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Abstract 

 

An essential function of language processing is serial order control. Computational 

models of serial ordering and empirical data suggest that plan representations for ordered output 

of sound are governed by principles related to similarity. Among these principles, the temporal 

distance and edge principles at a within-word level have not been empirically demonstrated 

separately from other principles. Specifically, the temporal distance principle assumes that 

phonemes that are in the same word and thus temporally close are represented similarly. This 

principle would manifest as phoneme movement errors within the same word. However, such 

errors are rarely observed in English, likely reflecting stronger effects of syllabic constraints (i.e., 

phonemes in different positions within the syllable are distinctly represented). The edge principle 

assumes that the edges of a sequence are represented distinctly from other elements/positions. 

This principle has been repeatedly observed as a serial position effect in the context of 

phonological short-term memory. However, it has not been demonstrated in single-word 

production. This study provides direct evidence for the two abovementioned principles by using 

a speech-error induction technique to show the exchange of adjacent morae and serial position 

effects in Japanese four-mora words. Participants repeatedly produced a target word or nonword, 

immediately after hearing an aurally presented distractor word. The phonologically similar 

distractor words, which were created by exchanging adjacent morae in the target, induced 

adjacent-mora-exchange errors, demonstrating the within-word temporal distance principle. 

There was also a serial position effect in error rates, such that errors were mostly induced at the 

middle positions within a word. The results provide empirical evidence for the temporal distance 

and edge principles in within-word serial order control. 
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Within-word serial order control: Adjacent mora exchange and serial position effects in 

repeated single-word production 

 

1. Introduction 

 

The compositional nature of language allows humans to express and comprehend a nearly 

infinite number of ideas via a finite repertoire of elements. Although the units used to represent 

elements may differ within a language (e.g., sentence, word, phoneme, phonemic feature) and 

between languages (e.g., syllable, mora), the flexible use of element combinations allows us to 

deal with an enormous number of concepts and meanings. For example, in Japanese, “tatsumaki” 

(tornado) and “tamatsuki” (billiard) are different concepts, but they are represented by identical 

sound units. Similarly, “a half-formed wish” and “a half-warmed fish” express different 

meanings but employ identical sound units. However, “a half-formed wish” and “a half-warmed 

fish” must be differentiated for accurate communication (Jefferies, Grogan, Mapelli, & Isella, 

2012). As these examples indicate, an essential characteristic of language, especially spoken 

language, is its sequential nature and compositionality, which raise the problem of serial order 

control. 

 

1.1. Models of serial order control 

 

To tackle the problem of serial order control, a number of computational models have 

been proposed in the domains of speech production and serial order memory. They include 

localist connectionist models (Burgess & Hitch, 1999; Dell, Burger, & Svec, 1997; Dell, 1986; 
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Hartley & Houghton, 1996; Houghton, 1990), parallel distributed recurrent connectionist models 

(Botvinick & Plaut, 2006; Dell, Juliano, & Govindjee, 1993; Elman, 1990; Gupta & Tisdale, 

2009; Plaut & Kello, 1999; Ueno, Saito, Rogers, & Lambon Ralph, 2011), and other types of 

mathematical models (Brown, Preece, & Hulme, 2000; Henson, 1998; Page & Norris, 1998; 

Vousden, Brown, & Harley, 2000). Although the details of these models vary according to the 

research topic, we focus on their functional similarities and common principles. 

A fundamental problem for serial order control is how to deal with plans in which 

elements and order information are represented in advance (Lashley, 1951). In speech production, 

an intended abstract concept should be decoded into time-varying phonological representations 

(to produce a sequence of sounds), and this requires an intermediate phonological plan 

representation in which all phoneme and order information is compressed (e.g., Plaut & Kello, 

1999). In a similar vein, to reproduce a sequence of sounds from time-varying auditory input (i.e., 

in a task based on phonological short-term memory; pSTM), the entire sequence must be 

maintained simultaneously in the form of a plan representation and decoded into time-varying 

phonological representations (e.g., Gupta & Tisdale, 2009). Although their input/encoding 

processes may differ, speech production and pSTM are assumed to share a similar mechanism 

for representing and decoding abstract phonological plans (e.g., Saito & Baddeley, 2004). A 

general principle governing plan representation and subsequent behavior (i.e., production and 

reproduction of single words and sentences/lists) is the similarity principle (Acheson & 

MacDonald, 2009a). In the following section, we review evidence for levels of similarity from 

empirical data and models of serial order. The data mostly relate to errors in speech 

(re)production, which provide information about serial order control mechanisms (e.g., Fromkin, 

1971; Garrett, 1975; Henson, Norris, Page, & Baddeley, 1996). In this context, the movement of 
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elements, in particular exchanges of elements, reveals how similarly these elements and positions 

are represented. We then consider what support for the similarity principle is missing from the 

empirical data and describe our experimental approach. 

 

1.1.1. Phonological similarity principle 

 

One source of similarity is phonological, as plan representations should contain 

information about phonological elements. Phonologically similar phonemes or items tend to be 

misordered, typically by exchanging one with another, in the context of both speech production 

and pSTM (e.g., Acheson & MacDonald, 2009b; Page, Madge, Cumming, & Norris, 2007). 

Similarly, single-word production is vulnerable to distraction by phonologically similar words 

(Saito & Baddeley, 2004). Almost all models of serial order simulate this phonological similarity 

effect, though they implement it differently (i.e., feedback from phoneme to lexical 

representations: Dell, 1986, 1988; misselection of phonologically similar and thus confusing 

items: Brown et al., 2000; Burgess & Hitch, 1999; Henson, 1998; Page & Norris, 1998; Vousden 

et al., 2000; distributed coding of plan representations: Botvinick & Plaut, 2006; Dell et al., 

1993). 

 

1.1.2. Temporal distance principle 

 

Another important source of similarity is derived from the temporal aspect of language. 

Plan representations should contain not only element information, but also order information, or 

information about the position of each element about to be output, and this should be mapped 
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onto time. Thus, some similarity inevitably reflects the temporal aspect of language (i.e., 

temporal distance and edgeness). The temporal distance between to-be-output positions 

determines similarity of the elements and/or of their associated position representations, such 

that temporally near elements/positions are more similarly represented. Consistent with the 

temporal distance principle, the transpositions exhibit a gradient whereby elements in 

adjacent/nearer positions are more likely to be transposed/exchanged in the context of immediate 

serial recall (Henson et al., 1996), and phonemes in adjacent/nearer syllables/words are more 

likely to be exchanged in the context of spontaneous speech production (Vousden et al., 2000). 

This principle is a consequence of the way models represent order information. In models that 

represent order information by context–element associations (i.e., where element representations 

are associated with context representations), context representations directly reflect temporal 

distance using oscillators (Brown et al., 2000; Burgess & Hitch, 1999; Henson & Burgess, 1997; 

Henson, 1998; Vousden et al., 2000). Elements that are associated with similar contexts (i.e., 

temporally near elements) tend to move toward or switch positions with each other. 

Other models represent order information by an activation gradient. These models 

employ spread or preparatory activation with a primacy gradient of element representations (Dell, 

1986; Houghton, 1990; Page & Norris, 1998) or connections from plan to element (or frame) 

representations that lead to graded activation (Dell et al., 1997). Thus, elements that are 

temporally close and receive similar activation values tend to move toward or switch positions 

with each other. 

A further class of serial order models includes parallel distributed-processing recurrent 

networks. Recurrent networks represent elements and order information conjunctively within a 

hidden layer of three-layer networks with recurrent connections (Botvinick & Plaut, 2006; Dell 
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et al., 1993; Elman, 1990; Gupta & Tisdale, 2009; Plaut & Kello, 1999; Ueno et al., 2011). 

Distributed representation and learning algorithms (i.e., back propagation; Rumelhart, Hinton, & 

Williams, 1986) enable the model to capture the similarity structure of a given environment. As 

Botvinick and Plaut (2006) reported, close elements are represented similarly and tend to move 

toward or switch positions with one another. Despite their different implementations, all models 

reviewed above are governed by the temporal distance principle. 

 

1.1.3. Edge principle 

 

Another source of similarity is the edge effect. All words and sentences begin and end. 

The beginnings and ends of sequences are represented distinctly from other positions. A clear 

manifestation of this edge effect is the serial position effect, a well-established phenomenon in 

the domain of serial order memory. Items at the initial and final list positions (i.e., the list edges) 

are recalled better than are items in other positions, with initial positions having the greatest 

advantage. This effect has also been reported in the repetition of single nonwords (e.g., Gupta, 

2005; Gupta, Lipinski, Abbs, & Lin, 2005; Gupta & Tisdale, 2009). The temporal distinctiveness 

theory proposed by Glenberg and Swanson (1986) suggests that the recency effect occurs due to 

higher distinctiveness toward the end of a memory list, whereas the primacy effect is based on 

different mechanisms. Other models of serial order have replicated the serial position effect by 

directly representing edges as distinct from other positions/elements (Henson, 1998; Henson & 

Burgess, 1997) or by learning to represent edges distinctively because they always follow or are 

followed by a null context (Botvinick & Plaut, 2006; Gupta & Tisdale, 2009). 
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1.1.4. Syllabic constraint 

 

Syllabic constraint is also a widely accepted organizing principle. Different syllabic 

positions are distinctly represented (and same syllabic positions in different syllables are 

represented rather similarly). This constraint is indicated by the fact that phonemes do not 

transpose randomly, but rather transpose to the same within-syllable positions (e.g., onset 

phonemes transpose to onset, but not coda, positions; Vousden et al., 2000). Although syllabic 

representations may be regarded as phonological (e.g., which phoneme can occupy which 

syllable position; Dell, 1986, 1988), positional (Vousden et al., 2000), or both (Dell et al., 1993, 

1997; Hartley and Houghton, 1996), the critical point is that such constraints work at least partly 

independently of similarity, reflecting the other aspects of language described above (we return 

to this point in 4.6. Toward a universal account of syllabic constraint). 

