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Abstract

To realize stable production in the steel industry, it is important to con-

trol molten steel temperature in a continuous casting process. The present

work aims to provide a general framework of gray-box modeling and to de-

velop a gray-box model that predicts and controls molten steel tempera-

ture in a tundish (TD temp) with high accuracy. Since the adopted first-

principle model (physical model) cannot accurately describe uncertainties

such as degradation of ladles, their overall heat transfer coefficient, which

is a parameter in the first-principle model, is optimized for each past batch

separately, then the parameter is modeled as a function of process variables

through a statistical modeling method, random forests. Such a model is

termed as a serial gray-box model. Prediction errors of the first-principle

model or the serial gray-box model can be compensated by using another

statistical model; this approach derives a parallel gray-box model or a com-

bined gray-box model. In addition, the developed gray-box models are used

to determine the optimal molten steel temperature in the Ruhrstahl-Heraeus

degassing process from the target TD temp, since the continuous casting pro-

cess has no manipulated variable to directly control TD temp. The proposed
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modeling and control strategy is validated through its application to real op-

eration data at a steel work. The results show that the combined gray-box

model achieves the best performance in prediction and control of TD temp

and satisfies the requirement for its industrial application.
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1. Introduction

The steel industry faces stiff competition in the global market, and each

steel company has to realize stable and efficient operation and produce high

quality products satisfying various customer demand [1]. The process dia-

gram of the steel making process is shown in Fig. 1. The tundish is a vessel

used for delivering molten steel from a ladle to a mold in the continuous

casting process. In steel making, control of the molten steel temperature in

the tundish (TD temp) is one of the key factors to realizing stable operation.

If TD temp is too high, breakouts may occur and cause tremendous increase

in maintenance cost and productivity loss. When the temperature is too

low, clogging in the tundish nozzle occurs, which causes disruptions in the

casting process. However, no effective manipulated variable is available after

the secondary refining process to control TD temp. To realize the target

TD temp, therefore, it is necessary to adjust the molten steel temperature in

the secondary refining process (Ruhrstahl-Heraeus degassing process). The

molten steel temperature at the end of secondary refining operation is here-

after called RH temp. To control TD temp by manipulating RH temp, a

model relating TD temp and RH temp needs to be constructed. In the past,

various models such as first-principle models [2]−[7], statistical models [8],

and gray-box models [9]−[12] have been proposed.



3

The gray-box model, which integrates a first-principle model and a statis-

tical model, has attracted researchers’ attention by its capability: known lin-

ear/nonlinear phenomena can be embedded in the first-principle model, and

an unknown relationship among variables can be embedded in the statistical

model by extracting such a relationship from the data. In general, gray-box

models are more accurate than simplified first-principle models, less com-

plicated than computational fluid dynamics (CFD) models, and more easily

interpreted than statistical models. Although a gray-box model aims to im-

prove the prediction performance by combining a first-principle model and

a statistical model, the accuracy of the first-principle model is still impor-

tant. In general, first-principle models have various parameters which need

to be determined by using data. Even when some parameters depend on the

operating conditions, they are kept constant if it is difficult to identify the

relationship between the parameters and the operating conditions. In such

a case, large prediction error might be caused.

The present work aims to develop a new gray-box model that can over-

come such deficiency and can predict molten steel temperature with high

accuracy. To achieve this goal, a parameter in the first-principle model is

estimated from process variables with a nonlinear statistical model. In ad-

dition, process disturbances such as uncertainties in temperature measure-

ments, composition and weight of added alloys and the extent of oxidation

reactions for removal of impurities are also taken into account. Ideally, such

disturbances should be modeled by adding certain mathematical expressions

to the first-principle model. However, due to lack of process information,

realizing such mathematical expressions is difficult and therefore another sta-

tistical model is developed to compensate prediction errors caused by such

process disturbances. Random forests (RF) is adopted in this work to build

statistical models.

In section 2, three types of gray-box models are explained in general.

Then, the first-principle model of the steel making process is described in
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sections 3, and the statistical models integrated with the first-principle model

to build the gray-box models are described in section 4. In section 5, the

proposed method is applied to the problems of predicting and controlling

molten steel temperature in a real steel making process. Finally, the contents

are summarized in the conclusion section.

