape for the transition curve 
separating the axisymrnetric regime and the wave regime by adding top and bottom 
Ekman layers to Eady's baroclinic instability theory. Introduction of the Ekman
layer friction is necessary to obtain the lower axisymmetric regime at small Ta and 
small Ror. 

Fein & Pfeffer (1976) did an experiment using two different fluids - mercury 
(Pr= 0 .0246) and silicone oil (Pr = 63) - and obtained regime diagrams for each fluid. 
The shape of the transition curve for silicone oil is not an anvil shape, as shown by 
the heavy solid line in figure 1. It is believed that the Prandtl number is the key 
parameter to expla in the difference between the transition curves . However, an 
anvil -shaped transition curve is obtained even for the parameters of silicone oil if we 
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FIGURE I. Regime diagram for silicone oil (after F ein & Pfeffer 1976). The broken line is the 
transition curve for water. The numbers indicate the wavenumbers observed in the laboratory 
experiment. 

use Barcilon 's model. Fein & Pfeffer suggested the possibility that the slope of the 
geopoten tials due to the centrifugal force, the effects of which are neglected in 
Barcilon's model, plays a vital role. In the case of silicone oil, the centrifugal force 
must be about 30 times as large as that for water to get the same Taylor number , 
because the value of the kinematic viscosity of silicone oil is 5.4 times larger. In order 
to support their suggestion , they referred to some theoretical studies which take the 
effects of the slope of the geopotentials into account by sloping the top and bottom 
boundaries (Hide & Mason 1975). However, simplification and modification of the 
experimental situations leave some ambiguity. 

In this study, we evaluate numerically the effects of the centrifugal force on 
the transition for silicone oil. We compute steady axisymmetric flow in a two
dimensional parameter space of (Ta, Ro1') by time integration of two-dimensional 
nonlinear Navier-Stokes equations. Linear stability of the axisymmetric flow with 
respect to wave perturbations is examined as an initial-value problem of the 
linearized perturbation equations. A transition curve separating the axisymmetric 
regime and the steady-wave regime is obtained from these linear stability analyses. 
\Ve then repeat the computation of the axisymmetric flow and the stability analysis 
without the centrifugal force term. Comparison of the results clarifies qualitative and 
quantitative differences due to the centrifugal force in an axisymmetric flow , the 
transition curve and the structure of unstable wave disturbances. 
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2. The model 
The governing equations are 

where 

vu,1 v2 Q [ 2 u 2v.1] p Q 2 u +uur+-+wuz - --2 V =-pr+ v \I u---- +c-r , 
t r r r2 r2 Po 

vvA uv P.1 [ 2 v 2u,\l v1+uvr+-+wvz+-+2Qu = --+v V v--+-, 
r r r r2 r 2 

p = p0[1-a L1T8], 

a2 1 a 1 a2 a2 v2 = -+--+-- +
ar2 r ar r2 ai\ 2 az2 ' 
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( 1) 

(2) 

(3) 

( 4) 

(5) 

(6) 

(r, A, z) are cylindrical coordinates, and t time. The corresponding velocity 
components are (u, v, w). Dimensionless temperature e is defined as 8 = ('P
T I inner wa11 )/ L1'1', where 'l' is the temperature and .'.1'1' the imposed temperature 
difference between the inner and outer cylinders. Density is denoted by p, and p is 
pressure divided by the mean density p 0 . We modify the traditional Boussinesq 
approximation by retaining the density variation in the centrifugal force term in the 
radial momentum equation (1). Parameter c is an index of the treatment of the 
centrifugal force term : c = 1 when we include the term in the computation, or c = 
0 when we neglect it. Physical parameters of the fluid, v, K and a are assumed to be 
constant: v = 5.5 x 10- 2 cm2 s- 1 , K = 8.8 x 10-4 cm 2 s- 1 and a= 1.05 x 10- 3 K- 1 for 
silicone oil. 

The size of the annulus and boundary conditions are the same as those in Fein & 
Pfeffer (1976) . The dimensions are a= 3.48 cm, b = 6.02 cm and d = 5.00 cm. All 
four bounding surfaces are rigid and the surface of the fluid is in direct contact with 
the lid. The top and bottom boundaries are thermally insulating. The inner and outer 
walls are held at different constant temperatures, Ta and Tb ('l~ < 1~), to maintain the 
difference L1T. 

The numerical method developed by Williams ( 1967 a) is used to obtain the 
axisymmetric flow. A stream function ijt(u = ,..- (1 /r) ifiz, w = ( 1/r) if! rl and vorticity 
s ( = -{(1/r) ifrzz + [(1/r) ifirlr}l are introduced to describe the flow in the vertical (r, z)
plane. If we adopt the same notation for the finite difference as in Williams ( 1967 a), 
the vorticity equation for the meridional circulation in finite-difference form is 

(s) -rzi 1 -z 
01 (}' + JA ; = - ga L1Tor tJ + 2Qoz vz +-:;: oz(v2 ) 

+ v [ ozz s +or(~ or( rs)) J.ag - crD 2a L1Toz 1P. (7) 
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The last term is a11 additional term due to the centrifugal force; vertical stratification 
generates the vortieity. The eomputed flow is regarded as steady state when 
variables converge to satisfy the following condition: 

( 
~ (afJ ;at) 2)~ 

allgri~ ()2 < 10-6. 

all grids 

(8) 

In the linear stability analysis, a small wave perturbation is added to the steady 
axisymmetric flow : 

u(r,A,z,t) = U(r,z)+u'(r, z, t)eim\ (9) 

with corresponding notation for v, w, p and fJ. Substituting these into (1)-(5) and 
neglecting terms quadratic in the perturbation, we obtain linearized perturbation 
equations. Following \Villiams (1969), we integrate the perturbation equations 
for each wavenumber m with his staggered grid system. If perturbations of any 
wavenumber decay with time, the basic axisymmetric flow is stable. On the other 
hand, it is unstable if a,t least one of the perturbations grows. 

The grid resolution is determined after a convergence test of the solutions . A 
resolution of :~2(r-direction) x 64(z-direction) is adopted for llT ~ 5 K and 64 x 128 
for ll1' > 5 K. These grids give equal grid intervals (llr = llz) because the aspect ratio 
of the annulus is 1: 2 . 

\Ve use the temperature difference ll71 and the rotation rate Q as controllable 
experimental parameters, and plot the results on the (Ta, Ro'.l')-plane (a familiar 
regime diagram like those in figure 1 ). The dimensional parameters ll'J1 and Q are 
transformed into the dimensionless parameters 71a and RoT with the constants a, b, 
d, g, a and v. 

3. Results 
First., we show the result for the case with the centrifugal force term (c = 1) . 

Figure 2 shows an example of the steady axisymmetric flow of silicone oil obtained 
at the point marked A in figure l, where NJ'= 30 K and Q = 5 .5 rad s- 1 (71a = 
8.46 x 105 , Ro'l' = 0.791). The stream function (figure 2a) shows strong meridional 
circulation in the boundary layers, which flows counterclockwise and transports heat 
inward. In the side boundary layers , the t emperature field (figure 2b) has a large 
radial gradient and indicates 'the overshoot' of the t emperature past its interior 
value as pointed out by Mcintyre (1968). The zonal flow (figure 2c) also has a large 
vertical shear in the t.op and bottom boundary layers. In the interior , the meridional 
circulation is very weak , and the temperature and zonal flow are almost at the 
thermal wind balance: the buoyancy torque due to the radial temperature gradient 
is balanced by the Coriolis torque due to the vertical shear of the zonal flow . 

Most of these characteristics of the axisymmetric fl.ow are similar to the results for 
water. Figure 3 is the steady axisymmetric flow for water at the same Ta and Ro'l' 
as in figure 2 (llT = 5 .16 Kand Q = 1.01 rad s- 1 for the same annulus). Here the 
physical parameters of water are: v = 1.01x10- 2 cm2 s- 1 , K = 1.41x10- 3 cm 2 s- 1 and 
a= 2.06 x 10-4 K - 1 . The meridional circulation and the zonal flow are qualitatively 
similar to those for silicone oil (figure 2). Quantitatively , the intensity of the 
meridional circulation for silicone oil is about twi ce that for water. The maximum 
value of the zona l flow is also a bout twice as large . .l\foreover, t he thickness of the side 
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FIGURE 2. Steady axisymmetric flow for silicone oil at A'J' = 30 K and Q = 5 .5 rad s- 1 (Ta = 
8.46 x 105 , RoT = 0 .791): (a) stream function of meridional circulation (cm 3 s- 1 ), (b) normalized 
temperature and (c) zonal velocity (cm s-1). The centrifugal force term is retained in the 
corn putations. 

(a) .(b) 
d ..,..--,~~~~~.,.--~ 

...... · .. . - .. 

! 1 ... .:: .. --0.2.·.··..::: .......... 

:iu<· · · · ···.··.•.••·•·•• ~{; z = 0 -+-.-~~~...,.....,_~~..... z = 0 ~~~,<-+4...,.,.,..¥+"~rl 
... 

z = 0 ;-,-,-,.-r-r,rr-;-,,.,.~~rl 
r=a b r=a b r=a b 

FIGURE 3. As in figure 2 but for water at the same Ta(= 8.46x 105 ) and RoT(= 0 .791), or 
AT= 5.16 Kand Q = 1.01 rad s-1 . 

boundary layers for water is 1.5-2 times larger than that for silicone oil, although the 
thickness of the top and bottom boundary layers is almost the same. These are 
consistent with Mcintyre's ( 1968) estimation of the thickness of the boundary layers : 
the thickness of the side boundary layers is proportional to (vK/a ~T)l, and the ratio 
is 1 : 1.72 for the present comparison between silicone oil and water. For the top and 
bottom boundary layers, on the other hand, the thickness of the Ekman layer is 
proportional to (v/Q)i , and has the same value for silicone oil and water at the same 
Taylor number. In the temperature field , the slope of the isotherms in the interior for 
water is larger than that for silicone oil. Moreover , there is no 'overshoot' of 
the temperature for water because of the weaker meridional circulation. These 
characteristics of the temperature field reflect the relative importance of convective 

16 FL)! 229 
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FIGURB 4. Growth rates of wave perturbations as a function of the rotation rate Q. (a) !lT = 30 K , 
(b) b.T = 5 K, (c) b.'l' = 1 Kand (d) !lT = 0.2 K.--0, m = 4 ; ---x, m = 5; ------0, m = 6 ; 
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and conductive transport of heat (Williams 1967 b) . However, the question of how 
the temperature distribution is determined for a given external condition remains. 

Steady axisymmetric flows are computed for several values of Q at f).T = 30 K , 
5 K, 1 K and 0.2 K . The lines of constant f).T are the diagonal ones sloping from 
upper left to lower right in figure 1. A linear stability analysis is done for each steady 
flow. Time integration of the perturbation equations gives an averaged growth rate 
u (s- 1 ) during the time interval [t 1,t2] : 

u =log (E(t2)/E(t1 )) 

- t2 -tl ) 
(10) 

where E(t) is the kinetic energy of the wave perturbation. In this study, u is 
calculated after oE(t)/ot has attained an almost constant value (or oscillates around 
a constant value) for more than 30 s. 

The growth rate for each wavenumber as a function of the rotation rate Q is shown 
in figure 4 for (a) f).T = 30 K, (b) 5 K , (c) 1 Kand (d) 0.2 K. In each figure, the growth 
rate u increases with Q and ou/oQ increases with the wavenumber m. With a linear 
interpolation, we can determine a transition point Q 0 at which one of u values 
becomes positive with increasing Q . For example, in figure 4 (a) , the axisymmetric 
flow becomes unstable for the perturbation with rn = 6 at Q 0 = 4.85 rad s- 1 . The 
absolute value of u and ou/oQ become large for large f).T (note that the scale of the 
ordinate is different among figures 4 (a )-4 ( d). 

We obtain a transition curve joining the transition points in the regime diagram 
shown in figure 5. The transition curve is very close to the curve obtained 
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FIGURE 5. Transition curve between the axisymmetric regime and the wave regime obtained from 
the linear stability analysis. S indicates that the basic flow is stable for perturbations for all 
wavenumbers computed at the point and U indicates that it is unstable for at least one of the wave 
perturbations. Each number indicates the most unstable wavenumber. 
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FIGURE 6. Vertical section of the most unstable wave perturbation (m = 6) at (r-a)/(b-a) = 0.5 
for !1T = 30 K and Q = 5.5 rad s- 1 : (a) pressure, (b) temperature, (c) zonal velocity, (d) radial 
velocity and (e) vertical velocity. 

experimentally for silicone oil (figure 1) except for the region where !l.T ~ 0.2 K. The 
perturbation that destabilizes the axisymmetric flow at the transition point has the 
same wavenumber as observed in the laboratory experiment near the transition 
curve (figure 1). 

The structure of an unstab le perturbation is shown in figure 6, which is a vertical
zonal section at the mean radius of the annulus for m = 6 a t D.T = 30 K and Q = 

16·2 
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FIGUHE 7. As in figure 2 except that the centrifugal force term is neglected in computations. 
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FIGURE 8. Difference of the two steady axisymmetric flows at /1'11 = 30 K and Q = 5.5 rad s- 1 

subtracting the value in figure 7 from that in figure 2. (a) Stream function, (b) normalized 
temperature and (c) zonal velocity . Units are the same as in figure 2. 

5.5 rad s- 1. Mutual phase relations of the variables are similar to those obtained for 
water (Tokioka 1970) . The structure is basically that of Eady's wave. However, there 
is disorder of the structure near the top and bottom boundaries, particularly in the 
temperature field (figure 6b) and the zonal velocity field (figure 6c) . The disorder near 
the boundaries is small for small tiT. 

In order to investigate the dynamical role of the centrifugal force, we did a 
calculation neglecting the centrifugal force term (€ = 0). Figure 7 shows the steady 
axisymmetric flow under the same external conditions as in figure 2 (!iT = 30 K, 
Q = 5.5 rad s- 1 ). The two axisymmetric flows for€= 0 and E = 1 are similar to each 
other: the difference, shown in figure 8, is less than 10 % . In the case of E = 1, the 
radial gradient of temperature is weaker and the vertical shear of the zonal velocity 
is larger. These differences in the temperature and the zonal velocity can be 
understood by a torque balance in the interior region. When € = 0, the buoyancy 
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FIGURE 9. As in figure 5 except that the centrifugal force term is neglected in the analysis. The 
broken line is the transition curve for the case with the centrifugal term (taken from figure 5) . 

torque (anticlockwise in the (r, z)-plane) is balanced with the Coriofis torque 
(clockwise). When € = 1, the vertical difference of the centrifugal force due to the 
density stratification makes an anticlockwise torque. To compensate for the 
centrifugal torque, it is necessary that the thermally driven torque becomes small 
and/ or the Coriolis torque becomes large. 

A linear stability analysis of the axisymmetric flows under€ = 0 gives a transition 
curve for the case without the centrifugal force (solid line in figure 9). The transition 
curve has an anvil shape similar to that for water, but its position shifts to large 
Taylor number compared with that for water (broken line in figure 1). The curve 
intersects the transition curve for€ = 1 (broken line in figure 9) twice . There are three 
regions where the stability of the axisymmetric flow is different for the cases of€ = 
0 and€= 1 (shaded regions (I), (II) and (Ill) in figure 9). In regions (I) and (III), the 
basic flow is unstable for€= 1 and stable for€ = 0. On the other hand, in region (II) , 
it is stable for € = 1 and unstable for € = 0. The structure of unstable wave 
perturbations is not very different for € = 1 and € = 0. 

