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Abstract

Ponderomotive force, which corresponds to the pressure of electromag-
netic fields, is a central concern in understanding a wide class of nonlinear
plasma physics and in exploring many applications. An example is the
force associated with high power lasers whose intensities lie in the rel-
ativistic regime for electrons, i.e. 1018−21W/cm2, which are realized by
reducing the pulse width and spot size. By using the interaction be-
tween such high intensity lasers and matters, various applications have
been opened up such as high intensity x-ray/neutron sources, compact
accelerators and fast ignition-based laser fusion. In this regime, electrons
are ejected easily from the interaction region due to the ponderomotive
force. Therefore, designing laser field patterns and controlling the inter-
action are of special importance.

The ponderomotive force has been expressed as being proportional to the
local gradient of the amplitude of electromagnetic field. This expression
results from the first-order approximation with respect to the expansion
parameter ε, i.e., the ratio between the excursion length of particles and
the scale length of the field amplitude gradient. On the other hand,
in recent years, more delicate control of laser field profiles in plasmas is
anticipated. For instance, a flat top super Gaussian laser beam, in which
the ponderomotive force is significantly weakened near the beam axis, is
considered to be preferable in maintaining a long interaction between
laser and particles, and in achieving efficient particle accelerations. In
such flat-top field structures, the ponderomotive force estimated from the
conventional first-order formula tends to be diminished near the beam
axis, so that a residual higher-order force associated with nonlocal profile
becomes important. However, there exists no formal theory to describe
the higher-order force correctly except direct numerical integration which
does not provide an adequate prospective guideline.

To circumvent the above difficulty, in Part I of this thesis, we explore
a theory of ponderomotive force that includes nonlocal effects up to
higher orders by using the noncanonical Lie perturbation method, which
is based on the variational principle in noncanonical phase space coor-
dinates incorporated with the Lie transformation. By properly choosing
the gauge function and coordinate transformations, we successfully ob-
tain a secular equation of motion describing the ponderomotive force up
to the third order of ε. The higher-order terms are found to consist of
the second and third spatial derivatives of the field amplitude, so that
the ponderomotive force depends not only on the local field gradient,



but also on the field curvature and its variation. The formula is acces-
sible to the regime in which laser fields exhibit characteristic structures
such that higher derivatives of the field amplitude regulate the interac-
tion. As an example, we have applied the obtained formula to study
the particle motion in a flat-top super Gaussian and a concave hollow
laser beam structures. In these profiles, since the local field gradient is
diminished near the beam center, the higher-order terms dominate the
dynamics. Comparison with the direct integration of the particle orbit
demonstrates the validity of the formula derived here with a sufficient
convergence of the expansion series up to O

(
ε3
)
. We have also inves-

tigated the higher-order ponderomotive force by applying the averaging
method to the equation of motion. It is found that the higher-order
terms exhibit same parametric dependence as those derived by the Lie
perturbation method, but the coefficients are different. As a result, the
oscillation center trajectory derived by the averaging method does not
agree with the direct integration of the particle orbit, which is consid-
ered to result from the lack of Hamiltonian structure in the averaging
method.

In plasmas, laser field suffers from the reaction from plasma particle dy-
namics, so that the interaction has to be determined self-consistently. It
is worthwhile to apply the idea of the nonlocal ponderomotive force to ob-
tain the governing equation system that describes such a self-consistent
interaction. To achieve it, further improvement of the present theory is
necessary including the coordinate transformation in the Maxwell equa-
tions. However, we can readily see that the governing equation sys-
tem exhibits higher order spatial derivatives than the existing equation.
Consequently, qualitatively different dynamics and structure can be ex-
pected.

In order to examine the nonlocal ponderomotive theory, we carry out two-
dimensional (2D) fully-relativistic electromagnetic particle-in-cell (PIC)
simulations for the propagation of the fourth and sixth order super Gaus-
sian laser beams in a plasma. It is found that the electron density ex-
hibits a peaking near the axis as time goes on, while at the same time,
the field amplitude changes the profile from the original flat top structure
to that of a weak concave with a positive curvature. Such a structure
modulation becomes more prominent in the case of flatter super Gaus-
sian beam. Besides the beam axis, two points at which the field gradient
and then the first order ponderomotive force vanish are found to appear.
Namely, the higher order ponderomotive force plays an important role
in regulating the interaction around these points. These structure and
dynamics are considered to result from plural physical processes such as
the higher order ponderomotive force near the axis, the resultant density
modulation, generation of the Coulomb field, and change of linear and
nonlinear susceptibilities.

In considering a fine scale control of high power laser-matter interaction,
the state and structure of the target material are key ingredients to be



chosen properly according to the purpose. Besides solid and gas, clus-
ter and cluster medium composed of multi clusters are interested, which
exhibit prominent features essentially due to the existence of the sur-
face of cluster. The cluster medium has a solid density locally, whereas
in average, it can have an intermadiate density between solid and gas.
Such a high degree of freedom of cluster medium is attributed to having
many parameters that determine the internal structure of the medium,
e.g., cluster size, packing fraction and spatial configuration of clusters.
The above features of cluster medium can be utilized for various applica-
tions such as efficient ion acceleration and neutron generation by nuclear
fusion.

In Part II of this thesis, we study the effect from internal structure of
target mediums on the laser-matter interaction especially in the intensity
regime of 1022−24W/cm2, where not only electrons but also ions can be
accelerated to relativistic velocities. In such a regime, synergistic effects
of radiation pressure acceleration and the cluster Coulomb explosion are
expected, which will lead to a new dynamics with relativistically acceler-
ated ions. Based on this idea, we perform PIC simulations for the inter-
action between high power laser and targets consisting of same mass but
having different internal structures, i.e., cluster mediums with different
cluster radii and solid thin film, in the intensity regime 1021−24W/cm2.

Comparison of interaction dynamics and ion energy distribution among
different targets show the effects of the cluster Coulomb explosion inside
of the medium. The results indicate that the internal structure, which
corresponds to the free energy of the target medium, is important in
determining the interaction dynamics and the resulting ion acceleration.
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Chapter 1

Introduction

1.1 Development of high power lasers

With the advent of high power short pulse laser technologies in recent years, laser
intensities have reached the range of 1022 W/cm2 [1]. The electric and magnetic
fields at these intensities are in the order of tela-volt per centimeter (1012 V/cm)
and ten giga-gauss (1010 gauss), respectively. In such a strong laser electric field,
quiver energy of electrons becomes more than 10 MeV. The light pressure of such
intense laser field reaches to the order of tela-bar (1012 bar) that exceeds the pressure
at the center of the sun, i.e., 2.4× 1011 bar.

To realize such high intensity lasers, strong focusing of laser energy in space and
time is a key issue. For instance, even when the source is a light energy of 1 joule, if
it is confined in 10 femtoseconds (= 10−14 s) in time, the power reaches to 1014 W
which is larger than the energy that the whole human being is exhausting per unit
time, i.e., about 1013 W. By focusing the laser power of 1014 W to near the optical
limit, e.g., 5 µm radius spot which is the same order as the typical wavelength of
the laser field 1 µm, the laser intensity reaches to the order of 1020 W/cm2.

Figure 1.1 shows the development of laser intensity in time. Beginning with
the first demonstration of the laser in 1960 [2], high power short pulse lasers whose
pulse length ranging in micro (10−6), pico (10−9) and nano (10−12) second had
been realized with technological inventions such as Q-switching [3] and mode-locking
[4]. However, due to the threshold for optical damages to laser amplifiers, the
development of high power lasers had once been satulated around peak powers of
giga-watt (109 W). The difficulty had been overcame by the innovation of chirped
pulse amplification (CPA) in 1985 [5], which arrows a drastic improvement of laser
intensity by more than five orders of magnitude [6]. In the following two decades, the
intensity has been improved from the regime below 1016 W/cm2, in which the laser
electric field can be regarded as a perturbation to the Coulomb field in hydrogen
atom, to the regime 1018−22 W/cm2 where electrons irradiated by lasers are suddenly
ionized by the strong laser electric field and accelerated to relativistic energies.

In the relativistic regime, laser-matter interaction is dominated by nonlinear
and non-equilibrium processes. Besides the complexity, such a characteristic of
interaction is rich in physics leading to various innovative applications, i.e., high
intensity coherent light sources from Tela-heltz to X and gamma rays [7, 8], intense
source of neutrons [9], compact particle accelerators [10] and fast ignition-based laser
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1. INTRODUCTION

Figure 1.1: Development of high power lasers.

fusion [11].

Today, laser intensity has reached the order of 1022W/cm2. In this stage, damp-
ing of the electron energy due to the strong bremsstrahlung, referred to as radiation
damping, cannot be neglected. Namely, more than 35% of the laser energy is found
to be converted to radiation in the interaction between an overdense plasma slab
and a laser pulse with a radiance of 1022W/cm2 [12]. In other words, it indicates
that plasmas irradiated by lasers in the radiation dominant regime can be utilized
as a source of intense high energy radiations such as a high-power gamma ray flash
[8]. Moreover, higher intensities of 1023−26W/cm2 is expected to be achieved by fur-
ther reducing the pulse width and spot size to the level of laser wavelength. In this
regime, not only electrons but also ions become relativistic, so that a new dynamics,
in which a rapid response of ions in the laser-plasma interaction is important, is
expected. Higher intensities of 1026−28W/cm2 will bring electron-positron pair cre-
ation via three-body and/or Bethe-Heitler processes [13]. Then, electron-positron
plasmas that emit high energy radiations are expected to be realized, which can
demonstrate extreme plasmas in universe [14]. Furthermore, 1029W/cm2 will lead
to vacuum breakdown which causes pair creations from the Schwinger field. By pro-
viding such a ultra high energy density state described by the nonlinear quantum
electrodynamics (QED), high power lasers could enable to study collective interac-
tions between intense field and matter in the QED stage.

2



1.2 Introduction to laser-matter interaction in the relativistic regime

1.2 Introduction to laser-matter interaction in the rel-

ativistic regime

1.2.1 Particle motion in laser fields

In the following, we introduce fundamentals of laser-matter interaction.

We start from motion of a charged particle in electromagnetic fields. A charged
particle of mass m and charge q in electromagnetic fields suffers from the Lorentz
force, which is described by the equation of motion as

dp

dt
= q

(
E+

v

c
×B

)
. (1.1)

Here, t is the time, p the mechanical momentum, v the velocity of the particle, c
the speed of light, and E and B the electric and magnetic fields, respectively.

Non-relativistic case

In the nonrelativistic limit v � c, the second term on the right-hand side (RHS) of
Eq. (1.1) is neglegible compared with the first term, and therefore, (1.1) is approxi-
mated to

dp

dt
= qE. (1.2)

Here, we consider a plane monochromatic electromagnetic (laser) field propagating
in the z direction. Such a field can be given by E = E0 cos (ωt− kz), where ω and
k are the frequency and wave number of the laser field, respectively. Note that in
the non-relativistic case, the ratio between ωt and kz can be evaluated roughly as
kz/ωt = z/ct ∼ vz/c � 1. Therefore, the laser electric field can be written as
E = E0 cosωt in the non-relativistic regime. For laser fields with a spatially uniform
amplitude |E0| = E0 = const., one can integrate Eq. (1.2) and obtain the particle
motion that oscillates in the direction of the laser electric field as

p =

∫
E0 cosωtdt =

|q|E
ω

sinωt ≡ pos. sinωt, (1.3)

where pos. = |q|E0/ω is the amplitude of the momentum of oscillatory motion due
to the laser electric field.

Here, we introduce the normalized laser amplitude a0, which is defined as a0 ≡
pos./mc. This parameter a0 is related to the laser frequency ω and amplitudes of
laser vector potential A0 and electric field E0 as

a0 =
pos.
mc

=
|q|A0

mc2
=
|q|E0

mcω
. (1.4)

Note that the vector and scalar potentials, A and Φ, are related to the electric and
magnetic fields as

3



1. INTRODUCTION

E = −∇Φ− 1

c

∂A

∂t
, (1.5)

B = ∇×A (1.6)

In the last equality in Eq. (1.4), we used Eq. (1.5) with an assumption Φ = 0. The
parameter a0 is commonly utilized to characterize the laser intensities.

The relativistic factor for the quiver motion averaged over the laser frequency,
pos. =

√
〈p2〉 = pos./

√
2, can be represented using a0 as

γos. =

√
1 +

〈
(a0 cosωt)

2
〉
=

√
1 +

a20
2
. (1.7)

Therefore, the particle motion is nonrelativistic γ ∼ 1 for a0 � 1 whereas relativistic
γ > 1 for a0 > 1.

Relativistic case

In the above, we showed that the motion of charged particle lies in the direction
of the laser electric field as seen from Eq. (1.3) in the non-relativistic case. On the
other hand, when the laser intensity becomes relativistic, a motion in the direction
of laser propagation also appears. This is due to the fact that the second term on
the RHS of Eq. (1.1), which includes the factor v/c, cannot be neglected in the
relativistic case v ∼ c.

In considering the relativistic motion, we use the following expression for the
normalized vector potential of the laser field:

a = a0 (sin (ωt− kz) δxêx + cos (ωt− kz) δyêy) , (1.8)

where e⊥ = (ex, ey) is the unit vector in the perpendicular direction, and δx and
δy are factors relating to the polarization of the laser field and satisfy the relation
δ2x+ δ

2
y = 1. For instance, (δx, δy) = (1, 0) and (0, 1) are given for linear polarization

in the x and y directions, respectively, while δx = δy = 1/
√
2 for circular polarization.

In the relativistic regime, although the equation of motion becomes complicated
due to the nonlinearity, one can obtain an exact analytical solution in the case of
plane monochromatic field which has a constant amplitude. The derivation of the
particle motion based on the equation of motion is shown in Sec. 3.1 as the zeroth
order motion in a spatially non-uniform laser field. Instead, here we derive the
particle motion in the uniform field by uding the momentum and energy conservation
laws.

The motion of charged particle in the electromagnetic field a given by Eq. (1.8)
can be derived from the conservation relation for the canonical momentum as follows.
The relativistic Hamiltonian h for a charged particle in electromagnetic field is given
by

h (t, z,pc) =

√
m2c4 + c2 (pc −mca(t, z))2, (1.9)

4



1.2 Introduction to laser-matter interaction in the relativistic regime

where pc is the canonical momentum given by pc = p + mca. Since we have
assumed a uniform field with a constant amplitude |a| = a0, the Hamiltonian has
no dependence on x and y, so that the corresponding canonical variable pcx and pcy
are found to be constants of motion, i.e.,

pc⊥ = p⊥ −mca = const. (1.10)

On the other hand, in the parallel z direction, one can find a conservation relation
pz−γmc = const. where γ is the relativistic factor of the particle. This relation can
be obtained by the energy and momentum conservation laws as follows. We consider
a system that includes a laser field having the energy N0~ω and momentum in the
z direction N0~ω/c, and a charged particle which initially has an energy of γ0mc

2

and a momentum pz0 in the z direction. When such a particle interacts with the
laser field, the particle gains energy and momentum while the laser field loses the
corresponding energy and momentum in the z direction, which can be represented
by (N0 −N) ~ω and (N0 −N) ~ω/c, respectively, where N0 − N is the absorpted
photon numbers. The energy and the z-direction momentum conservations are given
by

N~ω + γmc2 = N0~ω + γ0mc
2, (1.11)

N~ω
c

+ pz =
N0~ω
c

+ pz0. (1.12)

Combining these relations, we find

pz − γmc = pz0 − γ0mc, (1.13)

where the RHS is constant determined by the initial condition for the particle. Here,
we introduce a variable pη and a constant ζ0 that are defined by

pη ≡ pz − γmc, (1.14)

−mcζ0 ≡ pz0 − γ0mc. (1.15)

In the present section, we consider a simple case ζ0 = 1, which corresponds to the
initial condition of p0 = 0, i.e., the initial momentum of the particle is zero.

Using Eqs. (1.13) and (1.15) with ζ0 = 1, we obtain

(γmc)2 = (pz +mc)2 (1.16)

= p2z + 2mcpz +m2c2.

From this relation and the definition of the gamma factor, i.e.,mcγ =
(
m2c2 + p2

)1/2
,

5



1. INTRODUCTION

Figure 1.2: Figure-eight orbit in the uniform laser field with linear polarization (left)

and circular orbit in the uniform laser field with circular polarization (right) for a0 = 1

and 2 in the average rest frame. The initial condition for the particle is set to be

(x,p) = (0,0).

the relation between transverse and longitudinal momenta is found to be

pz =
p2
⊥

2mc
. (1.17)

By substituting the solution for p⊥ which is obtained from Eq. (1.10), the motion
in the longitudinal direction is derived as

pz =
mca2

2
=
a20
2

(
δ2x sin

2 (ωt− kz) + δ2y cos
2 (ωt− kz)

)
. (1.18)

Equations (1.10) and (1.18) denotes that, for the linearly polarized laser field with
(δx, δy) = (1, 0), the particle exhibits the figure-eight oscillation in the x-z plane
drifting in the z direction, while, for the circular polarization where δx = δy =
1/
√
2, the particle exhibits a gyration motion in the x-y plane drifting in the z

direction, respectively. In Fig. 1.2, we show the trajectories for both linear and
circular polarizations with a0 = 1 and 2 in the average rest frame that moves toward
the z direction with the same velocity as the drift motion of the particle. The above
particle motion in uniform laser field can also be derived from the Hamilton-Jacobi
equation based on the canonical Hamiltonian theory [15].

The relativistic factor for these motions are given by using the notation pη as

γ = − ω

mc2
1

2kzpη

(
m2c2 + p2

⊥ + p2η
)
. (1.19)

In the case of ζ0 = 1, it leads to

γ =
ω

mc2
1

2kzmc

(
2m2c2 + (mca0 sin η)

2
)

= 1 +
(a0 sin η)

2

2
= 1 +

a2

2
, (1.20)
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1.2 Introduction to laser-matter interaction in the relativistic regime

for the linear polarization with (δx, δy) = (1, 0), and

γ =
ω

mc2
1

2kzmc

(
2m2c2 + (mca0 sin η)

2 + (mca0 cos η)
2
)

= 1 +
a20
(
sin2 η + cos2 η

)
2

= 1 +
a20
2
, (1.21)

for the circular polarization with δx = δy = 1/
√
2. Hence, the averaged relativistic

factor for the figure-eight motion in the linear polarized laser field is obtained as

γ = 1 +
a20
4
, (1.22)

while for the gyration motion in the circular polarized laser field is as

γ = 1 +
a20
2
. (1.23)

1.2.2 Classification of laser intensity regimes

Now, we consider several important thresholds of laser intensity that classify qual-
itatively different stages of laser-matter interaction. Here, the laser intensity is
represented by the Poynting vector S and is related to the amplitude of the electric
field E0 as

I = 〈|S|〉 = c

4π

〈
E2
〉
=
c

2
ε0E

2
0 , (1.24)

in the MKS unit, where ε0 is the dielectric constant in vacuum. Thus, laser electric
field E0 is related to the laser intensity I as

E0 [V/m] = 2.744× 103
(
I [W/cm2]

)1/2
. (1.25)

The corresponding normalized amplitude a0 is obtained as

a0 = 8.55× 10−10λ [µm]
(
I [W/cm2]

)1/2
, (1.26)

for electrons.