2. Gray-box Models

A general framework of the gray-box modeling is shown in Fig. 2, where

gray-box models are categorized into three types, i.e., parallel gray-box mod-

els [9], serial gray-box models [10], and combined gray-box models. In this

section, modeling methods of these gray-box models are explained.

2.1. Parallel Gray-box Model

A typical gray-box model is constructed by combining a first-principle

model and a statistical model sequentially; the statistical model is built so as

to compensate the error of the first-principle model. This type of gray-box

model, hereafter called the parallel gray-box model, is developed through the

following steps.

i. Build a first-principle model ffp to predict an output variable y from

input variables xfp.

ŷfp = ffp(xfp,θ) (1)

where ŷfp is the prediction of y and θ is a parameter vector. The first-

principle model can be of any form including differential algebraic equa-

tions. Eq. (1) can be derived from such a first-principle model as shown

in the next section.

ii. Estimate θ by minimizing the sum of squared errors.
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θ̃ = argmin
θ

Nd∑
n=1

e2fp,n (2)

efp,n = yn − ffp(xfp,n,θ) (3)

θL ≤ θ ≤ θU (4)

where xfp,n and yn are the nth sample of input and output variables,

respectively. Nd is the number of samples used for developing the model.

θL and θU are lower and upper bound vectors of parameters which are

determined in advance.

iii. Build a statistical model fpa to predict the output error efp from input

variables x.

φ̃pa = argmin
φpa

Nd∑
n=1

(efp,n − fpa(xn,φpa))
2 (5)

êfp,n = fpa(xn,φpa) (6)

where φpa is a vector of parameters in the outer statistical model. In

general, xfp is a subset of x.

iv. Build a gray-box model by combining the first-principle model and the

outer statistical model.

ŷpa = ffp(xfp, θ̃) + fpa(x, φ̃pa) (7)

where ŷpa is the prediction of y by using the parallel gray-box model.

The parallel gray-box model is the simple sum of the first-principle model

and the statistical model. This statistical model is referred to as the outer

statistical model because it is used on the outside of the first-principle model.
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In general, the parallel gray-box model can significantly improve the predic-

tion performance because it can extract information from data that is not

used in the first-principle model and also it can overcome the limitations

imposed by the structure of the first-principle model.

2.2. Serial Gray-box Model

In the parallel gray-box model, the optimal parameters θ̃ are constant,

although some parameters depend on the operating conditions. This sim-

plification may deteriorate the prediction performance of the first-principle

model. Thus, another type of gray-box model, called the serial gray-box

model, is used to estimate the parameters as functions of input variables.

The serial gray-box model is constructed by the following steps.

i. Develop a first-principle model ŷfp = ffp(xfp,θ).

ii. Estimate the parameters θ in the first-principle model through Eqs. (2)-

(4).

iii. Select a parameter θi and optimize it for each modeling sample.

θ̃i,n = argmin
θi,n

(yn − ffp(xfp,n, θ̃
c
i , θi,n))

2

(n = 1, 2, · · · , Nd; i = 1, 2, · · · , Np) (8)

θL,i ≤ θi,n ≤ θU,i (9)

where θ̃i,n is the optimal value of the parameter θi for sample n and θ̃c
i

is the constant vector consisting of the estimated parameters except θi.

Np is the number of parameters in the first-principle model. θL,i and θU,i

are lower and upper bounds of the ith parameter which are determined

in advance.

iv. Repeat step iii for all the parameters one by one, and select the parameter

which achieves the smallest sum of squared errors.
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v. Build a statistical model fse to estimate the selected parameter θi from

the input variables x.

φ̃se,i = argmin
φse,i

Nd∑
n=1

(θ̃i,n − fse(xn,φse,i))
2 (10)

where φse,i is a vector of parameters of the inner statistical model.

vi. Build a gray-box model by combining the first-principle model and the

inner statistical model.

ŷse = ffp(xfp, θ̃
c
i ,
ˆ̃θi) (11)

ˆ̃θi = fse(x, φ̃se,i) (12)

The serial gray-box model uses the inner statistical model to update a part

of parameters of the first-principle model. The structure of the first-principle

model still imposes limitations on the achievable prediction performance, but

the serial gray-box model has a potential for the improvement through the

parameter update based on available data. This type of gray-box model

is useful to enhance the understanding of the process because the model is

based on first principles and important physical parameters are identified

and related with process variables.