We further investigate the role of the centrifugal force terms in the equations for 
axisymmetric flows and wave perturbations. Two additional linear stability analyses 
are done in the three regions in figure 9: one is a stability analysis of the basic 
axisymmetric flow with € = 1 to a wave perturbation with€ = 0; and the other is an 
analysis of the basic flow with € = 0 to a perturbation with € = 1. Table 1 show the 
result for all these combinations of€ in the analyses at the four points (a)- (d) in figure 
9. At the two points (a) and (b) in regions (I) and (II), the stability depends on the 
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(a) 6.T = 30 K, Q = 5.5 rad s- 1 

Ta= 8.46 x 105 , Ror = 0.791 

Basic flow 

£=1 
£=0 

Linear stability 

£ = 1 

unstable 
stable 

£=0 

unstable 
stable 

(c) 6.T = 1 K, Q = 4.0 rad s-1 

Ta= 4.47 x 105 , Ror = 4.98 x io-2 

Basic flow 

£=1 
£=0 

Linear stability 

€ = 1 

unstable 
unstable 

£=0 

stable 
stable 

(b) 6.T = 5 K, Q = 3.5 rad s-1 

Ta= 3.43 x 105 , Ror = 0.326 

Basic flow 

£ = 1 
£=0 

Linear stability 

£ = 1 

stable 
unstable 

£=0 

stable 
unstable 

(d) 6.T = 0 .2 K, Q = 4.0 rad s-1 

'l'a = 4.47 x 105 , Ror = 9.97 x 10-3 

Basic flow 

€ = l 
£=0 

Linear stability 

£ = 1 

unstable 
unstable 

€=0 

stable 
stable 

TABLE 1. Results of the stability analysis for combinations of£ between the computation of 
the axisymmetric flow and the linear stability analysis 

basic axisymmetric flow. The centrifugal force term in the perturbation equations 
~loes not change the stability. As shown in figures 2 and 7, the two basic flows for (a) 
ue very similar to each other but the small difference results in different stability ; 
~he basic flow in figure 2 is unstable while that in figure 7 is stable. On the other hand, 
:lt (c) an<l (d) in region (III), the stability depends on the perturbation equations. The 
::cntrifugal force term in the basic axisymmetric flow does not change the stability. 
For large 6.T the centrifugal force term in the basic axisymmetric flow is important 
in obtaining a transition curve similar to the experiment, while that term in the 
perturbation equations is important for small 6.T. 

4. Discussion 
The centrifugal force term has been neglected in previous numerical studies for 

water (e .g. Williams 1967 a, b; Tokioka 1970). Since the centrifugal acceleration is 
much smaller than the gravitational acceleration, it is justified to neglect the 
centrifugal force term in numerical studies for water. However, in this study, we 
clarified that the term is necessary for a stability analysis of fluid with large 
kinematic viscosity. Although it is believed that the Prandtl number is the key 
parameter, it is not the most appropriate parameter to describe the difference in the 
shape of the transition curves for water and silicone oil. A transition curve with an 
anvil shape could be obtained even for fluids with high Prandtl number, if the 
kinematic viscosity is similar to that of water but the thermometric diffusivity is 
very small. 

Instead of the Prandtl number , a relevant dimensionless parameter is ll3 = 

Q 2 (b2 - a 2 )/2gd (see table 2 in Fowlis & Hide 1965). The parameter ll3 is the ratio of 
the centrifugal force term to the pressure gradient term when we do a scale analysis 
by assuming geostrophy. In other words, ll3 is the ratio of the centrifugal 
acceleration to the gravitational acceleration (multiplied by the aspect ratio). If we 
illustrate the regime diagrams for different fluids in the three-dimensional pa~ameter 
space (Ta, RoT, and a third parameter), as figure 21 in Fein & Pfeffer (1976), it is more 
appropriate to introduce a dimensionless parameter v2(a + b)/8g(b-a)4 ( = ll3/Ta) as 
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the third parameter, because this parameter depends only on the fluid and the 
apparatus (on the other hand, fl3 depends on Q) . Note that, even for water, large 
mean radius of the annulus would produce the same effect as for a highly viscous 
fluid. 

5. Conclusion 
\Ve have done a numerical experiment for sloping convection in a rotating 

annulus with a highly viscous fluid, such as silicone oil. The centrifugal force terms 
were retained in the computation because these are not negligibly small for silicone 
oil. The axisymmetric flows obtained are qualitatively similar to those for water. 
However, the intensity of the meridional circulation and the zonal flow is larger than 
that for water at the same Ta and Ror, while the slope of isotherms in the interior 
is smaller. A linear stability analysis of the axisymmetric flows with a wave 
perturbation gives a transition curve similar to that obtained in the laboratory 
experiment. Moreover, the unstable wavenumber on the transition curve in the linear 
stability analysis corresponds to that obtained in the laboratory experiment. 

Experiments without the centrifugal force term were done to investigate the 
dynamical role of the term. Axisymmetric flow without the centrifugal force term is 
not very different from that with the term. However, the transition curve obtained 
has an anvil shape similar to that for water with low viscosity . The difference in the 
shape of the transition curve is caused only by a change of the treatment of the 
centrifugal force term, namely the inclination of the geopotentials clue to the 
centrifugal force strongly affects stability property of the axisymmetric flows . The 
centrifugal force term must be retained in studying the dynamics of high-kinematic
viscosity fluid. 

\Ve further investigated the role of the centrifugal force term in the axisymmetric 
flow and in the wave perturbation separately. For large 1171, the centrifugal force 
term in the axisymmetric flow is important in obtaining a transition curve similar to 
the laboratory experiment. On the other hand, the term in the perturbation 
equations are important for small !J.T. 

Fein & Pfeffer (1976) pointed out that the regime diagram depends on the working 
fluid . Our numerical experiments show the importance of the centrifugal force in 
determining the transition curve for highly viscous fluids. If we illustrate the regime 
diagrams for different fluids in the three-dimensional parameter space of the Taylor 
number, the thermal Rossby number and the third parameter, it is more appropriate 
to use a dimensionless parameter 112(a + b)/8g(b-a) 4 ( = fl3/Taylor number) as the 
third parameter instead of the Prandtl number. 

The authors wish to thank Professor I. Hirota and Dr S. Sakai for their valuable 
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Scientific Research from the Ministry of Education. 
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Abstract 

Steady axi-symmetric flow in a rotating annulus with differential heating is computed with a high
rcsolution full-non-linear model in two dimensions. The velocity and temperature fields are investi
gated for a wide ra11ge of external parameters, and their dependence on the parameters is discussed. 

A simple diagnostic model of the steady axi-symmetric flow is constructed to understand intuitively 
how the velocity and temperature fields are determined for given external parameters . The model is 
applicable to both the conduction-dominated flow and convection-dominated flow, and explains qual
itatively how the heat transfer process is determined in each flow . l'v!oreover, the model gives several 
important quantities characterizing the axi-symmetric flow, such as the intensity of the meridional 
circulation, that of the zonal flow and the horizontal temperature difference in the interior, for a 
wide range of the parameters. The results in the simple model agree well with those obtained in the 
full-non-linear model. 

1. Introduction 

Schneider and Lindze11 ( 1977) studied axi
symmetric flows on a rotating sphere driven by 
radiation and heat sources due to cumulus con
vection using a linearized numerical model. They 
showed that the cumulus heating and friction drive 
an axi-symmetric meridional circulation in the trop
ics comparable to the observed Hadley cell circula
tion. Schneider ( 1977) introduced a simple approx
imation to evaluate the intensity and the merid
ional extent of the Hadley circulation. Held and 
How ( 1980) explored Schneider's approach in a wide 
range of parameters and showed that detailed nu
merical results could be replicated by the app\ica
tion of some simple balances for the zonal angular 
momentum and the thermal energy. T hese stud
ies of a.xi-symmetric flow give fundamental insights 
into the nature of the general circulation of the at
mosphere. 

Rotating annulus experiments with differential 
heating in the radial direction have been done to un
derstand the basic dynamics of the general circula
tion of the atmosphere (e.g. , Hide and Mason, 1975) . 
Some of the essential factors which determine the 
general circulation of the atmosphere are included in 
the rotating annulus experiments , such as rotation, 

©1992, Meteorological Society of Japan 

differential heating and gravity, although other fac
tors, such as spherical geometry, surface topography 
and radiative cooling, are not. These exclusions of 
the factors make it easier to understand the basic dy
namics of the thermal convection in a rotating fluid 
with the differential heating. In addition, the flow 
is more tractable over a wide range of experimental 
parameters and its pattern is more reproducible iu 
the laboratory experiment. 

Several regimes of flow are observed in the ex
periment; steady axi-symmetric flow, steady waves, 
vacillation and irregular flow . The axi-symmetric 
flow has the same spatial symmetry as the exter
nal forcing (the axi-symmetric heating) , while other 
regimes have zonal (azimuthal) dependence. Selec
tion of the regimes depends on the experimental pa
rameters . On a regime diagram with a logarithm of 
Taylor number (Ta) as the abscissa and that of ther
mal Ross by number ( Ror) as the ordinate, the axi
symmetric flow is found outside the anvil-shaped re
gion (heavy solid line in Fig. 1) for the case of water 
(Fowlis and Hide, 1965). T he axi-symmetric regime 
is divided into upper and lower symmetric regimes. 

Some theoretical studies of the axi-symmetric flow 
in the experiment have been done with a top bound
ary condition of a rigid lid. Hunter (1967) analyt
ically obtained the axi-symmetric flow in the lower 
symmetric regime, where both of Ta and RoT are 
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Fig. 1. Regime diagram obtained by Fowlis 

and Hide (1965) experimentally. The 

heavy solid line is the transition curve from 
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regime. Circles indicate the points where 
axi-symmetr ic flows are computed. 
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small, on the assumption that the heat transfer is 
purely conductive. From this assumption, the tem
perature fi eld is primarily determined as a solution 
of the thermal equa tion. In t he interior region, zonal 
flow is in the thermal wind balance with the tem
perature field . On the other hand, viscosity plays 
an important role near the boundaries. The Ekman 
layer is formed in contact with the top and bottom 
boundaries, while the flow in the side boundary lay
ers is determined as a balance among the viscosity, 
buoyancy, and Coriolis forces . 

Mcintyre (1968) analyzed the axi-symmetric flow 
in the upper symmetric regime Oil the assumption 
that the convection is predominant in the heat trans
fer. Flow in the top and bot tom Ekman layers 
and in the side boundary layers is determined sep
arately, if two integral constants on the temper
ature field and a constant on the circulation are 
given appropriately. In determining the constants, 
he used the thermal wind relation in the interior re
gion and assumed that the top and bottom of the 
interior are isothermal, respectively. The flow he 
obtained is quantitatively similar to the numerical 
results of Williams (1967a , b), who computed the 
axi-symmetric flows at five points near the transi
tion curve in the regime diagram by integrating the 
full-non-linear two-dimensional Navier-Stokes equa
tions. 

In this study, we compute steady axi-symmetric 
flows following Williams (I 967 a, b) for a wide range 
of the parameters, T a and R oT , to investigate the 
velocity and temperature fields and their depen-

deuce on the parameters. The parameter range cov
ers both the upper and lower symmetric regimes, 
and the wave regime as well. Although the axi
symmetric flow in the wave regime is unstable to 
wave perturbations (Lorenz, 1962, 1963), it is worth 
studying to understand the selection of flow regimes. 
It remains for our future study to compare such axi
symmetric solutions with wave solutions using the 
same parameters. Moreover , we construct a sim
ple diagnostic model for the a.xi-symmetric fl ow in 
order to understand how the flow field is in equilib
rium for given external parameters and how the heat 
transfer processes depend on the parameters. The 
simple model is applicable to both the conduction
dominated flow and the convection-dominated flow. 
Under the constraints of the heat balance, the mo
mentum balance and the t hermal wind balance, the 
model describes relationships among three variables 
which characterize the a.xi-symmetric flow: inten
sity of meridional circulation, zonal flow, and radial 
temperature difference across the interior. We inves
tigate how the variables depend 011 the experimen
tal parameters and to what degree their dependence 
agrees with those of the numerical results . 

2. Non-linear steady solutions 

We consider a fluid, water in this study, contained 
between two coaxial cylinders of inner and outer 
radii a and b, and two parallel horizontal planes of 
depth H . T he dimensions are a = 3.48 cm , b= 6.02 
cm and H = 5.00 cm, which are the same as those 
in the laboratory experiment by Fowlis and Hide 
( 1965). All four bounding surfaces are rigid and the 
surface of the fluid is in direct contact with the up
per lid . The container rotates at a constant rate fl . 
The inner and outer walls are held a t different con
stant temperatures, Ta and n (Ta < Tb) , to maintain 
the difference !1T . The top and bottom boundaries 
are thermally insulating. Controllable experimental 
parameters are fl and /1T . Physical parameters of 
water are assumed to be constant: the kinematic vis
cosity, v = 1.01 x 10-2 cm2 sec- 1 ; the thermometric 
conductivity, "'= 1.41x10- 3 cm2 sec- 1 ; the coeffi
cient of volume expansion, a= 2.06 x 10- 4 K- 1 . Tra
ditionally t he following non-dimensional parameters 
have been used for the study of rotating annulus ex
periments: Taylor number , Ta =4rl2 (b-a) 5 /v2 H ; 
thermal Rossby number, Roy = gHa f1T/rl 2 (b - a)2 ; 

Prandtl number, Pr= v /K.; and the aspect ra tio I' = 
(b- a)/ fl , where g is the acceleration of the gravity. 

The numerical method described in Sugata and 
Yoden (1991) is used to obtain steady axi-symmetric 
flows. The method is basically the same as that in 
Williams (1967a), except for the modified Boussi
nesq approximation with an effect due to centrifugal 
force, although this effect is negligibly small in the 
present study. T he number of grid points used in 
this study is 65 (horizontal direction) x 129 ( verti-



October 1992 S. Sugata and S. Yaden 1007 

cal direction). The flow is regarded a.s steady state 
when variables converge to satisfy the following con
dition: 

' 2 1/2 

(
Lall grids (DO /

2
8t) ) < 10-6. 

Lall grids (J 

The time required to converge is 30 minutes in phys
ical time at the most. The obtained steady flow at 
one point in the parameter space is used as an initial 
con di ti on for the next computation at a neighboring 
point. 

Axi-symmetric flow is obtained for 26 cases at 
Ta= 1 u~ 5 ~ 10 7 and Roy= 1o-1.5 "' 10°·5 except for 
some points with unrealistically large or small val
ues of 6.T, which arc shown in the regime diagram of 
Fig. 1. The heavy solid line in the figure is the tran
sition curve from the axi-symmetric flow regime to 
the wave regime ( Fowlis and Hide, 1965). Although 
the curve wa<; obtained in the experiment with a 
free smfacc, the transition curve for a rigid lid is 
expected to be similar to this curve, as shown by 
Tokioka ( l 970) theoretically. Therefore, nearly half 
of the axi-symmetric flows we obtained are expected 
to be unstable with respect to wave perturbations. 

The spatial structure of the velocity field is shown 
in Figs. 2 and 3. Figme 2 shows streamfunctions of 
the mcridioual circulation for 26 cases; strong direct 
meridional circulation is confined in boundary lay
ers and motion is weak in the interior region. The 
thickness of the top and bottom (Ekman) boundary 
layers depends on Ta and that of the side bound
ary layers mainly depends on 6.T. The intensity of 
the meridional circulation depends on both Ta and 
RoT; the circulation is intensive for large Ta and 
large Roy . (Note that the scaling factor is different 
among the cross sections and indicated above each 
011c). As for the circulation in the interior, two sec
ondary cells and a weak but clear indirect cell are 
observed for the cases of large Ta and small Roy. 
Two secondary cells are observed for the cases of 
medium and large RoT, and a single direct cell for 
the cases of small Ta . (Sec ca.ses D 1, A2 and C2 in 
Williams, 1967b.) 

Figure 3 shows cross sections of the zonal velocity 
for 26 cases. For large Ta and large RoT, the zonal 
flow is strong, and therefore both vertical shear and 
horizontal shear are also large. (Again be careful 
of the scaling factor.) In each cross section, the 
maximum value of positive zonal flow near the top 
boundary is larger than that of negative zonal flow 
near the bottom, and the position of the former is 
closer to the inner wall than that of the latter. As 
Ta increases, positions of the extremes shift inward 
and slope of the zero line becomes large. 