 

1.2. Missing empirical data 

 

Many models assume that distinct representations capture within- and between-word 

temporal information and that they are governed by the same principles reviewed above (Dell, 

1986; Dell et al., 1997; Gupta & MacWhinney, 1997; Vousden et al., 2000; see also Botvinick, 

2007; Burgess & Hitch, 1999, 2006; Henson, 1998, for use of multi-level representations). 

However, the assumed temporal distance and edge principles at the within-word level have yet to 

be examined empirically. In fact, within-word adjacent element exchange and serial position 

effects have not been fully elucidated in an experimental setting. As described above, movement 

errors exhibit a transposition gradient when distance is calculated in terms of syllable/word units, 
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which only indicates the temporal distance principle at the syllable/word level. Nonetheless, 

phonemes do not move to a unit in the same word or an adjacent unit. In other words, phonemes 

transpose to distant positions rather than to the nearest position when distance is calculated in 

terms of phoneme units. For example, Vousden et al. (2000) reported that only 12.2% of 

naturally observed speech errors in English involve movement errors within a word. Syllabic 

constrains are so strong in English that they may prevent the occurrence of within-word 

movement errors and obscure the within-word temporal distance principle. Thus, the assumed 

but hidden within-word temporal distance principle needs to be directly demonstrated. 

In addition to the lack of within-word adjacent-element exchange, it has not yet been 

demonstrated that the serial position effect occurs in single-word production in a manner 

consistent with edge distinctiveness. Though Gupta (2005; Gupta et al., 2005) has shown within-

item serial position effects, these studies were conducted in the context of nonword repetition 

and detailed analyses of the error patterns were not reported. Concluding that word edges are 

distinctly represented requires the demonstration that phonemes at the edge positions of a word 

are less susceptible to exchange with adjacent phonemes. 

 

1.3. The current study 

 

To dissociate the effects of temporal distance and edge, we need a language that is 

structured to minimize the influence of syllabic constraints on within-word adjacent-element 

exchanges. Japanese is an ideal language
1
 for this purpose, as the mora

2
 sub-syllabic unit plays a 

                                                 
1
 Japanese may not be the only ideal language. Within-word speech errors and primacy effects 

are observed in naturally occurring speech errors in Spanish (García-Albea, del Viso, & Igoa, 
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more important role than the syllable in Japanese speech production. Importantly, a mora 

behaves as a moving unit that is at least partly independent of syllabic constraints (Kubozono, 

1989). A core issue regarding the rarity of within-word phoneme misordering in English is that 

adjacent phonological units are not exchanged, and this gradient has not been shown to be 

dissociated from syllabic constraints. Thus, the demonstration of within-word adjacent-element 

exchanges, irrespective of unit, are theoretically important (cf. proximate unit principle; 

O’Seaghdha & Chen, 2009; O’Seaghdha, Chen, & Chen, 2010). Japanese is an ideal language 

for the present investigation in this respect.
3
 Indeed, a number of within-word phoneme 

exchanges are common in Japanese. More than 80% of exchange errors (including all types of 

moving units; phoneme, mora, and syllable) in naturally spoken Japanese occur within a word 

(Terao, 2002). Although the observation of naturally occurring speech errors can provide clues 

about how the language system works, experimental techniques that induce speech errors allow 

active tests of these hypotheses in a more rigorous manner and allow detection of otherwise 

hidden patterns. In this study, a speech-error induction technique developed by Saito and 

Baddeley (2004) was used. In their experiments, Japanese participants were required to 

repeatedly utter a single Japanese word target. An auditory distractor was suddenly presented to 

                                                                                                                                                             

1989). Nonetheless, besides language selection, our experimental approach has clear advantages 

for rigorously demonstrating these phenomena. 
2
 A mora includes a vocalic nucleus (V), a nucleus onset (CV or CCV), a nasal consonant (N) in 

the syllabic coda position, and a geminate consonant (Q; Otake, Hatano, Cutler, & Mehler, 1993). 

For example, the two-syllable word Kyoto has three morae (CCV-V-CV: Kyo-o-to), as does the 

word ninja (CV-N-CV: ni-n-ja). 
3
 Many features other than those listed in the main text are suitable for testing the temporal 

distance and edge principles. Compared to other languages such as English, Japanese has less 

strict phonotactic constraints (e.g., almost all morae can occupy any position in a word), a faster 

speech rate or shorter syllable/mora duration (Kohno, 1998), a simpler and more mutually 

similar syllabic structure (i.e., the mora; see 4.6. Toward a universal account of syllabic 

constraint), and a smaller phoneme and syllable inventory (Tamaoka & Makioka, 2004, 2009; 

see Terao, 2002, for a discussion). 
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induce speech errors (see Fig. 1). Distractors that were phonologically similar to the target (e.g., 

shi-o-zu-ke,
4
 “pickles,” against Shi-zu-o-ka, name of a prefecture) successfully induced 

phonological speech errors (e.g., shi-o-zu-ka, “mound of salt”). To induce within-word mora-

exchange errors, we used a specific type of phonologically similar distractor. All similar 

distractors were words in which the exchange of adjacent morae resulted in a target word 

(Experiments 1 and 2) or a target nonword (Experiment 2). For example, when the target was 

“ta-ma-tsu-ki” (billiard), the similar distractor was “ta-tsu-ma-ki” (tornado). We expected that 

phonologically similar distractors would induce a consistent number of speech errors that would 

be primarily characterized by mora exchanges. 

This technique (and the fact that multi-syllabic/moraic words are common in Japanese) 

also allows us to demonstrate a within-word serial position effect. To this end, words (and 

nonwords) with a four-mora structure were used and the position of to-be-exchanged morae was 

manipulated (i.e., 1-2,
 
2-3, and 3-4 morae exchanges). For example, ku-ro-da-i (black porgy) to 

ro-ku-da-i (sixth) is a 1-2 morae exchange; ta-ma-tsu-ki (billiard) to ta-tsu-ma-ki (tornado) is a
 
2-

3 morae exchange; and ya-ki-me-shi (fried rice) to ya-ki-shi-me (ash-glazed pottery) is a 3-4 

morae exchange. This manipulation allowed us to examine whether similarity of position 

representations led to mora exchange by strongly biasing the direction of movement. For 

example, the second mora should move to the first mora position with a 1-2 exchange distractor, 

and to the third mora position with a 2-3 exchange distractor. Comparing the error rates between 

these position pairs allowed us to examine which pairs are represented more similarly. Using this 

manipulation and control (see 2.1. Methods), overall comparisons between similar and dissimilar 

distractor conditions served as a rigorous replication of the phonological similarity effect 

                                                 
4
 Hyphen indicates a mora boundary. 
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demonstrated by Saito and Baddeley (2004), in which the only controlled variables were those 

related to phonological similarity. In the three phonemically similar conditions, the serial 

position of the to-be-exchanged morae, and not phonemic similarity, determined similarity, as all 

phonemes were shared between the target and distractor, allowing for a relatively pure test of 

serial position effects. We predicted that distractors created by exchanging the middle part of the 

target (i.e., 2-3 exchange distractors) would induce speech errors more frequently than distractors 

involving edge exchange (i.e., 1-2 and 3-4 exchange distractors). Both the serial position effect 

and edge distinctiveness typically confer an advantage for the initial position (e.g., Gupta, 2005) 

and the initial position is (learned to be) represented more distinctly from final positions, at least 

in Botvinick and Plaut’s (2006) model. Therefore, we also predicted relatively more errors for 3-

4 than 1-2 exchange distractors. 

Experiment 1 aimed to induce within-word phoneme exchanges and to demonstrate the 

serial position effect with word stimuli. Experiment 2 aimed to test whether lexical/semantic 

representations contribute to error prevention using this technique. 

 

2. Experiment 1 

 

2.1. Methods 

 

2.1.1. Participants  

Twenty-four graduate and undergraduate students from Kyoto University participated in 

this experiment in exchange for a book coupon worth 500 yen. One additional participant was 



Within-word speech errors 15 

not included in the analysis because of a programming error. The mean age of participants was 

22.4 years (range: 20–32 years). All participants were native Japanese speakers. 

 

2.1.2. Materials 

A total of 402 four-morae words were selected from a Japanese corpus (Amano & Kondo, 

2000). The morae were CV, V, or N (nasal consonant). The nasal consonant was included as a 

candidate mora, as this mora appears frequently in the Japanese corpus (Tamaoka & Makioka, 

2004). The selected words were used as either targets, similar distractors, dissimilar distractors, 

or filler targets. Participants were asked to utter the target words repeatedly. The distractor words 

were aurally presented between participant utterances (see 2.1.3. Design and Procedure; Fig. 1). 