2.3. Combined Gray-box Model

By combining the above-mentioned two approaches, i.e., the parallel gray-

box modeling and the serial gray-box modeling, a combined gray-box model

can be developed. In the combined gray-box model, a prediction error of a

serial gray-box model is compensated by an outer statistical model. In other

words, the combined gray-box model consists of the first-principle model,

the inner statistical model to estimate parameters, and the outer statistical

model to compensate the prediction error. The combined gray-box model is

constructed by the following steps.
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i. Build a serial gray-box model Eqs. (11) and (12) to predict an output

variable y.

ese = y − ŷse (13)

where ŷse is the prediction of y and ese is the output error of the serial

gray-box model.

ii. Build a statistical model fcom to predict the output error ese from input

variables x.

φ̃com = argmin
φcom

Nd∑
n=1

(ese,n − fcom(xn,φcom))
2 (14)

where φcom is a vector of parameters of the outer statistical model.

iii. Build a combined gray-box model by combining the serial gray-box model

and the outer statistical model.

ŷcom = ffp(xfp, θ̃
c, ˆ̃θ) + fcom(x, φ̃com) (15)

where ŷcom is the prediction of y by using the combined gray-box model.

3. First-Principle Model

In this research, the molten steel temperature at the end of secondary re-

fining operation, RH temp, is used to control TD temp. After the secondary

refining is finished, the molten steel is transfered to the continuous casting

process with a ladle. The molten steel is then discharged from the ladle to

the tundish so as to execute the continuous casting. The first-principle model

which predicts TD temp consists of two sub-models. The first sub-model de-

scribes the phenomena during the transportation period, in which the molten
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steel is transfered from secondary refining to continuous casting. The second

sub-model describes the phenomena during the discharging period, in which

the molten steel is discharged from the ladle to the tundish. The proposed

first-principle model is a modified version of the model developed by Okura

et al. [12].

3.1. First-Principle Model for Transportation Period

3.1.1. Molten Steel in Ladle

It is assumed that the ladle is a cylinder of radius Rl. On the basis of

the CFD simulation results, indicating that thermal stratification is formed

vertically in the standing ladle due to natural convection [4], the molten

steel temperature is modeled as a function of time t and position z from the

bottom of the ladle.

Tm(z, t) = Tm(t) + k(t)

(√
z

Hm

− 2

3

)
(16)

where Tm is the molten steel temperature, Tm is its average, k denotes the

difference between the molten steel temperature at the top and the bottom

of the ladle, and Hm is the depth of the molten steel in the ladle.

The results of CFD simulations have shown that the temperature differ-

ence is a function of time [4]; thus it is modeled with parameter α.

k(t) = αt (17)

The initial molten steel temperature is assumed to be homogeneous and the

same as RH temp because the molten steel in the ladle is properly stirred.

Thus, k(t) = 0 at t = 0. The transition of average molten steel temperature

Tm(t) is calculated through the heat balance equation.
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ρmcmπR
2
lHm

dTm(t)

dt
= −2πRl

∫ Hm

0

Uw(Tm(z, t)− Tam)dz

−πR2
l Ub(Tm(0, t)− Tam)− πR2

l h1(Tm(Hm, t)− Tsl(t)) (18)

where ρm and cm are the density and the heat capacity of the molten steel,

respectively. Ub and Uw are the overall heat transfer coefficients of the ladle

bottom and the ladle wall, respectively. Tam and Tsl are the ambient tem-

perature and the slag temperature, respectively. In addition, h1 denotes the

heat transfer coefficient between the molten steel and the slag. The left side

of Eq. (18) represents the time change of the molten steel enthalpy. The

first, second, and third terms of the right side represent the heat conduction

from the molten steel to the ladle wall, to the ladle bottom, and to the slag,

respectively.

The average molten steel temperature is gradually decreased with time

by Eq. (18). The temperature profile in the ladle at two different moments

is shown in Fig. 3.