The first threshold that separate the fundamental of high intensity laser-matter
interaction is determined by the relation between laser electric field E0 and the
Coulomb field in the hydrogen atom E1s. Namely, electrons behave as bounded
particles for E0/E1s ∼ 1, whereas as free electrons for E0/E1s � 1. The Coulomb

7



1. INTRODUCTION

electric field at the 1s orbit is given by

E1s =
e

4πε0a2bohr
= 5.15× 1011 [V/m], (1.27)

where abohr is the Bohr radius. Together with Eq. (1.25), we obtain the relation

E0

E1s
= 5.33× 10−9

(
I [W/cm2]

)1/2
. (1.28)

Thus, laser intensity that satisfies E0/E1s = 1 is found to be I = 3.52×1016 [W/cm2].
Here, ionization can also take place even when the laser intensity is below the

threshold for E0/E1s = 1 by the multiphoton ionization. In the uncertainty princi-
ple, virtual state can be sustained during the time ∆t ∼ ~/∆U where ∆U is energy
of the state. This means that the ionization can take place if photons whose energy
~ω is smaller than the ionization energy ∆U interacts with the electron bounded
in the atom. In the case of Hydrogen atom, ∆U is 13.6 eV. Considering the cross
section πa2bohr, we can evaluate the laser intensity needed to the multiphoton ion-
ization as

I =
∆U

πa2bohr∆t
= 5.12× 1014 [W/cm2]. (1.29)

The next threshold appears at the intensity where the electron motion becomes
relativistic. As is explained above, a0 ≥ 1 is the condition for relativistic behavior,
so that from Eq. (1.26), we have the threshold of the intensity

I ≥ 1.368× 1018 [W/cm2] ≡ Ie, (1.30)

above which electrons become relativistic. For protons having massmp, the intensity
that corresponds to a0 = 1 is obtained, by noting a0 ∝ 1/m, as

Ii = Ie

(
mp

me

)2

= 4.61× 1024 [W/cm2]. (1.31)

Therefore, above this intensity, not only electrons but also protons are accelerated
directly by the laser light to the relativistic energy.

The third threshold is related to vacuum breakdown and is referred to as the
Schwinger limit. This limit indicates the energy that is needed to create an electron-
positron pair from vacuum as real particles. Namely, in order to realize the pair
production, the energy equivalent to the total mass of single electron and positron,
i.e. εpair = 2mec

2 = 2 × 0.511[MeV], is necessary. Thus, the laser intensity that
satisfies the Schwinger condition ISch. is given by

ISch. ≥
εpair
λ3e

c = 8.53× 1028 [W/cm2]. (1.32)

where λe is the Compton length for electron which is equivalent to multiply the
light velocity c to the surviving time ∆t determined by the uncertainty principle
∆E∆t ∼ ~.
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1.3 Ponderomotive force and its role in laser plasma physics

Figure 1.3: Various pressures in nature and laser fields.

1.3 Ponderomotive force and its role in laser plasma

physics

1.3.1 The origin of ponderomotive force and the formulation

Ponderomotive force is the force that corresponds to the light pressure. It is found
by James Clerk Maxwell that when a light of intensity I is irradiated normally to a
surface of reflectivity R in vacuum, the light pressure

pL = (1 +R)
I

c
, (1.33)

is exerted [17]. Here, R = 0 and 1 are applied for the condition of complete ab-
sorption and reflection, respectively. In Fig. 1.3, we summarize various pressures
in nature and laser fields. For instance, pL from the sun light on the surface of
the earth I = 0.1 W/cm2 is pL = 30 picobar, while that from the laser light with
intensity of I = 1× 1016 W/cm2 is pL = 3 megabar which is equivalent to the pres-
sure at the core of the earth, i.e., 3.6 megabar. When the laser intensity reaches to
I = 1× 1021 W/cm2, the light pressure becomes pL = 0.3 terabar that corresponds
to the pressure at the core of the sun, i.e., 0.25 terabar. This indicates that the
nuclear fusion will take place at this order of intensity.

Charged particles irradiated by electromagnetic field suffer from the Lorentz
force as in Eq. (1.1). As shown in the introduction Sec. 1.2, when the amplitude of
the electromagnetic field is constant, the charged particle in laser electromagnetic
field exhibits drift motion with a constant velocity in the propagation direction of
the laser light in addition to the quiver motion. On the other hand, when the
field amplitude has spatial or temporal dependences as in the case of focused laser
beam or laser pulse, the charged particle suffers additionally from the secular light
pressure force, i.e., the ponderomotive force. As shown in Fig. 1.4, when the laser
field amplitude is spatially non-uniform in the direction of the linearly-polarized
laser electric field for instance, the figure-eight orbit is not closed being pushed by
the ponderomotive force Fp, and the particle is gradually ejected from the laser field
in the time scale that is slow in contrast to the laser frequency.

9



1. INTRODUCTION

Figure 1.4: Ponderomotive force acting on a charged particle in laser field.

Here, we denote the motion is secular when the corresponding quantity has a
finite value after averaging over the laser phase η = ωt− k · x:

〈a(η)〉 = 1

η0

∫ η+η0

η
a(η′)dη. (1.34)

The phase interval η0 is larger than the one cycle 2π of the fast variations and
is small in comparison with the characterstic phase interval τs of variation of the
slow variables. In the nonrelativistic case where η ∼ ωt is satisfied, the phase
averaging Eq. (1.34) can be written in terms of averaging over time t0 that is large
in comparison to the fast time scale ω−1. We note here that spatial variations of
all the quantities are assumed to be little compared with the excursion length of
the quivering particle in the high frequency laser field. Such a situation can be
represented by using the eikonal description where the slow and fast variations of
the quantity are expressed by the amplitude and phase, respectively, as

a (t,x) = a0 (t,x) e
iη(t,x), (1.35)

which we will introduce in deriving the laser beam proparation under the paraxial
approximation in Sec. 1.3.2.

Standard derivation of the ponderomotive force

In physics, there often exists such a situation where dynamical system exhibits two
or more typical time and/or spatial scales. In such a case, the averaging method is
one of the useful ways to analyze the dynamics [18, 19]. In the averaging method,
based on the scale separation used in Eq. (1.34), we split physical quantities into
two as

f = 〈f〉+ [f ]os. = fs + ff , (1.36)

where [ ]os. denotes taking fast oscillation part, and subscripts s and f represent
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1.3 Ponderomotive force and its role in laser plasma physics

slowly and fastly varying parts, respectively. Namely, we have relations

1

η0

∫ η+η0

η
fs dη 6= 0, (1.37)

1

η0

∫ η+η0

η
ff dη = 0. (1.38)

Here, based on the averaging method, we derive the ponderomotive force that
is expressed by the gradient of the field amplitude. We separate the equation of
motion Eq. (1.1) using

E = Ef , (1.39)

B = Bf , (1.40)

p = pf + ps, (1.41)

v = vf + vs, (1.42)

together with the eikonal description for the field,

E = E0 (η,x) sin η. (1.43)

Taking average over η, we obtain the slow scale equation,

∂ps

∂t
+ vs · ∇ps + 〈vf · ∇pf 〉 = q

〈vf

c
×B

〉
. (1.44)

Then, subtracting Eq. (1.44) from the original equation of motion, we obtain the
fast scale equation

∂pf

∂t
+ [vf · ∇pf ]os. = q

(
E+

vs

c
×B+

[vf

c
×B

]
os.

)
. (1.45)

Here, we consider a perturbation expansion according to the expansion parameter
ε defined as

l f−1
s ∇fs (x, η) ∼ ε and l f−1

f ∇ff (x, η) ∼ ε, (1.46)

where l is the excursion length of the particle in the high frequency field. This
relation indicates that both slow and fast components vary gently in space compared
with l. Here, l is written in terms of the normalized laser vector potential a0 as
l = a0λL/2π for the initial condition p(η = 0) = 0, i.e., the initial momentum of the
particle is zero. The value of the excursion length l for the typical laser wavelength is
obtained as l [µm] = 0.131 a0 for λL = 0.82µm and l [µm] = 0.159 a0 for λL = 1µm,
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1. INTRODUCTION

Figure 1.5: Excursion length l of an electron in a uniform laser field (dotted lines) and

the ratio between l and the laser spot radius w (dash-dot line and solid line). The input

laser power P is fixed to 1 TW = 1012 W for two lines in the left side and 1 PW = 1015

W for two lines in the right side, respectively. The laser wavelength is λL = 0.82 µm

and the initial condition of the particle is given by p(η = 0) = 0. The upper scale

shows the corresponding laser intensity evaluated by the relation I = P/(πw2) for the

case with P = 1 PW.

respectively. We also order the temporal variation of the amplitude part of the
eikonal field given in Eq. (1.43), i.e. |E| = E0, as

1

E0

∂E0

∂η
∼ ε. (1.47)

In Fig. 1.5, we evaluate the excursion length l and the ratio between l and the
laser spot radius w, by which we can estimate the value of the expansion parameter
ε, i.e., l/w ∼ ε. Here, we consider two cases where the input laser power P is
fixed to P = 1 TW (= 1012 W) and P = 1 PW (= 1015 W), respectively. The
laser wavelength is assumed to be λL = 0.82 µm for both cases. Note that the
laser intensity I is related to the laser power P and spot radius w as I = P/(πw2),
which is shown in the upper scale in Fig. 1.5 for the case with P = 1 PW. Here,
the dependences of l and l/w on the spot radius w are obtained as follows. The
excursion length l, which is in proportion to the normalized amplitude a0 and then
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1.3 Ponderomotive force and its role in laser plasma physics

to the square root of intensity I, is found to be proportional to w−1. The dotted
lines in Fig. 1.5 show the dependence l ∝ w−1, while the dash-dot line and solid
line exhibit l/w ∝ w−2. From this figure, we see that for P = 1 TW, l/w is smaller
than unity down to the focusing limit w ∼ λL, whereas for P = 1 PW, l/w < 1 is
satisfied only when the spot radius is larger than 4 µm. These limitations denote
the regime where the expansion Eq. (1.46) is valid.

Non-relativistic case

Firstly, we consider the non-relativistic limit v/c � 1, in which the slow and fast
scale equations Eqs. (1.44) and (1.45) are reduced to

∂vs

∂t
+ vs · ∇vs + 〈vf · ∇vf 〉 = 0, (1.48)

∂vf

∂t
+ [vf · ∇vf ]os. =

q

m
E, (1.49)

where the electric field is given by E = E0 (t,x) sinωt, and the ordering Eq. (1.47)
is written as ω−1∂tE0 ∼ ε. Neglecting the first order term with respect to ε in
Eq. (1.49), we obtain the zeroth order equation of motion for the fast component,

∂v
(0)
f

∂t
=

q

m
E, (1.50)

By integrating Eq. (1.50), we obtain the zeroth order solution for vf as

v
(0)
f =

q

m
E0

∫
sinωtdt = − q

mω
E0 cosωt, (1.51)

which denotes the fundamental oscillation by the laser electric field.

On the other hand, for the slow part, the second and third terms on the left-hand
side (LHS) of Eq. (1.48) can be neglected in the zeroth order of ε, so that we obtain

v
(0)
s = 0. In the first order of ε, Eq. (1.48) becomes

∂v
(1)
s

∂t
= −〈vf · ∇vf 〉 . (1.52)

We here substitute the zeroth order solution for v
(0)
f , which is given in Eq. (1.51),

in the RHS of Eq. (1.52) that leads to

∂v
(1)
s

∂t
= − q2

m2ω2
E0 · ∇E0

〈
cos2 ωt

〉
= − q2

4m2ω2
∇E2

0. (1.53)

In the first order, we can use the relation ∂t = d/dt, and therefore, we obtain the
slow scale equation of motion up to the first order of ε as

m
dvs

dt
= − q2

4mω2
∇E2

0. (1.54)
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The RHS is referred to as the ponderomotive force. From this discription, one
can see that charged partcles are ejected inevitably from the regime where the field
amplitude is large regardless of the sign of the charge. The ponderomotive force thus
plays an important role in the interaction between plasmas and spatially localized
laser fields, such as laser beam propagation in various mediums, laser wake field
generation and the resultant particle acceleration.

Relativistic case

In the relativistic laser-plasma interaction in high intensity regime, the ponderomo-
tive force dominates the interaction dynamics. This is because such a intense laser
field is achieved by focusing the laser light to a small spot and/or reducing the pulse
length, while the particle excursion length becomes larger as the field amplitude in-
creases. The ponderomotive force, which is proportional to the laser field amplitude
and its gradient as in Eq. (1.54), thus increases in such a high intensity situation.

In the relativistic case, the v ×B terms in Eqs. (1.44) and (1.45) and the rela-
tivistic factor γ (= p/mv), which is approximated as γ ∼ 1 in the non-relativistic
limit, have to be taken into account. Here, it is useful to rewrite the equation of
motion in terms of the normalized vector potential a as

dp

dt
= mc

(
−∂a
∂t

+
p

γm
× (∇× a)

)
. (1.55)

The scale separation leads to

∂ps

∂t
+ vs · ∇ps + 〈vf · ∇pf 〉 = c

〈
pf

γ
× (∇× a)

〉
, (1.56)

∂pf

∂t
+ [vf · ∇pf ]os. = −mc

∂a

∂t
+ c

[
p

γ
× (∇× a)

]
os.

(1.57)

In the zeroth order of ε, we obtain the slow and fast scale equations as

∂p
(0)
s

∂t
= 0, (1.58)

∂

∂t

(
p
(0)
f +mca

)
= 0. (1.59)

The fast equation Eq. (1.59) denotes the canonical momentum conservation in the

uniform field, from which the solution for the fast component is obtained as p
(0)
f =

−mca. For the slow component, we have p
(0)
s = 0. In the first order of ε, the slow

scale equation is obtained as

∂p
(1)
s

∂t
= − 1

m

〈
pf

γ
· ∇pf

〉
+ c

〈
pf

γ
× (∇× a)

〉
. (1.60)

By substituting the zeroth order relation a = −pf/mc and using the vector formula
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1.3 Ponderomotive force and its role in laser plasma physics

a× (∇× a) =
1

2
∇a2 − (a · ∇)a, (1.61)

we obtain

dps

dt
= −mc

2

2γ
∇a2, (1.62)

where ∂t = d/dt which is satisfied in the first order approximation os utilized to the
LHS. Equation (1.62) is the first-order slow scale equation of motion, and the RHS
represents the relativistic ponderomotive force, which is derived on the basis of the
first order approximation with respect to ε [20, 21, 22]. Therefore, the ponderomotive
force is represented as being proportional to the laser field amplitude also in the
relativistic regime.

1.3.2 Ponderomotive force and laser beam propagation in plasmas

Next, we consider the propagation of spatially localized laser electromagnetic field
in plasmas. In this case, since the amplitude profile of the laser field in non-uniform,
the ponderomotive force exists and plays a role in evacuating the peripheral plasmas.
In such a case, the force balance between ponderomotive force and the electrostatic
force originating from the charge separation of plasmas determines the interaction
dynamics and structure such as plasma channeling formation and laser self-focusing.

To describe such a propagation dynamics, charge separation and Coulomb force,
and resultant modulation to the laser field, have to be self-consistently determined.
For this purpose, governing equations, such as the nonlinear Schrödinger (NS) equa-
tion, wave kinetic equation, etc., have been explored [23, 24].

In this section, in order to see the effect of ponderomotive force in determining the
laser beam propagation, we derive the NS equation which describes the evolution of
the envelope of a laser field in plasmas. The NS equation is obtained by coupling the
field equations and the equation of motion for electrons, with an assumption that the
ponderomotive force and the Coulomb force originated from the charge separation
are balanced leading to a steady state in electron motion. The ponderomotive force is
thus a key ingredient in describing the self-consistent laser plasma interactions. Note
that in deriving the NS equation, the equation of motion for ions is not considered,
because the time scale of ion motion is much slower than the laser period and also
the secular response of electrons to the ponderomotive force and electrostatic charge
separation force, due to the large mass ratio between electron and ion.
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Field equations

We start from the Maxwell equations,

∇ ·E = 4πρ, (1.63)

∇ ·B = 0, (1.64)

∇×B =
1

c

∂E

∂t
+

4π

c
J, (1.65)

∇×E = −1

c

∂B

∂t
, (1.66)

where ρ and J are the charge and current densities, respectively. Introducing the
scalar and vector potentials defined by Eqs. (1.5) and (1.6), and normalizing them
as

a =
eA

mec2
, (1.67)

φ =
eΦ

mec2
, (1.68)

where e and me are the charge and rest mass of electron, respectively, we rewrite
the Maxwell equations Eqs. (1.65) and (1.66) in terms of a and φ as

1

c2
∂2a

∂t2
−∇2a+∇ (∇ · a) = 1

c2

[
−c∂ (∇Φ)

∂t
+

4πe

mec
J

]
, (1.69)

−∇2φ− 1

c

∂ (∇ · a)
∂t

=
4πe

mec2
ρ. (1.70)

Here, we employ the Coulomb gauge given by

∇ · a = 0. (1.71)

Neglecting the longitudinal current component represented by the term c∇(∂tφ) on
the RHS of Eq. (1.69), we obtain the wave equation for the vector potential,

1

c2
∂2a

∂t2
−∇2a =

4πe

mec
J, (1.72)

and the Poisson equation for the scalar potential,

−∇2φ =
4πe

mec2
ρ. (1.73)
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Here, using an approximation vi � ve, we express J in terms of electron velocity
ve as

J = −eneve + Zenivi ∼ −eneve. (1.74)

Then, Eq. (1.72) becomes

∂2a

∂t2
− c2∇2a = −ω2

p

ne
Zn

ve

c
, (1.75)

On the other hand, for the charge density ρ in the Poisson equation, we use the
relation

ρ = −ene + eZni = en
(
Z − ne

n

)
, (1.76)

and obtain

c2∇2φ = ω2
p

( ne
Zn
− 1
)
. (1.77)

Equations (1.75) and (1.77) are the field equations which we will utilize in deriving
the NS equation.