Similar distractors were words that resulted in the target when adjacent morae were exchanged. 

For example, when ta-ma-tsu-ki (billiard) was a target, the similar distracter was ta-tsu-ma-ki 

(tornado), and vice versa. The three types of similar distractors differed in the positions of to-be-

exchanged morae (i.e., 1-2, 2-3, and 3-4 morae exchanges). All distracters were real words and, 

by definition, phonotactically legal. Logged word frequency
5
 (Amano & Kondo, 2000) and the 

logged sum of the three bi-mora frequencies (Tamaoka & Makioka, 2004) of the targets were 

matched between conditions (Table A.1) using Match (van Casteren & Davis, 2007). Dissimilar 

distractor words were phonologically dissimilar to the target word (e.g., ha-ka-do-ru for ta-ma-

tsu-ki) and shared no more than 50% of the phonemes with the target word. Logged word 

frequency and the logged sum of the three bi-mora frequencies of similar and dissimilar 

distractors (e.g., ta-tsu-ma-ki and ha-ka-do-ru for the target ta-ma-tsu-ki) were matched (Table 

                                                 
5
 We used the frequency of the most frequent written form, which was highly correlated with the 

frequency of ignored variations of written forms (r = .99). 
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A.1). Similar distractors (e.g., ta-tsu-ma-ki) and targets (e.g., ta-ma-tsu-ki) were counterbalanced 

across participants, and dissimilar distractors were paired with similar distractors (e.g., ta-tsu-

ma-ki and ha-ka-do-ru, and ta-ma-tsu-ki and gu-ra-tsu-ku were paired). In this way, 96 quartets 

of a target words (or similar distractors), a similar distractor (or target word), and two dissimilar 

distractors were pooled for each of the three to-be-exchanged morae-position conditions (see 

Appendix). For each participant, one target and one distractor were selected and used from each 

quartet. Target and distractor selection from the quartet was counterbalanced. Eighteen additional 

words were used as filler targets, which also had potentially similar distractors (see 2.1.3. Design 

and Procedure). All auditory distractors used in Experiment 1 and Experiment 2 were created 

with Japanese text-to-speech software (VoiceText editor SAYAKA; HOYA). 

 

2.1.3. Design and Procedure 

 Figure 1 presents a schematic illustration of the procedure. Each trial began with a visual 

presentation of the target word in the most frequent written form (hiragana, katakana, kanji, or a 

mixture of these
6
) that remained in the center of the computer display (Diamondcrysta 

RDTI92WLM) until participants pressed the space bar. A katakana form of the word was also 

presented below the most frequent written form to ensure that participants read the word 

correctly. Participants were instructed to say the target word in time with the appearance of a 

visual signal (*), which was presented for 250 ms 12–14 times at a rate of 1 signal per second. 

Thus, participants uttered the same target word 12–14 times in every trial. For well-timed 

                                                 
6
 Written Japanese consists of three types of characters. Hiragana and katakana are phonograms, 

and each letter corresponds to one mora in most cases (although there are some exceptions). 

Kanji has both semantic and phonological values and thus there is a quasi-systematic (albeit 

sometimes arbitrary) mapping between meanings and linguistic sounds. 
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utterances, each visual signal was preceded by a signal tone, which was presented 500 ms before 

the visual signal for 250 ms at 440 Hz. To induce speech errors, the signal tone was replaced by 

an auditory distractor word during the third, fourth, fifth, ninth, tenth, or eleventh presentation. 

The word was presented within the 500-ms interval immediately preceding the visual signal. The 

signal tones and aurally presented words were delivered via headphones (Audio-Technica ATH-

f2SG). The experiment was controlled by Hot Soup Processer (http://hsp.tv/) on a Dell 

Dimension 9150. Participant responses were noted by the experimenter and recorded with a 

video camera (Panasonic HDC-HS200) and IC recorder (OLYMPUS Voice Trek V-85). All 

participants completed all six conditions in the 2 (distractor similarity: similar/dissimilar) × 3 

(exchanged morae position: 1-2/2-3/3-4) design. There were 16 trials for each condition, and an 

additional 18 filler trials, in which no distractor was presented, for a total of 114 trials. 

Participants could rest between trials. Trial order was pseudo-randomized using Mix (van 

Casteren & Davis, 2006) such that the same condition (e.g., the dissimilar condition) appeared in 

no more than three consecutive trials. Filler trials were separated by no fewer than three trials. 

Before the experimental trials, participants signed a consent form, received instructions, and 

performed seven practice trials. 
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Fig. 1. A schematic illustration of the procedure. 

  

＊ ・・・

Ta-ma-tsu-ki・・・♪

The distracter was presented replacing 

3rd, 4th, 5th, 9th,10th or 11th tone.
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Visual presentation of the target (e.g., “ta-tsu-ma-ki” ) 

in the most frequent form and katakana.

タツマキ 1s0.5s

Visual signal

1s

＊ ＊ ＊ ＊

♪♪ ♪
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2.2. Results and Discussion 

 

2.2.1. Preliminary analysis 

The experimenter noted errors online, and these were subsequently confirmed by 

referring to the video and/or voice records. An independent rater coded errors based on the video 

and/or voice recordings. All experimenters and raters were native Japanese speakers. Errors were 

categorized as incorrect or rhythm errors. Incorrect errors were defined as phonological errors 

and included phoneme misordering and substitution. Rhythm errors included delayed responses, 

intervals where no response was made,
7
 non-fluent speech, and false starts (i.e., a correct word 

was produced after the first utterance of one or more correct phonemes). Co-occurrences of 

incorrect and rhythm errors were categorized as incorrect errors because they could be analyzed 

as phonological errors. Although all errors observed in any utterance in each trial were noted, 

with the exception of trials in which the first utterance was an erroneous response, the following 

analyses focused only on utterances that occurred immediately after distractor presentation,
8
 as 

in Saito and Baddeley (2004). In the following section, we report only incorrect error data, 

because the experiments were designed to measure speech errors, not reaction times. Thus, it was 

difficult to reliably evaluate rhythm errors. Notably, combining incorrect and rhythm errors in a 

single analysis did not change critical aspects of the results (i.e., the serial position effect). Inter-

                                                 
7
 It may be inappropriate to include “no response” as a rhythm error. However, it is difficult to 

distinguish “no response” from “delayed response” in this paradigm, as the target is repeatedly 

produced. Importantly, it is reasonable to exclude “no response” errors from phonological errors, 

which are our focus. 
8
 As our aim was to investigate the principles that govern plan representations for ordered 

production of phonological elements, we focused only on the utterances where planning could 

have been influenced by the distractor (i.e., utterances just after distractor presentation). Hence, 

incorrect responses (i.e., phonological errors) were most frequently produced as the first 

erroneous utterance in this position (52) in a trial, followed by the next position (16). 
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rater agreement on incorrect judgments was κ = .84, and data coded by the experimenter were 

analyzed. 

 

2.2.2. Error categorization 

Table 1 presents a mora-based qualitative categorization of errors. Movement errors (i.e., 

correct morae appearing in the wrong positions) were the most common (movement = 36, non-

movement = 17; p < .05, exact test), and exchanges were the most frequent movement errors 

(exchanges =  29, non-exchanges = 7; p < .05, exact test). This experiment successfully induced 

within-word mora movement errors. 
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Table 1. Qualitative categorization of errors 

 

Notes: All error categories are based on mora sized units. Errors were broadly categorized into 

movement, substation, and mixed errors. Movement errors in which correct mora(e) appeared in 

incorrect positions consisted of exchange, anticipation, perseveration, and other movement. 

Exchange: two morae within a word were exchanged. Anticipation: one mora appeared both at 

an earlier position and at the correct position. Perseveration: one mora appeared both at the 

correct position and at a later position. (Although these three errors are theoretically not mutually 

exclusive, as there are four mora positions in a target word, they were mutually exclusive in this 

dataset). Other movement: except for the error types described above, all morae were correct, but 

at least one mora appeared in the wrong position. Substitution errors were defined as erroneous 

utterances in which the wrong mora(e) appeared. Mixed errors were defined as at least one 

correct mora in the wrong position and at least one incorrect mora present. Independent of these 

criteria, word length of erroneous utterances was considered. Addition and deletion indicate 

utterances longer or shorter than four morae, respectively. Pure deletion is an utterance in which 

all uttered morae were located in the correct positions, but at least one mora was omitted (i.e., an 

incomplete utterance). 