A couple of measures which characterize the in
tensity of the axi-symmctric flow arc introduced; the 
maximum value of the streamfunction at the mean 

radius is used as a measure of the meridional circu
lation, and the maximum value of zonal velocity as 
a measure of its intensity. Quantitative dependence 
of these measures on the two parameters, Ta and 
Roy, is shown in Fig. 4. Isolines of the measure of 
meridional circulation (a) have negative gradient in 
the (log Ta, logRo-r)-plane, which is less steep(~ 
-1 /2"' -1/5) than that of constant 6.T ( = -1). The 
gradient increases with increasing Ta or increasing 
RoT. The intensity also increases as Ta and RoT in
crca.sc, and the increment is roughly exponential of 
log Ta and log RoT. (Note that the contour interval 
is in geometrical proportion.) As for the measure of 
the zonal flow (b), isolines have similar dependence 
but steeper gradient than those in (a). The gradient 
is nearly equal to that of constant 6.T for large Ro-r, 
while it is roughly -1/2 for small Roy. 

Figure 5 shows normalized temperature fields for 
26 cases; the normalized temperature is defined a.s 
0 = (T-Ta) / L1T. The thermal structure largely de
pends on Roy. For example, slope of the isotherms 
in the interior is steep for small RoT, which is indica
tive of the predominance of heat conduction , while 
it is gentle for large Roy, indicative of the predom
inance of heat convection. Overshoot of the tem
perature near the side boundary layers at large RoT 
is also indicative of strong convection, or meridional 
circulation. For large Ror , the radial gradient of the 
temperature at the side boundaries is large, partic
ularly in the upper part of the inner wall and the 
lower part of the outer wall . Therefore the radial 
heat flux at the walls is large for large Ror . 

Quantitative characteristics of the heat transfer 
processes are shown in Fig. 6: (a) the Nusselt mirn
ber Nu, which is defined as the ratio of the obtained 
total heat flux to the ideal purely-conductive heat 
flux, and (b) fraction of the real heat conduction to 
the total heat flux . The dependence of Nu 011 Ta 
and Roy is similar to that of the measure of the 
meridional circulation in Fig. 4a. That is, isolines 
have a gradient of -1/3~-l/4 for small Roy in 
the (IogTa, logRor)-plane, but -1/2 or steeper for 
large Roy. The magnitude of Nu has a nearly ex
ponential increment with log Ta and log Roy. Fig
ure 6b shows the percentage of the conduction at 
the mean radius, which is less dependent on Ta than 
(a). It is large for small Roy, and the heat transfer 
is nearly conductive at Roy= 10- 1.5. On the other 
hand, convection is predominant at Ray = 10° 5 . 

We also investigated the balance in the vorticity 
equation for the meridional circulation; each term of 
the vorticity equation (Eq. (7) in Sugata and Yaden 
( 1991)) was computed in the meridional section for 
26 cases (figures are not shown). The interior region 
of the fluid is almost in a thermal wind balance; 
the buoyancy torque due to radial gradient of the 
temperature is balanced with the Coriolis torque due 
to the vertical shear of the zonal flow. The interior 
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Fig. 2. Streamfunction of t he meridional circulation of steady a.xi-symmetric flows for 26 cases, scaled by 

its maximum value at the mean radius re = (a + b)/2. The maximum value is indicated above each 

cross section with a unit of [cm3 /s]. The contour interval is 0.1. T he arrangement of cross sections 

corresponds to that of circles in Fig. l. 

region is small for small !J.T. In the top and bottom 
boundary layers, the viscosity term is mostly bal
anced with the Coriolis term, which is indicative of 
the nature of the Ekman layer. In the side boundary 
layers, on the other hand, the vbcosity term is es
sentially balanced with the buoyancy term, although 
the Coriolis term is also significant in the balance for 
small Ror . 

3. Simple diagnostic model 

3.1 Balance req11irements 
A simple diagnostic model is constructed in order 

to understand intuitively how the flow field obtained 
in the previous section is determined for given exter
nal parameters and how the heat transfer processes 
depend on the parameters. Several quantities which 
characterize the flow fi eld are introduced, and their 
relationships are obtained from rough estimations. 
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Fig. 3. As in Fig. 2, but for zonal velocity scaled by its maximum value. The maximum value is indicated 
above each cross section with a unit of [crn/s]. The contour interval is 0.125. Negative values are 

plotted with dotted lines . 

Moreover, the dependence of the quantities on 
the parameters is discussed in the resulting simple 
system. 

We consider an equilibrium state of the axi
symmetric flow in Cartesian coordinates ( x, y, z) 
instead of the cylindrical coordinates (r, >., z) ne
glecting the curvature of the annulus: x=r, and y 
=re>., where Tc=(a+b)/2. The corresponding ve
locity components are (u, v, w), and the meridional 
circulation is expressed with a streamfunction tJt as 

(u, w)= ~ (~~,-~~),where the factor l/rc is use
ful in comparing the result with that in the previ
ous section. The flow field in the meridional plane 
of height Hand width L(=b-a) is divided into five 
sections; the top and bottom boundary layers with 
depth h, the inner and outer side boundary layers 
with width l, and the interior region, of which height 
is then H1 = H -2h and width is L 1 =L-2l. 

Now we introduce several variables which char
acterize the fundamental properties of the steady 
axi-symmetric flow. The axi-symmetric flow for the 
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Fig. 4. (a) Dependence of the intensity of meridional circulation of log Ta and log Ror; maximum value 
of stream function [cm3 /s] at the mean radius re= (a+ b)/'2 of the annulus is adopted as a measure of 
the intensity. Boundary value of the stream function is set to be zero. (b) Dependence of the maximum 
value of zonal flow [cm/s]. Both contour intervals are in geometrical proportion. 

present parameter range is characterized as follows: 

1. The meridional circulation is mostly confined 
to the boundary layers and its intensity is rep
resented by IJ!1 , the value of the streamfunction 
just outside the boundary layers. The quantity 
lf!1 /re represents the constant meridional vol
ume flux per unit length in y direction. 

2. The zonal fl.ow field is characterized by the 
vertical shear and representative values of the 
zonal velocity at the top and bottom of the inte
rior, v(t) and v(b), respectively, are introduced. 
The vertical shear has a magnitude of ( V(t) -

V(b))/ H1 . 

3. The normalized temperature field is character
ized by three variables: an average temperature 
of the top boundary layer O(t)' that of the bot
tom boundary layer o(b)) and radial difference 
80 across the interior region. 

The quantities introduced here, h, l, lfl1, V(t)• V(b)• 

()(t)> ()(b) and be, are determined for given external 
parameters. 

Now we try to find relationships among these 
quantities and experimental parameters. The top 
and bottom boundary layers and the Ekman layer 
for the present parameter range of (Ta, Ror ), 
because the Ekman number is sufficiently small; 
11 /2D H 2 ::::; 10- 3 . Therefore the depth h is given by 
the Ekman depth: 

h = hrrh0 , ho= Jv/2D. (1) 

The depth is uniquely determined for a given rota
tion rate n. On the other hand, it is not straight
forward to represent the width l of the side bound
ary layers with the external parameters. By a 

detailed analysis, Mcintyre (1968) estimated the 
width, which depends on the temperature profile 
just outside the boundary layer . Here we leave the 
specification of l for a which. (Afterward we will 
make a crude assumption on l .) 

To obtain a relationship between the zonal ve
locity and the temperature field, we use the ther
mal wind relation (cf. Eq. (4.4) in Mcintyre (1968)), 
which approximately holds in the interior for the 
present parameter range; 

go:LJ.T 68 
----2n L1. 

(2) 

From the theory of Ekman layer, V(t) and v(b) are 
related to the meridional circulation If! 1 : 

(3) 

This is the same as Eq. (5.3) in Mcintyre (1968) ex
cept that radius r is replaced by the mean radius 
T c . Elimination of V(t) and V (b) between (2) and (3) 
gives a relationship between lfl1 and 88; 

(4) 

which means that the intensity of the meridional cir
culation is in proportion to the horizontal tempera
ture difference in the interior if L 1 is independent of 
lfl1 and 80. 

In order to obtain another relationship, we con
sider the heat transfer across the annulus. The in
ward heat flux integrated from the bottom to the 
top at any x must be equal in equilibrium states. 
For x = a and r e, 
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Fig. 5. As in Fig. 2 but for normalized temperature with a contour interval of 0.05. The value indicated 
above each cross section is L1T [K]. 

{H {)() I 
L1T Jo K ox ~·=u dz 

1fl ()()I 1H 
= L1T "- ax dz - L1T [u()jx=rc dz.(5) 

0 x=r·c 0 

That is to say, the heat conduction at the inner wall 
is equal to the sum of conduction and convection at 
the mean radius. The heat conduction at the inner 
wall is estimated as 

L1T 1 - 8() H 
EK 2[ ' (6) 

where E is a coefficient expressing the effect of the 
variation of horizontal temperature gradient in the 
side boundary layer, which gradually increases to
ward the wall. If the temperature gradient is con
stant throughout the layer , E = 1. The conduction 
term on the right-hand side (r.h.s.) of (5) is esti
mated as 

(7) 

while the convection term is estimated as 
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indicates the 50 % line that is estimated from a simple diagnostic model described in Section 3 . 

(8) 

3y substituting (6)rv(8) into (5), we obtain the fol
owing equation; 

(9) 

which shows a relationship between r/11 and oB op
)osite to Eq. (4) ; r/11 decreases with increasing oB if 
)ther variables are assumed to be independent of IJ!1 
md OB. 

The relative importance of the heat conduction 
md the heat convection at the mean radius is given 
)y the ratio of two terms in the r.h.s. of (9) . The 
·atio I becomes as follows with (4): 

(conductive heat flux) 
(convective heat flux) 1= 

4./2K.H fl 
= (10) 

H1hoga.fJ.T B(t) - B(b). 

fhe ratio is inversely proportional to B(t) - B(b), 

.vhich is determined internally for given exter-
1al parameters. It is clear that B(tl - B(b) rvO for 
:onduction-dominated flow and B(tJ - B(b),..., 1 for 
:onvection-dominated flow. In order to estimate the 
·elative importance in the (log Ta, log Ror )-plane, a 
ine of 1= 1 is drawn in Fig. 6b (a dotted line) with 
9(t) - B(b) = 0.5. The / = 1 line is not far from the 
:ontour of 50 % in Fig. 6b obtained from the non
.inear results, which is indicative of the usefulness 
)f the present simple model. From Eq. (10), it is 
:!ear that convection is dominant (I « 1) far above 
the dotted line in Fig. 6b, while conduction is dom
mant (J » 1) far below the dotted line. 

We need some other relationships or assumptions 
Lo close the system, because two Eqs. ( 4) and (9) 
:;till have the following variables; IJ!1, 00, B(t)> B(b) 

and Lr (or l). Now, we consider two extreme 
cases of convection-dominated flow and conduction
dominated flow, separately. 

3.2 Convection-dominated flow 
In the convection-dominated flow, the conduc

tion term on the r.h.s. of (9) can be neglected, and 
temperature difference between the top and bottom 
boundary layers can be set to fJ.T (i.e., O(t) - B(b) = 
1). The latter assumption "li11earizes" the heat con
vection term. Then the heat transfer equation (9) 
becomes 

( 11) 

Three variables lfJ I' oB and LI (or I) still remain in 
(4) and (11). 

To close the system, we further assume that the 
width l of the side boundary layers is determined 
only by the external parameters from balance re
quirements in the heat equation and the vorticity 
equation (see appendix for details) : 

l = 2 ( VK.H ) 1/4 

ga.fJ.T 
(12) 

Furthermore, the coefficient c is set to be 2 in 
( 11) because it is estimated from non-linear solu
tions that the horizontal temperature gradient at 
the boundary is about twice as large as that aver
aged in the boundary layer. 

From the above assumptions and estimations, the 
system of (4) and (11) can be solved for IJ!1 and 88. 
That is, intensity of the meridional circulation and 
the temperature difference across the interior are de
termined for given external parameters. Figure 7a 
shows the two linear relations (4) and (11) for five 
values of R.uT with fixed Ta= 106 and Fig. 7b for 
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Fig. 7. Two linear relations between the radial temperature difference across the interior 88 and the in

tensity of meri<lional circulation tJ!1 [cm3 /sl for fixed Ta at 106 (a) and for fixed Ror at 10° (b) . The 

intersection of the two lines indicated by • gives an equilibrium solution. 

1ve values of Ta with fixed RoT= 10°. The inter
;ectiou denoted by a closed circle gives the equilib
·ium solution t/11 and oO in the present simple sys
.cm. The gradient of a line of (4), which is drawn 
.hrough the origin, depends mainly on the value of 
toL!.T/ fl( ex L!.T n - :l/2 ex RoTTa I /.J.)' because HI ( = 
fl-2h) and L 1 (=L-2l) do not change very much 
)Wing to the smallucss of the boundary layers. On 
.he other hand, the gradient of a line of (11) de
)ends only on I. Therefore, the negative gradient is 
1early in proportion to L!.T114 . If we fix Ta (, or 
Q) and increase RoT (, or L!.T) as shown in Fig. 7a, 
.he gradient of ( 4) increases much faster than that 
Jf (11) due to the 1/4-th power. As a result, t/11 of 
,he equilibrium solution increases and MJ decreases. 
)n the other hand, if we fix RoT and increase Ta, 
Joth lines of (4) and (11) increase their gradient as 
x D 112 because L!.T ex D 2 for RoT = constant. As a 
result, 00 of the equilibrium solution changes little 
1nd t/11 increases. The dependence of the two char
'l.Cteristic features on Ror and Ta corresponds well 
to the non-linear solutions in Section 2 (Figs. 2 and 
5). 

The simultaneous equations ( 4) and ( 11) are 
solved for t/11 and 8(): 

t/I _ EKHrc _I_ 
I - 2[ 1 + f' 

f 
M=l+f' 

( 13) 

(14) 

where f=2J2c:,..,HL1D/(lhoH1go:L!.T). A measure 
of the zonal flow, V(t)> is obtained from (3); 

EKH 1 
V(t) = ,/2/ho 1 + j' (15) 

Figure 8 shows the dependence of t/11 and V(t) on the 
two external parameters Ta and Ror. Note that 

the assumption of the predominance of convection 
and the estimation of ( 12) are valid in the upper 
part of each figure. The intensity of the meridional 
circulation t/1'1 shown in Fig. 8a is close to that in 
Fig. 4a for the non-linear solutions, particularly in 
the upper part. The intensity of the zonal flow V(t), 

which is shown in Fig. 8b, corresponds well to that 
of Fig. 4b. The N usselt number is defined as Nu= 
t/11 L/r cKH in this simple model, because the total 
heat flux equals t/11L!.T/rc from Eq. (8) and the ideal 
purely-conductive heat flux is KL!.T H / L. Hence the 
figure for Nu is identical to Fig. 8a except for the 
factor L/rcn,H, and not shown here. The similarity 
between the contours of the intensity of meridional 
circulation and those of Nu was already pointed out 
in the previous section for the non-linear solutions 
(Figs. 4a and 6a) . From these results, we conclude 
that our simple diagnostic model can represent the 
essential properties of the upper axi-symmetric flow 
reasonably well. 