Equation of motion

The equation of motion for electron that suffers from the Lorentz force from the
laser electromagnetic field and the Coulomb force from the static electric field due
to charge separation is given by

(
∂

∂t
+

p

γeme
· ∇
)
p = mec

∂a

∂t
+mec

2∇φ− mec
2

γe

(
1

2
∇a2 − (a · ∇)a

)
. (1.78)

We assume that the envelope of the field is x-dependent, i.e., f = f(x), but approx-
imately uniform satisfying Eq. (E.10). Then, the solution of Eq. (1.78) in the order
of ε0 is obtained as

pf = meca+ O (ε) , (1.79)

where the subscript f denotes fast varying component oscillating in the laser phase
η = ωt − kz. Substituting the zeroth-order solution Eq. (1.79) to Eq. (1.78) and
averaging it over η, one can obtain the slow component of the equation of motion
as follows:(

∂

∂t
+

p

γeme
· ∇
)
ps = mec

2∇φ (x)− mec2

2γe
∇a2 (x) + O

(
ε2
)
, (1.80)

where variable with subscript s corresponds to the slow component averaged over
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the phase η and the overline denotes taking average in cycle η. The second term on
the RHS of Eq. (1.80) is the first order ponderomotive force originating from terms
v × (∇× a) and (pf · ∇)pf .

Here, we consider a steady state in the time scale of electron response that is
assumed to be slow compared with the laser period. In such a condition, the LHS of
Eq. (1.80) can be neglected and thus we have the following balance relation between
the ponderomotive force and charge separation force:

mec
2∇φ (x) = mec2

2γe
∇a2 (x) + O

(
ε2
)
. (1.81)

The scalar potential φ on the LHS of Eq. (1.81) can be expressed in terms of the
electron density ne (x) with the help of the Poisson equation Eq. (1.77). Then, the
slow response of the electron density to the field variation is found to be described
as

ω2
p

ne (x)

Zn
= ω2

p +∇ ·
c2

2γe
∇a2 (x) + O

(
ε3
)
. (1.82)

The Nonlinear Schrödinger equation

Now, by using Eqs. (1.79) and (6.1), we express the electron density ne and velocity
ve on the RHS of Eq. (1.75) in terms of the field a as

∂2a

∂t2
− c2∇2a = −

[
ω2
p +

mec2

2γe
∇a2 (x)

]
a

γe
+ O

(
ε3
)
. (1.83)

Here, we again employ the paraxial approximation where Eqs. (E.4) and (E.10)
are satisfied, and introduce the eikonal description,

a (x⊥, η) =
1

2

(
a0 (x⊥, η) e

iη + c.c.
)
êa, (1.84)

where êa is the unit vector in the direction of a. Note that the relation between a
and the amplitude a0 in Eq. (1.84) is written as

〈
a2
〉
=
a20
2
, (1.85)

where the brackets indicates the average over the phase η.

Next, we transform the coordinate variables from (x, y, z, t) to (x, y, z, η (t, z)).
In the new coordinates, the derivative operators on the LHS of Eq. (1.83) is written
as

∂2

∂t2
− c2∇2 = ω2

p

∂2

∂η2
− c2

(
∇2

⊥ +∇2
‖

)
+ 2c2k∇‖

∂

∂η
, (1.86)
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where ∇⊥ = (∂x, ∂y) and ∇‖ = ∂z.

Employing the above descriptions Eqs. (E.11) and (1.84), we can rewrite the
wave equation Eq. (1.83) as

(
eiη

[
∂a0
∂η
− i

2

∂2a0
∂η2

+
ic2

2ω2
p

(
∇2

⊥ +∇2
‖

)
a0 +

i

2

(
1− 1

γe

[
1 +

1

ω2
p

∇ · c
2

4γe
∇a20

])
a0

]

+ c.c.

)
êa + O

(
ε3
)
= 0. (1.87)

By assuming the paraxial approximation, ∂2η � ∂η and ∇2
‖ � k∇‖, and neglecting

terms consist of ∂2η and ∇2
‖, Eq. (1.87) leads to

∂a0
∂η

+
ic2

2ω2
p

∇2
⊥a0 +

i

2

(
1− 1

γe

)
a0 −

i

2

a0
k2pγe

∇ ·
(
a0
2γe
∇a0

)
+ O

(
ε3
)
= 0. (1.88)

For simplicity, we here consider a circular polarized laser field in which γe has no
oscillatory component and therefore Eq. (1.88) can be written as

∂a0
∂η

+
ic2

2ω2
p

∇2
⊥a0 +

i

2

(
1− 1

γe

)
a0 −

i

2

a0
k2pγe

∇ ·
(
a0
2γe
∇a0

)
+ O

(
ε3
)
= 0. (1.89)

Weakly relativistic approximation

When we assume a weakly nonlinear regime where γe can be expanded as

1

γe
=

1√
1 + a2

∼ 1− 1

2
a2 = 1− |a0|

2

4
, (1.90)

Eq. (1.89) is approximated to

∂a0
∂η
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2ω2
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4
)∇ ·
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2

4
)
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2
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)
+ O

(
ε3
)
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(1.91)

which can be written as

∂a0
∂η

+
ic2

2ω2
p

∇2
⊥a0 +

i

2

|a0|2

4
a0 −

i

2

a0
k2p
∇ ·
(a0
2
∇a0

)
+ O

(
a5
)
+ O

(
ε3
)
= 0. (1.92)
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Then, by neglecting terms in the order of a50 and ε
3 on the basis of the weak nonlinear

and the paraxial approximations, we finally obtain the nonlinear Schrödinger (NS)
equation given by

∂a0
∂η

+
ic2

2ω2
p

∇2
⊥a0 +

i

8
|a0|2 a0 −

i

2

a0
k2p
∇2 |a0|2 = 0. (1.93)

The NS equation is nonlinear having two terms that depend on a30; one is the third
term on the LHS of Eq. (1.93) which originates from the expansion of the relativistic
factor, and another is the fourth term on the LHS of Eq. (1.93) which originates from
the ponderomotive force term in the electron density shown in Eq. (6.1). We also
note that the two second spatial derivative terms in the NS equation have different
origins. Namely, the second term on the LHS of Eq. (1.93) is originated simply from
the spatial derivative term in the wave equation, i.e., the second term on the LHS
of Eq. (1.83), whereas, the last term on the LHS of Eq. (1.93) is originated from
the ponderomotive force that is proportional to the gradient of the field amplitude
a0. Therefore, the ponderomotive force affects the order of nonlinearity and also the
order of spatial derivative in the NS equation.

Solution for the Nonlinear Schrödinger equation

We consider obtaining the approxinated solution for the electron density response
to the field variation described by Eq. (6.1), i.e.,

ω2
p

ne (x)

Zn
= ω2

p +∇ ·
c2

2γe
∇a2 (x) + O

(
ε3
)
. (1.94)

using the expansion

ne (x) = n(0)e + εn(1)e (x) + ε2n(2)e (x) + · · · . (1.95)

Here, ε is the smallness parameter defined in Sec. 1.3.2 as k−1∇|a (x) | ∼ ε � 1.
The zeroth order component of Eq. (1.94) is given by

ω2
p

n
(0)
e

Zn
= ω2

p, (1.96)

which derives the zeroth order solution

n(0)e = Zn. (1.97)

The first order component of Eq. (1.94) is given by

ω2
p

n
(1)
e (x)

Zn
= 0, (1.98)

which leads to
n(1)e = 0. (1.99)

The second order component of Eq. (1.94) is given by

n
(2)
e (x)

Zn
=
c2

ω2
p

∇ · 1

2γe
∇a2 (x). (1.100)

This equation denotes the electron density perturbation due to the ponderomotive
force, which is balanced with the Coulomb force of the plasma charge separation.
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1.4 Motivation and outline of the present study

I. Theoretical study on higher order nonlocal effects of relativistic
ponderomotive force in high power lasers

As is described in Sec. 1.3, ponderomotive force, which corresponds to the pres-
sure of electromagnetic fields, plays a dominant role in high intensity laser-matter
interection. Moreover, in recent years, more delicate control of laser field profiles
in plasmas for various applications is anticipated. For instance, a flat top super
Gaussian beam, in which the ponderomotive force is significantly weakened near the
axis, is considered to be preferable in maintaining long interaction between laser
and particles, and also in achieving efficient particle acceleration via the laser piston
and/or Coulomb explosion mechanism [25, 26].

In such a case, the force estimated from the conventional formula, i.e., the force
proportional to the local field gradient, tends to be diminished, so that a residual
higher order force associated with nonlocal profile will become important. Therefore,
designing laser field patterns up to fine scales and controlling the interaction are key
issues to lead experiments using such high power lasers to success. In order to realize
them, it is important to take into account effects from the nonlocal particle motion
in intense laser field on the ponderomotive force up to higher orders, which are not
simply expressed by the local field gradient as the Fick’s law [27].

Furthermore, the effect of plasmas, such as charge separation and Coulomb force,
and resultant modulation to the laser field, has to be self-consistently determined in
such a situation. However, there exists no formal theory to describe them correctly
except direct numerical integration which cannot provide a prospective guideline.

To circumvent this difficulty, we herein explore a theory of relativistic pondero-
motive force that includes nonlocal effects up to higher orders. One possible ap-
proach to this problem is to directly investigate the higher order terms based on the
averaging method, which we showed in Sec. 1.3.1 up to the first order of ε. However,
the result is not ensured up to higher orders since the method is not subject to
the Hamiltonian structure which is essential in describing long time scale dynamics.
Here, as a method keeping the Hamiltonian structure up to higher orders but avoid-
ing the complication of canonical perturbation due to the usage of the limited class
of canonical variables, we employ the variational principle in noncanonical phase
space coordinates incorpolated with the Lie transformation which is referred to as
the noncanonical Lie perturbation method [28].

By properly choosing the gauge function and coordinate transformations, we
obtain a secular equation of motion describing the ponderomotive force including the
nonlocal effect up to higher orders. The formula is accessible to the regime in which
laser fields exhibit characteristic structures such that higher derivatives of the field
amplitude regulate the interaction. As an example, we apply the obtained formula
to study the particle motion in a flat-top super Gaussian and a concave hollow laser
beam structures. In these profiles, since the local field gradient is diminished near
the beam axis, the higher-order terms are expected to dominate the dynamics. In
order to examine the nonlocal ponderomotive theory we propose here, we further
study the propagation of super Gaussian laser beams in plasmas on the basis of the
particle-in-cell (PIC) simulation. The self-consistent interaction are considered to
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result from plual physical processes such as the higher order ponderomotive force
near the beam axis, the resultant modulation of plasma density, generation of the
Coulomb field, and change of linear and nonlinear susceptibilities, which could be
described by generalizing the nonlinear Schrödinger equation system to include the
higher order nonlocal effects.

Chapters for Part I are organized as follows: In Chap. 2, we introduce the non-
caonical Lie perturbation method used in this study. In Chap. 3, we perform a
noncanonical Lie perturbation analysis, and a new formula for the ponderomotive
force that includes higher order nonlocal effects up to the third order of the ex-
pansion parameter ε is obtained. Based on the derived formula, we investigate its
analytical solution in Chap. 4. Comparison with the solution for the conventional
first order formula is discussed. In Chap. 5, we solve the third order formula numer-
ically assuming a flat-top super Gaussian and a concave hollow laser beam profiles.
Comparison with the direct integration of the particle orbit demonstrates the va-
lidity of the formula derived here with a sufficient convergence of the expansion
series up to the third order of ε. In Chap. 6, we carry out a PIC simulation for the
propagation of super Gaussian laser beams in plasmas. A prominent moduration
of electron density and laser beam profiles is found to appear especially in the case
of flatter super Gaussian beam. We discuss the role of the higher order nonlocal
ponderomotive force in describing such a self-consistent interaction based on the
nonlinear Schrödinger equation.

II. Numerical study on the interaction between high power laser and
cluster medium

The interaction between high power laser and matter has opened up various kinds of
application such as high energy particle acceleration, generation of intense radiations
from tera-heltz to EUV and x-ray, and neutron production [6]. Here, the state of
material is a key ingredient which determines the characteristics of the interaction,
and has to be chosen properly according to the purpose. For instance, besides solid
and gas, cluster is interested, which exhibit prominent features essentially due to the
existence of surface, i.e., a large ratio of the surface to the volume. A cluster mode
(slow mode) is one of the examples where the laser can propagate even when the
average density of the medium is higher than the critical density, owing to the surface
polarization of the cluster [29]. Neutron generation for nuclear fusion utilizing the
Coulomb explosion of clusters has been intensively studied [9, 30]. Recently, high
energy ion acceleration has been realized by the interaction between a high-contrast
intense laser field and a medium composed of gas and clusters [31].

To control the laser-matter interaction in achieving such various applications, the
internal structure of target mediums is considered to play an important role. The
dependence of laser propagation and ion accerelation mechanisms on the state and
structure of the target, e.g., the gas density, thickness of the solid film, cluster radius
and packing fraction of cluster mediums, have been investigated assuming laser
intensities up to 1020−21 W/cm2, which are controlable in the current experiments.

In this study, we investigate the interaction between laser and cluster medium
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extending the intensity higher than 1022 W/cm2 up to 1024 W/cm2, which is ex-
pected to be achieved in near future [32]. In this regime, not only electrons but also
ions can be accelerated to relativistic velocities. One of new acceleration mecha-
nisms achieved in this regime is the laser piston acceleration where a solid thin film
is accelerated as a whole by the radiation pressure [25]. In such a regime, the ions
in the cluster medium is expected to suffer from accelerations both by the direct
radiation pressure and by the Coulomb explosion inside of the medium. In order
to understand the synergistic effects of these acceleration mechanisms and their de-
pendence on the internal structure of target mediums, we perform PIC simulations
for the interaction between laser and cluster mediums consisting of the same total
mass, i.e. same packing fraction, but having different cluster radius, using a fully-
relativistic electromagnetic PIC code (EPIC3D) [33, 34].

Chapters for Part II are organized as follows: In Chap. 7, the background of the
studies on laser-cluster interaction is described. Here, we introduce fundamentals
of the Coulomb explosion of clusters and discuss the maximum ion energy that
can be achieved by the single cluster Coulomb explosion. In Chap. 8, we carry out
PIC simulations for the interaction of lasers in the intensity range of 1022−24 W/cm2

with cluster mediums and also with a solid thin film. Comparisons of the interaction
dynamics and achieved ion energies among cases of different targets are discussed in
detail.

We summarize the studies presented in Parts I and II in Sec. 9. Derivation
of the higher-order ponderomotive force using the averaging method is given in
Appendix A. Appendix B shows a different choice of noncanonical coordinate that
can also remove oscillations from the equation of motion in deriving the higher
order ponderomotive force. In Appendix C, we assume an additional component of
the laser vector potential, i.e., a small ε-order component in the direction of laser
propagation, to satisfy the Maxwell equations in vacuum up to the first order. Lie
perturbation analysis with such an additional component is performed, and its effect
to the higher order ponderomotive force is discussed. In Appendix D, a calculation to
verify the discussion on the possibility for expressing the higher order ponderomotive
force by a potential form, which is given in Sec. 3.4.3, is performed. In Appendix E,
we derive the Hermite-Gauss mode laser beam propagation in vacuum based on
the paraxial approximation for the basic understanding of laser beam propagation
discussed in Chap. 6. In Appendix F, convergence of the PIC simulation performed
in Part II is checked by using different super particle numbers and mesh sizes.
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Chapter 2

Methodology of

Hamiltonian-based perturbation

analysis

The ponderomotive force is derived generally by applying the averaging method to
the equation of motion, and expressed as a force proportional to the local field gra-
dient on the basis of the first order approximation with respect to the expansion
parameter ε. However, in considering fine scale controll of the laser-matter interac-
tion in high intensity regime, higher-order effects from the nonlocal particle motion
will become important.

One approach to explore the higher-order nonlocal ponderomotive force is to
simply extend the analysis based on the averaging method up to higher orders.
However, the result is not ensured up to higher orders since the method is not
subject to the Hamiltonian structure which is essential in describing long time scale
dynamics.

Here, among various perturbation methods, we have reached an idea to em-
ploy the noncanonical Lie perturbation method [28]. This method is based on the
phase space Lagrangian formalism which allows us to derive the perturbed motion
rigoulously up to higher orders maintaining the Hamiltonian structure. Further-
more, incorpolating with the noncanonical Lie transformation, the methodology is
perspective in spliting oscillatory and secular motions up to higher orders.

The noncanonical Lie perturbation method has been so far introduced to gyroki-
netics for describing magnetically-confined fusion plasmas [36, 37]. The method is
found to be efficient and powerful in describing the long time scale dynamics with
rigolous energy conservation based on the gyro-center coordinate. The method is
also introduced to beam orbit analyses in free-electron lasers (FEL) [38, 39]. These
studies demonstrate that the methodology is superior in describing the relativistic
particle motion in complicated electromagnetic fields.

In Sec. 2.1, we at first introduce the canonical and noncanonical Hamiltonian
mechanics, and in Sec. 2.2, we describe the Lie perturbation theory together with
determining the degrees of freedom of the gauge function and Lie generator for the
near-identity transformation we employ in this study.
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2. METHODOLOGY OF HAMILTONIAN-BASED PERTURBATION ANALYSIS

2.1 Hamiltonian mechanics

2.1.1 Canonical theory

The equation of motion is derived from applying the variational principle to the
action S. The variational principle is the fundamental determination valid for all
the mechanical system: The action S, a integrated quantity determined for the
system, takes a minimum value for the actual motion of a particle. In other words,
the variation of the action δS becomes zero. Since the physics unchanges under the
Lorentz transformation, and so the equation of motion does, the action S must be a
scalar. In this paper, we consider the system which includes electromagnetic fields
and scalar particles. The action S for such a system is expressed as a sum of three
parts, S = Sm+Smf +Sf where Sm, Smf and Sf correspond to the action denoting
the motion of free particles, interaction between particles and fields, and behavior
of fields, respectively.

2.1.1.1 Action integral and variational principle

The action for a free scalar particle Sm is constracted from the quantities that
characterize the particle in the system. A possible scalar integral is

−mc
∫
ds, (2.1)

where m is the rest mass of the particle, c the light velocity and ds the world
distance. The coefficient of the integral is determined so that Sm reduces to that of

the nonrelativistic, S
(nr)
m , expressed as

S(nr)
m =

∫ t2

t1

L(nr)
m dt, (2.2)

where L
(nr)
m is the nonrelativistic Lagrangian defined by

L(nr)
m =

1

2
mv2. (2.3)

Here, v is the velocity of the particle, and t1 and t2 are the time in which the particle
arrives at the starting and ending points of the trajectory variation, respectively.
Then, Sm is obtained as

Sm = −mc2
∫ √

1− v2

c2
dt. (2.4)

The action for the interacting part Smf consists of the particle charge q, which is
only the quantity denoting the response of particles to the fields, and the four vector
for the field potential Aµ = (φ,−A). Then, Sm is defined as

Smf = −q
c

∫
Aµdx

µ =

∫ (q
c
A · v − qφ

)
dt. (2.5)

where xµ = (ct,x) and bold characters denote N dimensional vectors in the system
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2.1 Hamiltonian mechanics

having N degrees of freedom. In this paper, we follow the Einstein summation
convention: When an indexed variable appears twice in a single term, we take
product in that term over all the index values.