  

Exp 1

word nonword

movement total 36 18 18

exchange 23 15 13

exchange with deletion 2 0 1

exchange with addition 4 0 0

anticipation 1 1 0

anticipation with deletion 0 0 0

anticipation with addition 0 0 0

persiveration 1 0 1

persiveration with deletion 0 0 0

persiveration with addition 2 0 2

others with deletion 3 2 1

substitution total 12 2 12

substitution 8 2 11

substitution with deletion 3 0 1

substitution with addition 1 0 0

mixed (movement + substitution) 0 3 5

pure deletion (imcomplete) 5 0 3

correct 2242 1126 1103

# of trial 2295 1149 1141

Exp 2
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2.2.3. Error rate 

Error rates (Fig. 2) were analyzed using logistic mixed-effects regressions (Jaeger, 2008) 

in the statistical software package R (R Core Team, 2013). Fixed effects (i.e., phonological 

similarity and to-be-exchanged positions) were coded to be centered and orthogonal to each other, 

and to generate positive effects on error rate. For “phonological similarity,” the similar and 

dissimilar conditions were coded as 1 and -1, respectively. For to-be-exchanged positions, we 

used two variables (“edge” and “primacy gradient”) to capture serial position effects more 

precisely. Note that serial position effects are nested within the similarity effect. The dissimilar 

distractors were not constructed by exchanging morae in the target word, but by matching 

frequency values with similar distractors. In theory, dissimilar distractors should not induce a 

serial position effect, and inspection of the data supports this view (Fig. 2.). Thus, for these 

variables all dissimilar conditions were coded as 0. For similar distractors, for the “edge” 

variable, 1-2 and 3-4 exchanges were coded as -1, and 2-3 exchanges were coded as 2. For 

“primacy gradient,” 1-2 exchanges were coded as -1, 2-3 exchanges were coded as 0, and 3-4 

exchanges were coded as 1. In addition to the fixed effects, all possible random intercepts and 

slopes for participants and items were included in the analysis (Barr, Levy, Scheepers, & Tily, 

2013). Fixed effects were tested using likelihood ratio tests comparing the full model with 

models missing each fixed effect. The likelihood tests indicated significant effects of 

phonological similarity and edge (Table 2). 
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Fig. 2. Incorrect error rate as a function of phonological similarity and exchanged mora 

positions in Experiment 1. 

 

Note. Gray and white bars indicate mean error rates in the phonologically similar and 

dissimilar conditions, respectively. Error bars indicate standard errors of the means based on 

participant analysis. 

  

Table 2. Results of logistic mixed-effects regressions in Experiment 1. 
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Participant (Intercept) 3.12 1.77

phonological similarity 0.77 0.88 -0.96

edge 0.21 0.46 -0.61 0.81

primacy gradient 0.67 0.82 -0.28 0.43 0.62

Item (Intercept) 23.57 4.86

phonological similarity 23.59 4.86 -0.95

Correlation
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Fixed effects

Estimate SE z value Pr(>|z|) χ
2

Pr(>χ
2
)

(Intercept) -9.49 1.35 -7.03 <.001

phonological similarity 4.34 1.29 3.36 <.001 14.97 <.001

edge 0.70 0.21 3.34 <.001 7.13 <.01

primacy gradient 0.68 0.49 1.40 >.1 1.11 >.1
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2.2.4. Movement error rate 

These errors could be regarded as intrusions from distractors rather than within-target 

movement errors because all similar distractors were mora-exchanged sequences of the 

respective targets. However, our view that these errors were movement errors was supported by 

more detailed analysis of similar distractor conditions where we determined the origin of each 

mora in an utterance. Relevant to the present discussion, the movement errors at output position 

mora 2 were induced more by 2-3 than by 1-2 distractors (18/384 vs. 1/381, p < .05, exact test). 

This was also true when the source mora was restricted to mora 3 in 2-3 exchanges and mora 1 in 

1-2 exchanges (17/384 vs. 1/381, p < .05, exact test). In this case, the source morae positions in 

the distractors were the same (i.e., mora 2), but were different in the targets (i.e., mora 1 or mora 

3). If the errors were intrusions from the distractors, we would have found similar error rates for 

2-3 and 1-2 distractors at output position mora 2. However, this was not the case. The errors 

observed at output position mora 3 showed a similar tendency (i.e., more errors in 2-3 distractors  

[19/384 for all movement errors and 17/384 for those from mora 2] than in 3-4 distractors [9/383 

both for all movement errors and for those from mora 4]), but this difference was not statistically 

significant (p = .081 and p = .12, respectively, exact test). At least in mora 2, error rates were 

affected by target morae positions rather than by distractor morae positions, indicating that these 

errors reflected morae movements within target words.
9
 In summary, Experiment 1 clearly 

demonstrated that adjacent morae exchanges were also affected by their serial position, 

indicating the operation of both temporal distance and edge principles in single-word production. 

                                                 
9
 One may argue that these errors reflect lexical intrusions from distractors. However, a 

supplementary experiment (Nakayama et al., 2012) also indicated that nonword distractors 

elicited morae exchange and the serial position effect (thus, the error utterances were nonwords 

rather than words), and that lexical intrusions do not fully explain these errors. 



Within-word speech errors 26 

 

3. Experiment 2 

 

Experiment 2 examined the influence of lexical/semantic representations on the error-

induction paradigm used in Experiment 1 and replicated the previous experiment. The present 

technique apparently tapped the phonological planning component of speech production and 

reproduction (Saito & Baddeley, 2004). The distractor was presented at a late stage of production 

(i.e., 500 ms before the utterance was filled by the distractor), which is assumed to correspond to 

phonological planning. Manipulating phonological similarity led to phonological errors. 

However, the literature on speech production and pSTM suggests that the mechanisms 

underpinning speech-error induction need to be examined more carefully. Because several 

models and empirical data suggest that lexical/semantic representations interact with 

phonological representations and contribute to phoneme ordering (e.g., Dell, 1986, 1990; Gollan 

& Goldrick, 2012; Jefferies, Frankish, & Lambon Ralph, 2006; Martin & Saffran, 1997; 

Patterson, Graham, & Hodges, 1994), it is necessary to test whether lexical/semantic 

representations affect the occurrence of phonological errors in the error-induction technique used 

in Experiment 1. In this experiment, nonword targets, which by definition are assumed to have 

no lexical/semantic representations, were included, and error rates for nonword and word targets 

were compared. If this technique taps into an interaction between phonological and 

lexical/semantic representations as well as phonological planning, nonword targets should elicit 

more speech errors, especially phoneme order errors, than word targets should. 

 

3.1. Methods 
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3.1.1. Participants 

Twenty-four graduate and undergraduate students from Kyoto University participated in 

this experiment in exchange for a book coupon worth 500 yen. An additional participant was not 

included in the analysis because of a programming error. The mean age of participants was 23.5 

years (range: 19–29 years). All participants were native Japanese speakers and not participated in 

Experiment 1. 

 

3.1.2. Materials 

We selected 240 four-mora words from the Japanese corpus (Amano & Kondo, 2000) and 

created 48 four-mora nonwords. Forty-eight of these words were target words that were paired 

with 48 similar distractor words, and 48 were similar distractor words for 48 target nonwords. A 

total of 192 words served as dissimilar distractors. As in the previous experiment, exchanging the 

adjacent mora pair in a similar distractor resulted in the corresponding target word/nonword.
10

 

Dissimilar distractor words were phonologically dissimilar to the target. The dissimilar 

distractors shared no more than 50% of the phonemes with the target (Table A.3). 

Table A.3 presents the psycholinguistic variables in each condition. Bi-mora frequency 

was matched between target words and nonwords. Word frequency and the bi-mora frequency of 

distracter words were matched across conditions. All participants were exposed to all of the 

target words/nonwords (i.e., total of 96 trials). Participants were exposed to either similar or 

                                                 
10

 All nonwords were readable when written in katakana, and they were phonotactically legal in 

that a nasal consonant did not occupy the onset mora position. 



Within-word speech errors 28 

dissimilar distractor words for each target, and distractor selection (similar or dissimilar) was 

counterbalanced.  

 

3.1.3 Design and Procedure 

 Experiment 2 included a manipulation of target lexicality, and was a 2 (distracter 

similarity: similar/dissimilar) × 3 (exchanged mora position: 1-2/2-3/3-4) × 2 (target lexicality: 

word/nonword) design. Participants were tested in all conditions, with eight trials per condition. 

The procedure was almost identical to Experiment 1, with the following exceptions: (a) filler 

targets were not included; b) only audio (not video) recording was conducted; and (c) 

participants read the target word at the beginning of each trial, and an experimenter confirmed 

that they did so correctly. This reading task was introduced because nonwords may be vulnerable 

to reading errors, especially when they are created from real words by exchanging adjacent 

morae (see also Perea, Nakatani, & Leeuwen, 2011; Perea & Pérez, 2008). 

 

3.2. Results and Discussion 

 

3.2.1. Preliminary analysis 

Coding was the same as in Experiment 1, except that an independent rater coded data 

from five of the participants. Inter-rater agreement on incorrect judgments was κ = .78, and data 

coded by the experimenter were analyzed. 

 

3.2.2. Error categorization 
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Table 1 summarizes the qualitative categorization of errors. As in Experiment 1, 

movement errors were the most common (movement = 36, non-movement excluding mixed 

errors = 17; p < .05, exact test), and exchanges were the most common movement errors 

(exchanges = 29, non-exchanges 7; p < .05, exact test). The prevalence of movement errors, 

including exchanges, was comparable for words and nonwords in the present experiment and 

words in Experiment 1 (18, 18, and 36, respectively).
11

 There was a lexicality effect for 

substitutions (words = 2, nonwords = 12; p < .05, exact test; see also 3.2.3. Error rate). Further 

examination revealed that 9/12 mora-substitution errors in nonwords were segment-movement 

errors (e.g., “u-ko-ga-shi” for the target “u-ka-go-shi” and the similar distractor “u-go-ka-shi”). 