Now we further investigate the dependence of our 
solutions on the experimental parameters st and 
L!.T, or Ta and Ror . For the present parameter 
ranges, the boundary layers are estimated to be 
thin (h « H and l « L) from (1) and (12), and then 
LI/ H1 ,..._, L/ H, which is independent of st and L!.T. 
Therefore the quantity fin (13)rv(l5) is, 

j = Ct [23/2 f).y-3/4 (16) 

where c1 is a positive constant which is independent 
of the parameters st and L!.T. Equations (13)rv(l5) 
become as follows using the definitions of Ta and 
Ror ; 

C2 L!.Tl/4 
t/1'1 = - - --:-:-cc---,-

1 + C1 [23/2 L!.T- 3/4 

CJ [23/2 f).T-3/4 
08= - --- --

l + c1st3/2,;).T- 3/4 

c~ (TaR<>r ) 114 

1 + di_ Ro-;.3/4 ' 

IR -3/4 
C1 OT 

1 + c'1 Ror 3/4' 

( 17) 

(18) 
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Fig. 8. As in Fig. 4, but for the present simple diagnostic model. (a) intensity of the meridional circulation, 
lft1 [cm3 / s]; (b) intensity of the zonal flow, V(t) [cm/s]. 

1 + Cj (23/2 LJ.T-3/4 

IT l/2jJ 1/4 
c3 a •OT T 1/41/1 

' -3/ 4 ex a 1, 
l + c1RoT 

(19) 

where a ll c; and c; arc positive constants. Numera
tor of the r.h .s. of (17) is constant along a line with 
log Ror = - log Ta+ constant, which has a gradient 
of -1 in Fig. Sa, and increases from bottom-left to 
top-right in the figure. On the other hand, the de
nominator of the r.h .s. of ( 17) is constant along a 
horizontal line with Ror = constant, and increases 
from top to bottom. As a result, Eq. (17) gives an 
outline of the curved contours of 1/11 shown in Fig. 8a. 
As for the measure of the zonal flow, Eq. (19) gives 
an outline of the curved contour shown in Fig. 8b, 
where gradient of each isolinc is steeper than that 
of 1/11 due to the factor Ta 1! 4 . As shown in Eq. ( 18), 
the temperature difference OB depends only on RoT 
but not on Ta. This dependence explains the char
acteristic thermal structure shown in Fig.·5, where 
the slope of the isotherms in the interior depends 
mainly on Ror. 

3.3 Conduction-dominated flow 
In the conduction-dominated flow, the convection 

term on the r.h.s. of (9) can be neglected and the 
parameter e can be set to 1. Then the heat transfer 
equation is reduced to 

1 

L 
(20) 

Therefore the side thermal boundary layers do not 
exist and the thermal wind relation holds across the 
annulus. The vertical shear is estimated from the 
thermal wind relation (2), and the zonal flow v(t) is 
obtained with (3) as follows; 

(21) 

The Ekman layer theory gives the relationship (3) 
bet ween tJ! 1 and V( 1 l, 

(22) 

Plots of these quantities in the (log Ta, log RoT )
plane (not shown) correspond well to those in the 
lower part of Fig. 4a and 4b. 

4. Discussion 

In the previous section two diagnostic Eqs. ( 4) and 
(9) are derived from several balance requirements. 
They have opposite relation between the intensity of 
the meridional circulation, 1/11 , and the radial tem
perature difference across the interior, M. Here we 
summarize the physical meaning of the two equa
tions. Equation ( 4) is based on the thermal wind 
balance (2) and the mass-transport requirement in 
the Ekman layer (3) . From the thermal wind bal
ance the zonal flow just outside the Ekman layer, 
V(t), is large for large b(). At the same time, IJ! 1 

must be large for large V(t) from the mass-transport 
requirement . As a result, the intensity of the merid
ional circulation (i/11) must be large for large radial 
temperature difference ( c5B) . On the other hand, Eq. 
(9) is a balance requirement in the heat budget. If 
c5() is large, the heat conduction at the side bound
aries is small because the temperature gradient in 
the side boundary layer, (1-c5())/21, is small. Then 
the convective heat flux outside the side boundary 
layers, namely, the last term in (9), must be small 
because t he l.h.s. of (9) is small and the first term 
in the r.h.s. is not negligible. That is , the intensity 
of the meridional circulation (tJ!1) must be small for 
large radial temperature difference (b()). These two 
balance requirements with opposite relation between 
tJ!1 and c5B determine tJ!1 and c5B uniquely for given ex
ternal parameters as shown in Fig. 7 for convection
dominate<l flow. 
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The balanced flow that is obtained in this sim
ple diagnostic model has dependence on the exter
nal parameters through the coefficients in Eqs. ( 4) 
and ( 1 I) for convection-dominated flow. The de
pendence can be divided into two parts; one is the 
term L1T/fl in (4) a11d the other is the thickness of 
the boundary layers h and I, which depends on the 
external parameters as shown in ( 1) for the top and 
bottom boundary layers and ( 12) for the side bound
ary layers. Now we set the width and the depth of 
the boundary layers to be constant in order to focus 
on the term L1T/[2 in (4). Then Eqs. (17), (18) and 
( 19) become as follows, 

{J() = ____ d_1 __ ~ 
I+ d1Ta - 112 Ro:;. 1 ' 

(23) 

(24) 

(25) 

where d; are posi tive constants independent of n 
and L1T. All of 1/11, b8 and v(t) depend only on 

Ta 112 Ro'J'. Isoli11es of these measures are straight 
lines i11 the (logTa, logRoT)-plane and have a gra
dient of -1/2, which explains very essence of the 
dependence in Fig. 8, particularly good for tJ!1 (a) . 
That is to say, the term L1T /fl in the thermal wind 
relation essentially determines the dependence on 
the external parameters, and the variation of the 
boundary-layer thickness modifies it: Owing to the 
variation of the thickness, gradient of isolines of the 
mcridio11al circulation becomes gentle, while that of 
the zonal flow becomes steep. 

The simple diagnostic model introduced in this 
study is based on three equations; the thermal wind 
equation (2), the Eq. (3) for the mass transport in 
the Ekma11 layer, and the heat budget equation (9). 
It is worthy to point out that (3) is also an equation 
for the angular momentum budget . At the mean 
height z = !! /2, upward angular momentum flux in 
the outer side boundary layer is estimated as b2 fl. 
1/11 / b and downward flux in the inner side boundary 
layer as a 2 n · tJ! if a, because the zonal flow is almost 
zero at z = H /2 . Therefore the net upward flux is 
(b - a)fltJ11 at the mean height. In an equilibrium 
state, it must be compensated by the diffusion at 
the boundaries in the upper (or lower) half of the 
container. The diffusion of angular momentum at 
the upper lid is estimated as vrc ~«> (b - a). There-

fore V(tJ = 7r l/I r/ ( ./2r cha) if we neglect the diffusion 
at the side boundaries , which is small compared with 
that at the upper lid (see Fig. 3). If we compare this 
with Eq. (3), only a factor of 7r /2 is different. Thus 
Eq. (3) can be interpreted as an equation for the an
gular momentum budget. 

5. Conclusions 

Steady axi-symmetric flow in a rotating annulus 
with differential heating was obtained by numeri
cal time-integrations of the two-dimensional Navier
Stokes equations over a wide range of external pa
rameters. The velocity field of the meridional circu
lation, the zo11al flow and the temperature field are· 
shown at 26 points around the anvil-shaped transi
tion curve in the regime diagram (Figs. 2, 3, and 5). 
The meridional circulation is mostly confined to thin 
bouudary layers and its intensity is large for large 
Taylor number (Ta) and large thermal Rossby num
ber (RoT)· The width of the side boundary layers 
and depth of the top and bottom boundary layers 
depend on these parameters separately. The vertical 
shear of the zonal flow is large for large Ta and large 
Ror. The temperature field is intimately related to 
the intensity of the meridional circulation, because 
the circulation has an important role in heat con
vection in the meridio11al heat transfer, particularly 
for large Ror . .l'vloreover, the temperature field is in 
the thermal wind balance with the zonal flow in the 
interior region . 

Several quantities which characterize these fea
tures of the steady axi-symmetric flow are selected 
and their dependence on the parameters is clarified 
quantitatively (Figs. 4 and 6) . The intensity of the 
meridional circulation and the Nusselt 11umber have 
similar dependence, while the zonal flow has a dif
ferent dependence. 

A simple diagnostic model was constructed to un
derstand intuitively how the flow field is determined 
for given external parameters. The intensity of the 
meridional circulation and radial temperature differ
ence across the interior are key variables to charac
terize the flow field. Two Eqs. (4) and (9), which are 
the essence of our model, give their relationships un
der appropriate assumptions; Eq. ( 4) is the thermal 
wind relation in the interior with the Ekman layer 
theory and (9) is the heat transfer equation. Our 
simple model reproduces the dependence of these 
quantities on Ta and RoT obtained in the full non
linear computations. 

The convection-dominated flow is essentially de
termined as follows: Zonal flow just outside the Ek
man layer must be strong for large radial temper
ature difference across the ii1terior from the ther
mal wind balance. At the same time, the merid
ional circulation must be strong for the strong zonal 
flow from the mass-transport relation in the Ek
man layer. That is, the meridional circula tion must 
be strong for a large radial t emperature d ifference 
across the interior. On the other hand, the heat 
transfer equation gives an opposite relationship be
tween these quantities. If the radial temperature 
difference across the interior is large, that across the 
side boundary layers is small, namely, the heat flux 
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at the side boundaries is small. Then the convec
tive heat flux outside the side boundary layers must 
be small from the heat balance requirement. That 
is, the meridional circulation must be weak for a 
large radial temperature difference across the inte
rior. These two balance requirements with opposite 
relationships determine the intensity of the merid
ional circulation and the radial temperature differ
ence across the interior uniquely for given external 
parameters Ta and Roy. 

On the other hand, the conduction-dominated 
flow is determined as follows: The temperature field 
is determined by the heat conduction. Therefore, 
the side thermal boundary layers do not exist. The 
zonal flow field is in thermal wind balance with the 
temperature field. By the Ekman layer theory, the 
intensity of the meridional circulation is related to 
the zonal flow at the top and bottom of the interior 
region. 
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Appendix 

Width of the side boundary layer 
Mcintyre (1968) showed that the width of the side 

boundary layer is not strictly determined only by 
the external parameters. However, it is possible to 
estimate the width l for the present simple model 
under several acceptable approximations. 

The heat equation in the side boundary layer is 
approximated as follows (Mcintyre, 1968): 

(26) 

where 0 is the normalized temperature. From this 
equation a scale for iJ! is estimated with a scale of 
the boundary layer ls, 

(27) 

As pointed out in Section 2, the vorticity equation 
is essentially in a buoyancy-viscous balance in the 
side boundary layer: 

80 l/ 84 !Jt 
-ga.iJT- = --. 

8x Tc 8x4 
(28) 

Again, a scale for r/J is estimated from this equation, 

Tc ATl-8813 iJt "' -gOLJ --
l/ 2 s' 

(29) 

because the radial scale of 8 is ( 1 - 88) /2. Thus the 
scale ls is obtained from (27) and (29): 

l - ~---( 
H 2 

) 
1/4 

s - ga.iJT 1 - 80 (30) 

In this relation, depeudence of the scale I, on 88 
is smaller than that on iJT because 80 is very 
small compared to l in the convection-dominated 
flow. Therefore we can neglect the dependence. on 
88. Moreover, considering the fact that an effective 
width of the boundary layer is several times as large 
as its scale, we set the width l as follows: 

( 
l/l\.Jl ) 1/4 

1=2 -
ga.iJT 

(31) 

If we assume the coefficient 1.3lz1 I/ B 1 is 2 in Eq. 
(9.3) in Mcintyre (1968), estimating from his Fig. 6, 
the same equation corresponding to (31) is obtained. 
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Abstract 

Some of the rotating an11ulus experiments with radial differential heating show stepwise transitions 
of flow regimes from steady axi-symmetric flow to vacillation via a steady wave regime as the rotatiou 
rate 111creases. The stepwise regime transitions are investigated numerically with a semi-spectral model 
of a three-dirneusiorial Boussinesq fluid, and the results are interpreted with bifurcation theories. The 
trausi_tiun betwee11 axi-symmetric flow and a steady wave regime is characterized by hysteresis; the 
cnter1ou for the disappearance of an established steady wave differs from the criterion for the onset 
of the st.early wave. The branch of the steady wave solution does not bifurcate from that of the 
a.xi-symmetric flow at the point where the axi-symmetric flow becomes unstable. Instead, the steady 
':'ave bra11ch has another type of critical point (interpreted as a "limit point") at which it disappears. 
fl1e traus1t1on from steady wave to tilted-trough vacillation is interpreted as a Hopf bifurcation· a 
periodically fluctuating solution bifurcates from the steady wave branch when the steady wave soluti,on 
loses its stability. 

1. Introduction 

Hydrodynamic instabilities and the correspond
ing transitions of flow regimes have been one of 
the interesting subjects in contemporary fluid dy
namics (e.g. Swinney and Gollub, 1981). When an 
experimental parameter is changed gradually, step
wise transitions fyom a steady symmetric flow to 
irregular turbulent flow are observed in some ex
periments such as the Rayleigh-Benard convection 
and the Taylor-Couette flow . Modern technology 
in laboratory experiments and advanced computing 
facilities for numerical experiments have improved 
our understanding of the transitions of flow regimes. 
Moreover, bifurcation theories and chaos theories 
have given fundamental concepts of the transitions 
of flow regimes. 

Some of the rotating annulus experiments with ra
dial differential heating, which contain the basic dy
namics of the general circulation of the atmosphere, 
show similar stepwise transitions from steady axi
symmetric flow to irregular turbulent flow via steady 
wave and vacillation regimes (see e.g. Hide and Ma
son, 1975) . A regime diagram obtained by Fowlis 
and Hide ( 1965) is shown in Fig. l together with re
cent results by Tamaki and Ukaji (1985; hereafter 
referred to as TU85) and Ukaji and Tamaki (1989, 

1 Present affiliation: The National Institute for Environ
mental Studies, Tsukuba, lbara.ki 305, Japan. 

@1993, Meteorological Society of Japan 

1990; hereafter UT89 and UT90, respectively) . The 
flow regimes are mainly dependent on two non
dimensional parameters of the Taylor number, Ta 
(the abscissa) and the thermal Rossby number, Ror 
(the ordinate). If the rotation rate n of the annu
lus is increased gradually with a constant temper
ature difference .!J.T between the outer and inner 
walls, say .!J.T = 3 K indicated by a straight line in 
Fig. 1, a sequence of regime transitions are obtained 
from steady axi-symmetric flow to irregular flow . In 
some laboratory experiments (e.g. Fultz et al., 1959; 
TU85; Hignett, 1985), hysteresis is observed at the 
transition from the axi-symmetric to wave regime 
and in the wave regime; two or more stable states 
may exist for the same experimental parameters de
pending on the initial conditions. In addition, a new 
class of amplitude vacillations, which are adjacent to 
a transition to the next lowest wavenumber as shown 
in Fig. l with .!J.T=8 K, are also obtained by TU85 
and by Hignett (1985). 

The transition from axi-symmetric flow to a 
wave regime was firstly investigated by Lorenz 
(1962) with a low-order model of a two-layer quasi
geostrophic fluid system. He analyzed a set of non
linear ordinary differential equations with 8 depen
dent variables obtained by means of highly trun
cated Fourier-Bessel series. He proved with the sim
plified model that the steady axi-symmetric flow is 
always possible in a mathematical sense but unsta-
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(1985) and Ukaji and Tamaki (1989 , 1990) along two diagonal lines of constant temperature difference 

tJ.T= 3 K and 8 K . Dots denote axi-symmetric flow, m-S a steady wave of the dominant wavenumber 
m, and m-V vacillation of the dominant wavenumber m . 

ble with respect to wave disturbance for certain com
binations of Ta and Ror, that is, the inside of an 
anvil-shaped curve in the regime diagram. The tran
sition occurs as a manifestation of baroclinic insta
bility of the axi-symmetric flow. Moreover, hystere
sis in the upper transition for large Ta is obtained in 
his low-order model in agreement with the labora
tory experiments by Fultz et al. (1959) : the criterion 
for the disappearance of an established steady wave 
differs from the criterion for the onset of the steady 
wave. Matsuda and Yaden (1985) illustrated a bi
furcation diagram for the hysteresis based on these 
results. 