From the sum of the actions S = Sm+Smf , the relativistic Lagrangian describing
the particle motion in electromagnetic fields is obtained as

L = −mc2
√

1− v2

c2
+
q

c
A · v − qφ. (2.6)

The Hamiltonian h, defined by the relation h = pc · q̇− L, is written as

h =

√
m2c4 + c2 (pc − qA/c)2 + qφ, (2.7)

where q̇ = v and dot ˙ denotes total derivative by the independent variable t. Here,
pc is the canonical momentum corresponding to the coordinate q and has a relation
between the mechanical momentum p as

pc = p+
q

c
A (2.8)

2.1.1.2 Hamilton equation of motion

The action S is expressed in terms of the Hamiltonian h and the canonical phase
space coordinate variables q,pc as

S =

∫
(pc · q̇− h) dt =

∫
(−hdt+ pc · dq) . (2.9)

The variation of the action Eq. (2.9) in the 2N dimensional phase space (q,pc) is
carried out as

δS = δ

∫
(pc · q̇− h) dt =

∫ [(
q̇− ∂h

∂p c

)
δpc −

(
ṗc +

∂h

∂q

)
δq

]
dt. (2.10)

Then, the variational principle δS = 0 leads to the Hamilton equation of motion in
canonical coordinate,

dq

dt
=
∂h

∂p c

,
dpc

dt
= −∂h

∂q
. (2.11)

Equation (2.11) can be also derived by using the notation of phase space Lagrangian
L (t;q,pc) and taking its variation. In the phase space Lagrangian formalism, we
describe the action integral as

S =

∫ (
pc ·

dq

dt
− h (t;q,pc)

)
dt =

∫
L (t;q,pc) dt. (2.12)

Then, the variational priciple leads to the Eular-Lagrange equation which has the
same form as the Hamilton equation Eq. (2.11).
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2.1.1.3 Noether’s theorem

One of the most important theorems incoorpolated with the Hamiltonian mechanics
is the Noether’s theorem. This theorem indicates the relation between conservation
laws of various quantities and the corresponding symmetry of the system. Assume
that the system has a translation symmetry so that Lagrangian has an invariance
under the infinitesimal transformation,

qj 7→ qj′ = qj + δqj . (2.13)

The change of Lagrangian must be zero, e.g. δL = 0, under the transformation
Eq. (2.13), where δL is calculated as

δL = L
(
q′, q̇′, t

)
− L (q, q̇, t)

= L (q, q̇, t) +
∂L

∂qj
δqj +

∂L

∂q̇j
δq̇j − L (q, q̇, t)

=
∂L

∂qj
δqj +

d

dt

(
∂L

∂q̇j
δqj
)
− δqj d

dt

(
∂L

∂q̇j

)
=

[
∂L

∂qj
− d

dt

(
∂L

∂q̇j

)]
δqj +

d

dt

(
∂L

∂q̇j
δqj
)
. (2.14)

Comparing with the Eular-Lagrange equation,

∂L

∂qj
− d

dt

(
∂L

∂q̇j

)
= 0, (2.15)

we see that the first term on the righthand side (RHS) of Eq. (2.14) is zero. Then,
δL = 0 yields

d

dt

(
∂L

∂q̇j
δqj
)

= 0, (2.16)

which leads to

∂L

∂q̇j
= const. (2.17)

By using the relation

pc =
∂L

∂q̇
, (2.18)

we obtain the conservation law for the canonical momentum,

pc = const. (2.19)

When the system is independent of one of the coordinate variables qj , and therefore
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the Hamiltonian does not consists of qj , the equation of motion for the corresponding
canonical variable becomes

dpjc
dt

= 0, (2.20)

which indicates that the quantity pjc is an invariant of the motion. The ignorable co-
ordinate qα is related to the symmetry of the system. This is so called the Noether’s
theorem: When the system has a symmetry, the corresponding invariant exists.

The Noether’s theorem indicates that if we find an ignorable coordinate, then
the number of the equations to be solved is reduced. In other words, the RHS of
the Hamilton’s equation Eq. (2.11) is zero for the partial derivative by the ignorable
coordinate, and consequently, the corresponding coordinate variable is found to be
constant. One of the merits to use the Hamiltonian formalism is that by transforming
coordinate to that includes ignorable coordinates, we can significantly simplify the
problem; namely, we can reduce the dimension to be solved. However, the coordinate
transformation (q,pc) 7→ (Q,Pc) in the canonical Hamilton theory is restricted to
canonical transformations which require that, in the new coordinate (Q,Pc), the
Hamilton’s equation with a scalar function K (new Hamiltonian),

dQ

dt
=
∂K

∂Pc
,

dPc

dt
= −∂K

∂Q
, (2.21)

is satisfied. This restriction sometimes makes it difficult to analyze the problem by
using the canonical Hamilton theory. This is the reason why many problems still
have been investigated on the basis of the equation of motion that employs noncanon-
ical but physically understandable coordinates despite of the brilliant mathematical
structure of the canonical theory.

2.1.2 Noncanonical theory

As mentioned in the previous section, coordinates available in the canonical theory is
restricted to the canonical coordinates; such coordinates are not always appropriate
to describe the motion in physically clear way. For this reason, here we consider
extending the canonical Hamilton theory to that appricable to the noncanonical
coordinate. This is realized by introducing a 2N + 1 dimensional time and phase
space vector

zµ = (t;q,pc), (2.22)

and the corresponding covariant vector

γµ = (−h;pc,0), (2.23)

where the µ = 0 components in zµc and γcµ correspond to time and the minus sign
of the Hamiltonian, respectively. By using these vectors, the integrant of the action
integral is expressed as

δS = δ

∫
γµdz

µ = 0. (2.24)
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Here, Latin indices run from 1 to 6 whereas Greek from 0 to 6. The scalar γµdz
µ ≡ γ̂

is referred to as the fundamental one-form or phase space Lagrangian.

Here, one recongizes that, since the integrant is written in a scalar form, Eq. (2.24)
is satisfied in an arbitrary coordinate not restricted to the canonical one. Then, we
here consider a new arbitrary noncanonical coordinate Zµ and derive the corre-
sponding covartiant vector Γµ in the new coordinate. The relation between the old
and new covariant vector is obtained from the scalar relationship

γµdz
µ = ΓµdZ

µ, (2.25)

as

Γµ = γν
∂zν

∂Zµ
. (2.26)

This transformation is referred to as the noncanonical transformation since the co-
ordinate Zµ can be a noncanonical coordinate.

Writing the action integral in terms of the new 1-form as (2.26),

S =

∫
ΓµdZ

µ, (2.27)

and then applying the variational principle to this action, the resulting equation
of motion is that written in the noncanonical coordinate. Namely, by considering
variation to (2.24) along the trajectory, we have

δS = δ

∫
dz0γµ

dzµ

dz0
=

∫
dz0

(
∂γν
∂zµ
− ∂γµ
∂zν

)
dzν

dz0
δzµ = 0, (2.28)

Therefore, the Euler-Lagrange equation is derived as

ωµν
dzν

dz0
= 0, (2.29)

where

ωµν ≡
∂γν
∂zµ
− ∂γµ
∂zν

. (2.30)

Here, the phase space component of ωµν , i.e., ωij , which is equivalent to the La-
grange bracket [zi, zj ], is referred to as Lagrange tensor. Note that in the canonical
coordinate zµ = (t;q,pc), the Lagrange tensor becomes

ωij =

(
0 −1
1 0

)
, (2.31)

where 0 and 1 denotes 3× 3 zero matrix and identity matrix, respectively.
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Equation (2.29) is separated into time and phase space components as

ωij
dzj

dz0
+

(
∂γ0
∂zi
− ∂γi
∂z0

)
= 0, (2.32)(

∂γj
∂z0
− ∂γ0
∂zj

)
dzj

dz0
= 0. (2.33)

However, the time component Eq. (2.33) can be also obtained from Eq. (2.32) uti-
lizing the asymmetry of ωµν . Hence, only the phase space component in the Euler-
Lagrange equation Eq. (2.29) are independent each other. Introducing the Poisson
tensor J jk defined as the inverse matrix of the Lagrange tensor, Eq. (2.32) is written
as

dzj

dz0
= J jk

(
∂γk
∂z0
− ∂γ0
∂zk

)
. (2.34)

This is the equation of motion in an arbitrary noncanonical coordinate. When we
consider a canonical coordinate, the Poisson tensor becomes

J jk =

(
0 1
−1 0

)
. (2.35)

Then, one can see that Eq. (2.34) is equivalent to the Hamilton equation

dq

dt
=

∂h

∂pc
, (2.36)

dpc

dt
= −∂h

∂q
. (2.37)

Therefore, Eq. (2.34) is regarded as an extended Hamiltonian equation that is ap-
plicable in noncanonical coordinates.

2.2 Noncanonical Lie perturbation theory

The Lie transformation is a near identity transformation characterized by the gen-
erator gµ as

zµ 7→ z′µ = exp (L ) zµ ≡ T−1zµ, (2.38)

where the operator L is defined as L f = gµ∂µf for scalar function f and L ξµ =

gν (∂νξµ − ∂µξν) for 1-form ξ̂. The corresponding covariant vector is transformed as

γµ 7→ γ′µ = Tγµ + ∂µS, (2.39)
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where S is the gauge function. In the perturbation analysis, we repeat the Lie
transformation as T = · · ·T (3)T (2)T (1) where T (n) = exp

(
εnL (n)

)
.

In the Lie perturbation method, we can utilize 2N+2 (N = 3) degrees of freedom
determined by the 2N+1 Lie generators and a gauge function S to make the 1-form
suitable for the analysis. In the following, we derive the relation among generator,
gauge function and the Lie-transformed 1-form used in this study.

We expand the 1-form by using the smallness parameter ε as

γ̂ = γ̂(0) + εγ̂(1) + ε2γ̂(2) + · · · , (2.40)

Under the coordinate transformation

zµ → Zµ = Z µ
f (z) = · · ·T (1)−1T (2)−1T (3)−1I µ(z), (2.41)

the 1-form is transformed as

Γ̂(·) = T γ̂(·) + dS(·). (2.42)

By expanding all the perturbed quantities, i.e. γ̂, T and S, and collecting terms
order-by-order, we obtain the following relations:

Γ̂(0)(·) = γ̂(0)(·), (2.43)

Γ̂(1)(·) = dS(1)(·)− L(1)γ̂(0)(·) + γ̂(1)(·), (2.44)

Γ̂(2)(·) = dS(2)(·)− L(2)γ̂(0)(·) + γ̂(2)(·)− L(1)γ̂(1)(·) + 1

2
L(1)2γ̂(0)(·), (2.45)

which can be written in the general form

Γ̂(n)(·) = dS(n)(·)− L(n)γ̂(0)(·) + C(n)(·). (2.46)

Here, we note that in deriving the ponderomotive force on the basis of the pertur-
bation method, spatial derivatives may be ordered as ∂i ∼ ε. Therefore, we here
separate the first and second terms on the RHS of Eq. (2.46) and rewrite the relation
as

Γ(n)
µ =

(
∂µS

(n)
)(n)
−
(
gν(n)

(
ω(0)
νµ

)(0))(n)

+D(n)
µ , (2.47)

where D
(n)
µ is defined by

D(n)
µ =

(
∂µS

(n−1)
)(n)
−
(
gν(n−1)

(
ω(0)
νµ

)(1))(n)

+ C(n)
µ . (2.48)
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2.2 Noncanonical Lie perturbation theory

Note that D
(n)
µ can be obtained from the lower order calculations, i.e., ≥ O

(
εn−1

)
.

We here introduce constraints for the Lie transformation as

g(n)0 = 0, (2.49)

Γ
(n)
i = 0, (2.50)

for n ≥ 1. The first constraint Eq. (2.49) is equivalent to Z0
(
= Z 0

f (z)
)
= z0.

This denotes that we do not transform the zeroth component of the coordinates,
which is time t in the basic canonical coordinates. The second 2N constraints
Eq. (2.50) are introduced to make the perturbation analysis easy. Namely, under
the condition Eq. (2.50), the phase space components of the new covariant vector in
the Lie transformed coordinates have the same functional form as that in the zeroth
order in the original coordinates as Γ

(n)
i (·) = γ

(0)
i (·). Consequently, the Poisson

tensor keeps its functional form as same as that in the zeroth order in the original
coordinates. By substituting Eqs. (2.49) and (2.50) to Eq. (2.47), we have

Γ
(n)
0 =

(
∂0S

(n)
)(n)
− g(n)j

(
ω
(0)
j0

)(0)
+D

(n)
0 , (2.51)

0 =
(
∂iS

(n)
)(n)
− g(n)j

(
ω
(0)
ji

)(0)
+D

(n)
i , (2.52)

for the zeroth and ith components, respectively. Oparating ω
(0)−1
ji = J (0)ij to

Eq. (2.52) from the right side, we obtain g(n)j as

g(n)j =
(
∂iS

(n)
)(n)

+D
(n)
i J (0)ij . (2.53)

Substituting Eq. (2.53) to the RHS of Eq. (2.51), we obtain the relation for Γ
(n)
0 as

Γ
(n)
0 =

(
∂0S

(n)
)(n)

+D
(n)
0

−
((

∂iS
(n)
)(n)

+D
(n)
i

)
J (0)ij

(
ω
(0)
j0

)(0)
. (2.54)

Here, we introduce the unperturbed flow vector V (0)µ defined by V (0)0 = 1 and

V (0)i(Z) = dZ(0)i/dZ0. The latter can be rewritten as J (0)ij
(
ω
(0)
j0

)(0)
= −

(
V (0)i

)(0)
.

By using these relations on the RHS of Eq. (2.54), we obtain

Γ
(n)
0 =

((
∂µS

(n)
)(n)

+D(n)
µ

)(
V (0)µ

)(0)
. (2.55)

Here, we assume the gauge function to satisfy the relation(
∂µS(n)

)(n) (
V (0)µ

)(0)
= 0, (2.56)
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Figure 2.1: Procedure of determining the degrees of freedom of Lie transformation.

which leads to

Γ
(n)
0 = D

(n)
µ

(
V (0)µ

)(0)
. (2.57)

For the oscillatory part, we can choose
[
Γ
(n)
0

]
os.

= 0. Here, the LHS in Eq. (2.56) is

given by

(
V (0)µ

)(0) (
∂µS(n)

)(n)
=
∂S(n)

∂η
+
dZi

dη

(
∂S(n)

∂Zi

)(n)

=
∂S(n)

∂η
, (2.58)

In the coordinates Zµ. Using the relations (dPx/dη)
(0) = 0, dPy/dη = 0, dpη/dη = 0,(

∂XS
(n)
)(n)

= 0, ∂Y S
(n) = 0, ∂ZS

(n) = 0 and
(
∂ηS

(n−1)
)(n)

= 0, Eq. (2.55) becomes

∂S(n)

∂η
= 0 =⇒ S(n) = 0. (2.59)

Equation (2.59) denotes a restriction for obtaining the gauge function that has no
secularity. Then, the gauge function is determined by Eq. (2.57) as

∂S(n)

∂η
=

[
D(n)

µ

(
V (0)µ

)(0)]
os.

. (2.60)

We summarize the process of determining the degrees of freedom of Lie transforma-
tion in Fig. 2.1.

Finally, we note on the meaning of Avoiding Secularity in determining the gauge
function. We consider the gauge transformation

γµ 7→ γ′µ = γµ + ∂µS. (2.61)
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2.2 Noncanonical Lie perturbation theory

After the transformation, the action integral is given as∫
γ′µdz

µ =

∫
γµdz

µ +

∫
∂µSdz

µ =

∫
γµ
dzµ

dλ
dλ+

∫
∂S

∂zµ
dzµ

dλ
dλ. (2.62)

The first term on the RHS of Eq. (2.62) leads to the equations of motion obtained by
non gauge-transformed 1-form. In order to confirm that the gauge transformation
has no influence on the equations of motion, we investigate the second term on the
RHS of Eq. (2.62). We consider the variation about the i component of trajectory,
i.e., zi → zi + δzi and zµ → zµ(µ 6= i). Then, the variation of the second term on
the RHS of Eq. (2.62) is

δ

∫
∂S

∂zµ
dzµ

dλ
dλ =

∫ [
∂S(zi + δzi)

∂zµ
d

dλ
(zµ + δzµ)− ∂S(zi)

∂zµ
dzµ

dλ

]
dλ

=

∫ [{(
∂S(zi)

∂zµ
+ δzi

∂2S(zi)

∂zizµ
+ · · ·

)}{
dzµ

dλ
+
dδzµ

dλ

}
− ∂S(zi)

∂zµ
dzµ

dλ

]
dλ

=

∫ [
∂S(zi)

∂zi
dδzi

dλ
+ δzi

∂2S(zi)

∂zizµ
dzµ

dλ
+ · · ·

]
dλ

=

[
∂S(zi)

∂zµ
δzµ
]λ2

λ1

−
∫
δzi

d

dλ

∂S(zi)

∂zi
dλ+

∫
δzi

d

dλ

∂S(zi)

∂zi
dλ+ O

(
δzi2

)
=

[
∂S(zi)

∂zµ
δzµ
]λ2

λ1

+ O
(
δzi2

)
. (2.63)

In the derivation, we have used δzµ = 0 for µ 6= i. The variation of δz at the ends of
the trajectory are zero, i.e. δz (λ1) = δz (λ2) = 0, so that Eq. (2.62) is finally found
to be ∫

γ′µdz
µ =

∫
γµdz

µ, (2.64)

which indicates the invariance of the equations of motion under the gauge transfor-
mation. However, we must carefully note that if

∂S(zi)

∂zµ

∣∣∣∣
λ1

and/or
∂S(zi)

∂zµ

∣∣∣∣
λ2

(2.65)

has a infinite value, then, we cannot make the first term on the RHS of Eq. (2.63)
to zero. Thus, we conclude that only when Eq. (2.65) has a infinite value at any λ,
the invariance of the equations of motion under the gauge transformation is valid.

In order to satisfy the condition for gauge invariance, S must not include terms
that secularly increase with independent variable λ. In other words, S must be
constructed by periodic or constant terms regarding to the independent variable.
Otherwise, the value of Eq. (2.65) at λ = ∞ becomes infinity that cause secularity
in gauge.