3.1.2. Slag in Ladle

Slag in the standing ladle, which is generated in the converter, keeps the

molten steel at high temperature. The heat balance of the slag is modeled

as a lumped parameter system.

ρslcslπR
2
lHsl

dTsl(t)

dt
= πR2

l h1(Tm(Hm, t)− Tsl(t))− πR2
l εslσ(Tsl(t)

4 − T 4
a1)

−πR2
l h2(Tsl(t)− Ta1)− 2πRlHslUw(Tsl(t)− Tam)

(19)

where ρsl, csl, and εsl are the density, the heat capacity, and the emissivity

of the slag, respectively. Hsl denotes the slag layer thickness, h2 the heat

transfer coefficient between the slag and the air in the ladle, Ta1 the air

temperature in the ladle, and σ the Stefan-Boltzmann coefficient. The left
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side of Eq. (19) represents the time change of the slag enthalpy. The first,

second, third and fourth terms of the right side represent the heat conduction

from the molten steel to the slag, the radiation from the slag to the wall of

the ladle, the heat conduction from the slag to the air in the ladle, and that

from the slag to the ladle wall, respectively. The ladle wall temperature,

which affects the radiation, is assumed to be equal to the air temperature.

3.1.3. Ladle Degradation

On the basis of the knowledge of process engineers and plant operators,

the heat loss from the ladle is a key factor to model the process. However,

there are two factors that make the modeling difficult. The first one is that

the ladle wall gradually degrades due to the repeated use. The second one

is that there are multiple ladles with different characteristics. The effect of

ladle degradation on the heat conduction flux from the molten steel to the

external environment has been discussed in the literature. One study [13]

describes the factors which cause degradation of ladle while another study [14]

develops a CFD model to relate the heat losses from ladle with the reduction

in ladle walls and bottom thickness. To avoid computational complexity and

build a simple model, it is assumed that the overall heat transfer coefficients

gradually increase with the number of repeated usage, u. Furthermore, the

ratio of increase of the overall heat transfer coefficient of the ladle wall is

the same as that of the ladle bottom. In addition, it is assumed that the

temperature difference between the top and the bottom of ladle increases

with the increase of u. The relations are expressed by

Uw(u) = βUb(u) (20)

Ub(u) = Ub0 + γ
√
u (21)

α(u) = α0 + η
√
u (22)

where β, Ub0, γ, α0 and η are constants.
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3.2. First-Principle Model for Casting Period

3.2.1. Molten Steel in Ladle

It is assumed that the volumetric flow Q from the ladle to the tundish

is constant. Let Tmd(z, t) be the temperature profile in the ladle during

the discharging period, and the starting moment of discharging regarded as

t = 0. Then, the enthalpy balance of the molten steel in the ladle during the

withdrawal period is given by the following equations.

ρmcmπR
2
iHm

dTm(t)

dt
= −2πRi

∫ Hm

0

Uw(Tmd(z, t)− Tam)dz

−πR2
iUb(Tmd(0, t)− Tam)− πR2

ih1(Tmd(Hmt)− Tsl(t))

−ρmcmQ(Tmd(0, t)− Tm(t)) (23)

Hm(t) = Hm(0)−
Q

πR2
t (24)

Tmd(z, 0) = Tm(z, tf ) (25)

where tf is the ending moment of the transportation period. The last term

of the right hand side of Eq. (23) shows the effect of withdrawal. Hm is

gradually decreased by the withdrawal of the molten steel. It is assumed

that the shape of the temperature profile in the ladle is not changed during

the discharging period, i.e., the temperature profile during the discharging

period is assumed to be given by the following equation:

Tmd(z, t) = Tm(t) + Tmd(z +
Q

πR2
t, 0)− 1

Hm(t)

∫ Hm(t)

0

Tmd(z +
R

πR2
t, 0)dz(26)

The last term of Eq. (26) is added so that the average temperature of Tm

becomes Tm. An example of temperature profiles at the starting moment

and the middle of the discharging period is shown in Fig. 4. For the enthalpy

balance of the slag layer, Eq. (19) is used.
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3.2.2. Molten Steel in Tundish