Lorenz (1963) modified the model to explore fur
ther transitions of regimes. The geometry of the 
cylindrical annulus was changed to an infinite chan
nel with a double-Fourier series and the second lat
eral mode was retained to get a non-linear system of 
14 variables. Numerical solutions of vacillations and 
irregular flows were obtained by time integrations, 
in addition to analytic solut ions of a.xi-symmetric 
flows and steady waves. Extension of this Lorenz 
model was done by Quinet (1973a, b) and Yoden 
(1979) with the inclusion of some higher modes to 
investigate the structure of 11on-linear processes in 
the flow regime transitions further . Detailed analy
sis of the regime transitions in the Lorenz model was 

done by Ghil and Childress (1987) with bifurcation 
theory. Figure 2 is a bifurcation diagram showing 
the dependence of solutions on the external param
eter k- 1 that is regarded as a rotation rate. As k- 1 

is increased in the diagram, the axi-symrnetric flow 
(denoted by H) loses its stability at the point A 
and a steady wave solution of the first mode (R 1 ) 

bifurcates from the point. At the point B the wave 
solution R 1 becomes unstable and two steady-wave 
branches of R~2 and R~2 bifurcate. Solutions R~2 
and R~2 differ from each other only in the sign of the 
second lateral mode, owing to the spatial symme
try of the mode (Yoden, 1985). A Hopf bifurcation 
takes place at D' (D") and a stable periodic solu
tion U\1 1 (U\1 11 ) appears, which is a class of tilted
trough vacillation. Finally, non-periodic chaotic so
lutions (T) appear after some further bifurcations. 
The sequence of bifurcations leads to solutions of 
increasing spatial and temporal complexity, as the 
simpler solutions lose their stability. A general the
ory of the symmetry-breaking in spatial structures 
a t bifurcation points was given by Matsuda (1983) . 

Stepwise transitions from steady axi-symmetric 
flow to irregular turbulent flow with i11cre(l.':;ing com
plexity of flow patterns are q·ualitatively illustrated 
in the Lorenz model. Detailed analysis of the 
model is possible because its dependent variables 
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are of the order of 0 (10) owing to the severe trun
cation. However, several crude assumptions (ap
proximations) were also made to obtain the model: 
quasi-geostrophy, a two-layer system, Ekman fric
tion, non-existeuce of lateral boundary layers, and 
so Oil. 

A quite different approach in numerical stud
ies on the rotating annulus flows originated from 
Williams (1967a, 19G7b, 19G9). He solved two- or 
three-dimensional Navier-Stokes equations numeri
cally without many approximations. Advances in 
computing facilities over these years have made it 
possible to compare numerical simulations directly 
with laboratory measurements (e.g. Hignett et al., 
1985; UT89; UT90; Sugata a!ld Yoden, 1991). Re
cently, Miller and Butler ( 1991 ) investigated the hys
teresis in the transition between axi-symmetric flow 
and the steady wave regime with a semi-spectral 
model of Boussinesq fluid . They obtained the hys
teresis for large LJ.T only in the case of a free surface, 
which result was consistent with the laboratory ex
periment by Fein ( 1973). The spatial structure of 
the flow field and energetics in the hysteresis were 
also diagnosed carefully with the three-dimensional 
data obtained. Investigation of further transitions 
of flow regimes was left for future study. 

In this study, we develop a similar semi-spectral 
model without many approximations to investigate 
the stepwise transitions of flow regimes in the rotat
ing annulus experiments. The transition to tilted
trough vacillation is clarified as well as the transi
tion between axi-symmetric flow and steady wave 
regime. Our model is similar to that introduced by 
Miller and Butler (1991) but includes wave-wave in
teractions with the first harmonics. However, the 
present semi-spectral model has limitations for the 
study of some vacillations in which side-bands of the 
dominant wave may play an important role (e.g. Pf
effer et al., 1980). Numerical results are interpreted 
with bifurcation theories. 

2. The model 

We consider water contained between two coaxial 
cylinders of inner and outer radii a and b, respec
tively, and two parallel horizontal planes of depth 
H. The dimensions are a=4.5 cm, b=9.7 cm and 
H =8.0 cm, which are the same as those in TUBS, 
UT89 and UT90. The top surface is assumed to 
be a free-slip surface at z = H with no undulation. 
The other three bonding surfaces are rigid. The in
ner and outer walls are held at different constant 
temperatures, Ta and n (Ta <Tb), to maintain the 
difference LJ.T. The top and bottom boundaries are 
thermally insulating. The container rotates at a con
stant rate fl . Controllable experimental parameters 
are LJ.T and fl. 

The governing equations under the Boussinesq ap
proximation are: 

VU;_ v2 
Ut + UUr + -- + WUz - - - 2flv 

r r 

=-Pr+ II. [Uzz + :2 Uu - Wrz - : 2 (rv;_\] , 

(1) 

VV;_ UV 
Vt + UVr + - + WVz + - + 2flu 

r r 

= _ P>- +I/ [{~(rv)r} +vzz - (~) - ~Wz>-], 
r r r r r>- r 

VW;_ 
Wt + UWr + -- + WWz 

r 

(2) 

[ l 1 1 1 ] 
= - pz +I/ - (rwr)r + 2wu - -Vz>- - - (ru.) 

r r r r r 

+aLJ.TOg, (3) 

vO;_ 
Ot + uOr + - + wOz 

r 

= K [err+ ~Br+ r12Bu + ozz] , (4) 
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Fig. 3 . Dependence of total inward heat flux Q (or, the Nusselt numl>er Nu) on the rotation rate n. Sy111liol 

•-• is for the present model; o, laboratory experiment l>y Ukaji and Tamaki (1989); D. nume rical 

simulation by them. In the vacillation regime the variable range and time average are plotted . The 

amplitude of the vacillation obtaiued by Ukaji and Tamaki is overestimated because it is taken from 

limited plots in their figure. 

U V>, 
Ur + - + - + Wz = 0, 

T T 
(5) 

where (r, >., z) are cylindrical coordinates, and t 
time. The corresponding velocity components are 
(u, v, w). Dimensionless temperature e is defined 
as 8=.(T - 1'a)/1).T. Density is denoted by p, and 
p is pressure divided by the mean density p0 . The 
viscosity term is not the conventional form in order 
to avoid a round-off error in computation (Williams, 
1969) . Physical parameters of water are assumed to 
be constant at the mean temperature 26.5°C: the 
kinematic viscosity, 11=8.65x10-3 cm2 s- 1 ; the dif
fusivity of heat, l'C=l.45x10-3 cm2 s- 1; the coeffi
cient of volume expansion, o: = 2.7l x l0- 4 K- 1 . . 

In order to get a semi-spectral form of the equa
tions, we decompose each dependent variable into 
the axisymmetric part and wave parts as follows : 

N 

x(r, >., z, t) = X(r, z, t) + L Re [xn(r, z, t)eimn>-] 
n=l 

(6) 

where x denotes u, v, w, e or p . Here periodic
ity in the azimuthal direction is assumed with 1}). = 
2rr/m, and Xn (r, z, t) is the complex amplitude of a 
dominant wave ( n = 1) and its higher harmonics ( n 
=2,3,· · ·). Substituting these expressions into (1)
(5) and making a finite difference approximation in 
r, z and t, we obtain a semi-spectral form of the gov
erning equations. The same finite difference method 
as in Williams ( 1969) is adopted. The grid resolu
tion is determined after a convergence test of the 
solutions; 64 ( r-direction )' x 64 ( z-direction) and i}t 

=2.5x10- 2 s. 
The assumption of the azimuthal periodicity is 

validated with the laboratory experiment by TU85; 

their careful measurement with a precise apparatus 
showed that the amplitudes of the side-bands and 
the longest wave are of the order of 1 3 of the to
tal temperature variation (~the domi11ant wave+ 
its higher harmonics) not only in steady wave regime 
but in vacillation. Moreover, both the laboratory 
experiment (TU85) and the numerical experiment 
(UT90) showed that the amplitude of the higher 
harmonics decreases exponentially with n ; the first 
harmonic is less than 20 % of the dominant wave 
and the second harmonic is less than 10 %. Based 
on this fact, we retain only a few wave components 
and truncate at N = 2 for computational efficiency 
unless otherwise mentioned. The severe truncation 
in the azimuthal direction limits the application of 
the model to irregular turbulent flow. However, the 
model shows good performance in the steady wave 
and vacillation regimes if we compare our result with 
the laboratory and numerical experiments by UT89 
and UT90. 

A renormalization technique to keep the tempera
ture field as 0 ~ e~1 is adopted following Miller and 
Butler (1991). If we truncate at N = 1, the model 
is basically the same as theirs except for the grid 
resolutio11 and spacing. A two-dimensional model 
developed by Sugata and Yoden (1992) is used to 
obtain axi-symmetric flows , and a linearized model 
by Sugata and Yoden (1991) is also used for the lin
ear stability analysis of the obtained axi-symmetric 
flow . 

Regime transitions are investigated along the line 
of !J.T = 3 K in Fig. 1; the temperature difference is 
the same as that imposed by UT89 and UT90 in 
their laboratory experiment and numerical simula
tion. The semi-spectral model is integrated for 20 
minutes in physical time from an initial condition 
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wliicl1 is I.II(' flow oht.airH·d al. sliglit.ly diffon:11I fl. If 
tiH· ohl.airH•cl flow is 1101 c:o11vl:rgPcl s1rflic:ic:11t.ly t.o a 
slcncly or a vac:illat.i11g st.al.I:, aclclitio11al t.i11w i11t.e
grat.io11 is clo11c fo r 20 111i1111tc:s 111cm· .. Tl)(' clo111i11a111. 
wavc•1111111l 1cr is fixc·d al 711 = [> fro111 1.lil' ohserval io11 
i11 !.heir Jal 1orat.ory exp1:ri111e11l.. 

3. Results 

Figm<' :i sl1ows th<: dependence of the flow ri'gime 
Oil the rot.:d io11 rat.<• fl obtainr~d with the prese11t 
semi-sp<~ct.rnl 111ndel (dots), together with llw re
sults i11 laboratory expcrime11t. (open circles) a11d 
in Jlll!Tlerical simulation (open squares) outained 
by UT89. The ordinate is the inward heat flux 
(scale of the left. side), or the Nussclt number (scale 
of the right side). For small D, only the axi
symmetric steady flow is obtained; the heat flux de
creases monotonously with increasing D. The axi
symmetric flow becomes unstable at n = 0.53 rad/ s, 
and a three-dimensional steady wave solution is ob
tained in time-integrations. The heat flux increases 
from 5.5 J / s to 14 .8 J/s at this transition. 

Branching of steady wave solutions was explored 
with cha11ging the external parameter n. If n is de
creases, the regime transition from the steady wave 
solution to axi-symmetric flow takes place at D= 
0.45 rad/s. Therefore the present model has hys
teresis between n = 0 .45 rad/ s and 0.53 rad/s; two 
stable solutions are obtained for the same external 
conditions depending 011 the initial condition. The 
numerical simulation by UT8!) shows similar hys
teresis although their laboratory experiment does 
not show it explicitly. 

If f2 is increased, the steady wave solution be
comes unstable at n = 1.12 rad/s, and vacillation so
lutions arc obtained for higher rotation rates than 
that. The heat flux fluctuates purely periodically 
in the vacillation regime and its variable range and 
time mean are shown in F ig. 3 . The variable 'range of 
the heat flux fiuctuation increases with increasing n. 
A single numerical simulation of the vacillation at D 
= 1.2 rad/s by UT90 has comparable fluctuation of 
the heat flux. (They did not show the heat flux in 
the laboratory experiment for this vacillation.) 

The spatial structure of steady wave solutions 
resembles qualitatively that obtained by Williams 
(1971, 1972) with different experimental parameters 
and different grid resolutions, and resembles quanti
tatively that obtained by UT89 with the same exper
imental parameters but a different model. Only the 
streamfunction of the deviatoric horizontal velocity 
field is shown in Fig. 4 for the steady wave solution 
at n = 0.45 rad/s, which is very close to the critical 
value for the transition . The streamfunction field 
shows a typical pattern of baroclinic annulus waves; 
for example , westward tilt of the minimum (maxi
mum) phase with height. The higher harmonic of 
n = 2 is not negligible , particularly in middle and 

0 

0 

2n / 5 

Fig. 4. The streamfunction for the deviatoric 
horizonta l velocity field at three levels. 

f? = 0.45 rad/s. Positive regions indicate 
clockwise circulation. The unit is cm2 /s. 

upper layers; cyclonic circulation is more intensive 
than anti-cyclonic circulation and the azimuthal ex
tent of the former is narrower. Tilts of the phase 
lines in a radial direction indicate non-separable na
ture in the instability of baroclinic axi-symmetric 
flow with lateral shear. 

In order to investigate the flow regime transitions 
in the present model further , we take notice of the 
spatial symmetry of the flow field. The flow field 
is expanded in an appropriate orthogonal functions, 
using a Fourier-Bessel series for the present annu
lar geometry, for comparison with Lorenz's results 
(1962, 1963) . The radial structure of some of the 
lowest modes for the streamfunction is shown in Fig. 
5: axisymmetric components (a), wave components 
for the dominant wave (b), and for the first higher 
harmonic (c). 

Figure 6 shows the amplitude of these components 
for the streamfunction at the mid-depth for each 
n. The dominant wave has the same order of am
plitudes as the axi-symmetric components, but the 
first higher harmonic is one order smaller than the 
dominant wave. The first radial mode in each com
ponent has the largest amplitude and other modes 
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Fig. 5. Radial structure of four lowest modes of the orthogonal functions (Fourier-Bessel functions) . (a) 

the a.xi-symmetric part, (b) the dominant wave of m = 5, and ( c) its first higher harmonic ( mn = 10). 

have small but non-zero amplitudes. Note that all 
of the solutions we obtained have both odd and even 
radial modes, in contrast to Lorenz's ( 196~) result. 
A steady wave solution with only odd radial mode(s) 
(R1 in Fig. 2) can exist as well as that with both 
modes (R12) in the Lorenz model. Near the transi
tion point f? = 0.45 rad/s, each amplitude varies as 
aJ?? + b (a and bare constants), which dependence 
on f? reminds us of the limit point of steady solutions 
(Matsuda, 1983) . Moreover, the regime transition 
from steady wave to vacillation has basic character
istics of Hopf bifurcation; bifurcation of a periodic 
solution from a steady solution as the latter loses its 
stability. 

The phase relation between any two modes in vac
illation is well described by a trajectory projected 
onto a plane in phase space, which presentation 
was originally introduced by Lorenz (1963). Fig
ure 7 shows the periodic trajectory of vacillations 
for f?= 1.14-1.3 rad/s projected onto 1/Jko - 1/Jc plane 
where 1/Jko and 1/Jc have similar definitions to these of 
Lorenz (1963): 1/Jko is the amplitude of the first mode 
of the dominant wave and 1/Jc that of the second 

axi-symmetric mode. Clearly it is an unsymmetric 
vacillation (UV) in Lorenz's classification because 
of the asymmetry of the trajectory with respect to 
1/Jc = 0. The pr.esent model does not have any corre
spondence to the pairing of unsymmetric vacillations 
with opposite sign of even modes obtained in the 
Lorenz model (1963) (UV' and UV" in Fig. 2); only 
one unsymmetric vacillation is obtained for a given 
external parameter. Nearly elliptic trajectories in
dicate that the fluctuation of 1/Jko leads slightly that 
of 'lj;c for f? S: 1.2 rad/s, while it lags slightly for ft = 
1.25 and 1.3 rad/s. 