The motion in the original coordinate zµ can be obtained by the backward trans-
formation z′µ 7→ zµ.
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Chapter 3

Noncanonical Lie perturbation

analysis of relativistic

ponderomotive force

In this chapter, we perform the noncanonical Lie perturbation analysis to derive the
relativistic ponderomotive force up to higher orders. The structure of this chapter
is as follows.

In Sec. 3.1, we consider a proper set of coordinate variables to investigate the
average force in laser fields in relativistic regime. In Sec. 3.1.1, the noncanonical
transformation is performed, and the fundamental 1-form in the new coordinate
suitable for the analysis is derived. By using the variational principle on the basis of
the obtained 1-form, we derive the figure-eight motion in the uniform laser field, i.e.
the zeroth order unperturbed motion, in Sec. 3.1.2, and by using the unperturbed
solution, we further transform the coordinate to that of an oscillation center in
Sec. 3.1.3. In Sec. 3.2, the expansion parameter ε for the perturbation is defined
(Sec. 3.2.1), and then we perform the Lie perturbation analysis up to the third
order of ε based on the oscillation center 1-form obtained in Sec. 3.1. In Sec. 3.4,
discussions on the derived higher order 1-form and ponderomotive force are given.

3.1 Preparatory transformation

3.1.1 Proper noncanonical coordinates for relativistic particle mo-
tion in laser fields

Here, we study the relativistic motion of particle irradiated by high intensity laser
light. For this purpose, we consider a system involves a charged particle q and
electromagnetic fields represented by the scalar and vector potentials, Φ and A,
which are normalized as

(φ,a) ≡ |q|
mc2

(Φ,A) . (3.1)

In such a system, the Hamiltonian is written as
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3.1 Preparatory transformation

h = γmc2 + σmc2φ, (3.2)

where σ is the sign of the charge, i.e., σ = ±1, and γ is the relativistic factor of
particle given by

γ =

√
m2c4 + c2 (pc −mca)2. (3.3)

in the canonical coordinate Eq. (2.22) with q = x. Note that when an electromag-
netic field exists, the canonical momentum is the summation of mechanical momen-
tum p and the field part, i.e.,

pc = p+mca. (3.4)

Here, we assume a linearly polarized laser field propagating in the z-direction
expressed by the vector potential a = (a⊥, az) where a⊥ = (ax, ay). Note that
when one considers plasmas, az can represent a static perpendicular magnetic field
in addition to the longitudinal component of the laser field, while Φ denotes a static
electric field. Such static fields may given by the equilibrium of background plasma
distribution.

In this section, we find a coordinate that leads to a perspective description of the
relativistic particle motion in laser fields. First, we consider transformation of the
independent variable t. In electromagnetic fields, charged particle basically exhibits
a periodic motion in the period of laser phase η = ωt − k · x rather than time t.
The difference between η and t becomes significant in the relativistic regime where
dη/d(ωt) ∼ γ � 1. Hence, we choose phase η as the new independent variable and
execute the coordinate transformation zµc 7→ wµ where

zµc = (t;x, y, z, pcx, pcy, pcz) , (3.5)

wµ = (η;x, y, z, pcx, pcy, pcz) . (3.6)

Here, the covariant vector γcµ in the old coordinate zµc is given by

γcµ =
(
−mc2 (γ (η,pc,x) + σφ (x, t)) ; pcx, pcy, pcz, 0, 0, 0

)
, (3.7)

where we explicitly write the variable dependence of γ and φ assuming that the
fields a and φ depend on x and t. Note that the above transformation t 7→ η is
necessary to move to an oscillation center coordinate that is shown later. To see
the difference between coordinates zµc and wµ, we show in Fig. 3.1 a solution for
coordinate variables zic and wi with respect to the independent variables t and η,
respectively, assuming a uniform plane laser field a = a0 sin (ωt− kz) êx with a0 = 1
and 2. The vertical axes are normalized by the laser wavelength λL = 2π/k and
the horizontal axes in Figs. 3.1 (a) and (b) are normalized by the laser period
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PONDEROMOTIVE FORCE

Figure 3.1: Solution for coordinate variables (a) and (b): zic, (c) and (d): wi (i = 1, 3),

in the case with a uniform plane laser field a = a0 sin η êx where a0 = const and

η = ωt− kz. The vertical axes are normalized by the laser wavelength λL = 2π/k and

the horizontal axes in (a) and (b) are normalized by the laser period TL = 2π/ω.

TL = 2π/ω. Here, a vacuum with φ = 0 is assumed, and the initial condition for
the particle is set to be (x,pc) = (−l, 0, 0, 0, 0, 0) at η = 0 where l is the excursion
length in the x direction. Comparing (a) and (c), or (b) and (d), we see a difference
between particle orbits described by independent variables t and η, especially in
the case of the larger field amplitude a0 = 2. This is due to the relativistic effect
discussed above, i.e., dη/d(ωt) � 1 is satistied for intense fields with a0 � 1. The
shift of the oscillation frequency between a0 = 1 and 2 in Fig. 3.1 (a) reflects the
difference of the drift velocity in the z direction which affects the value of the phase
η = ωt− kz.

The covariant vector in the new coordinate wµ is calculated using the transfor-
mation law Eq. (2.26) as

ψ0 = γcµ
∂zµc
∂w0

= −h
ω

= −mc
k

(γ + σφ) , (3.8)

ψi = γcµ
∂zµc
∂wi

= pci −
h

ω
ki = pci −mc

ki
k
(γ + σφ) (i = 1, 2, 3) , (3.9)

ψj = γcµ
∂zµc
∂wj

= 0 (j = 4, 5, 6) , (3.10)

(3.11)
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3.1 Preparatory transformation

Therefore, the 1-form in the new coordinate is given by

ψ̂ = −mc
2

ω
(γ + σφ) dη +

3∑
i=1

(
pci −mc

ki
k
(γ + σφ)

)
dxi. (3.12)

When we assume that the wave vector has only a component parallel to the propa-
gation direction z, i.e., k = (0, 0, kz), then Eq. (3.12) reduces to

ψ̂ = −mc
2

ω
(γ + σφ) dη + pcxdx+ pcydy + (pcz −mc (γ + σφ)) dz. (3.13)

The Lagrange tensor in this coordinate are

ωij =

(
Ω1 −Ω2
tΩ2 0

)
; (3.14)

Ω1 = mc

 0 0 −∂x (γ + σφ)
0 0 −∂y (γ + σφ)

∂x (γ + σφ) ∂y (γ + σφ) 0

 , (3.15)

Ω2 = mc

 1 0 0
0 1 0

−∂pcxγ −∂pcyγ 1− ∂pczγ

 , (3.16)

Here, we see that Eq. (3.14) has complicated non-orthogonal components. Namely,
even when spatially uniform field is assumed so that ∂iφ = 0 and ∂iγ = 0 for
i = x, y, z are satisfied, the derivatives of relativistic factor γ appearing in Eq. (3.16)
still exist. This complication is originated from ψ1, ψ2 and ψ3 that include the
relativistic factor γ explicitly. We found that this difficulty can be concoured by
choosing

Mc ≡ pc − γmc
k

k
, (3.17)

as ones of coordinate variables. Note that when the condition k = (0, 0, kz) is
assumed, the above definition leads to

Mcx = pcx, (3.18)

Mcx = pcx, (3.19)

Mcz = pcz − γmc ≡ pcη. (3.20)

then, it is easy to see that Mc is constant of motion in a uniform laser field discussed
in Sec. 1.2. Now, we transform coordinates from wµ Eq. (3.6) to a new one defined
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by

Zµ
c = (η;x, y, z,Mcx,Mcy,Mcz) . (3.21)

The covariant vector in the new coordinate is given as

Γc0 = ψc0
∂w0

∂Z0
c

= −mc
k

(γ + σφ) , (3.22)

Γci = ψci
∂wi

∂Zi
c

=Mci − σmc
ki
k
φ (i = 1, 2, 3) , (3.23)

Γcj = ψcj
∂wj

∂Zj
c

= 0 (j = 4, 5, 6) . (3.24)

Comparing Eqs. (3.9) and (3.23), we see that the relativistic factor γ no longer
appears in the new covariant vector, which leads to a simpler Lagrange tensor with
Ω2 = mc I.

Here, we note that the relativistic factor γ in the Hamiltonian component Γc0

have to be expressed in term of the new coordinate variables. Since we are employ-
ing the canonical momentum, the Hamiltonian −Γc0 includes the vector potential a
explicitly. Here, we notice that by introducing the mechanical momentum defined
by p = pc−mca, the Hamiltonian can be written in simpler form. Furthermore, the
usage of mechanical momentum p as one of the coordinate variables instead of pc

has an advantage in deriving the force (acceleration) to the particle directly from the
variational principle. Namely, when we employ the canonical momentum, the result-
ing Hamilton equation represents the variation of pc, which does not correspond to
the particle equation of motion. In contrast, the set of mechanical coordinate vari-
ables (x,p) enables us to obtain the equation of motion and then the force directly
from the variational principle.

From the above reasons, we define a new coordinate as

zµ = (η;x, y, z,Mx,My,Mz) , (3.25)

where

M = p− γmck
k
. (3.26)

For this purpose, one can use the definition of γ, i.e.,

(γmc)2 = m2c2 + p2, (3.27)

and the relation

p2 = M2 + 2p (γmc+ σmcφ) · k
k
− (γmc+ σmcφ)2 . (3.28)
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3.1 Preparatory transformation

Using Eq. (3.27), we have

(γmc+ σmcφ)2 = (γmc)2 + 2γm2c2σφ+ (σmcφ)2

= m2c2 +M2 + 2p (γmc+ σmcφ) · k
k
− (γmc+ σmcφ)2

+ 2γm2c2σφ+ (mcφ)2 . (3.29)

By collecting terms proportional to γmc+ σmcφ, we rewrite Eq (3.29) as

2 (γmc+ σmcφ)

(
γmc+ σmcφ− p · k

k
− σmcφ

)
= m2c2 +M2 − (mcφ)2 . (3.30)

Then, using the relation

γmc+ σmcφ− p · k
k
− σmcφ = −

[
p− (γmc+ σmcφ)

k

k

]
· k
k
− σmcφ

= −M · k
k
− σmcφ, (3.31)

we see that γmc+ σmcφ is expressed in terms of new coordinate variables as

γmc+ σmcφ = −m
2c2 +M2 − (mcφ)2

2
[
k
k ·M+ σmcφ

] . (3.32)

Therefore, the new coordinate and the corresponding covariant vector are given as

zµ = (η;x, y, z,Mx,My,Mz) , (3.33)

γµ =

(
−K;M+ σmc

(
a− k

k
φ

)
,0

)
, (3.34)

where a = a (x, η), φ = φ (x, η), and

K = −m
2c2 +M2 − (mcφ)2

2k
(
k
k ·M+ σmcφ

) . (3.35)

Note that the new relativistic Hamiltonian K has no square root owing to choosing
η and pη as coordinate variables simultaneously. This is also an advantage of this
coordinate, because one of the reasons for complication of relativistic analyses is
the Hamiltonian that has a square root dependence. Actually, in many analyses
in relativistic beam physics, the square root is eliminated using an approximation,
which we does not introduced in the present study [38, 39].
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The Lagrange and Poisson tensors in this mechanical coordinate are obtained as

ωkj =

(
Ω −1
1 0

)
, J jk =

(
0 1
−1 Ω

)
, (3.36)

where

Ω =

 0 − (∂xay − ∂yax) − (∂xaz − ∂zax)
∂xay − ∂yax 0 − (∂yaz − ∂zay)
∂xaz − ∂zax ∂yaz − ∂zay 0

 . (3.37)

Note that in a uniform field, Ω = 0 is obtained, so that the Lagrange and Poisson
tensors become the same as those in canonical coordinates.

When we assume the laser wave vector k = (0, 0, kz), Eqs. (3.33)-(3.35) yield

zµ = (η; x, y, z, px, py, pη), (3.38)

γµ = (−K; p⊥ +mcσa⊥, pη + σmc (az − φ) , 0, 0, 0) , (3.39)

K = −
m2c2 + p2

⊥ + p2η − (mcφ)2

2kz (pη + σmcφ)
, (3.40)

where pη ≡ pz − γmc, which is equivarent to Mz with k = kzêz.

Summary of the feature of each coordinate
We summarize the feature of each coordinate given in this section. Note that we
herein consider the case where the laser wave vector is in the z-direction, i.e., k =
(0, 0, kz).

(1)

zµc = (t;x, y, z, pcx, pcy, pcz) , (3.41)

γcµ = (−h(t,pc,x); pcx, pcy, pcz, 0, 0, 0) , (3.42)

h(t,pc,x) =

√
m2c2 + (pc −mca)2 + σmc2φ, (3.43)

where a = a(t,x) and φ = φ (t,x).

Merit Canonical relation leads to a simple Lagrange tensor.

Demerit The independent variable is time t, which is not suitable for describing the
particle motion oscillating with the period of phase η = ωt− kzz (t). Namely,
we cannot remove the η-period oscillations, so that this coordinate cannot be
a base for the oscillation center coordinate.
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3.1 Preparatory transformation

(2)

wµ = (η;x, y, z, pcx, pcy, pcz) , (3.44)

ψµ =
(
−H(η,pc,x); pcx, pcy, pcz − k2zH(η,pc,x), 0, 0, 0

)
, (3.45)

H(η,pc,x) =
1

kz

(√
m2c2 + (pc −mca)2 + σmcφ

)
, (3.46)

where a = a(η,x) and φ = φ (η,x).

Merit The independent variable η enables to remove oscillations of period η using
further coordinate transformation; therefore, this coordinate can be a base for
the oscillation center coordinate.

Demerit The Lagrange tensor has complicated non-orthogonal components due to
ψ3 that depends on many coordinate variables.

(3)

Zµ
c = (η;x, y, z, pcx, pcy, pcη) , (3.47)

Γcµ = (−Kc(η,pc⊥, pcη,x); pcx, pcy, pcη − σmcφ, 0, 0, 0) , (3.48)

Kc(η,pc⊥, pcη,x) = −
m2c2 + (pc⊥ −mca⊥)2 + (pcη −mcaz)2 − (mcφ)2

2kz (pcη −mcaz + σmcφ)
, (3.49)

where a = a (η,x) and φ = φ (η,x).

Merit Canonical relation leads to a simple Lagrange tensor even in the coordi-
nate whose independent variable is η. The square root in the Hamiltonian is
removed without any approximation.

Demerit The equation of motion derived from the 1-form is not for the mechanical
momentum, but for the canonical one, from which a force to the particle is
not obtained directly.

(4)

zµ = (η;x, y, z, px, py, pη) , (3.50)

γµ = (−K(η,pc⊥, pcη,x);p⊥ + σmca⊥, pη + σmc (az − φ) , 0, 0, 0) ,
(3.51)

K(η,p⊥, pη) = −
m2c2 + p2

⊥ + p2η − (mcφ)2

2kz (pη + σmcφ)
. (3.52)

where a = a (η,x) and φ = φ (η,x).

Merit A force to the particle can be obtained directly from the variational prin-
ciple in this mechanical coordinate. Although the Lagrange tensor has non-
orthogonal components, those in the uniform field are same as the simple
canonical ones, i.e., the non-orthogonal components equal to zero; this means
that the above coordinate is suitable to be used for the perturbation analysis,
in which the perturbation is taken on the basis of the uniform field.
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3.1.2 Particle motion in a uniform laser field

In the following analysis, we assume a laser field given by

a = ax(x) sin η êx. (3.53)

where k = (0, 0, kz) and then η = ωt − kzz. In this case, the noncanonical 1-form
yields

zµ = (η;x, y, z, px, py, pη) (3.54)

γµ =

(
1

2pηkz

(
m2c2 + p2x + p2y + p2η

)
; px +mcσax(x) sin η, py, pη − σmcφ, 0, 0, 0

)
(3.55)

Firstly, before proceed to the perturbation analysis considering spatially nonuniform
laser field, we derive the unperturbed motion of the particle on the basis of the 1-
form given above. Here, we suppose a quasineutral plasma and assume the scalar
potential φ to be a perturbation due to the charge separation. Hence, the unperturbed
motion in our definition is the particle motion irradiated by the spatially uniform
laser field with no background electrostatic potential.

In such a unperturbed situation, the unperturbed (zeroth order) 1-form is given
by

zµ = (η;x, y, z, px, py, pη) (3.56)

γ(0)µ =

(
1

2pηkz

(
m2c2 + p2x + p2y + p2η

)
; px +mcσax(X) sin η, py, pη, 0, 0, 0

)
, (3.57)

where we treat ax(X) as a constant assuming a spatially uniform laser field. The
equations of motion are derived from the above 1-form as

dx

dη
= J (0)14

(
∂γ

(0)
4

∂η
− ∂γ

(0)
0

∂px

)
= − px

pηkz
(3.58)

dy

dη
= J (0)25

(
∂γ

(0)
5

∂η
− ∂γ

(0)
0

∂py

)
= − py

pηkz
(3.59)

dz

dη
= J (0)36

(
∂γ

(0)
6

∂η
− ∂γ

(0)
0

∂pη

)
=

1

2p2ηkz

(
m2c2 + p2x + p2y − p2η

)
(3.60)

dpx
dη

= J (0)41

(
∂γ

(0)
1

∂η
− ∂γ

(0)
0

∂x

)
= −mcσax(X) cos η (3.61)

dpy
dη

= J (0)52

(
∂γ

(0)
2

∂η
− ∂γ

(0)
0

∂y

)
= 0 (3.62)

dpη
dη

= J (0)63

(
∂γ

(0)
3

∂η
− ∂γ

(0)
0

∂z

)
= 0, (3.63)
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3.1 Preparatory transformation

Figure 3.2: Plot of ζ0 as a function of the initial parallel momentum pz0 for different

initial transverse momenta p⊥0.

where the Poisson tensor obtained from Eqs. (3.56) and (3.57) is given by

J(0) =

(
0 1
−1 0

)
. (3.64)

These equations lead to the well-known figure-eight motion in the uniform linear
polarized laser field,

x = σl(X) (cos η − 1) + x0 (3.65)

y = y0 (3.66)

z =
1− ζ20
2ζ20kz

η +
kzl

2(X)

4

(
η − 1

2
sin 2η

)
(3.67)

px = −mcσax(X) sin η (3.68)

py = 0 (3.69)

pη = −mcζ0, (3.70)

where l(X) ≡ ax(X)/kzζ0 is the excursion length, and ζ0 is a constant depending
on the initial condition defined by ζ0 ≡ γ0 − pz0/mc. We plot ζ0 in Fig. 3.2 as a
function of the initial parallel momentum pz0 for different three initial transverse
momenta p⊥0. The figure-eight orbit described by Eqs. (3.65)-(3.67) is shown in
Fig. 3.3 where η ranges from 0 to 20 in the normalized x-z plane. The left and
right figures correspond to orbits in the laboratory frame and average rest frame,
respectively, where the latter is an inertial frame that moves in the z direction with
the same velocity as the drift motion of the particle. Here, we assume a0 = 1 and 2
and initial condition for the particle (x,p) = (0,0) in the laboratory frame.
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Figure 3.3: Figure-eight orbit in the uniform laser field with linear polarization for

a0 = 1 and 2 in the laboratory frame (left) and average rest frame (right). Here, η

ranges from 0 to 20. The initial condition for the particle is set to be (x,p) = (0,0).