It is assumed that the inflow to the tundish is equal to the outflow from

the tundish and also the depth of the molten steel in the tundish is con-

stant. The CFD simulations have indicated that temperature in the tundish

is distributed in the flow direction [15]. Thus, the tundish is modeled as a

compartment model consisting of Nt isothermal baths connected in series as

shown in Fig. 5. The heat balance of the kth bath is

ρmcmWH
L

Nt

dT
(k)
t (t)

dt
= ρmcmQT

(k−1)
t (t)− ρmcmQT

(k)
t (t)− StUt(T

(k)
t (t)

−Tam)−W
L

Nt

εtσ(T
(k)
t (t)4 − T 4

am)−W
L

Nt

h3(T
(k)
t (t)− Ta2)

(27)

St =


W

L

Nt

+ 2H
L

Nt

+WH (k = 1, Nt)

W
L

Nt

+ 2H
L

Nt

(k = 2, 3, · · · , Nt − 1)
(28)

where W , H, and L denote the width, the height, and the length of molten

steel in the tundish, respectively. T
(k)
t is the tundish temperature in the kth

bath. St denotes the contact area between the molten steel and the tundish,

Ut the overall heat transfer coefficient of the tundish, εt the emissivity of the

molten steel, Ta2 the air temperature in the tundish, and h3 the heat transfer

coefficient between the molten steel and the air. T
(0)
t (t) is equal to Tin(t)

because the molten steel poured from the ladle flows into the first bath. The

left side of Eq. (27) represents the time change of the molten steel enthalpy.

The first to fifth terms of the right side represent the inflow enthalpy, the

outflow enthalpy, the heat conduction from the molten steel to the tundish

wall, the radiation from the molten steel to the tundish wall and the heat

conduction from the molten steel to the air in the tundish, respectively. The

tundish wall temperature is assumed to be equal to the air temperature Tam,

which is assumed to be constant.
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3.3. Parameter Estimation

The physical model contains 13 parameters to be estimated: α0, γ, η, h1,

h2, h3, Ub0, Ut, Ta1, Ta2, εsl, εt and β. The first ten parameters were identified

through the least squares algorithm using real process data and εsl, εt and

β were given in advance from engineers’ experience. The dimensions of the

ladle and the tundish and the physical properties of steel were also given

in advance. Nt was set equal to three based on the CFD study conducted

by Odenthal et al. [15]. The input variables of the physical model are the

number of ladle usage, the weight of the molten steel in the ladle, the initial

temperature of steel in the ladle, the transportation time, the casting flow

rate, and the initial temperature of each bath composing the tundish. The

output variable is the temperature of the last bath, TD temp. A total of

1270 samples were used for parameter estimation.

4. Prediction and Control of Molten Steel Temperature in Tundish

In this section, three types of gray-box models, i.e., the parallel, the serial,

and the combined gray-box models, are constructed to predict and control

TD temp.

4.1. Parallel Gray-box Model

In the parallel gray-box model, a statistical model to compensate the

prediction error of the first-principle model was developed by using 53 pro-

cess variables, measured at the processes from the converter to the tundish,

including the variables used in the first-principle model.

To build the statistical model, random forests (RF) [16] was used. RF

is an ensemble classifier that consists of many decision trees. RF combines

Breiman’s bagging idea and the random selection of split features [17, 18].

Given a training set D of size N , bagging generates J new training sets

D∗
j (j = 1, 2, · · · , J), whose size is N , by random sampling from D with

replacement. The set D∗
j is expected to have about two-thirds of the unique
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datasets in D and the rest is duplicated. In addition, at each node of the

tree, feature variables, i.e., split features, are randomly selected and splitting

is performed using these features one by one to find the best split. The

sampled training datasets are called bootstrapped samples, while the fraction

of original data that is not bootstrapped is termed out-of-bag (OOB) data.

RF creates multiple trees; each tree is trained by using the bootstrapped

samples. RF for regression is formed by growing trees on (x, y) ∈ D∗
j such

that the predictions f̂(x) are numerical values as opposed to class labels in

classification. OOB data is used for error calculation of the respective trees.

The output of an RF model is the average of predicted values of all trees. In

the RF model used in the parallel gray-box model, the number of trees and

split features was set at the optimized values of 1000 and 13, respectively.