The period of the vacillation is 50 s at f? = 1.14 
rad/s, and increases slightly up to 56 s at f?= 1.3 
rad/s. The period is a half of that obtained by 
UT90; their result is suggestive of a period-doubling 
(sub-harmonic) bifurcation of the vacillation solu
tion with the same period of 50 s. We did not ob
tain any example of such a period doubling nor a 
non-periodic (chaotic) solution for f? S: 1.3 rad/ s. 

4. Discussion 

The regime transitions from steady axi-symmetric 
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Fig. 6. The amplitude of each mode of the streamfunction for the horizontal velocity at the mid-depth . 
(a) the axi-symmetric part, (b) the dominant wave of m = S, and (c) its first higher harmonic (mn= 
10) . 

flow to vacillation obtained in this study are sum
marized i11 a schematic bifurcation diagram (Fig. 8). 
A two-d imensional axi-symmetric solution (denoted 
by H) is obtained for any rt as in Sugata and Yo
den (1992), but it l.iecomes unstable at a certain 
value of fl (the point A) . An exponentially grow
ing perturl.iation is obtained l.iy time integrations of 
the linearized model with respect to the basic axi
symmetric flow . The streamfunction of the hori
zontal velocity of the growing perturbation near the 
transition point A is shown in Fig. 9. The spatial 
pattern of the perturbation differs qualitatively from 
that of the steady wave solutions (R~'~+ 2rn) as shown 
in Fig. 4, particularly in lower layers. Here, the sub
script 12 of R7~+2rn stands on both odd and even 
radial modes, and the superscript m + 2m stands on 

both the dominant wave and its higher harmonics. 
Note that the basic flow is stable for other wave per
turbations except for the wavenumber 5. Non-linear 
time-integrations of the present model from an ini
tial condition of the unstable basic axi-symmetric 
flow with the growing perturbation show attraction 
to the steady wave solution R~;+2m. No stable so
lution similar to the growing linear perturbation is 
obtained . Therefore it is concluded from the bifur
cation theory (Matsuda , 1983) that this is a subcrit
ical bifurcation of an unstable steady wave solution 
at the point A as denoted by a dashed line R\2. 

The steady wave solution (R~'~+ 2m ) disappears at 
another transition point B , which is classified as a 
limit point from Figs. 3 and 6. Hysteresis is real
ized by the coexistence of the subcritical bifurcation 
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Fig. 7. Trajectories of vacillation projected 
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tation rates fl= 1.14-1.3 rad/s. The dot 
indicates a stable steady wave solution 
near the critical point n = 1.12 rad/s. 
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A 

Fig. 8 . Bifurcation diagram for the present re

sult. The solid line is a branch of stable so

lutions, dashed line that of unstable ones. 
See text for details. 

point A and the limit point B. The unstable branch 
of the steady wave from the point B may not be di
rectly connected with the unstable branch Ri2 be
cause of the existence of the higher harmonics. How
ever, it is practically impossible to search for the 
unstable solutions computationally as in the Lorenz 
model, because the present model is a huge non
linear system with degree of freedom of 0(105 ) . 

We did not obtain any steady wave solution which 
consists of only odd radial modes, in contrast to 
that in the Lorenz (1963) model (R1 in Fig. 2) . The 
reason is the difference in the symmetry group of 
the orthogonal functions. Lorenz ( 1963) assumed 

0 

0 

0 

2n / S 

2n / S 

Fig. 9. As in Fig. 4, except for the most unsta
ble wave perturbation obtained in the lin
ear stability analysis of the axi-symrnetric 

flow at rt= 0.54 rad/ s . The contour inter
vals are the same among the three figures. 

an infinite channel to expand the field variables in 
a double-Fourier series, which are divided into two 
symmetric groups depending on the lateral structure 
of each mode; symmetric and anti-symmetric groups 
with respect to the center of the channel (see Yo
den, 1985). The symmetric group constitutes a sub
system of the system, setting the anti-symmetric 
group to be zero. However, the present model does 
not have such a sub-system because of the spatial 
structure of the Fourier-Bessel series (Fig. 5) . There
fore any steady solution in which some modes are 
equal to zero was not obtained. In other words, the 
stepwise transition from the symmetric steady wave 
solution (Ri) to the mixed wave solutions (R~ 2 and 
R'{2 ) in the Lorenz model is a spurious result due to 
the assumption of an infinite channel; such a tran
sition is not possible in the annular geometry. 

A vacillation solution bifurcates at the point C 
in Fig. 8, which is a counterpart of the point D' 
(D") in Fig. 2. The steady wave solutiou R;'~+ 2m 
becomes unstable at that point indicating a Hopf bi
furcation. A period-doubling bifurcation nor other 
transition routes to non-periodic solutions were not 
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Fig. 10. As in Fig. 3, except that the symbol 6- - - 6 is for another truncation N = 1. 

obtained for n s; 1.3 rad/s. If the rotation rate is 
increased further , such tra11sitions to an irregular 
regime might be obtained in the present model, even 
though the assumption of azimuthal periodicity may 
not be very appropriate. 

To investigate the role of the first higher harmon
ics in the transitions of flow regimes, another model 
with more severe tru11catio11 of N = 1 is used, which 
is basically the same as that used by Miller and 
Butler (1991). Figure 10 is a comparison of the in
ward heat flux for the two results obtained from N 
= l (dashed line) and N = 2 (solid line) truncations. 
Both of the hysteresis between the axi-symmetric 
and steady wave regimes and bifurcation of vacilla
tion from the steady wave branch are obtained, even 
in the truncation of N = 1. The first higher harmonic 
is not necessary for a qualitative understanding of 
the transitions from axi-symmetric flow to vacilla
tion, although it is not negligible for quantitative 
arguments. The spatial structure obtained in these 
two models is compared with those obtained in the 
fully three-dimensional model and in the laboratory 
experiment by UT90. Figure 11 shows an azimuthal 
vertical cross section of the dcviatoric temperature 
at the mean radius of the annulus for the steady 
wave at fl = 0.6 rad/s. The N = 2 model (a) gives a 
very similar result as the full model (c) and the lab
oratory experiment (d) . However, the N =I model 
( b) with no higher harmonics has some differences, 
particularly in the upper layers. 

Similar numerical studies were done along the line 
of L.IT = 8 K in Fig. 1, and qualitatively similar re
sults to those for L.IT = 3 K were obtained. Any am
plitude vacillation adjacent to a transition to the 
steady axi-symmetric flow , which is observed in the 
laboratory experiments (Fig. 1), is not obtained in 
the present model. It is conjectured from bifurcation 
theories that the sudden disappearance of the vacil-

lation comes from a limit point of a pair of periodic 
solution (vacillation) branches (see Fig. I in Yaden, 
1987), but a more sophisticated model is necessary 
to obtain such a regime transition. 

5. Conclusion 

Stepwise transitions in flow regimes observed in 
some of the rotating annulus experiments with radial 
differential heating were investigated numerically 
with a semi-spectral model of a three-dimensional 
Navier-Stokes equation with a Boussinesq approxi
mation, and the results were interpreted with bifur
cation theories. Experimental conditions are iden
tical to the laboratory experiments by Tamaki and 
Ukaji (1985) and Ukaji and Tamaki (1989, 1990). 
The rotation rate fl is changed as a bifurcation pa
rameter with other conditions fixed. A schematic 
bifurcation diagram shown in Fig. 8 is obtained as 
a summary of our results. Steady, two-dimensional 
axi-symmetric flow (denoted by H) exists for any 
n, but it becomes unstable at a critical value of n 
(the point A) with respect to a wave perturbation. 
However, this is a sub-critical bifurcation because 
no stable steady wave solution similar to the lin
ear growing-mode is obtained near the bifurcation 
point. Instead, a finite-amplitude steady wave so
lution (R~+2m) is obtained in time-integrations at 
the bifurcation point, the spatial structure of which 
is different from the linear mode. The steady wave 
solution disappears at another critical point B at 
a smaller fl than the bifurcation point. That is, 
hysteresis exists between these two critical points; 
the sub-critical bifurcation point (A) and the limit 
point (B) . As fl is increased, the steady wave solu
tion becomes unstable at the point C in Fig. 8 with 
respect to a perturbation which fluctuates purely pe
riodically. Periodic solutions well known as a tilted
trough vacillation are obtained for larger n than this 
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Fig. 11. Azimuthal-vertical cross sections of deviatoric temperature at the mid-radius for r.? = 0.6 rad/ s: 
(a) the present model of N=2, (b) that of N=l, (c) the numerical model by Ukaji and Tamaki (1989), 
and (d) the laboratory experiment by them. The unit is K. 

critical value. This is interpreted as a Hopf bifurca
tion from the trajectories shown in Fig. 7. 

Contrary to the Lorenz ( 1963) model of a low
order system, bifurcation in the steady wave branch 
is not obtained in the present model. The spuri
ous bifurcation in the Lorenz model (the point_ B 
in Fig. 2) arises from the spatial symmetry of the 
flow domain. In the geometry of an infinite channel 
assumed by Lorenz (1963), a group of symmetric 
components with respect to the mid-channel consti
tutes a sub-system of the low-order system, and a 
symmetry-breaking bifurcation takes place with re
spect to anti-symmetric components. However, such 
a sub-system does not exist for the present annu
lar geometry, because of the characteristics of the 
Fourier-Bessel series (Fig. 5) which is the appropri
ate orthogonal function for this geometry. 

Analysis of transitions from vacillation to the ir
regular regime remains as our future study, for which 
a full three-dimensional numerical model is neces
sary. 
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Abstract 

Lagrangian motion of a fluid particle is investigated for a steady wave in a rotating 

annulus of fluid. Obtained trajectory shows a chaotic nature but has several typical 

organized behavior depending on its position in the annulus. The annulus of fluid is 

divided into seven regions according to the characteristics of the particle mot.ion: an upper

level jet, a lower-level jet, a cyclonically trapped-region, an anticyclonically trapped

region, an inner boundary layer, an outer boundary layer, and a lower boundary layer. 

Cores of the cyclonically trapped-region and the anticyclonically trapped-region are found 

to be nearly isolated from the others. 

Residence time of the fluid particle in each region and frequency of the transition 

between the regions are analyzed. A cyclic route of transition which is remarkably pre

ferred is found: the outer boundary layer -----+ the upper-level jet -----+ the inner boundary 

layer -----+ the lower-level jet or the lower boundary layer -----+ the outer boundary layer . 

Temperature of the fluid particle changes largely in both the inner boundary layer 

and the outer boundary layer through vertical motions but it changes little in the other 

regions. Moreover, little correlation exists between the particle's approach toward outer 

wall and its warming in the jet regions. Lagrangian description of the horizontal heat 

transport in the steady wave is that a fluid particle which obtained heat during the 

upward motion in the outer boundary layer is advected nearly adiabatically across the 

interior region of the fluid and releases the heat during the downward motion in the inner 

boundary layer. Inward heat flux estimated from the Lagrangian view is comparable with 

the total inward heat flux obtained in the Eulerian representation. 
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1 Introduction 

Even in a. regula.r flow, La.grangia.n motion of fluid particles may be chaotic. Such a regular 

flow falls into two types; three-dimensiona.I steady flows and periodic two-dimensional 

flows. An example of the former is a Arnold-Beltrami-Childress (ABC) flow (Dombre et 

a.I., 1986). Although ABC flow is a three-dimensional steady flow simply described by 

linear combination of trigonometric functions with three real parameters, streamlines of 

particle motions have a complicated Lagrangian structure, and the fluid is divided into 

an ordered region and a chaotic region in the Poincare section . An example of the latter 

is two-dimensional traveling waves with temporally periodic modulation studied by Weiss 

and Knobloch (1989). They examined a particle transport and mixing in the flow and 

showed that the fluid is divided into three regions in the frame moving with the wave: 

a trapped region where particles are carried along with the wave, an untrapped region 

where particles are left behind by the wave, and a separatrix layer between the two regions 

where particles chaotically alternate between being trapped and untrapped. 

Steady waves in the rotating annulus of fluid with radial differentia.l heating have 

been investigated in many laboratory experiments (see, e.g., Hide and Mason, 1975) . 

Lagrangian motion in the steady waves may be chaotic because of the three-dimensionality 

of the flow. However, most of the studies of the steady waves have been done from the 

Eulerian view a.nd there a.re only a few studies a.s to the La.gra.ngian motion in the steady 

wave. Figure 1 shows a streak photograph of the top surface of the fluid taken by a camera 

mounted on the rotating apparatus (Hide and Mason, 1975), where an upper surface jet 

is traced by long streaks. Trajectories of the fluid motion in the interior were observed 

in the laboratory experirnen t by Sakai ( 1990). Figure 2 is a projection of the trajectories 
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on a meridional plane, which shows elliptical orbits whose major axes incline up toward 

the inner wall. Particles rise near the inner cold wall and fall near the outer warm wall. 

Ile suggested that the particles in a. jet stream move nearly adiabatically with outward 

motion along a ridge of an iso-therm surface and inward motion along a trough, which 

may give the observed elliptical orbits in the meridional plane. One of the motivation of 

this paper is to investigate Lagrangian motion in a three-dimensional steady wave solution 

in a rotating annulus of fluid numerically. 

The other subject focused in this paper is heat transport in the steady wave. A 

baroclinic wave, such as the steady wave in the rotating annulus of fluid, transports heat 

toward inward (generally from warm area to cold area), which is commonly explained by 

correlation between a warm (cold) temperature and inward (outward) velocity in the az

imuthal direction. On the analogy of this explanation, many of us (including the authors) 

have comprehended that every one cycle of wavy motion in a jet stream in the steady 

wave transports heat: the particle in the jet stream obtains heat near t he warm boundary, 

moves inward along the jet stream, releases the heat near the cold boundary, and moves 

outward again a.long the jet stream. Figure 3 is an illustration taken from a textbook of 

earth science for high school students (Umino et al., 1992), with which the poleward heat 

transport by westerly jet in the northern hemisphere is illustrated in the same manner. 

Another motivation of this paper is to discuss propriety of the comprehension of the heat 

transport for t he steady wave in the rotating annulus of fluid. 

We numerically trace a fluid particle in a steady wave for a long time interval in 

order to investigate the Lagrangian motion of the particle and its temperature change 

following the particle motion. One of the steady wave solutions obtained by Suga.ta and 

Yoden (1993) is used for the present study. We will try to get a Lagrangian description 
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of the heat transport in the steady wave, to ·which little attention has been paid. 

2 Particle motion in a steady wave solution 

2 .1 A steady wave solution 

Sugata and Yodcn (1993) developed a semi-spectra.I model and obtained some steady 

wave solutions. One of the steady wave solutions is focused and investigated in this 

study. Experimental conditions for the steady wave we investigated a.re as follows. The 

dimensions of the apparatus are: inner radius a = 4.5 cm, outer radius b = 9.7 cm, and 

height of the fluid d = 8.0 cm. Top surface of the working fluid of water is in cont.act 

with a. free-slip rigid lid and the other three surfaces are non-slip rigid boundaries. Inner 

and outer walls are kept at different temperature to maintain the difference f:).T = 3 K, 

and the top and bottom boundaries are thermally insulating. The rotation rate n of the 

apparatus is 0.6 rad/s. The thermal Rossby number Ror = 6.55 x 10-1 and the Taylor 

number Ta= 9.15 x 106 . The dominant wavenumber of the steady wave is supposed as 

m = 5. Refer to Suga.ta and Yoden (1993) fo: · further model description and numerical 

procedure. The wave obtained drifts eastward relative to the apparatus at a constant 

rotation rate w = 1.67 x 10-2 rad/s, which is about 1 /36 times as large as the rotation 

rate of the apparatus n. The term 'east' will be used as meaning the azimuthal direction 

of the rotation of the apparatus from now on. 

All computed variables are velocity components (u, v, w), normalized temperature fJ , 

and pressure (divided by the mean density) p. The velocity components (u,v,w) are 

defined in the cylindrical coordinates (r,>.,z), where r,>., and z are the radius from the 

axis of the rotation, the azimuth relative to the apparatus, and the height from the 
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bottom, respectively. 