 

3.2.3. Error rate 

Error rates (Fig. 3) were analyzed with logistic mixed-effects regressions using R. For 

fixed effects, phonological similarity, edge, primacy gradient, and lexicality (words and 

nonwords were coded as -1 and 1, respectively) were included in the model. We report a model 

without lexicality-related interactions because a model including these interactions failed to 

converge correctly, and because inspection of the data (Fig. 3) indicated that interactions were 

correlated with the main effect of lexicality (i.e., any interactions would be produced by a 

lexicality effect in similar 2-3 and 3-4 exchange conditions, see also note 13). For random effects, 

all possible intercepts and slopes for participants and items were included. As in Experiment 1, a 

likelihood ratio test was used for significance testing. 

                                                 
11

 There were almost twice as many trials in Experiment 1 than there were word and nonword 

trials in Experiment 2.  
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This analysis failed to show a significant effect of lexicality (χ2
 = 0.68, p > .1). 

Inspection of the data indicates large variance (>8.58) for random-effects intercepts and slopes 

for similarity, and we included the effect of bi-mora frequency in the analysis to reduce the 

random variance. Although this was a post-hoc analysis, an examination of the stimuli indicated 

that the lexicality effect may have been influenced by differences in bi-mora frequency between 

words and nonwords. As described earlier, the bi-mora frequency for (non)words was calculated 

by summing the three bi-morae frequencies (i.e., bi-mora 1-2, bi-mora 2-3, and bi-mora 3-4). 

Then, the summed value was matched between words and nonwords (t(94) = 0.05, p = .961). 

However, given that each bi-mora frequency was a probabilistic variable, it may have been more 

accurate to calculate the bi-mora frequency of (non)words by multiplying the three bi-mora 

frequencies and logging the result. Notably, these values differed between words and nonwords 

(t(94) = 2.01, p = .047). Thus, we included this calculation of bi-mora frequency in the analysis. 

The final model is described in Table 3. Phonological similarity and edge effects were 

replicated. There was also a marginally significant effect of primacy gradient, which may 

indicate a slight advantage for initial versus final positions. Although the analysis also showed a 

significant effect of bi-mora frequency,
12

 the lexicality effect remained non-significant. It may 

not be surprising that error rate was sensitive to bi-mora frequency, as accumulating evidence 

suggests that sublexical/phonotactic frequencies contribute to serial ordering (Gathercole, 

Frankish, Pikkering, & Peaker, 1999; Gupta & Tisdale, 2009; Tamaoka & Makioka, 2009; Tanida, 

Ueno, Saito, & Lambon Ralph, 2010; Vitevitch & Luce, 2004), and this confirms that the 

technique used here taps into phonological planning. In contrast, the absence of a lexicality effect 

                                                 
12

 Re-analysis of the error rate in Experiment 1 including the new calculations of bi-mora 

frequency showed no effect of bi-mora frequency. Similarity and edge effects remained 

significant. 
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might be surprising considering accumulating evidence for the contribution of lexical/semantic 

representations to phoneme ordering. However, the present results should be interpreted with 

caution because the experimental design might not be optimal for capturing lexicality effects. 

Most of the errors were produced in the similar 2-3 and 3-4 exchange conditions in which there 

were numerically fewer errors for word targets (Fig. 3). Such higher order interactions might be 

difficult to detect.
13

 The present technique is relatively new and further experimentation is 

needed on the lexicality effect in which, for example, only similar 2-3 and 3-4 exchange 

conditions are included with more stimuli. 

 

  

                                                 
13

 An analysis in which the lexicality effect was only expressed by an interaction and separate 

analyses for phonologically similar conditions also showed no lexicality effects. 
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Fig. 3. Incorrect error rate as a function of phonological similarity, exchanged mora 

positions, and target lexicality in Experiment 2. 

Note. Gray and white bars indicate mean raw error rate in the phonologically similar and 

dissimilar conditions, respectively. Error bars indicate standard errors of the means based on 

participant analysis. 

 

Table 3. Results of logistic mixed-effects regression in Experiment 2. 
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Fixed effects

Estimate SE z value Pr(>|z|) χ
2

Pr(>χ
2
)

(Intercept) -7.69 1.11 -6.89 <.001

Phonological similarity 2.84 1.11 2.56 <.05 5.57 <.05

Edge 0.69 0.20 3.44 <.001 9.64 <.01

Primacy gradient 0.98 0.51 1.93 <.1 2.87 <.1

Lexicality 0.06 0.25 0.22 >.1 0.04 >.1

Bi-mora frequency -0.44 0.19 -2.39 <.05 3.92 <.05
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 3.2.2. Movement error rate 

As in the previous experiment, the movement error rate varied as a function of the 

original target position. Movement error output at mora 2 was induced more by 2-3 (21/381 for 

errors from mora 3, which was the only source mora position) than by 1-2 exchanged distractors 

(1/382 for errors from mora 1 and 2/382 for those from any other mora positions; ps < .05, exact 

test). Movement errors output at mora 3 were induced more by 2-3 (20/381 for errors from mora 

2 and 25/381 for those from any other mora positions) than by 3-4 exchanged distractors (7/382 

for errors from mora 4, which was the only source mora position; ps < .05, exact test). These 

results confirm that errors were morae movement errors within target words. 

 In summary, Experiment 2 confirmed that this paradigm taps into the phonological 

planning process that is responsible for serial order control and further confirmed the governing 

principles of plan representations (i.e., temporal distance and edge principles), replicating 

adjacent mora exchange and serial position effects within a word. 

 

4. General discussion 

 

4.1. Summary of results 

 

In two experiments, phonologically similar distractors induced exchange of adjacent 

morae and other phoneme movements in a repeated single-word production task in Japanese. 

Additionally, there was a serial position effect in within-word mora misordering, such that 

distractors whose second and third morae (i.e., the middle portion of the word) were exchanged 

in the target word induced more errors than 1-2 and
 
3-4 exchanged distractors. This pattern was 
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confirmed with nonword targets in Experiment 2, in which target bi-mora frequency also affected 

error rates, such that participants made more errors for (non)words with low bi-mora frequency. 

In the following sections, we discuss the implications of these results. 

 

4.2. Phonological similarity 

 

The overall phonological similarity effect confirms the principle of phonological 

similarity. Saito and Baddeley (2004) have already used this experimental technique to 

demonstrate phonological similarity effects. However, they only tested a limited number of 

stimuli (i.e., eight target words), which were selected from error-prone words in a language game. 

Thus, the target and distractor words they used to examine phonological similarity effects were 

not controlled for other variables. This limitation was overcome in the present study, which used 

more stimuli that were selected according to objective criteria, and which were carefully 

controlled for various psycholinguistic variables. 

 

4.3. Temporal distance principle 

 

Induced adjacent mora exchanges within a word are a clear demonstration of the within-

word temporal distance principle. Models of serial order assume that the principle of temporal 

distance operates in both within- and between-word serial ordering. However, within-word 

adjacent-element (e.g., phoneme) exchanges have not been previously demonstrated empirically, 

resulting in a lack of direct evidence for this principle. The present results provide this missing 

evidence. 
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4.4. Edge principle 

 

These are the first results to reveal a serial position effect in the context of single-word 

production, such that word edges were resistant to transposition. This indicates that word edges 

are represented distinctly from other positions, indicating a common edge similarity principle in 

speech production and pSTM. Notably, this effect was shown to be dissociated from the 

phonological/phonemic similarity principle, as phonemic similarity was controlled between the 

three exchange conditions (i.e., all phonemes were shared between targets and distractors). 

 

4.5. Linguistic knowledge 

 

The presence of a bi-mora frequency effect indicates that (phonological) linguistic 

knowledge contributes to serial ordering. Considering the ample evidence supporting the 

contribution of linguistic knowledge, this appears to be a general principle that determines the 

similarity/distinctness of positions/elements. More frequent sequences or their constituents are 

represented with a finer grain and are less susceptible to movement and other errors. This 

principle can provide an integrated account for some aspects of syllabic constraints, as discussed 

in the next section.  

 

4.6. Toward a universal account of syllabic constraints 
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The successful induction of within-word adjacent-mora exchanges implies that syllabic 

constraints do not affect serial ordering in Japanese in the same way that they do in English. In 

English, syllabic constraints such as onset-rhyme organization (e.g., coda is relatively predictable 

based on vowels, but vowels are relatively unpredictable based on onset) decrease within-

syllable similarity among positions/segments (and may increase between-syllable similarity). In 

Japanese, syllabic constraints primarily cluster around CVs (e.g., a consonant is usually followed 

by a vowel) as a sub-syllabic mora unit. This type of constraint increases the similarity between 

adjacent morae, especially when the mora structures (e.g., CV) are identical or similar (in fact, 

the majority of morae share a CV form and they are quite similar structurally). The syllabic 

constraint in English prevents exchanges of adjacent elements (i.e., phonemes or sub-syllabic 

units) and may encourage exchange of elements in the same within-syllable positions in different 

syllables/words (i.e., between-syllable or -word exchanges). In contrast, the syllabic constraints 

in Japanese encourage exchange of adjacent morae. These different effects of syllabic constraints 

can at least partly emerge from the different statistical structures in different languages (Chen, 

Dell, & Chen, 2004; Dell et al., 1993; Kessler & Treiman, 1997; Lee & Goldrick, 2008). In other 

words, some aspects of syllabic constraints are language-specific, but the mechanisms generating 

such constraints and their implementation are based on universal cognitive computational 

processing. 