4.2. Serial Gray-box Model

The prediction performance of the first-principle model might be im-

proved by taking account of the dependence of the parameters on the process

conditions. That is, a serial gray-box model might be effective at reducing

the prediction errors. However, it is not clear which parameter should be

updated according to changes in process conditions. Thus, each of all the

parameters was regarded as a candidate variable to be expressed as a func-

tion of measured process variables, and the most influential parameter was

selected. For this purpose, mean absolute error (MAE) was calculated for

each parameter.

MAEi =
1

Nd

Nd∑
n=1

|yn − ffp(xfp,n, θ̃
c
i , θ̃i,n)| (29)

where θ̃i,n is the optimal value of θi,n which is derived by Eqs. (8) to (9).

Since Ub0 is supposed to be a constant value, Eq. (21) was discarded and

Ub was regarded as a parameter instead of Ub0 and γ. Thus, the number

of parameters in the first-principle model, Np, is eight in this case. Table 1
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shows MAEs after optimizing the parameters of the first-principle model one

by one. It is clear that the error was drastically reduced when the overall

heat transfer coefficients of the ladle bottom Ub was optimized. This result is

consistent with the knowledge of process engineers and plant operators; the

heat loss from the ladle is a key factor to model the process, and it is strongly

affected by the ladle degradation. Thus, Ub was selected as the variable to be

updated as a function of 53 process variables. The optimal value of Ub was

calculated for each modeling sample, and a statistical model was developed

by RF to estimate Ub. In this RF model, the number of trees and the split

features was set at the same values as that of the RF model in the parallel

gray-box model. Fig. 6 shows the relationship between the optimized values

of Ub and the training errors of the first-principle model. The positive error

shows that the heat loss calculated by the first-principle model is larger than

the actual heat loss in the plant while the negative error shows that the heat

loss calculated by the first-principle model is smaller than the actual heat

loss in the plant. To precisely model the heat loss, Ub should be decreased

for positive error and increased for negative error.

4.3. Combined Gray-box Model

By combining an outer statistical model with the serial gray-box model,

a combined gray-box model was developed. The outer statistical model was

built by applying RF to the data of the prediction error of the serial gray-box

model and the measurements of 53 process variables. In addition, a statistical

model was developed by using only RF to evaluate the performance of the

statistical model, whose inputs were 53 process variables.

The prediction performance of the first-principle model, the statistical

(RF) model, the parallel gray-box model, the serial gray-box model, and the

combined gray-box model, was compared by applying them to real opera-

tion data of a steel making plant. The total number of samples was 1588;

1270 samples (80%) were used for modeling and the remaining 318 sam-

ples (20%) were used for validation. The prediction results are shown in
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Fig. 7. The prediction performance was evaluated on the basis of the root-

mean-square error (RMSE) and the correlation coefficient (r) between scaled

values of the reference TD temp and the predicted TD temp. RMSE of the

first-principle model, the RF model, the parallel gray-box model, the serial

gray-box model, and the combined gray-box model is 2.73, 2.08, 1.83, 1.81

and 1.74, respectively. The performance of the proposed combined gray-box

model is superior to the other models. The RMSE of the combined gray-box

model is 36%, 16%, 5% and 4% smaller than that of the first-principle model,

the RF model, the parallel gray-box model, and the serial gray-box model, re-

spectively. Although the serial (inner) gray-box model performs better than

the first-principle model and the RF model significantly, there remain large

prediction errors. Such prediction errors cannot be compensated by updat-

ing the parameters of the first-principle model, because the structure of the

model imposes limitations on the prediction performance. Additionally, the

errors caused by process uncertainties in temperature measurements, com-

position and weight of added alloys, and the extent of oxidation reactions for

removal of impurities cannot be compensated by updating the parameters.

On the other hand, the combined gray-box model uses the additional statis-

tical model to compensate such prediction errors and therefore outperforms

all the models including the serial gray-box model.