Structure of steady waves in the rotating annulus of fluid has been clarified numer

ically with nonlinear models based on the Navier-Stokes equations for Boussinesq fluid 

(Williams, 1969, 1971, 1972, Ukaji and Tamaki, 1989). Therefore, we here briefly men

tion the structure of the steady wave investigated in this study. Figure 4 shows (a) (u, v), 

(b) w, ( c) p, and ( d) 0, over two wavelengths at two different levels; (I) an upper level 

z/d = 3/4 and (II) a lower level z/d = 1/8. A strong westerly jet stream is dominant at 

the upper level (Fig. 4(a)-I). At the lower level, intensity of the horizontal flow is weaker 

than that at the upper level owing to the presence of the lower non-slip boundary, and a 

jet stream is not clear (Fig. 4(a)-II). The horizontal flow is almost parallel with isobars 

at both levels (Fig. 4( c)) by geostrophy. Axes of the pressure wave slopes westward with 

height. Large downward motion is found in the western side of the low pressure region 

except for the inner boundary layer at both levels (Fig. 4(b) ). Warm regions locate 

a.round the inward flow, and cold regions locate around the outward flow (Fig. 4(a) and 

(d)). This correlation causes inward heat transport by the baroclinic wave. 

Figure 4( e) shows the horizontal velocity ( u, v' ) described in the comoving frame 

with the azimuth )..' = A - wt, where 

v' = v - rw. (1) 

Figure 4(e) is prepared for convenience to discuss the flow in the frame with>..'. Compared 

with Fig. 4( a.), the anticyclonic circulation in the high pressure regions is clear at the 

upper level and an easterly jet stream appears clearly at the lower level, which is due to 

the addition of the easterly 'apparent' velocity to v (Eq. 1 ). We simply denote .X' by .X 

from now on. 
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2 .2 Numerical procedures of tracing 

A fluid particle is released initially at a point corresponding to the center of the westerly 

jet stream at the level, z/d = 3/4, and is traced in the knmvn velocity field of the wave 

described in the preceding subsection for lOOOOOs. 

Movement of the marked particle is obtained by 

r(t + t::..t) = r(t - t::..t) + 2V(r(t), t)t::..t, (2) 

where t and t::..t are time and time increment, respectively, and r and V are thrce

dimensional vectors of position and velocity of the particle relative to the apparatus, 

respectively. The time increment t::..t is 5.0 x 10-3 s. 

When the particle is not located just at some grid points in the meridional plane, the 

velocity is linearly interpolated from that of adjacent four grid points in the meridional 

plane as follows. Suppose qr,z, a variable q at a location (r,z) in the meridional plane. 

When r and z are denoted, with the radial grid interval t::..r and the vertical grid interval 

t::.. z, as 

r 

z 

a+~r(i+x), 

~z (j + y), 

(3) 

(4) 

where i and j are integers and 0 S: x < 1, 0 S: y < 1. Then the variable qr,z is obtained 

with the variables given in adjacent four grid points by 

qr,z = (1 - x)(l - y)qi,j + x(l - y)qi+l,j + (1 - x)yqi,j+t + xyqi+1,j+1· (5) 

However, when the particle is within one grid distance from a boundary, the method of 

the interpolation must be modified to prevent the particle from penetrate the boundary. 

In this study, the normal velocity component along the boundary is obtained as follows. 
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For example, the radial velocity within one grid distance from the inner wall, Ur,z( r 

~r · x, z = ~z(J + y)), is denoted, with uo,j = 0 and uo,j +I = 0 on the wall, as 

(6) 

Mass conservation within one grid distance from the wall is kept by adoption of this 

definition. 

2.3 Trajectory of the particle 

The trajectory of the particle is projected onto (a) r - ,\ plane, (b) r- z plane. and (c) -X - z 

plane in Fig. 5. (Note that,\ is the azimuthal position in the comoving frame.) Although 

it intersects itself many times and its complicated structure shows chaotic motion in each 

figure, some regularity appears there. For example, two predominant wavy streaks which 

are out of phase with each other in the azimuthal direction appear in Fig. 5( a). The 

interior region of the meridional section, Fig. 5(b ), is occupied by horizontal streak lines 

which slightly slope up toward the inner wall, and side boundary layers are occupied by 

vertical streak lines. The azimuthal section, Fig. 5( c ), consists almost of horizontal streak 

lines, while some diagonal streak lines exist. 

In order to investigate the trajectory intensively, we partitioned the horizontal sec

tion (Fig. 5( a)) into four sections in different layers and piled on the partitioned trajectory 

within one wavelength of the steady wave in each layer (Fig. 6) , and did the azimuthal 

section (Fig. ,5(c)) into seven sections in different radii (Fig. 7) by the same manner. 

The residence time in each layer is indicated below each section in Figs. 6 and 7. Al

though the trajectory appears to cover all the area in Fig. 5, these two figures show 

the presence of two large blank spaces where the particle have hardly passed through; 
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one occupies the core of low pressure region (marked by A) and the other occupies the 

core of the high pressure region (marked by B). Only a few spiral streaks stray into these 

spaces. Some computations (trajectories a.re not shown) in which the pa.rticle was initially 

released within the blank spaces show that the particle hardly go out from the spaces. 

These results mean that the exchange of particles hardly occurs between the blank spaces 

and the other spaces. 

We shall now investigate the characteristics of the trajectory in individual section. In 

Fig. 6, streak lines are almost parallel with each other except for Fig. 6( c ). Layers in Fig. 

6( a) and (b) correspond to a strong westerly jet stream in the upper level. The streak lines 

are basically divided into two categories according to their shape and motion indicated. 

One is streak lines forming approximately closed circles around pressure extremes, where 

the particle circulates clockwise around the high pressure and anticlockwise a.round the 

low pressure. The other is streak lines situated along the jet stream (see also Fig. 4(e)-

I) on which the particle is advected eastward. The former corresponds to the trapped 

region and the latter does to the untrapped region according to the categorization in Flierl 

(1981). 

A layer in Fig. 6( c) includes a steering level of the steady wave. Since horizontal 

velocity components are smaller than those in the other layers, and besides, the deviatoric 

vertical velocity is larger in this layer as the characteristics of baroclinic waves, relative 

importance of the vertical movement compared to the horizontal one is larger (see also 

Fig. 7). That is the reason this layer can not be clearly divided into a trapped region and 

an untrapped region in contrast to the other layers. 

The particle is advected westward in the untrapped region in the lower layer (Fig. 

6(d), and see also Fig. 4(e)-II). The trapped region is smaller than that in the upper 
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layers. This can be essentially explained by the theory in Flierl (1981 ). He showed that a 

trapped region appears when the deviatoric velocity of the wave exceeds the phase velocity 

of the wave in some area and that the ratio of the region to the whole fluid increases with 

increasing wave strength. In this study, although the amplitude of the phase velocity of 

the steady wave relative to zonal mean flow is comparable between the upper and lower 

layer, the deviatoric azimuthal velocity is smaller in the lower layer and exceeds the phase 

velocity in smaller area. 

In azimuthal sections of the interior region (Fig. 7(b )-( f) ), horizontal streak lines 

are dominant at all heights except the middle layer. On the other hand, many of streak 

lines are diagonal near the side boundaries (Fig. 7(a) and (g)), which is indicative of large 

vertical movement within the side boundary layers. The particle is advected westward 

with downward motion near the inner boundary (Fig. 7(a)), and is advected westward 

with upward motion near the outer boundary (Fig. 7(g) ). The reason the particle goes 

west in both layers is that the particle moving slowly near the non-slip walls is observed 

in the comoving frame moving eastward with the wave. 

2 .4 Definition of regions 

Time variations of the position (r, .\, z ), normalized temperature 0, and pressure p of the 

particle were investigated. Figure 8 shows these variations from t = 20000s to 40000s. 

Although each variable shows chaotic variation, some typical organized behaviors appear 

alternatively. Hereafter these behaviors are investigated individually. 

When ,\ increases with time, r oscillates largely with its center of oscillation shifting 

inward gradually and z oscillates small in the upper layer (see, e.g., the middle between 

marks (1) and (6) above Fig. 8). The trajectory corresponding to such behavior is shown 
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by a line between marks (:3) and ( 4) in Fig. 9 in a. bird 's-eyc view, on which the particle is 

advected eastward by the westerly jet stream. We will refer to such an untrapped region 

in the upper layer as an 'upper- level jet'. The particle typically stays in this region during 

making one round of the annulus. 

When ,\ decreases with time, r oscillates largely but with its center shifting outward 

gradually and z oscillates small in the lower layer (see, e.g., a period around (1) or (6) 

above Fig. 8). Lines during (1)-(2) and (5)-(6) in Fig. 9 correspond to parts of such 

behavior. The particle is advected westward by the lower easterly jet stream. We will 

refer to such an untrapped region in the lower layer as a 'lower-level jet'. The particle 

typically stays in this region during making two rounds of the annulus. 

When ,\ oscillates around a nearly constant value, r also oscillates with its center 

changing little (see, e.g., periods indicated by marks (a)- (d) above Fig. 8). Figure 10 

shows a bird's eye view of the trajectory during these periods. The particle is trapped 

around the high-pressure extreme and spirals cl0ckwise up during ( a)- (b) and down during 

(b )- ( c). On the other hand, it is trapped around the low-pressure extreme and spirals up 

anticlockwise during (c)-(d). We will refer to the former as an 'anticyclonically trapped

region' and the latter as a 'cyclonically trapped-region'. 

When the particle keeps its position within a certain distance from a boundary for 

a while, it is confined in the boundary layer. The trajectory in Fig. 11 corresponds to 

such period. The particle is confined in the inner boundary layer during (A) - (B), where 

large downward motion is shown. We will refer to this as an 'inner boundary layer'. Then 

the particle enters the lower boundary layer and goes outward during (B)-(C) . We will 

refer to this as a 'lower boundary layer'. The particle enters the outer boundary layer at 

last and shows large upward motion during (C)- (0). We will refer to this as an 'outer 
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boundary layer'. 

The particle motion falls into the seven regions defined above: the upper-level jct, 

the lower-level jet, the cyclonically trapped-region, the anticyclonically trapped-region, 

the inner boundary layer, the outer boundary layer, and the lower boundary layer. The 

whole period is divided into 4.59 episodes under the definite criterion. Table 1 lists the 

result: total number of appearance, total residence time, average residence time for one 

stay, and average temperature variation for one stay for each region. 

The total number of appearance shows that the most frequently preferred regions 

are the upper-level jet, the inner boundary layer, and the outer boundary layer. The 

lower-level jet is the next most preferred after these three regions. The sum of these four 

regions account for about four-fifth of the total episodes. 

Since average residence times for one stay for both trapped-regions are longer than 

those for other regions, total residence times are relatively large for the regions in spite of 

the small total appearance numbers. That is because the particle in the regions repeats 

the spiral motion with smaller speed than that in the other regions. 

Average residence time for the outer boundary layer are longer than that for the 

inner boundary layer because the vertical velocity in the outer boundary layer is smaller 

than that in the inner boundary layer due to the curvature of the annulus. 

The temperature change will be discussed in the following section. 

2.5 Transition of the region 

The number of transition from one region to another region is counted in Table 2 as a 

transition matrix. Much more frequently preferred are two transitions; the outer boundary 

layer ---+ the upper-level jet and the upper-level jet ---+ the inner boundary layer. In 
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addition, four transitions occur more frequently than the others: the inner boundary layer 

-----+ the lower-level jet, the lower-level jet -----+ the outer boundary layer. the inner boundary 

layer -----+ the lower boundary layer, and the lower boundary layer -----+ th(-~ outer boundary 

layer. These six transitions indicated by boldface in the table account for more than three

fourth of all the transitions, and form the cyclic route of the transition, where the route 

partly bifurcates ; the outer boundary layer -----+ the upper-level jet --+ the inner boundary 

layer -----+ the lower-level jet or the lower boundary layer --+ the outer boundary region. 

This cyclic route is illustrated also by thick arrows in Fig. 12. If the lower-level jct 

and the lower boundary layer are regarded as the same region, the numbers of transitions 

associated with the unified region are comparable to those associated with the upper-level 

jet. Table 3 is a transition matrix that picks out the transition concerning with both the 

side boundary layers. This shows the particle goes back and forth 90 times in the whole 

period, and Fig. 12 means that the most of the 90 times is carried by the typical cyclic 

route mentioned above. 

3 Lagrangian view of the heat transport 

Total inward heat flux in the present wave is about 0.19 cm3 /s, as is shown in Fig. 13. 

Conductive heat flux plays a vital role near the side boundaries and mean circulation 

transports heat between the side boundary layers and the adjacent regions. Deviatoric 

flux is very important in the interior region. Around the mean radius, roughly 3/2 of 

the total inward flux is transported by the d~viatoric flux and the remains of - 1 /2 is 

transported by mean circulation flux with indirect circulation. 

It is not clear how the temperature of the particle changes with its motion and 
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how the variation contributes to the total in ward heat transport. In this section, we 

investigate time variation of the temperature following the particle to examine where the 

particle obtains and releases heat and to clarify a mechanism of the heat transport from 

the Lagrangian view. 

Figure 14 shows the time variation of the temperature following the particle and its 

time derivative during t = 25000s - 32000s. This period includes the periods when the 

trajectory was shown in Figs. 10, 9, and 11. Remarkably large changes of the temperature 

occur when the particle stays in the side boundary layers with large vertical motions. 

Though temperature varies also in other regions, its variation is rather smaller than that 

in the side boundary layers. This is confirmed also by values of average temperature 

variation for one stay shown in Table 1. The values in the side boundary layers are more 

than 0.6 and much larger than those in other regions. Even the next largest value, 0.12, 

in the cyclonically trapped-region is about one-fifth of that in the side boundary regions. 

As for the time variation during an individual episode in each region, there is no 

correlation between the adjacency of the particle toward the outer (inner) boundary and 

the increase (decrease) of the temperature in both the jet regions. Therefore, every one 

cycle of the motion in these regions does not contribute to the total inward heat transport . 

Although there is some correlations in both the trapped-regions (see around t = 29500s 

or 31500s in Fig. 14), a sum of individual inward heat transport due to every one cycle 

with t.he correlation is apparently much smaller than that due to the temperature changes 

in the side boundary layers. 

Fig. 15 shows the trajectory during the lower-level jet. The length of perpendicular 

lines drawn from the trajectory to an isothermal surface shows that the particle moves 

nearly along the surface, in other words, nearly adiabatically. The particle moves inward 
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along a trough of the isothermal surface and outward along a ridge. This supports the 

validity of the suggestion by Sakai (1990) with Fig. 2. 

4 Discussion 

The preceding two sections clarified the following. The particle's motion falls into seven 

regions according to its position, and the particle transits among the regions. There is 

remarkably frequently preferred route of the transition, which departs from the outer 

boundary layer for the inner boundary layer via the upper-level jet and then comes back 

to the outer boundary layer via the lower two regions, i.e., the lower-level jet a.nd the 

lower boundary layer. The particle gets and releases heat in the side boundary layers 

and moves nearly adiabatically in other regions. From these results , the inward heat 

transport in the steady wave can be illustrated in the Lagrangian representation as follows. 

The particle gets large quantity of heat through a diabatic upward motion in the outer 

boundary layer. The particle finds its way into the inner boundary layer at last after a 

few transitions conserving the heat. The particle releases the heat through the diabatlc 

downward motion in the inner boundary layer and goes back to the outer boundary layer. 