3.1.3 Transformation to the oscillation center coordinates

Now, based on the zeroth order figure-eight motion obtained above, we transform
coordinates from Eq. (3.54) to those of an oscillation center,

Zµ = (η;X,Y, Z, Px, Py, pη) . (3.71)

The relation between the old and new coordinates is defined as

x (X, η) = X + δxx̃
(0) = X + δxσl(X) cos η, (3.72)

y (Y ) = Y, (3.73)

z (Z,X, η) = Z + δz z̃
(0) = Z − δz

kzl
2(X)

8
sin 2η, (3.74)

px (X,Px, η) = Px + δxp̃
(0)
x = Px − δxσmcax(X) sin η, (3.75)

py (Py) = Py, (3.76)

pη (pη) = pη, (3.77)

Here, we mark the transformation using symbols δx and δz. We can take δx = δz =
1 for usual transformation to the oscillation center. The new covariant vector is
obtained as

Γ0 = γ0
∂z0

∂Z0
+ γ1

∂z1

∂Z0
+ γ3

∂z3

∂Z0

=
m2c2 + P 2

x + p2η
2pηkz

− δx (1 + α)Pxl(X) sin η

− δx
mc

2
l(X) (ax(x)− δxax(X)) (1− cos 2η)

+ δ2xα
2 pηkzl

2(X)

4
− pηkzl

2(X)

4

(
δz + δ2xα

2
)
cos 2η, (3.78)
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Γ1 = γ1
∂z1

∂Z1
+ γ3

∂z3

∂Z1

= Px +mcσ (ax(x)− δxax(X)) sin η + δxPxσ
∂l

∂X
cos η

+ δx
mc

2

∂l

∂X
(ax(x)− δxax(X)) sin 2η − δz

pηkzl(X)

4

∂l

∂X
sin 2η, (3.79)

Γ3 = γ3
∂z3

∂Z3
= pη, (3.80)

and Γ2 = Py and Γ4 = Γ5 = Γ6 = 0. Note that we hereafter express ax(X) and l(X)
without representing the variable dependence explicitly as ax and l for simplicity.
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3.2 Lie perturbation analysis

3.2.1 Definition of the expansion parameter

In this study, we expand ax (x) in Eq. (3.53) around the oscillation center x = X as

ax(x) = ax (X)

[
1 + ε

(X − x)
L

+ ε2
(X − x)2

2!R
+ ε3

(X − x)3

3!T
+ · · ·

]
, (3.81)

where the expansion parameters are defined by

L−1 = L−1(X) ≡ 1

ax(X)

∂ax(X)

∂X
, (3.82)

R−1 = R−1(X) ≡ 1

ax(X)

∂2ax(X)

∂X2
, (3.83)

T−1 = T−1(X) ≡ 1

ax(X)

∂3ax(X)

∂X3
. (3.84)

Therefore, L−1 and R−1 denote the gradient and curvature of the field amplitude,
and T−1 the variation of curvature, respectively, that are evaluated at the oscillation
center X. In the expansion Eq. (3.81), the orderings are defined as

l

L
= O (ε) ,

l2

R
= O

(
ε2
)
,
l3

T
= O

(
ε3
)
. (3.85)

Note that to satisfy the Maxwell equations, the electromagnetic field in vacuum
with such a varying amplitude has a z component az and also the perpendicular
component of the wave vector, k⊥; however, we neglect them in the present frame
work for simplicity. In Appendix C, we consider the inclusion of az, which is found
not to affect the nonlocal effect of the ponderomotive force derived in this study up
to the third order of ε.

3.2.2 Zeroth order analysis

Here, we at first consider the oscillation center equations of motion that are derived
from the zeroth order component of the covariant vector Γµ given by

Γ(0)
µ =

(
m2c2 + P 2

x + p2η
2pηkz

− δx (1 + α)Pxl(X)σ sin η + δ2xα
2 pηkzl

2(X)

4

− pηkzl
2(X)

4

(
δz + δ2xα

2
)
cos 2η − αpη

kzl
2

2
(1− δx) (1− cos 2η)

;Px + αpησkzl (1− δx) sin η, Py, pη, 0, 0, 0

)
. (3.86)

The equations of motion derived from the zeroth-order 1-form are obtained as
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dX

dη
= J14

(
∂Γ4

∂η
− ∂Γ0

∂Px

)
= − Px

pηkz
+ δxσl (1 + α) sin η, (3.87)

dX

dη
= J25

(
∂Γ5

∂η
− ∂Γ0

∂Py

)
= − Py

pηkz
, (3.88)

dZ

dη
= J36

(
∂Γ6

∂η
− ∂Γ0

∂pη

)
=
m2c2 + P 2

x + P 2
y − p2η

2p2ηkz
+ δ2x

kzl
2

4
α2 − δx

Px

pη
σlα sin η

− kzl
2

4

(
−δz + δ2xα

2
)
cos 2η, (3.89)

dPx

dη
= J41

(
∂Γ1

∂η
− ∂Γ0

∂X

)
= εδ2xα

2 pηkzl

2

l

L
− εδxPxσ

l

L
(1 + α) sin η

− εpηkzl
2

l

L

(
δz + δ2xα

2
)
cos 2η

− εαpηkzl
l

L
(1− δx) (1− cos 2η)− αpηkzl (1− δx) cos η, (3.90)

dPx

dη
= J52

(
∂Γ2

∂η
− ∂Γ0

∂Y

)
= 0, (3.91)

dpη
dη

= J63

(
∂Γ3

∂η
− ∂Γ0

∂Z

)
= 0. (3.92)

As seen from Eq. (3.90), the zeroth order 1-form leads to the equation of motion not
only in the order of ε0 but also of ε1. The latter results from the X derivative of the
covariant vector, which appears in the RHS in the first line of Eq. (3.90). From this
fact, the general relation can be obtained as follows: The nth order 1-form leads to
the equation of motion in the order of εn and εn+1. The solution for Eq. (3.92) can
be obtained as

pη = −mcζ0 (⇔ 1 + α = 0) . (3.93)

By substituting the solution Eq. (3.117), we reduce the equations of motion as

dX

dη
=

Px

mcζ0kz
, (3.94)

dPx

dη
= −εmcax

2

l

L
+ ε

mcax
2

l

L

(
δz + δ2xα

2
)
cos 2η

− εmcζ0kzl
l

L
(1− δx) (1− cos 2η)−mcσax (1− δx) cos η, (3.95)

dZ

dη
=

1− ζ20
2ζ20kz

+
kzl

2

4
+

1

2kz

(
Px

mcζ0

)2

− δx
Px

mcζ0
σl sin η +

kzl
2

4
(δz − 1) cos 2η.

(3.96)
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Here, we notice that Eqs. (3.95) and (3.96) include oscillatory terms which is not
suitable to describe the oscillation center motion. Especially, it is necessary to
remove the oscillatory term appearing in Eq. (3.95) reminding that our purpose is
to derive an equation system that describes the averaged motion in the x direction,
i.e., the direction of the ponderomotive force.

One possible way is to utilize the degree of freedom of the noncanonical coordi-
nate transformation. Namely, we can choose δx and δz to those remove oscillations.
Firstly, we set δx = 1 as usual oscillation center transformation so that the unnec-
essary oscillations in the X direction can be eliminated, and then Eqs. (3.94) and
(3.95) yield to

dX

dη
=

Px

mcζ0kz
, (3.97)

dPx

dη
= −εmcax

2

l

L
+ ε

mcax
2

l

L
(δz + 1) cos 2η. (3.98)

The first term on the RHS of Eq. (3.98) corresponds to the first order transverse
ponderomotive force. The remaining oscillation in Eq. (3.98) can also be removed
in a similar way assuming δz = −1. We note that in this case, the coordinate
Z is not equivalent to the oscillation center variable. As an alternative, we found
that a preparatory gauge transformation Γµ 7→ Γµ + ∂µS can be utilized to remove
the oscillation without changing the meaning of the oscillation center variables.
Relation between the usage of δz = −1 and the gauge transformation is discussed in
Appendix B.

In the following analysis, we choose to utilize a preratatory gauge transformation
assuming the oscillation center relation δz = 1 in removing the oscillation appeared
in Eq. (3.95).

3.2.3 Gauge transformation to remove oscillations

Here, we introduce a gauge function S for the removal of the oscillation as

S = pη
kzl

2

8

(
1 + α2

)
sin 2η. (3.99)

Partial derivatives of S is calculated as

∂0S = pη
kzl

2

4

(
1 + α2

)
cos 2η, (3.100)

∂1S = pη
kzl

4

l

L

(
1 + α2

)
sin 2η, (3.101)

∂6S = pη
kzl

2

8

(
1− α2

)
sin 2η, (3.102)

and ∂2S = ∂3S = ∂4S = 0. Then, the covariant vector Γµ after the gauge transfor-
mation is given by
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Γ0 =
m2c2 + P 2

x + P 2
y + p2η

2pηkz
− (1 + α)σPxl(X) sin η + α2 pηkzl

2(X)

4

− mc

2
l(X) (ax(x)− ax(X)) (1− cos 2η) , (3.103)

Γ1 = Px + Pxσ
l

L

∣∣∣∣
X

cos η +
pηkzl(X)

4

l

L

∣∣∣∣
X

α2 sin 2η

+mcσ (ax(x)− ax(X)) sin η

+
mc

2

l

L

∣∣∣∣
X

(ax(x)− ax(X)) sin 2η, (3.104)

(
Γ2,Γ3,Γ4,Γ5

)
= (Py, pη, 0, 0) , (3.105)

Γ6 =
kzl

2

8

(
1− α2

)
sin 2η. (3.106)

In Eq. (3.103), one can see that the oscillatory term that causes a first order oscil-
lation in Eq. (3.95) has now been removed. Therefore, we employ the 1-form given
by the coordinates Eq. (3.71) and the covariant vector Eqs. (3.103)-(3.106) as the
base for the Lie perturbation analysis in the following.

3.2.3.1 Fundamental one-form

The zeroth-order component of the covariant vector Γµ after the gauge transforma-
tion is given by

Γ(0)
µ =

(
m2c2 + P 2

x + p2η
2pηkz

− (1 + α)Pxl(X)σ sin η + α2 pηkzl
2(X)

4

;Px, Py, pη, 0, 0,
kzl

2

8

(
1− α2

)
sin 2η

)
. (3.107)

In this coordinate, because of the sixth component Γ
(0)
6 appears due to the gauge

transformation procedure Γ6 7→ Γ6 + ∂6S, the Lagrange tensor calculated from the
0th-order 1-form now has a off-diagonal component

ω61 =
Γ1

Z6
− Γ6

Z1
= −εkzl

4

l

L

(
1− α2

)
sin 2η. (3.108)

Then, the Poisson tensor J calculated from the 0th-order 1-form is given by

J(0) =

(
0 Ω
−tΩ 0

)
; Ω =

 1 0 0
0 1 0
−ω61 0 1

 . (3.109)
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3.2.3.2 Equation of motion: The first order ponderomotive force

The equations of motion derived from the zeroth-order 1-form are obtained from

dX

dη
= −∂Γ0

∂Px
, (3.110)

dY

dη
= −∂Γ0

∂Py
, (3.111)

dZ

dη
= ω61

∂Γ0

∂Px
+

(
∂Γ6

∂η
− ∂Γ0

∂pη

)
, (3.112)

dPx

dη
= −

(
∂Γ1

∂η
− ∂Γ0

∂X

)
, (3.113)

dPy

dη
= 0, (3.114)

dpη
dη

= 0, (3.115)

From Eqs. (3.115) and (3.114), one can easily obtain the solution

Py = 0, (3.116)

pη = −mcζ0 (⇔ 1 + α = 0) . (3.117)

By substituting the solutions Eqs. (3.116) and (3.117), we have the reduced equations
of motion,

dX

dη
=

Px

mcζ0kz
, (3.118)

dPx

dη
= −εmcax

2

l

L
. (3.119)

and dY/dη = 0 for the transverse directions and

dZ

dη
=

1− ζ20
2ζ20kz

+
kzl

2

4
+

1

2kz

(
Px

mcζ0

)2

− Px

mcζ0
σl sin η, (3.120)

for the Z direction, respectively. The RHS of Eq. (3.119) corresponds to the first
order transverse ponderomotive force which is consistent with that obtained by the
averaging method [21, 22, 40]. Note that the oscillatory term appeared in Eq. (3.95)
is removed successfully owing to the gauge transformation. Combining Eqs. (3.118)
and (3.119), we have

d2X

dη2
= −ε l

2

l

L
, (3.121)

which we refer to as the first order ponderomotive formula derived by the Lie per-
turbation method. In the Z direction, secular terms in Eq. (3.120) correspond to
the drift motion caused by the light momentum, or in other words, the averaged
v ×B motion.
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3.2.4 First order analysis

3.2.4.1 Fundamental one-form

The first-order component of the covariant vector Γµ is given by

Γ(1)
µ =

(
− pηkzl

2

4
ασ

l

L
(cos η − cos 3η) ;

pηkzl

2

l

L

(
α+

α2

2

)
sin 2η + Pxσ

l

L
cos η, 0, 0, 0, 0, 0

)
= C(1)

µ . (3.122)

We execute the first order Lie transformation Zµ 7→ Z ′µ = exp
(
εL (1)

)
Zµ. The

covariant vector is transformed to Γ′
µ, where

Γ
′(1)
0 = C

(1)
µ

(
V (0)µ

)(0)
= 0, (3.123)

and Γ
′(1)
i = 0 (i = 1, 2, · · · , 6). Therefore, 1-form up to the first order of ε, i.e.,

Γ′
µdZ

′µ, has the same functional form as that of the zeroth order, Γ
(0)
µ dZµ.

3.2.4.2 Lie generator and gauge function

The first-order gauge function S(1) is given by the relation

∂S(1)

∂η
= −

[
C(1)
µ

(
V (0)µ

)(0)]
os.

, (3.124)

as

S(1) = −pηkzl
2

8
σ
l

L

(
3α2 + α3

)(
sin η − 1

3
sin 3η

)
+
Pxl

4

(
1− α2

2

)
l

L
cos 2η +

P 2
x

pηkz
σ
l

L
sin η. (3.125)

The generator of the 1st-order Lie transformation is obtained from the relations

g(1)1 =

(
∂S(1)

∂Z4

)(1)

J (0)41 = −

(
∂S(1)

∂Px

)(1)

, (3.126)

g(1)3 =

(
∂S(1)

∂Z6

)(1)

J (0)63 = −

(
∂S(1)

∂pη

)(1)

, (3.127)

g(1)4 = C
(1)
1 J (0)14 = C

(1)
1 , (3.128)

g(1)2 = g(1)5 = g(1)6 = 0. (3.129)
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as follows:

g(1)1 = −1

4

(
1− α2

2

)
l
l

L
cos 2η − 2Px

pηkz
σ
l

L
sin η, (3.130)

g(1)3 = −kzl
2

8
σ
l

L
α2 (3 + 2α)

(
sin η − 1

3
sin 3η

)
+

P 2
x

p2ηkz
σ
l

L
sin η − Pxl

4pη

l

L
α2 cos 2η,

(3.131)

g(1)4 =
pηkzl

2

l

L

(
α+

α2

2

)
sin 2η + Pxσ

l

L
cos η, (3.132)

g(1)2 = g(1)5 = g(1)6 = 0. (3.133)

From Eqs. (3.130)-(3.133), we see that the backward Lie transformation G µ
b (·) =(

1− εL(1)
)
I µ(·) = I µ(·) − εg(1)µ(·) adds only oscillatory terms to the solution in

the Lie transformed coordonate Z ′µ.
Here, we note that the terms added by the backward transformation correspond

to increase/decrease of the figure-eight oscillation in the uniform field. Assuming
that the field amplitude ax(x) and then the excursion length l(x) have a linear
dependence on x, i.e., l(x) ∝ ax(x) ∝ ±a0x; a0 = const., we obtain

g(1)1 ∼ −1

8
a20x cos 2η. (3.134)

By substituting the figure-eight oscillation x = σl cos η in the RHS, we have the
relation

g(1)1 ∝ ∓σl cos η cos 2η = ∓1

2
σl (cos 3η + cos η) , (3.135)

from which it is seen that the original figure-eight motion x = σl cos η is increased/decreased
depending on the sign of the field gradient.

3.2.5 Second order analysis

3.2.5.1 Fundamental one-form

The second-order component of the covariant vector Γµ is given by

Γ(2)
µ =

(
− pη

16
kzl

2α
l2

R
(1− cos 4η)

;
pηkzl

8
ασ

(
l2

R
+ 2

l2

L2

)
(sin 3η + sin η) , 0, 0, 0, 0, 0

)
. (3.136)

Γ′′
0 in the Lie-transformed coordinate is calculated from the relation
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Γ
′′(2)
0 = D

(2)
µ

(
V (0)µ

)(0)
, (3.137)

where

D(2)
µ = Γ(2)

µ −
(
L(1)Γ(1)

µ

)(2)
+
1

2

(
L(1)2Γ(0)

µ

)(2)
−
(
L(1)Γ(0)

µ

)(2)
+
(
∂µS

(1)
)(2)

. (3.138)

After some algebra and averaging procedures, we finally obtain
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Therefore, the 1-form up to the second-order in the Lie-transformed coordinate is
found to be

Z ′′µ =
(
η;X ′′, Y ′′, Z ′′, P ′′

x , P
′′
y , p

′′
η

)
(3.140)
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(
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)
, (3.141)

3.2.5.2 Equation of motion: The third order ponderomotive force

The equation of motion for the 6th component is derived from the above 1-form as

dp′′η
dη

= J63

(
∂Γ′′

3

∂η
− ∂Γ′′

0

∂Z ′′

)
= 0. (3.142)

Here, by using the solution p′′η = −mcζ0 ⇔ 1 + α = 0, we can reduce the covariant
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vector Eq. (3.141) as

Γ′′
µ
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This covariant vector leads to the reduced equations of motion in the X-direction
given by

dX ′′

dη
=

P ′′
x

mcζ0kz

(
1 + ε2

3

2

l2

L2

)
, (3.144)
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The equation of motion for Z ′′ is obtained from (3.141) as
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where the solution p′′η = −mcζ0 is utilized. Equations (3.144) and (3.145), which
determine the transverse secular motion of the oscillation center up to O

(
ε3
)
, are

the central results in this study.