4.4. Control of TD temp

Since the combined gray-box model was able to predict TD temp accu-

rately, the next step was to adjust RH temp in order to realize precise control

of TD temp. Thus, the developed prediction model was used as the control

model for feed-forward control, in which the manipulated variable, RH temp,

was optimized with the bisection method in order to achieve the target TD

temp. Three different values of RH temp, i.e., RH-max, RH-mid and RH-

min, are determined. Initially, TD temp is predicted through the combined

gray-box model using RH-mid. Then the value of RH temp is iteratively

updated using the bisections method and new TD temp is predicted until
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it becomes equal to the target TD temp. Fig. 8 shows the results of RH

temp derivation by using the first-principle model, the RF model, the par-

allel gray-box model, the serial gray-box model, and the combined gray-box

model. The performance was evaluated on the basis of the root-mean-square

error (RMSE) and the correlation coefficient (r) between scaled values of the

reference RH temp and the derived RH temp. RMSE of the first-principle

model, the RF model, the parallel gray-box model, the serial gray-box model,

and the combined gray-box model is 2.90, 1.65, 1.95, 1.80 and 1.64, respec-

tively. The performance of the proposed combined gray-box model is superior

to the other models. The combined gray-box model achieved the highest pre-

diction accuracy and its RMSE is 43%, 1%, 16% and 10% smaller than those

of the first-principle model, the RF model, the parallel gray-box model, and

the serial gray-box model, respectively.

5. Conclusions

In the steel making plant, the molten steel temperature in tundish of con-

tinuous casting processes (TD temp) is one of the key factors to realize stable

operation, and it is controlled by manipulating the molten steel temperature

in the secondary refining process (RH temp).

In this research, new gray-box models were developed to predict and con-

trol TD temp with high accuracy, because the performance of the adopted

first-principle model (physical model) was not sufficient. In the serial gray-

box model, the overall heat transfer coefficient of the ladle bottom was op-

timized for each past batch separately and updated as a function of 53 pro-

cess variables with random forests (RF). The prediction errors of the first-

principle model and those of the serial gray-box model were compensated by

using outer statistical models; this approach derived the parallel gray-box

model and the combined gray-box model. All statistical models were built

by using RF. The developed models were used not only for the prediction of

TD temp but also for its control. For this purpose, the proposed gray-box
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models were inversely used to derive RH temp from the desired TD temp.

The results of TD temp prediction and RH temp derivation have demon-

strated the advantage of the combined gray-box model over the first-principle

model, the statistical model, and the conventional gray-box models. For ex-

ample, the combined gray-box model realized 36% and 16% smaller RMSEs

of TD temp prediction than the first-principle model and the RF model, re-

spectively. Moreover, the combined gray-box model achieved 16% and 10%

smaller RMSEs of RH temp derivation than the parallel gray-box model and

the serial gray-box model, respectively. The performance of the combined

gray-box model satisfies the requirement for its industrial application; thus it

is expected that the developed system can be used as a part of an operation

support system of the target steel making plant.
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Figure captions

Figure 1 Schematic diagram of the steel making process.

Figure 2 Generalized framework of gray-box modeling.

Figure 3 Model of molten steel temperature in ladle during the transportation

period from the secondary refining process to the continuous casting process.

Figure 4 Model of molten steel temperature in ladle during the casting period.

Figure 5 Compartment model of the tundish.

Figure 6 Training errors of the first-principle model and the corresponding

optimized values of the overall heat transfer coefficient Ub.

Figure 7 Prediction of TD temp through the first-principle model, the RF

model, the parallel gray-box model, the serial gray-box model, the combined

gray-box model, and predicted and reference TD temp.

Figure 8 Derivation of RH temp through the first-principle model, the RF

model, the parallel gray-box model, the serial gray-box model, the combined

gray-box model, and derived and reference RH temp.
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Table captions

Table 1 Mean absolute error (MAE) after optimizing each parameter in the

first-principle model.
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Figure 1: Schematic diagram of the steel making process
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Figure 3: Model of molten steel temperature in ladle during the transporta-
tion period from the secondary refining process to the continuous casting
process
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Figure 5: Compartment model of the tundish
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Table 1: Mean absolute error (MAE) after optimizing each parameter in the
first-principle model

Parameter MAE
α0 1.28
γ 1.50
η 1.94
h1 2.29
h2 3.84
h3 3.71
Ub 3.30×10−5

Ut 1.51
Ta1 1.85
Ta2 0.03
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