Language-specific statistical structure may not be the only source of syllabic constraints. 

If syllable representations are regarded as position representations (Vousden et al., 2000; see also 

Henson & Burgess, 1997), syllabic constraints may also be captured by the edge principle, which 

could be applied to any language, and is thus a universal principle. The distinctness of onset and 
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offset syllable positions should prevent phoneme misordering within a syllable and/or 

monosyllabic words (Acheson & MacDonald, 2009a).  

 

4.7. Integration and interaction between levels of similarity  

 

Although the purpose of this study was to dissociate the temporal distance and edge 

principles from other levels of similarity (i.e., whether and how temporal distance influences 

serial ordering when the influence of syllabic constraints are minimized, and whether and how 

serial position affects ordering when phonemic similarity is equivalent), the establishment of 

these distinguishing principles indicates that these levels of similarity are integrated and interact 

(e.g., Botvinick & Watanabe, 2007; Henson, 1998; Sevald & Dell, 1994). How within- and 

between-word temporal information is integrated still requires investigation. Within-word 

position representations may differentially influence within- and between-word phoneme 

ordering if within-word positional representations are re-used for phoneme ordering in different 

words, as many models assume (e.g., Dell, 1986; Vousden et al., 2000; see also Henson, 1998). 

Consistent with this possibility, grouping elements in a list recall task decreased within-group 

movement errors at the cost of increased between-group movement errors in the same within-

group positions (Henson, 1996; Experiment 2). Another theoretically interesting point is how 

serial order control mechanisms, which are governed by temporal distance and edge principles, 

operate in the acquisition of linguistic knowledge such as syllabic constraints, bi-mora frequency, 

and lexical and semantic knowledge (Botvinick & Plaut, 2006; Burgess & Hitch, 2006; Dell et 

al., 1993; Gupta & Tisdale, 2009; Plaut & Kello, 1999; Ueno et al., 2011). For example, serial 

position modulates the effect of (phonological) linguistic knowledge (Hitch, Chiara Fastame, & 
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Flude, 2005), which requires further modeling (e.g., Botvinick & Plaut, 2006; Burgess & Hitch, 

2006). Conversely, investigating the principles of serial order control mechanisms such as the 

edge principle could provide some clues as to how syllabic constraints such as onset-rhyme 

organization emerge over the course of vocabulary evolution (Gupta & Dell, 1999). 

 

5. Conclusion 

 

Serial ordering is influenced by similarity in certain aspects of language. Insofar as 

language is a temporal sequence that has a beginning and an end, the temporal distance and edge 

principles are general similarity principles that operate irrespective of ordering level (e.g., 

within- or between-word ordering) or language-specific element units (e.g., segment, mora, or 

syllable), even if they are hidden in some languages and reflect other similarity principles such as 

(language-specific) syllabic constraints. With a speech-error induction technique, we uncovered 

empirical evidence for these principles in within-word serial order control. 
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Appendix 

Table A.1 Psycholinguistic variables of the stimuli in Experiment 1 

      
1-2 

exchange 

2-3 

exchange 

3-4 

exchange 

Target/Similar distracter 

Word 

frequency 

(log10) 

Mean 1.13  1.34  1.24  

SD 0.83  0.99  0.75  

Min 0.00  0.00  0.00  

Max 3.31  3.09  3.17  

Bi-mora 

frequency 

(log10) 

Mean 5.80  5.82  6.03  

SD 0.33  0.43  0.44  

Min 4.90  4.99  5.10  

Max 6.60  6.61  6.73  

Dissimilar distracter  

Word 

frequency 

(log10) 

Mean 1.14  1.34  1.28  

SD 0.82  0.99  0.77  

Min 0.00  0.00  0.00  

Max 3.31  3.09  3.20  

Bi-mora 

frequency 

(log10) 

Mean 5.79  5.80  5.99  

SD 0.33  0.43  0.43  

Min 4.90  4.97  5.08  

Max 6.59  6.60  6.65  

% Phoneme shared between target 

and dissimilar distracter 

Mean 27.1  25.9  23.3  

SD 12.0  12.9  10.8  

Min 7.1  0.0  7.1  

Max 50.0  50.0  50.0  
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Table A.2 Stimuli for Experiment 1 

Exchanged 

morae 

position 

Target A Target B 
Dissimilar 

distracter A 

Dissimilar 

distracter B 

1-2 ex i-da-te-N da-i-te-N ka-N-o-u bu-N-bo-u 

1-2 ex i-ka-zo-ku ka-i-zo-ku ho-u-ta-i ba-i-ni-N 

1-2 ex i-ku-bu-N ku-i-bu-N bo-u-ta-ka i-chi-ga-N 

1-2 ex i-su-se-ki su-i-se-ki he-N-se-ki ka-shi-chi-N 

1-2 ex i-su-to-ri su-i-to-ri a-i-ga-mi ko-N-pa-ku 

1-2 ex i-ta-me-shi ta-i-me-shi ni-be-na-i ka-shi-a-ge 

1-2 ex ka-na-ga-ki na-ka-ga-ki fu-ku-a-tsu ra-i-ge-ki 

1-2 ex ka-sa-ga-mi sa-ka-ga-mi ta-e-nu-ki de-shi-go-to 

1-2 ex ka-ta-a-shi ta-ka-a-shi mi-chi-ga-u me-ga-shi-ra 

1-2 ex ka-wa-mu-ki wa-ka-mu-ki ya-do-ro-ku ka-ke-o-chi 

1-2 ex ka-wa-se-ru wa-ka-se-ru he-N-bo-u de-a-ge-ru 

1-2 ex ke-ta-ba-shi ta-ke-ba-shi ha-ya-shi-za te-a-mi-ki 

1-2 ex ki-nu-i-to nu-ki-i-to e-do-ko-ro so-bo-ku-sa 

1-2 ex ki-shi-me-N shi-ki-me-N a-i-e-su ya-ma-sa-ka 

1-2 ex ki-shi-ra-su shi-ki-ra-su ko-tsu-ga-i hi-ra-o-shi 

1-2 ex ki-ta-gu-chi ta-ki-gu-chi ka-sa-ne-gi te-ga-ta-sa 

1-2 ex ki-wa-da-chi wa-ki-da-chi a-ra-ku-chi ta-na-mu-ki 

1-2 ex ko-to-a-ge to-ko-a-ge u-chi-tsu-gi ke-i-so-N 

1-2 ex ku-ro-da-i ro-ku-da-i se-N-no-u da-ku-su-ru 

1-2 ex ku-ro-ma-ru ro-ku-ma-ru ha-tsu-a-ki shi-tsu-ba-N 

1-2 ex ma-ro-N-ha ro-ma-N-ha de-su-gi-ru za-ga-shi-ra 

1-2 ex o-shi-i-ri shi-o-i-ri do-ku-ga-N he-N-a-i 

1-2 ex o-shi-ki-ri shi-o-ki-ri o-i-mi-zu bu-ra-i-do 

1-2 ex o-shi-u-ri shi-o-u-ri ra-ku-ba-i ga-N-a-tsu 

1-2 ex shi-me-a-ge me-shi-a-ge ka-ta-bo-ne 
ku-ni-mo-

chi 

1-2 ex su-mi-ga-ta mi-su-ga-ta o-ki-ga-sa u-me-wa-ri 

1-2 ex ta-ma-ge-ru ma-ta-ge-ru ki-no-to-i yo-mi-to-ki 

1-2 ex 
tsu-mi-mo-

no 

mi-tsu-mo-

no 
zo-ku-se-ki ku-mi-u-chi 

1-2 ex u-ka-be-ru ka-u-be-ru de-mo-do-ru ze-i-ta-ku 

1-2 ex u-o-he-N o-u-he-N 
mo-chi-ka-

ke 
i-e-da-ni 

1-2 ex zi-ma-wa-ri ma-zi-wa-ri tsu-ke-da-shi ka-ri-a-to 

1-2 ex zi-tsu-do-u tsu-zi-do-u ko-ku-go-ka ke-i-fu-ku 

2-3 ex bu-ra-N-ku bu-N-ra-ku o-bi-e-ru a-wa-re-da 

2-3 ex e-ba-ra-su e-ra-ba-su te-u-su-da u-o-to-ka 

2-3 ex fu-zi-ma-me fu-ma-zi-me ho-ga-ra-ka hi-ra-nu-i 

2-3 ex ha-ka-na-ge ha-na-ka-ge yu-u-na-mi ne-mu-ra-su 
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2-3 ex ha-ma-ya-ki ha-ya-ma-ki o-mo-te-do a-shi-nu-ki 