Combining Eqs. (3.144) and (3.145), we have

d2X ′′

dη2
= − l

2

[
ε
l

L
+
ε3

8

(
7

2

l

L

l2

R
+
l3

T
+

25

2

l3

L3

)]
, (3.147)

where we again neglect terms in the order of ε5 using P ′′
x ∼ O (ε). The RHS of

Eq. (3.147) corresponds to the relativistic ponderomotive force up to the third order
of ε. As seen in Eq. (3.147), the ponderomotive force of the order following the first
order is O

(
ε3
)
, which consists of terms proportional to the second and third spatial

derivatives of the field amplitude and also to the cube of the field gradient. Thus,
the ponderomotive force depends not only on the local field gradient but also on the
field curvature and its derivative (spatial variation of curvature), which correspond
to the higher-order nonlocal structures not simply described by the local gradient.

In the Z ′′ direction, the zeroth-order translational motion proportional to kzl
2/4

in the second term on the RHS of Eq. (3.146) is found to also be affected by the
higher-order terms through the v×B force as seen in the fifth term on the RHS of
Eq. (3.146).
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Figure 3.4: Effects of the curvatureR−1 and third derivative T−1 of the field amplitude

on the particle orbit. The field has (a) zero gradient and positive or negative curvature,

(b) finite gradient and positive or negative curvature, and (c) zero gradient and positive

or negative third derivative at X = X0. The blue line denotes the field pattern and

the black solid line represents the particle orbit in the x-z plane. In the lower part, the

unperturbed orbits are shown for comparison.

3.3 Physical meaning of the nonlocal ponderomotive

force

3.3.1 The higher order nonlocal effect described by the third order
ponderomotive force

Here, we consider the physical meaning of the higher order ponderomotive force
obtained in Sec. 3.2. The nonlocal effects represented by Eq. (3.147) can be explained
using Fig. 3.4, which illustrates three typical laser field patterns as follows:

(a) A symmetrical concave (solid line) or convex (dashed line) structure where the
gradient at the oscillation center X = X0 is zero, so that l/L = l3/T = 0 but
l2/R 6= 0.

(b) An asymmetric concave (solid line) or convex (dashed line) structure where the
gradient is finite at X = X0, so that l/L 6= 0 and l2/R 6= 0 but l3/T = 0.

(c) An asymmetric structure with curvature transition at X = X0 where the gra-
dient and curvature are both zero, so that l/L = l2/R = 0 while l3/T 6= 0.

The corresponding particle orbits around X = X0 are shown in Fig. 3.4 (black solid
lines) for cases l2/R > 0 and l3/T > 0.

In case (a), the excursion length increases (decreases) when the curvature is
positive (negative) owing to the increase (decrease) of the η cycle-averaged field
amplitude. However, since the change is symmetric forX = X0, the nonlocal effect is
canceled during one cycle of η. Therefore, case (a) does not produce ponderomotive
force. This is the reason that the term l2/R ∼ O

(
ε2
)
does not appear independently

in Eq. (3.147).
On the other hand, in case (b), the symmetry associated with the curvature l2/R

is broken by the coupling with the gradient l/L > 0. Consequently, an asymmetry
is produced in the orbit, which leads to a ponderomotive force influenced by the
curvature.

57



3. NONCANONICAL LIE PERTURBATION ANALYSIS OF RELATIVISTIC
PONDEROMOTIVE FORCE

Figure 3.5: Overview of the derivation process from the fundamental one-form to the

equation of motion. In the left side, κ denotes the Hamiltonian, and in the following

brackets, the dependence of terms included in κ on the sign of particle charge σ, field

amplitude ax and spatial derivative ∇ is shown.

In case (c), the orbit also becomes asymmetric but in a different manner. Namely,
although the field gradient is zero at the oscillation center, the nonlocal effect asso-
ciated with the third derivative l3/T > 0 yields a finite ponderomotive force.

These are the higher order nonlocal effects that cannot be simply represented by
the local field gradient.

The general parity relation that all the even derivatives, i.e., ∂nax/∂X
n (n =

2, 4, 6, · · · ), do not appear alone in the equation of motion has been confirmed in
orders higher than ε3.

3.3.2 Symmetrical characteristic of the oscillation center one-form

In the above, we discussed the nonlocal effects relating to symmetry. Interestingly,
the corresponding oscillation center 1-form is also found to exhibit a symmetrical
aspect. To see it, we show an overview of the derivation process from the 1-form
to the equation of motion in Fig. 3.5. Here, κ denotes the Hamiltonian, and in the
following brackets, the dependence of terms included in κ on the sign of particle
charge σ, field amplitude ax and spatial derivative ∇ is shown.

As shown in the squares in the left side of Fig. 3.5, the Hamiltonian in odd orders
(n = 1, 3) is zero, while that in even orders (n = 0, 2) is finite. Here, as discussed in
Sec. 3.2.2, the nth order Hamiltonian leads to the force of (n + 1)th order, due to
the X derivative of the Hamiltonian in formulating the equation of motion as seen
in the squares in the right side in Fig. 3.5. Due to this relation, the obtained higher
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order ponderomotive force has only the odd order, i.e., the first and third orders,
whereas there appears no even-order force.

Here, it is worthwhile to consider the properties of terms whose orders are higher
than O

(
ε3
)
. Since the ponderomotive force is a pressure force associated with the

electromagnetic field, it does not depend on the sign of the particle charge σ. From
this requirement, only the terms proportional to σ2n (n = 1, 2, · · · ) can be retained in
the secular 1-form, so that only the 1-form in O

(
ε2n
)
has a finite value and produces

the ponderomotive force in the order of ε2n+1. Therefore, the ponderomotive force
next to the third order is expected to be O

(
ε5
)
. We have confirmed that the third-

order 1-form becomes zero, so that no fourth-order ponderomotive force appears.

3.4 Discussions

3.4.1 On the removal of the figure-eight oscillation

The gauge transformation performed in Sec. 3.2.3 removes a term that causes an
oscillation in the x direction, but the zeroth-order 1-form itself still includes oscil-
latory terms as seen from Eq. (3.107). In other words, the oscillatory term is not
removed completely but just moved from Γ0 to Γ6 which does not affect the equation
of motion in the x direction.

This point is an essential difference from the noncanonical Lie perturbation anal-
ysis in gyrokinetics and also in studying the beam orbit in free-electron lasers (FEL).

In the present case, the zeroth-order fundamental orbit is the figure-eight motion
which has in principle two frequencies, η and 2η. On the other hand, the gyration
motion, which is the fundamental oscillation in the case of gyrokinetics, has only
a single gyro frequency, ωc = qB/mc. For the beam trajectory in wiggler magnets
in the FEL system, the fundamental oscillation is also described by a single wiggler
frequency.

From the above reason, in the present system in which the fundamental particle
orbit has more than one frequency, there exist no coordinates that remove the rapid
oscillation complitely from the zeroth-order 1-form. In Appendix C, instead of the
preparatory gauge transformation applied in this chapter, we perform a coordinate
transformation that is different from the usual oscillation center transformation to
remove oscillation from the x direction. We will see that, even in that case, the
oscillation is not removed completely from the 1-form but moved from the x to z
direction in the equations of motion.

The present analysis thus demonstrates that the degree of freedom of the gauge
and coordinate transformations can be utilized to arrange the distribution of oscil-
latory terms in the phase space Lagrangian depending on the purpose.

3.4.2 Effect of non-uniformity of the laser field in the pulse direc-
tion

In the present study, we have assumed a laser field whose amplitude is nonuniform
only in the transverse x direction. When the field amplitude has a non-uniformity
also in the parallel z direction as ax = ax(x, η), such as spatially and temporally
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localized laser pulses, it is expected to affect not only in generating the ponderomo-
tive force in the z direction, i.e., the pulse direction, but also as a modulation to the
transverse ponderomotive force in higher orders.

From the odd-type structure of the ponderomotive force found in Sec. 3.3, the
candidates for the transverse higher-order force associated with the non-uniformity
in the pulse direction are considered to appear in the third order ε3, being coupled
with the non-uniformity in the transverse direction as

ε3
l

L

1

L2
η

, ε3
l

L

1

Rη
, ε3

l2

L2

1

Lη
, ε3

l2

R

1

Lη
, (3.148)

where we represent the gradienta and curvature by the phase η as a−1
x ∂ax/∂η =

1/Lη, a
−1
x ∂2ax/∂η

2 = 1/Rη, respectively.

In Eq. (3.148), the first and second ones denote the modulation to the gradient
l/L (odd-type structure) from the pulse non-uniformity 1/L2

η and 1/Rη (even-type
structures), whereas the third and fourth ones denote the modulation to the even-
type structures l2/R and l2/L2 from the pulse non-uniformity 1/Lη (odd-type struc-
ture). Among them, we can expect that only the first and second ones, i.e.,

ε3
l

L

1

L2
η

, ε3
l

L

1

Rη
, (3.149)

can appear as the third order secular force in the transverse x direction for the same
reason as the discussion for Fig. 3.4 (b) in Sec. 3.3.1. Namely, the curvature in
the pulse direction 1/Rη increases/decreases the excursion length of the figure-eight
motion due to the increase/decrease of the η cycle-averaged field amplitude. The
couplings in Eqs. (3.149) break the symmetrical change in the figure-eight excursion
by the pulse non-uniformity, and then yield a finite ponderomotive force.

3.4.3 Possibility for expressing the higher order ponderomotive
force by a potential form

The ponderomotive force up to the first order of ε is expressed as a potential force.
Here, we consider whether the higher order nonlocal ponderomotive force can be
expressed as a potential force as

d2X ′′

dη2
= −∇φp, (3.150)

where φp is a scalar corresponding to the ponderomotive potential.

In the first order ε, one can easily see that the ponderomotive force can be written
as

d2X

dη2
= − l

2

l

L
= −1

4
∇l2, (3.151)

where ∇ = ∂/∂X ′′. Hence, the ponderomotive potential up to the first order is
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obtained as

φp =
l2

4
. (3.152)

In contrast, we find that the ponderomotive force up to the third order cannot
be expressed as a scalar potential form. The verification is given in Appendix D.

The above consideration, i.e., whether a description in the potential form is
possible or not, is important because it is related to the generations of vortex in the
particle motion and of the corresponding magnetic field. For instance, we assume
the equation of motion dp/dt = −∇φ+ F where the force F cannot be represented
by the gradient of a scalar function as the scalar potential force −∇φ in the first
term. By taking the curl of both sides of the equation of motion, the time evolution
of the vorticity Ω = ∇ × p can be obtained as dΩ/dt = ∇ × F. Here, notice that
the scalar potential force term does not appear in the vorticity equation doe to the
vector operation ∇×(∇φ) = 0. Therefore, the nonpotential force F can be regarded
as the source of vortices.

As a further extension of the present theory, it is worthwhile to explore the
vector potential for the obtained higher order force [41]. Namely, when the higher
order ponderomotive force has the corresponding vector potential, it may leads to a
magnetic field generation through the particle motion suffered from the higher order
nonlocal ponderomotive effects.

3.5 Conclusions

In this chapter, we explored a theory of ponderomotive force that includes nonlocal
effects up to higher orders using the noncanonical Lie perturbation method.

By properly choosing the coordinate transformations and gauge functions, we
successfully obtained a secular equation of motion describing the ponderomotive
force up to the third order of ε. The higher-order terms consist of the second and
third spatial derivatives of the field amplitude, so that the ponderomotive force
depends not only on the local field gradient, but also on the field curvature and
its variation. Such higher-order derivative terms originate from nonlocal particle
motion not simply expressed by the local field gradient as Fick’s law. The formula
is then accessible to the regime in which laser fields exhibit characteristic transverse
structures such that higher derivatives of the field amplitude regulate the interaction.

In the derivation process, it is noted that the oscillation cannot be removed com-
pletely from the fundamental 1-form due to the fact that the zeroth-order funda-
mental orbit in the present study has two frequencies, which is an essential difference
from the noncanonical Lie perturbation analysis in previous studies such as gyroki-
netics. Here, a proper gauge transformation successfully transfered the undesirable
oscillation from the transverse to longitudinal direction.

The obtained higher order ponderomotive force are found to be subject to the
symmetry of the field structure and also to a constraint that the ponderomotive
force is a pressure force free from the sign of the particle charge.
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Chapter 4

Analytical solution for the

ponderomotive formula

In this chapter, we find an approximated solution for the first and third order pon-
deromotive formulae obtained in Chap. 3 assuming laser fields with the Gaussian
and super Gaussian transverse structures. In the latter case, a qualitative difference
between the first and third order formulae is obtained (Sec. 4.3). Parametric de-
pendences of the oscillation center trajectories on the scale length of the field profile
and also on the initial condition are discussed.

4.1 Taylor expansion of the ponderomotive terms

In Chap. 3, we derived the oscillation center equations of motion describing the
ponderomotive force up to the first order ε, i.e.,

d2X ′′

dη2
= −ε l

2

l

L
,

(Eq. (3.121)) and to the third order ε3 (Eq. (3.147)), i.e.,

d2X ′′
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= − l

2

[
ε
l

L
+
ε3

8

(
7

2

l

L

l2

R
+
l3

T
+

25

2

l3

L3

)]
,

(Eq. (3.147)).

In this section, we consider the difference between the above first and third
order ponderomotive formulae in detail by using the Taylor expansion for the field
amplitude and its derivatives on the RHS of Eqs. (3.121) and (3.147) around a fixed
position X = X0. Here, the expansion parameter is defined by

δ ≡ (X −X0)
∂(ln ax)

∂X

∣∣∣∣
X0

=
X −X0

L (X0)
, (4.1)

where X0 is assumed to be the initial position of the oscillation center. The first
order formula Eq. (3.121) is expanded to
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4.1 Taylor expansion of the ponderomotive terms
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while the third order formula Eq. (3.147) to
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Figure 4.1: Transverse laser field profiles considered in Sec. 4.2 (a), i.e., Gaus-

sian exp(−x2/w2) and super Gaussian exp(−x4/w4), and (b), i.e., exp(x2/w2) and

exp(x4/w4) concave hollows.

Here, lQ−1, lF−1 and lJ−1 correspond to the fourth, fifth and sixth deribatives of

the field amplitude, respectively. The terms in the order ε3, i.e. A
(3)
0 , A

(3)
1 , A

(3)
2 and

A
(3)
3 , originate from the third order term in the original equation Eq. (3.147).

Here, an important difference is found to appear when flat top/bottom field
profiles are assumed.

4.2 Application to the flat-top super Gaussian-type trans-

verse field structure

To see this, we assume a symmetrical concave/convex profile for the laser field
amplitude in the transverse direction given by

ax(x) = a0 exp
[
±
( x
w

)s]
, (4.12)

where w is a typical scale length of the field profile, i.e., the beam waist size for
convex fields, while the hollow width for concave fields. Here, s = 2 corresponds to
the Gaussian-type concave/convex profile, whereas s = 4 to that of the fourth order
super Gaussian which exhibits flat top or flat bottom structure having more gentle
amplitude gradient around the axis as shown in Fig. 4.1.

For s = 2, spatial deribatives up to the fourth order are calculated as
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, (4.15)
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Q
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4
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(
3± 12

x2

w2
+ 4

x4

w4

)
, (4.16)

where signs are minus for convex field and plus for concave field, respectively. From
Eqs. (4.13)-(4.16), we see that the odd-order derivatives Eqs. (4.13) and (4.15) vanish
on the axis x = 0, while those of even-orders have finite values at x = 0.
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4.2 Application to the flat-top super Gaussian-type transverse field structure

On the other hand, for s = 4 super Gaussian, we have

1

L
=

1

l

∂l

∂x
= ± 4

w

x3

w3
, (4.17)

1

R
=

4

w2

x2

w2

(
±3 + 4

x4

w4

)
, (4.18)

1

T
=

8

w3

x

w

(
±3 + 18

x4

w4
± 8

x8

w8

)
, (4.19)

1

Q
=

8

w4

(
±3 + 102

x4

w4
± 144

x8

w8
+ 32

x12

w12

)
. (4.20)

In this case, Eqs. (4.17)-(4.19) are found to be zero at x = 0. Therefore, different
from the Gaussian case s = 2, derivatives that have finite values on the axis x = 0

are those of even orders larger than the third order, i.e., ∂
(n)
x l (n ≥ 4). In other

words, not only the gradient but also the curvature and its variation vanish on the
axis x = 0. In Figs. 4.2 (a) and (b), we plot the first to fourth derivatives for s = 2
and s = 4 convex cases with minus sign in Eq. (4.12), which correspond to the
Gaussian and fourth order super Gaussian beams, respectively. In the right side
figures in (a) and (b), the derivatives in the peripheral of the beam axis x = 0 are
shown, from which we see that the second and fourth derivatives are dominant near
the axis in the cases of s = 2 and s = 4, respectively.

Now, we apply these field profiles to Eqs. (4.2) and (4.3) assuming that the
oscillation center is initially on the axis, i.e., X0 = 0. Here, we consider s = 4
with minus sign in Eq. (4.12). In this case, Eq. (4.2) derived from the first order
ponderomotive formula yields to

d2X

dη2
= −δ

3ε

12

l2

Q
(X −X0)

3 + O
(
δ3ε3

)
, (4.21)

whereas, Eq. (4.3) from the third order formula becomes

d2X

dη2
= −δε

3

16

l4

Q
(X −X0)−

δ3ε

12

l2

Q
(X −X0)

3 + O
(
δ3ε3

)
, (4.22)

Here, we limit the situation such that the oscillation center is near the beam axis,
i.e., X ∼ X0. In such a case, the second term on the RHS of Eq. (4.22) can be
neglected compared with the first term, and then it leads to

d2X

dη2
= −δε

3

16

l4

Q
(X −X0) . (4.23)

Comparing Eqs. (4.21) and (4.23), we find an essential difference, i.e., a linear term
remains in Eq. (4.23) but not in Eq. (4.21). The remaining linear term in Eq. (4.23)
corresponds to an ε3 term in the coefficient (B) (Eq. (4.5)) that is derived from the
term consisting of the third derivative lT−1 in the original third order ponderomo-
tive formula Eq. (3.147) through the procedure of taking its first derivative in the
Taylor expansion. Therefore, we conclude that in considering flat field structures
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4. ANALYTICAL SOLUTION FOR THE PONDEROMOTIVE FORMULA

Figure 4.2: The first to fourth spatial derivatives normalized by the excursion length

l = a0λL/2πζ0 where a0 = 4, λL = 820 nm and ζ0 = 1 for (a) s = 2 convex Gaussian

and (b) s = 4 convex super Gaussian laser fields.

such as s = 4 super Gaussian, the oscillation center equation of motion exhibits a
qualitative difference depending on whether the higher order nonlocal effect of the
field amplitude is taken into account or not.