We try to quantitatively relate the above Lagrangian illustration of the inward heat 

transport to the value of the flux obtained in Eulerian sense, 0.19 cm3 / s, a.s wa.s shown 

in the preceding section with Fig. 13. The inward heat flux can be estimated in the 

Lagrangian sense as follows. Suppose that a unit volume of t he fluid transports heat 

of 68 every T seconds in average. Since all the volume of the fluid per unit radian is 

( b2 - a 2 )d/2 ( cm3 ), total inward heat flux is obtained as; 

68 (b2 - a 2 )d( 3 / ) -- cm s. 
T 2 

(7) 
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When we suppose that the heat obtained in the outer boundary layer is transported into 

the inner boundary layer with its quantity conserved, ~8 is estimated as 0.6 at least from 

Table 1. Since the particle goes back and forth between the side boundary layers more 

than 90 times during lOOOOOs (Table 3), Tis estimated as lOOOOOs/90. Then we get the 

heat Aux by Eq. (7), 

0.16cm3 /s. (8) 

This is more than four-fifth of the value obtained m Eulerian sense. It is speculated 

that the computational error and the accumulation of heat transport with every cycle of 

motion in the trapped-regions account for the large part of this discrepancy. 

The point is that heat is transported by the particle's warming in the outer boundary 

layer, its adiabatic movement across the interior region, and its cooling in the inner 

boundary layer. Through this description, jet streams merely play a role of the passage 

way of the particle across the interior region. It is concluded that the comprehension of 

the inward heat transport by every one cycle of wavy motion in the jet stream, which was 

mentioned in Section 1 with Fig. 3, is not appropriate for the steady wave in the rotating 

annulus of fluid. 

Although zonal mean meridional circulation forms 3-cells circulation in the steady 

wave; two direct cells near the side boundaries and an indirect weak cell between the 

direct cells (see Fig. 4 in Williams, 1971 and Fig. 15 in Ukaji and Tamaki, 1989), cyclic 

route of the transition, as shown by the thick arrows in Fig. 12, implies the presence of 

direct one-cell circulation in Lagrangian sense. 
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5 Conclusion 

Lagrangian motion of a fluid particle was investigated for a steady wave rn a rotating 

annulus fluid. Obtained trajectory was plotted in a frame cornoving with the steady 

wave. The trajectory shows a chaotic nature but has several typical organized behav

iors depending on its position in the annulus. The annulus of fluid wa.s divided into 

seven regions: an upper-level jet, a lower-level jet. a cyclonically trapped-region , an a.n

ticyclonically trapped-region, an inner boundary layer, an outer boundary layer, and a. 

lower boundary layer. The upper-level (lower-level) jet is an untrapped region corre

sponding to the westerly (easterly) jet stream in the upper-level (lower-level), where the 

particle advects eastward (westward) and drifts inward (outward) gradually. The cycloni

ca.lly trapped-region and anticyclonically trapped-region are trapped regions around the 

low pressure extreme and high pressure extreme, respectively. The particle spirals up 

and down in these regions. In the inner and outer boundary layers, the particle shows a 

large vertical movement. Cores of the cyclonically trapped-region and the anticyclonically 

trapped-region are nearly isolated from the others. 

The particle motion during the whole period falls into the seven reg10ns defined 

above and the number of appearance of each regime was counted. Four regions appear 

very frequently: the upper-level jet, the lower-level jet, the inner boundary layer, and the 

outer boundary layer. Average residence time of the particle in both the trapped-regions 

is longer than that in the other regions. 

Frequency of the transition between reg10ns a.re analyzed. A cyclic route of the 

transition, which is partly branches out into two routes, are remarkably preferred: the 

outer boundary layer - the upper-level jet - the inner boundary layer - the lower-level 
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jet or the lower boundary layer -----t the outer boundary layer. 

Temperature of the fluid particle was investigated. The particle gets large quantity 

of heat in the outer boundary layer through diabatic upward motion and releases large 

quantity of heat in the inner boundary layer through diabatic downward motion. Tem

perature of the particle changes little in the other regions. Since there is not markable 

correlation between the temperature change and radial movement in both the jet regions, 

heat is not transported by every one cycle of the motion in the regions. There is a little 

correlation between them in both the trapped-regions, but its contribution to the total 

inward hea.t flux is very small. 

In Lagrangian sense, the essence of the inward heat flux by the steady wave m 

the rotating fluid annulus is that the particle which obtains heat in the outer boundary 

layer goes nearly adiabatically across the interior region to the inner boundary layer and 

releases the heat there. 

An estimation of the inward heat flux using frequency of the appearance of the 

side boundary layers and temperature change in the layers is comparable to the value 

calculated in Eulerian sense. Most of the heat transport is carried by t he cyclic route via 

upper-level jet, lower-level jet, and the lower boundary layer. 

Acknowledgments 

We wish to thank Professor I.Hirota for his valuable comments and encouragement. 

We also wish to thank Ors. A. Nurnaguchi and M. Satoh for valuable advice. Thanks are 

due to Dr. S. Sakai for providing us with data. The GFD-DENNOU Library was used 

for drawing the :figures. 

17 



References 

Dombre, T., U. Frisch, J. M. Greene, M. Henon, A. l\lehr and A. M. Soward , 1986 

Chaotic strearnllnes in the ABC flows. J. Fluid !Wech., 167, ;353 -:391. 

Flierl, G. R., 1981 : Particle motions in Large-amplitude wave Fields. Geophys. Astro

phys. Fluid Dynamics, 18, 39- 7 4. 

Hide, R. and P. J. Mason, 1975 : Sloping convection in a rotating fluid . J. Adv. Phys., 

24, 47-100. 

Sakai, S., 1990 : (personal communication). 

Sugata, S. and S. Yoden, 1993 : A numerical study on regime transitions of the rotating 

annu lus flow with a semi-spectral model. J. Meteor. Soc. Japan, 71. 491-.101. 

Ukaji, K. and K. Tamaki, 1989 : A comparison of laboratory experiments and numerical 

simulations of steady baroclinic waves produced in a differentially heated rotating 

fluid annulus. J. Meteor. Soc. Japan , 67, 359-374. 

Umino, W., S. Ueda, and M. Komabayashi, 1992 Earth Science (revised edition}. 

Tokyoshoseki Co. Inc. 

Weiss J. B., and E. Knobloch, 1989 : Mass transport and mixing by modulated traveling 

waves. Phys. Rev. A, 40, 2579- 2589. 

Williams, G. P., 1969 : Numerical integration of the three-dimensional Navier-Stokes 

equations for incompressible flow. J. Fluid Mech., 37, 727- 750. 

Williams, G. P., 1971 Baroclinic annulus waves. J. Fluid Mech., 49, 417-449. 

18 



Williams, G. P., 1972: The field distributions and balances in a baroclinic annulus wave. 

Mon. Wea. Rev., 100, 29- 41. 

19 



Figure captions 

Fig. 1. A streak photograph of trajectories of the suspended particles at a depth of 0.5 cm 

below the upper surface, taken from Hide and Mason (1975 ). 

Fig. 2. Trajectories of particles projected onto a meridional plane obtained by tracing the 

motion of suspended balls of acrylic resin in the rotating annulus experiment performed 

by Sakai ( 1990). Marks o and x indicate initial and final positions of the tracing particles, 

respectively. Dimensions of the annulus are a = 3.5 cm, b = 7..5 cm, and d = 7 cm . 

Fig. 3. An illustration in a textbook of Earth science for high school students. 

Fig. 4. Horizontal sections of (a) horizontal velocity fields , (b) vertical velocity (units: cm/ s ), 

(c) pressure divided by mean density (units: crn2/s2 ), (d) normalized temperature, and 

(e) horizontal velocity fields in the comoving frame. (I) z /d = :l/4 and (II) 1/8. Each 

section is described over two wavelengths in the azimuthal direction. Amplitudes of the 

unit vector and contour intervals are equal between sections for each variable. 

Fig. 5. Projections of a trajectory of a fluid particle during lOOOOOs onto (a) r-.X plane, (b) r-z 

plane, and (c) .X- z plane, where .Xis the azimuthal position in the comoving frame. The 

particle is initially released at a cross mark. 

Fig. 6. Trajectory divided into four different layers: z/d =(a) 1 - 3/4, (b) 3/4 - 1/2, (c) 1/2 

- 1/4, and ( d) 1/4 - 0. Residence time in each level is indicated below each figure. Marks 

A and B indicate nearly-isolated areas. 

Fig. 7. As in Fig. 6 except for seven sections by its radial position: (r - a)/(b - a) = (a) 

0 - 1/16, (b) 1/16 - 1/4, (c) 1/4 - 3/ 8, (d) 3/8 - 5/8, (e) 5/8 - 3/4, (f) 3/4 - 15/16, and 

(g) 15/16 - 1. 
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Fig. 8. Time variations of (a) radius r (units: cm), (b) azimuthal position in the comoving 

frame >.(units: rad), (c) height z (units: cm), (d) pressure divided by mean density p 

(units: cm2 /s2 ), and ( e) normalized temperature() of the traced particle during t = 20000s 

- 40000s. 

Fig. 9. Bird's-eye view of the trajectory for the upper-level jet and the lower-level jet. Labels 

wrrespond to times; t = (1) 25590s, (2) 25748s, (3) 25794s, (4) 26100s, (5) 26136s, and 

( 6) 26260s. Each interval between the labels corresponds to; ( 1 )-(2) the lower-level jet; 

(2)-(3) the outer boundary layer; (3)- ( 4) the upper-level jet; ( 4)-(5) the inner boundary 

layer; (5)- (6) the lower-level jet. Vertical lines are perpendicular lines drawn from the 

trajectory to the upper boundary or to the lower boundary every two seconds, whose 

direction is changed according to whether the height of the particle exceeds the half level 

or not. 

Fig. 10. As in Fig. 9. except for the anticyclonically trapped-regime and the cyclonically 

trapped-region. Labels correspond to times; t = (a) 29148s, (b) 29676s, ( c) 30904s, and 

(d) 3193ls. Each interval between the labels corresponds to; (a)- (c) the anticyclonically 

trapped-region and (c)-(d) the cyclonically trapped-region. The mark (b) corresponds to 

the maximum height during the anticyclonically trapped-region. The trajectory between 

(b) and (c) is drawn by a broken line. Perpendicular lines are partly drawn to the lower 

boundary every two seconds during t = 29148s - 29246s, 30904s - 30992s. 

Fig. 11. As in Fig. 9. except for the inner boundary layer -+ the lower boundary layer -+ 

the outer boundary layer. Labels correspond to times; t = (A) 28286s, (B) 28342s, (C) 

28431s, and (D) 28492s. Perpendicular lines are drawn to the lower boundary every two 

seconds. 

Fig. 12. Illustration of the transition of regions. Thick arrows indicate transitions whose count 
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exceeds 30. Thin arrows indicate the transition whose count exceeds 7. 

Fig. 13. Radial distribut ions of inward heat flux per unit radian divided by fluid density and 

by specific heat; mean meridional circulation :flux (solid line), deviat.oric flux (long broken 

line), conductive flux (short broken line), and total flux (dash-dotted line). 

Fig. 14. Time variations of (a) normalized temperature() (solid line) and time-derivative of the 

temperature D() / Dt (shaded zone), and (b) radius r (solid line) and height z (broken line) 

during t = 25000s-32000s. Vertical lines drawn in each figure indicate the times when 

the radius has the local maximum (solid line) or minimum (broken line). Triangle marks 

in the upside and downside of each figure indicate the time when the particle approaches 

maximumly close the outer and inner boundary, respectively, within 1/ 16 distance of width 

of the annulus from the boundaries. Labels 1- 6, A - D , and a - d corresponds to the labels 

in Figs.9, 11, 10, respectively. 

Fig. 15. Bird's-eye view of the trajectory (thick line) of the particle in the lower-level jet during 

o : 25327s-x : 25427s and D : 25589s-.6. : 25704s. Thin curved lines indicate the iso-therm 

lines at each radii. Perpendicular lines are drawn from the trajectories toward the iso

therm surface every one second. The trajectory is drawn by a solid line when the particle 

moves on this side of the iso-therm surface and by a broken line when on the opposite 

side. 
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Appearance Total residence ( s) Average residence (s) Temp. change 

Upper-level jct 101 21457 212.4 -0.04 

Lower- level jet 64 19531 305.2 -0.01 

Cyc. trapped 22 15732 715.1 0.12 

Anticyc. trapped 34 26597 782.2 -0.04 

Inner boundary 96 4907 51.1 -0.65 

Outer boundary 103 8971 87.1 0.62 

Lower boundary 36 2805 77.9 0.08 

Sum 456 100000 219.3 

Table 1: Total number of appearance, total residence time, average residence time for one 

stay, and average of temperature change for one stay are shown for each regions. 
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To 

U.J L.J C.T A.T l.B O.B L.B Sum 

Upper-level jet - 3 ;) 3 88 2 0 101 

Lower-level jet 1 - 4 0 2 57 0 64 

Cyc. trapped 2 4 --· 4 4 s 0 22 

From Anticyc. trapped 9 10 10 -- 2 2 0 33 

Inner boundary 0 47 1 12 - 0 36 96 

Outer boundary 88 0 0 15 0 - 0 1 O~l 

Lower boundary 0 0 2 0 0 34 - 36 

Sum 100 64 22 34 96 103 36 455 

Table 2: Transition matrix. The number of transitions from one region to another region 

is counted during the total periods. 

To 

Inner boundary Outer boundary Sum 

From Inner boundary 5 91 96 

Outer boundary 90 12 102 

Sum 95 103 198 

Table 3: Transition matrix but for the number of transitions concerning with the side 

boundary layers. Transitions are counted by focusing the layers only and neglecting the 

other regions. 
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Fig. 1. A streak photograph of trajectories of the suspended particles at a depth of 0.5 cm 

below the upper surface, taken from Hide and Mason ( 1975 ). 
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Fig. 2. Trajectories of particles projected onto a meridional plane obtained by tracing the 

motion of suspended balls of acrylic resin in the rotating annulus experiment performed 

by Sakai (1990). Marks o and x indicate initial and final positions of the tracing particles, 

respectively. Dimensions of the annulus are a = 3.5 cm, b = 7.5 cm, and d = 7 cm. 
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Fig. 4. Horizontal sections of (a) horizontal velocity fields, (b) vertical velocity (units: cm / s ), 

(c) pressure divided by mean density (units: crn2 /s2 ), (d) normalized temperature, and 

(e) horizontal velocity fields in the comoving frame. (I) z/d = 3/4 and (II) 1/8. Each 

section is described over two wavelengths in the azimuthal direction. Amplitudes of the 

unit vector and contour intervals are equal between sections for each variable. 
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plane, and (c) >.-z plane, where>. is the azimuthal position in the comoving frame. The 

particle is initially released at a cross mark. 
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- 1/4, and (d) 1/4 - 0. Residence time in each level is indicated below each figure. Marks 

A and B indicate nearly-isolated areas. 
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Fig. 9. Bird's-eye view of the trajectory for the upper-level jet and the lower-level jet. Labels 

correspond to times; t = (1) 25590s, (2) 25748s, (3) 25794s, (4) 26100s, (5) 26136s, and 

(6) 26260s. Each interval between the labels corresponds to; (1)-(2) the lower-level jet; 

(2)-(3) the outer boundary layer; (3)-(4) the upper-level jet; (4)-(5) the inner boundary 

layer; (5)-(6) the lower-level jet. Vertical lines are perpenclicular lines drawn from the 

trajectory to the upper boundary or to the lower boundary every two seconds, whose 

clirection is changed according to whether the height of the particle exceeds the half level 
or not. 
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Fig. 10. As in Fig. 9. except for the anticyclonically trapped-regime and the cyclonically 

trapped-region. Labels correspond to times; t = (a) 29148s, (b) 29676s , ( c) 30904s, and 

( d) 3193ls. Each interval between the labels corresponds to; (a)-( c) the anticyclonically 

trapped-region and ( c )-( d) the cyclonically trapped-region . The mark (b) corresponds to 

the maximum height during the anticyclonically trapped-region. The trajectory between 

(b) and ( c) is drawn by a broken llne. Perpendicular lines are partly drawn to the lower 

boundary every two seconds during t = 29148s - 29246s, 30904s - 30992s. 
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