2-3 ex ha-ta-na-ka ha-na-ta-ka tsu-ku-ri-e mo-no-i-re 

2-3 ex hi-ki-to-ri hi-to-ki-ri da-ku-te-N na-N-po-u 

2-3 ex ho-ke-N-i ho-N-ke-i so-N-ta-i sa-N-su-i 

2-3 ex i-o-to-su i-to-o-su te-ra-se-ru shi-ma-a-zi 

2-3 ex i-shi-mu-ro i-mu-shi-ro za-N-bu-to fu-N-su-i 

2-3 ex ka-bi-N-da ka-N-bi-da sa-N-shi-ki su-i-ga-ra 

2-3 ex ka-i-ku-N ka-ku-i-N do-u-ke-tsu se-i-ko-tsu 

2-3 ex ka-ki-ta-shi ka-ta-ki-shi bo-u-a-ku se-ki-a-ku 

2-3 ex ka-na-ma-ri ka-ma-na-ri ya-su-mi-bi zi-tsu-bu-shi 

2-3 ex ka-ta-mi-chi ka-mi-ta-chi sa-to-ka-ta i-to-na-mi 

2-3 ex ka-ta-wa-re ka-wa-ta-re so-ku-ha-tsu de-i-ga-N 

2-3 ex ki-ka-N-ku ki-N-ka-ku wa-ta-i-re mi-ka-du-ki 

2-3 ex ko-i-sa-N ko-sa-i-N te-ki-shi-N so-u-zi-N 

2-3 ex ko-u-ku-N ko-ku-u-N ta-N-so-u fu-ri-ko-u 

2-3 ex ku-u-ra-N ku-ra-u-N o-ya-mo-to ki-wa-ma-ru 

2-3 ex mi-ga-ru-i mi-ru-ga-i ge-N-bi-ki ha-tsu-za-N 

2-3 ex mi-o-to-su mi-to-o-su ni-ba-N-me to-ke-ko-mu 

2-3 ex 
mo-tsu-ya-

ku 

mo-ya-tsu-

ku 
fu-ta-ga-ru i-shi-wa-ri 

2-3 ex o-i-u-tsu o-u-i-tsu ha-na-ga-sa go-ma-N-to 

2-3 ex sa-i-ku-N sa-ku-i-N ho-u-ka-go ke-N-pi-tsu 

2-3 ex shi-ta-ba-ki shi-ba-ta-ki nu-ki-yo-mi ka-mi-u-ta 

2-3 ex su-o-do-ri su-do-o-ri fu-ri-ma-ku a-ma-zo-ra 

2-3 ex ta-i-ku-tsu ta-ku-i-tsu ko-wa-se-ru se-N-i-ki 

2-3 ex ta-tsu-ma-ki ta-ma-tsu-ki gu-ra-tsu-ku ha-ka-do-ru 

2-3 ex yo-i-ko-to yo-ko-i-to fu-tsu-zi-N ko-N-sa-i 

2-3 ex yo-ma-wa-ri yo-wa-ma-ri u-na-ba-ra 
ka-ke-mo-

chi 

2-3 ex zi-shi-ba-ri zi-ba-shi-ri mi-zu-gu-ki a-do-o-N 

3-4 ex a-i-u-tsu a-i-tsu-u to-shi-o-i ke-mi-su-ru 

3-4 ex a-ki-ku-sa a-ki-sa-ku mo-da-N-sa ri-ku-go-u 

3-4 ex chi-N-u-tsu chi-N-tsu-u ho-i-ku-ki bo-ru-shi-chi 

3-4 ex do-u-to-mo do-u-mo-to do-u-ha-i ho-N-za-i 

3-4 ex fu-yu-ku-sa fu-yu-sa-ku ni-i-ku-sa yo-shi-na-ni 

3-4 ex hi-ma-zi-N hi-ma-N-zi he-N-zi-ru ga-ku-o-N 

3-4 ex hi-to-sa-shi hi-to-shi-sa i-N-su-u mu-no-u-sa 

3-4 ex ho-N-ka-wa ho-N-wa-ka re-N-se-tsu i-ba-re-ru 

3-4 ex ka-bu-da-N ka-bu-N-da ka-ku-re-ba hi-to-tsu-me 

3-4 ex ka-i-ki-ri ka-i-ri-ki shi-se-i-zi tsu-i-ta-te 

3-4 ex ka-i-ki-sa ka-i-sa-ki a-ka-nu-ke me-N-ko-u 

3-4 ex ka-mi-na-bi ka-mi-bi-na so-de-ta-ke he-pa-ri-N 

3-4 ex ka-N-i-da ka-N-da-i na-N-te-i na-i-ku-u 
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3-4 ex ki-ri-zu-mi ki-ri-mi-zu wa-ke-do-ri tsu-chi-bu-ta 

3-4 ex ko-ro-shi-ba ko-ro-ba-shi do-ku-so-N a-ya-se-ru 

3-4 ex ko-shi-ka-ta ko-shi-ta-ka e-bi-te-N sa-ku-zo-u 

3-4 ex ko-u-ka-da ko-u-da-ka te-i-ta-sa na-N-se-i 

3-4 ex me-N-i-ta me-N-ta-i ka-N-ge-tsu ba-ku-me-i 

3-4 ex mu-shi-sa-N mu-shi-N-sa ke-i-fu-u ni-chi-no-u 

3-4 ex o-ku-mi-ya o-ku-ya-mi ki-ro-su-u ha-ga-ta-me 

3-4 ex o-ya-da-ma o-ya-ma-da na-su-gi-ru hi-ri-ki-sa 

3-4 ex se-N-i-tsu se-N-tsu-i sa-ka-ra-i sa-N-zo-u 

3-4 ex shi-bu-i-to shi-bu-to-i i-wa-sa-ki shi-ga-ra-mu 

3-4 ex su-i-gu-N su-i-N-gu ko-yu-u-da i-ya-se-ru 

3-4 ex te-N-i-ta te-N-ta-i ko-u-sa-tsu zi-i-shi-ki 

3-4 ex to-u-ki-shi to-u-shi-ki ka-i-do-ri te-ki-se-N 

3-4 ex ya-ki-shi-me ya-ki-me-shi ku-tsu-zu-re mi-zu-u-ri 

3-4 ex ya-ma-ba-N ya-ma-N-ba so-N-ta-ku o-gu-ra-i 

3-4 ex ya-ma-i-shi ya-ma-shi-i go-u-ma-N mu-ko-N-da 

3-4 ex yo-i-mi-ya yo-i-ya-mi i-ra-tsu-me ku-ma-ri-N 

3-4 ex yo-u-i-sa yo-u-sa-i ka-i-mu-da ho-tsu-re-ru 

3-4 ex yu-u-i-da yu-u-da-i se-i-ba-tsu so-u-he-i 

 
Note: Target B served for target A as similar distracter and vice versa. Dissimilar distracter A was used for 

target A and B for B. 
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Table A.3 Psycholinguistic variables of the stimuli in Experiment 2 

      1-2 exchange 2-3 exchange 3-4 exchange 

      word nonword word nonword word nonword 

Target 

Word 

frequency 

(log10) 

Mean 2.66  - 2.81  - 2.36  - 

SD 0.71  - 0.79  - 0.71  - 

Min 1.68  - 1.93  - 1.28  - 

Max 4.22  - 4.65  - 3.59  - 

Bi-mora 

frequency 

(log10) 

Mean 5.97  5.96  5.92  5.93  6.10  6.08  

SD 0.38  0.35  0.39  0.39  0.36  0.36  

Min 5.49  5.50  5.24  5.24  5.61  5.52  

Max 6.60  6.52  6.54  6.59  6.64  6.65  

Similar distracter 

Word 

frequency 

(log10) 

Mean 1.79  1.79  1.94  1.94  1.54  1.54  

SD 0.47  0.46  0.53  0.54  0.40  0.40  

Min 1.04  1.04  1.20  1.20  1.00  1.00  

Max 2.55  2.54  2.93  2.96  2.46  2.46  

Bi-mora 

frequency 

(log10) 

Mean 5.82  5.84  5.86  5.88  6.11  6.09  

SD 0.37  0.38  0.44  0.43  0.38  0.39  

Min 5.06  5.02  4.99  5.04  5.35  5.33  

Max 6.46  6.45  6.51  6.52  6.63  6.61  

Dissimilar distracter  

Word 

frequency 

(log10) 

Mean 1.79  1.79  1.94  1.94  1.55  1.54  

SD 0.47  0.46  0.54  0.53  0.39  0.40  

Min 1.04  1.04  1.20  1.20  1.00  1.00  

Max 2.54  2.53  2.93  2.95  2.46  2.46  

Bi-mora 

frequency 

(log10) 

Mean 5.82  5.85  5.86  5.88  6.11  6.09  

SD 0.38  0.38  0.44  0.44  0.38  0.39  

Min 5.07  5.03  4.97  5.02  5.36  5.36  

Max 6.52  6.44  6.50  6.52  6.63  6.64  

% Phoneme shared between 

target and dissimilar distracter 

Mean 25.8  26.1  28.7  26.2  25.8  21.5  

SD 6.0  9.4  10.2  10.3  8.3  11.2  

Min 16.7  8.3  15.4  7.7  8.3  0.0  

Max 36.4  40.0  50.0  40.0  40.0  50.0  
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Table A.4 Stimuli for Experiment 2 

Target 

lexicality 

Exchanged 

morae 

position 

Target  
Similar 

distracter 

Dissimilar 

distracter 

word 1-2 ex fu-ko-u-da ko-fu-u-da ka-tsu-ra-ku 

word 1-2 ex ka-i-zo-ku i-ka-zo-ku ba-i-ni-N 

word 1-2 ex ka-ta-ga-ki ta-ka-ga-ki u-so-tsu-ki 

word 1-2 ex ka-wa-mu-ki wa-ka-mu-ki ya-do-ro-ku 

word 1-2 ex ki-ta-ga-wa ta-ki-ga-wa u-tsu-ro-i 

word 1-2 ex ki-ta-gu-chi ta-ki-gu-chi a-to-ga-ma 

word 1-2 ex ku-ri-a-ge ri-ku-a-ge hi-ki-ni-ku 

word 1-2 ex ro-ku-da-i ku-ro-da-i sa-i-de-N 

word 1-2 ex ro-ma-N-ha ma-ro-N-ha za-ga-shi-ra 

word 1-2 ex shi-a-ga-ru a-shi-ga-ru shi-fu-zo-u 

word 1-2 ex shi-ki-me-N ki-shi-me-N ya-ma-sa-ka 

word 1-2 ex ta-ka-me-da ka-ta-me-da ga-ku-se-ki 

word 1-2 ex wa-ka-se-ru ka-wa-se-ru de-a-ge-ru 

word 1-2 ex wa-ka-ta-ke ka-wa-ta-ke ya-ku-za-da 

word 1-2 ex wa-su-re-ru su-wa-re-ru ra-i-to-u 

word 1-2 ex zi-tsu-do-u tsu-zi-do-u ke-i-ha-ku 

word 2-3 ex bu-N-ra-ku bu-ra-N-ku de-ki-ba-e 

word 2-3 ex hi-ki-to-ri hi-to-ki-ri da-ku-te-N 

word 2-3 ex ka-bi-N-da ka-N-bi-da shi-ga-na-i 

word 2-3 ex ka-wa-ki-ri ka-ki-wa-ri ho-ga-ra-ka 

word 2-3 ex ki-ka-N-ku ki-N-ka-ku ke-i-ne-N 

word 2-3 ex ko-u-ku-N ko-ku-u-N yo-u-be-N 

word 2-3 ex ku-ra-u-N ku-u-ra-N ki-wa-ma-ru 

word 2-3 ex mi-to-o-shi mi-o-to-shi su-i-na-N 

word 2-3 ex mi-to-o-su mi-o-to-su tsu-mi-ko-mu 

word 2-3 ex sa-ku-i-N sa-i-ku-N ta-ku-so-u 

word 2-3 ex su-do-o-ri su-o-do-ri a-ma-zo-ra 

word 2-3 ex ta-i-ku-tsu ta-ku-i-tsu ko-wa-se-ru 

word 2-3 ex ta-tsu-ma-ki ta-ma-tsu-ki gu-ra-tsu-ku 

word 2-3 ex tsu-yo-me-ru tsu-me-yo-ru i-to-na-mi 

word 2-3 ex yo-ko-i-to yo-i-ko-to ka-ra-ku-ni 

word 2-3 ex yo-ma-wa-ri yo-wa-ma-ri u-na-ba-ra 

word 3-4 ex a-ra-ka-ta a-ra-ta-ka ba-ka-mo-no 

word 3-4 ex chi-N-tsu-u chi-N-u-tsu bo-ru-shi-chi 

word 3-4 ex fu-tsu-go-u fu-tsu-u-go mi-so-ku-ra 

word 3-4 ex ha-na-bi-ra ha-na-ra-bi no-u-sa-i 

word 3-4 ex hi-ma-N-zi hi-ma-zi-N ga-ku-o-N 

word 3-4 ex ho-N-ka-wa ho-N-wa-ka tsu-u-zi-N 
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word 3-4 ex ka-bu-da-N ka-bu-N-da sa-i-su-N 

word 3-4 ex ka-i-ki-ri ka-i-ri-ki ma-i-ru-do 

word 3-4 ex shi-ro-mi-zu shi-ro-zu-mi te-mi-zi-ka 

word 3-4 ex su-i-N-gu su-i-gu-N i-ya-se-ru 

word 3-4 ex ta-i-da-N ta-i-N-da sa-i-to-u 

word 3-4 ex ta-ma-shi-i ta-ma-i-shi ge-i-da-N 

word 3-4 ex te-N-ta-i te-N-i-ta ni-ku-me-ru 

word 3-4 ex to-ku-i-da to-ku-da-i to-u-ku-tsu 

word 3-4 ex yo-u-sa-i yo-u-i-sa ma-o-ta-i 

word 3-4 ex yu-u-i-da yu-u-da-i se-i-ba-tsu 

nonword 1-2 ex bu-mi-ru-i mi-bu-ru-i chi-ri-me-N 

nonword 1-2 ex chi-u-da-shi u-chi-da-shi e-pu-ro-N 

nonword 1-2 ex da-i-ke-ru i-da-ke-ru ho-u-chi-ku 

nonword 1-2 ex ka-ta-mi-ya ta-ka-mi-ya fu-ra-N-ki 

nonword 1-2 ex ki-i-shi-ni i-ki-shi-ni so-re-i-yu 

nonword 1-2 ex ku-a-go-u a-ku-go-u to-ri-ni-ku 

nonword 1-2 ex ku-da-su-ru da-ku-su-ru ri-ke-N-ya 

nonword 1-2 ex ku-tsu-se-ru tsu-ku-se-ru i-ta-N-shi 

nonword 1-2 ex ma-a-i-ro a-ma-i-ro ha-na-shi-ru 

nonword 1-2 ex o-shi-ga-ma shi-o-ga-ma so-ko-bi-e 

nonword 1-2 ex o-to-ra-su to-o-ra-su ba-a-sa-ma 

nonword 1-2 ex ra-sa-ke-ru sa-ra-ke-ru u-ka-tsu-da 

nonword 1-2 ex ra-u-na-i u-ra-na-i sa-i-shi-ki 

nonword 1-2 ex shi-mu-ke-N mu-shi-ke-N yo-u-ki-sa 

nonword 1-2 ex ta-i-wa-ru i-ta-wa-ru mu-na-mo-to 

nonword 1-2 ex te-o-ma-e o-te-ma-e ha-tsu-bo-shi 

nonword 2-3 ex a-ha-ka-ta a-ka-ha-ta u-ki-yo-e 

nonword 2-3 ex a-sa-to-ki a-to-sa-ki fu-ta-su-zi 

nonword 2-3 ex da-to-i-ku da-i-to-ku ya-ku-se-N 

nonword 2-3 ex ga-sa-ku-i ga-ku-sa-i sa-i-zi-tsu 

nonword 2-3 ex ge-fu-i-u ge-i-fu-u ri-ku-u-N 

nonword 2-3 ex ha-ka-i-ra ha-i-ka-ra se-i-he-ki 

nonword 2-3 ex ha-ta-ba-ki ha-ba-ta-ki ni-i-bo-N 

nonword 2-3 ex hi-ki-ri-da hi-ri-ki-da ha-i-hi-N 

nonword 2-3 ex me-ta-da-su me-da-ta-su u-ma-no-ri 

nonword 2-3 ex na-yo-ka-ku na-ka-yo-ku su-i-gi-N 

nonword 2-3 ex ne-bo-tsu-u ne-tsu-bo-u u-ro-tsu-ku 

nonword 2-3 ex no-ho-u-N no-u-ho-N yo-u-ga-sa 

nonword 2-3 ex sa-da-ka-i sa-ka-da-i bo-da-i-zi 

nonword 2-3 ex shi-a-ro-N shi-ro-a-N tsu-ku-ri-da 

nonword 2-3 ex su-ta-i-ku su-i-ta-ku i-chi-o-N 

nonword 2-3 ex u-ka-go-shi u-go-ka-shi mi-se-mo-no 

nonword 3-4 ex a-ma-to-o a-ma-o-to ni-za-ka-na 
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nonword 3-4 ex fu-ku-N-se fu-ku-se-N do-u-za-i 

nonword 3-4 ex go-ku-u-do go-ku-do-u ke-i-zo-u 

nonword 3-4 ex i-to-ri-ki i-to-ki-ri hi-to-mu-ki 

nonword 3-4 ex ka-ta-chi-ku ka-ta-ku-chi ki-yo-bu-N 

nonword 3-4 ex ko-u-tsu-ke ko-u-ke-tsu pi-ka-i-chi 

nonword 3-4 ex mo-u-N-ki mo-u-ki-N na-ga-i-mo 

nonword 3-4 ex o-ki-shi-i o-ki-i-shi te-ki-me-N 

nonword 3-4 ex ra-ku-tsu-ge ra-ku-ge-tsu mo-u-be-N 

nonword 3-4 ex ri-me-shi-N ri-me-N-shi na-ki-hi-to 

nonword 3-4 ex se-i-ha-gi se-i-gi-ha to-u-ko-N 

nonword 3-4 ex se-i-u-fu se-i-fu-u ho-ko-u-ki 

nonword 3-4 ex so-u-tsu-ku so-u-ku-tsu he-i-sa-ku 

nonword 3-4 ex ta-ke-tsu-mi ta-ke-mi-tsu u-tsu-ra-su 

nonword 3-4 ex te-ka-N-ge te-ka-ge-N to-shi-tsu-ki 

nonword 3-4 ex yu-u-N-ke yu-u-ke-N mo-u-shi-N 
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