4.3 Elliptic- and exponential-type trajectories of the os-

cillation center

Next, we consider the analytical solutions for Eqs. (4.21) and (4.23). Firstly, the
solution for (4.21) is given using the Jacobi function sn as

X

λ
= −(−1)1/4

2π

√
a0
ζ0

√
Px0

mcζ0

w

l
sn (Θsη,−2) , (4.24)

where

Θs =
(−1)3/4√
a0/ζ0

√
Px0

mcζ0

(w
l

)−1
. (4.25)

The above solution can be expanded in the form
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4.3 Elliptic- and exponential-type trajectories of the oscillation center

X ∼ D1η +D5η
5; (4.26)

D1 =
1

2π

Px0

mcζ0
, (4.27)

D5 = D1
1

10

1

4π2

(
Px0

mcζ0

)2 1

(w/λ)2

(w
l

)−2
. (4.28)

Here, D1 is a coefficient corresponding to the ballistic motion of the particle deter-
mined by the initial momentum Px0, while D5 is that to the acceleration due to the
ponderomotive force.

On the other hand, the solution for Eq. (4.23) is found to have an exponential
dependence on η as

X

λ
=

1

2π
√
6

Px0

mcζ0

(w
l

)2 (
eθη − e−θη

)
, (4.29)

where

θ =

√
3

2

1

2π

a0
ζ0

(w
l

)−2
. (4.30)

The above solution can be expanded in the form

X ∼ C1η + C3η
3; (4.31)

C1 =
1

2π

Px0

mcζ0
, (4.32)

C3 = C1
1

4

(w
l

)−4
. (4.33)

Similar as D1 and D5, the coefficient C1 corresponds to the ballistic motion of the
particle determined by the initial momentum Px0, while C3 to acceleration due to
the ponderomotive force. Note that without neglecting X3 term in Eq. (4.22), the
solution is given by the Jacobi function cn as

X

λ
=

√
3

4π

a0
ζ0

(1 + 128

3

ζ20
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where
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1− 1
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mcζ0
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, (4.35)
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and

k = 1−

(
Px0
mcζ0

)2
2
(

Px0
mcζ0

)2
− 3

64
a20
ζ20

l4

w4
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1 + 128

3
ζ20
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l4

w4

(
Px0
mcζ0

)2
− 1

] , (4.36)

which satisties k = 1/2 when the linear term becomes zero.

4.4 Discussions

4.4.1 Qualitative difference of the two types of solution

As discussed in Sec. 4.3, terms relating to the ponderomotive acceleration is D5η
5

in Eq. (4.26) and C3η
3 in Eq. (4.31), respectively. Therefore, it is worthwhile to

investigate the parametric dependence of C3 and D5.
The coefficient C3 is originated from the curvature variation 1/T in Eq. (3.145),

and is proportional to Px0 (l/w)
4. On the other hand, D5 originated from the first

order ponderomotive force in Eq. (3.145) is proportional to P 3
x0 (l/w)

2. Both C3

and D5 thus consist of the product of Px0 and l/w where Px0 is related to the
initial ejection without which the oscillation center located at X = 0 does not move,
and l/w to the ponderomotive force acceleration due to the nonlocality. Here, it is
found that the dependence on l/w is stronger in C3 than D5, whereas that on Px0 is
stronger in D5 than C3. These dependences suggest that the effect of the nonlocal
particle motion is more pronounced in the third order ponderomotive formula than
that of the first order as one can expect. The trajectories depart from the linear
dependence, i.e. X ∼ η, when terms C3η

3 and D5η
5 become effective in Eqs. (4.31)

and (4.26), respectively. The ratio is given by

D5

C3
=

2

5a20

(
Px0

mc

)2

, (4.37)

and therefore, when the initial momentum Px0 is small satisfying Px0/mc� a0, the
trajectory described by the third order formula is found to escape faster than that
by the first order.

4.4.2 Extension to general field profiles

Note that in this section, we have assumed a laser field profile given by Eq. (4.12)
with even numbers for the polynomial s. We can consider more general expression
for the transversely non-uniform field profile given by

ax (x) = a0

∞∑
s=1

fsexp

[
−
(
x

ws

)s]
, (4.38)

where fs is a weighting function and ws the specific scale length of the field amplitude
variation corresponding to each polynomial s. Such an expression can represents
complicated transverse field structures including asymmetry, which may be obtained
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4.5 Conclusions

Figure 4.3: Examples of field structure represented by Eq. (4.38).

in experiments. Here, we note that in Sec. 4.2, it is found that the third order
ponderomotive force plays an important role in determining the particle motion in
the field profile s = 4, while the first order force can basically represent the motion
when we assume s = 2. Similarly, a general relation can be obtained as follows: The
nth order ponderomotive force becomes important in considering the field profile
with s = n+ 1. In Fig. 4.3, several examples for structures that can be represented
by Eq. (4.38) using s ≤ 4 are shown. Exploration of cases including asymmetry is
interesting work to be devoted to future study.

4.5 Conclusions

In this chapter, we studied analytical solutions for the first and third order pondero-
motive formulae obtained in Chap. 3 assuming laser field with the Gaussian and
fourth order super Gaussian transverse structures. In the latter case, a qualitative
difference between the first and third order formulae is obtained, which is found
to be resulted from the fact that the first to third spatial derivatives of the field
amplitude are diminished at the beam axis in the super Gaussian field profile. An
oscillation center motion that exhibits exponential ejection from the beam center
is derived as an approximated solution for the third order ponderomotive formula,
whereas a solution represented by the Jacobi elliptic function is obtained for the
first order formula.

By investigating the parametric dependences of the oscillation center trajectories
on the scale length of the field profile and also on the initial condition of the particle,
we found that the effect of the nonlocal particle motion, which is represented by the
the ratio between the excursion length and beam radius, is more pronounced in the
third order ponderomotive formula than that of the first order.

These results suggest that the first order formula underestimates the pondero-
motive force at the peripheral of the beam axis in flat-top field structures.
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Chapter 5

Numerical calculation for single

particle motion in laser beams

with flat transverse profiles

In the previous chapter, we find solutions for the oscillation center orbit analytically.
The analytical solution is obtained based on an approximation that the oscillation
center does not travel far from its initial position. Generally, the equation of motion
cannot be solved analytically without such an approximation because the equation
includes an arbitrary function of x, i.e., ax(x) and l(x). Instead, we here perform
a numerical integration to solve the oscillation center equation of motion and ob-
tain the oscillation trajectory. In this chapter, we consider two types of transverse
laser field amplitude profile; one is convex structure which simply eject the particle
(Secs. 5.1 and 5.2), and the other is that of concave in which the particle is expected
to exhibit the betatron oscillation in a slow period compared with that of the laser
(Sec. 5.3).

We will show a comparison among the trajectories obtained by the first and
third order ponderomotive formulae and also the trajectory calculated directly from
the equation of motion for the particle. By these comparisons, we investigate the
effect of the higher order nonlocal ponderomotoive force on the oscillation center
dynamics.

5.1 Particle trajectories in super Gaussian laser beams

First, we consider the trajectory of the oscillation center of the particle in the laser
field with fourth order super Gaussian beam profile, which is given by Eq. (4.12) in
Sec. 4.2 with the minus sign and s = 4.

Here, we show numerical trajectories obtained by

(I) the first order ponderomotive formula,

dX ′

dη
=

P ′
x

mcζ0kz
, (5.1)

dP ′
x

dη
= −mcζ0kzl

2
ε
l

L

∣∣∣∣
X′
. (5.2)
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5.1 Particle trajectories in super Gaussian laser beams

Figure 5.1: Comparison between the numerical trajectories for the oscillation center

of a charged particle obtained from the Lie perturbation method up to (I) the first and

(II) third orders, and (III) the averaging method up to the third order with respect

to ε. The particle is irradiated by the laser beam with a transverse envelope ax =

a0 exp
(
−x4/w4

)
, where a0 = 4 and w = 5µm. The black solid line shows the particle

trajectory calculated by the full-order equation of motion.

(II) the third order ponderomotive formula derived by the Lie perturbation method,

dX ′′

dη
=

P ′′
x

mcζ0kz

(
1 + ε2

3

2

l2

L2

∣∣∣∣
X′′

)
, (5.3)
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. (5.4)

(III) the third order ponderomotive formula derived by the averaging method to
the equation of motion given by Eqs. (A.84) and (A.85) in Appendix A, i.e.,

dxs⊥
dη

=
ps⊥
mωζ0

,(
∂
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+
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mωζ0

)
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l
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l3
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êx, (5.5)

and

(IV) direct integration of the particle equation of motion,

dx

dη
=

p

mωζ0
, (5.6)

dp

dη
= q

(
E+

v

c
×B

) ωζ0
γ
. (5.7)

For the numerical integration, we use the fourth order Runge-Kutta method.

The numerical solutions obtained for cases (I)-(IV) are shown in Fig. 5.1. In this
calculation, the normalized amplitude, beam radius and wavelength are assumed to
be a0 = 4, w = 5µm and λ = 1µm, and the initial condition for the oscillation center
of the particle is (X ′′, P ′′

x ) = (0, 0.001mc). Note that the equation of motion in case
(III) is expressed in the coordinate without the Lie transformation, whereas in cases
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5. NUMERICAL CALCULATION FOR SINGLE PARTICLE MOTION IN LASER
BEAMS WITH FLAT TRANSVERSE PROFILES

(I) and (II), the equations are given in the different coordinate Z ′′µ. Thus, one needs
to be careful about the initial condition for each coordinate. Here, we confirmed that
the change of the initial condition resulting from the Lie transformation does not
substantially affect the result; therefore, we used the same initial condition for all
the cases.

We see that the trajectory for case (II) (the third-order formula) shows an al-
most exact agreement with that of the direct numerical calculation (IV), while the
trajectories for case (I) (the first-order formula) and case (III) (averaging method
up to O

(
ε3
)
) exhibit significant differences in the ejection time (the time at which

the oscillation center reaches to the laser beam radius, X ′′ = w). The trajectory in
case (III) exhibits an ejection time that is a factor of 1.3 times shorter than that
obtained by direct integration of the particle trajectory. This suggests that the re-
sult derived by the averaging method is not credible compared with that obtained
by the Lie perturbation method, which preserves the Hamiltonian structure up to
higher orders. In other words, this is considered to be a direct consequence of the
lack of Hamiltonian structure in the averaging method while it is kept rigorously in
the present approach.

Next, we compare cases (I) and (II). By using the relation dη/dt = ωζ0/γ,
the ejection times for cases (I) and (II) are t =1460 fs and 480 fs, respectively.
The physics leading to such a difference is explained as follows: The conventional
first-order formula encompasses only at a narrow region through the local gradient,
which is very weak in the present super Gaussian case. In contrast, the new formula,
which incorporates terms up to the third order, can account for the global extent
of the profile up to around the beam radius X ∼ w. The new formula then can
capture the rapid change of the field amplitude near the beam radius even when the
oscillation center is located near the beam center. The new formula represents such
nonlocal effects as a residual ponderomotive force, which enhances the ejection. For
this reason, the first-order formula used in case (I) significantly overestimates the
interaction time as seen from Fig. 5.1.

5.2 Condition for long time scale interaction in super

Gaussian laser beam

Based on the above results, we further investigate the transverse initial condition
allowed to keep the interaction without suffering ejection over a given phase advance
∆η. Here, we impose the condition w = 5 µm, a0 = 4 and ∆η = 300 which
corresponds to 1 psec time duration.

In Fig. 5.2 (a), the result is plotted in the normalized phase space for initial
condition, (X ′′

0 /λ, P
′′
x0/mc). Here, blue circles and red squares show the results

numerically obtained by using the first (case (I)) and third (case (II)) order pon-
deromotive formulae, respectively. The hatched area corresponds to that allowed
for the long interaction. Namely, only the particles with initial conditions in the
hatched area can keep the interaction during 1 psec. We see that the area of the
hatched region is about 16 times larger in case (I) compared with that in case (II),
which suggests that the higher order terms are effective in determining the particle
dynamics near the beam axis.
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5.3 Betatron oscillation in concave hollow laser beam profiles

Figure 5.2: (a) The allowed area for the initial position and momentum in the perpen-

dicular direction to maintain the interaction keeping X ′′ < w = 5 µm during ∆η = 300

evaluated by the first (case(I), blue circle) and third (case(II), red square) order formu-

lae. (b) The initial momentum P ′′
x0 which leads to X ′′ = w at η = 300 for each w in

case (I) (blue circle) and (II) (red square). Here, ax = a0 exp
(
−x4/w4

)
, a0 = 4 and

λ = 1 µm are assumed.

We also investigate the maximum initial momentum P ′′
x0 for keeping the interac-

tion during ∆η = 300 with various beam radius w for both cases (I) and (II). The
numerical result for each case is shown in Fig. 5.2 (b) by blue and red points. Here,
the initial position is set to be X ′′ = 0. It is found that P ′′

x0 decreases exponentially
as P ′′

x0 ∼ 1/ exp
(
λ2/w2

)
for case (II) as shown by the red line, while exhibits more

gentle dependence P ′′
x0 ∼ (w/λ)5/3 for case (I) as the blue line. These results suggest

that the new particle motion associated with the third order terms predominantly
and sensitively regulates the dynamics.

5.3 Betatron oscillation in concave hollow laser beam

profiles

As another example, we consider confinement of a charged particle by the pondero-
motive force. Here, the transverse profile of the laser field is assumed to be concave
as shown on the right side of Fig. 4.1. In such a field, the particle exhibits a betatron
oscillation around the bottom of the hollow structure owing to the ponderomotive
force.

Figure 5.3 shows the numerical trajectory of the oscillation center in the hollow
laser field with transverse envelopes (a) ax (x) = a0 exp

(
x2/w2

)
and (b) ax (x) =

a0 exp
(
x4/w4

)
, where a0 = 4 and w = 5 µm. Note that in these cases the spatial

derivatives at the center x = 0 are (a) L−1 = T−1 = 0 and R−1 > 0 and (b)
L−1 = R−1 = T−1 = 0, while the fourth derivatives are positive in both cases. Blue
and red lines correspond to the oscillation center trajectories for case (I) (first-order
formula) and case (II) (third-order formula), respectively. In both Figs. 5.3 (a) and
(b), the frequency of the betatron oscillation is downshifted in case (I) compared

73
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Figure 5.3: Numerical trajectories for the oscillation center of a charged particle

irradiated by the laser field with transverse envelopes (a) a0 exp
(
x2/w2

)
and (b)

a0 exp
(
x4/w4

)
, where a0 = 4 and w = 5 µm. Blue and red lines show the oscilla-

tion center trajectories obtained by the ponderomotive formulae up to the first and

third orders, respectively.

with case (II). This is the effect from the third-order terms, which have finite values
around x = 0. Comparing Figs. 5.3 (a) and (b), one can see that the difference in
frequency is larger in (b). The result reflects the difference of field profiles: In case
(a), the finite curvature at the center can represents the global structure of the field
profile, whereas, in case (b), such a nonlocal structure is represented dominantly by
derivatives higher than the second order around the beam axis.

5.4 Conclusions

In this section, we studied the particle motion in flat-top super Gaussian and concave
hollow laser beam structures by using the Runge-Kutta numerical integration on the
basis of the new formula for the ponderomotive force derived in Chap. 3.

Comparison between the oscillation center trajectory obtained by the third order
formula and that obtained by a direct integration of the equation of motion for
particle demonstrates the validity of the ponderomotive formula derived in this study
with a sufficient convergence of the expansion series up to O

(
ε3
)
.

We also compared the oscillation center trajectory with that obtained by the
averaging method up to the third order. It is found that the trajectory derived
by the averaging method does not agree with the direct integration of the particle,
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5.4 Conclusions

which is considered to result from the lack of Hamiltonian structure in the averaging
method.

Based on the above results, we investigated the transverse initial condition al-
lowed to keep the interaction over a given phase advance in the super Gaussian laser
beam. The allowed area in phase space for initial condition and its dependence on
the beam radius suggest that the higher order nonlocal effect regulates the dynamics
predominantly and sensitively.

Finally, we considered hollow concave transverse field profiles in which the oscil-
lation center exhibit a slow time scale betatron oscillation. In this case, the difference
between the first and third order formulae is found to appear as a betatron frequency
shift.

These numerical results demonstrate the importance of the higher order non-
local effect of relativistic ponderomotive force in pursuing long time scale particle
dynamics in high power lasers with complex field patterns and also in considering
delicate control of laser-matter interaction by designing the field profiles.
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Chapter 6

Interaction between super

Gaussian laser beams and

plasmas

In Chap. 3, we have established a theory for the nonlocal ponderomotive force on
the basis of the single particle model which assumes a charged particle in vacuum
irradiated by lasers. In Chaps. 4 and 5, we have discussed the particle orbit in
a fixed laser field profile and shown that the nonlocal theory of the ponderomotive
force is important in understanding the delicate interaction between laser and plasma
particles, especially in the case where the ponderomotive force estimated from the
conventional formula tends to be diminished, so that a residual higher order force
associated with nonlocal profile becomes important such as flat-top super Gaussian
laser beams.

Based on these understandings for the single particle dynamics, the next concern
worthwhile to be considered is the effect of the higher order ponderomotive force
in laser-plasma interaction. In plasmas, the laser field suffers from the reaction
from plasma particle dynamics, so that the interaction has to be determined self-
consistently. In this chapter, in order to examine the importance of the nonlocal
ponderomotive theory in laser-plasma interaction, we study the propagation of super
Gaussian laser beams in plasmas based on the particle-in-cell (PIC) simulation.

6.1 Simulation setup

To investigate the interaction between laser beams and plasmas, here we carry out
two-dimensional (2D) fully-relativistic electromagnetic PIC simulations.

We assume a laser field whose initial profile is given by ax (x) = a0exp (−xs/ws)
with the wavelength λL = 0.82 µm, where a0 is the amplitude at the beam axis and
w the beam radius, which is assumed to be w = 5 µm in the simulation. Here, we
consider the case of s = 2, a Gaussian beam, and also s = 4 and 6, super Gaussian
beams. We employ periodic and outgoing boundary conditions in x and z directions
with the size of Lx = 40µm and Lz = 80µm. The mesh number in x and z directions
are Nx = 512 and Nz = 2048, respectively. The laser whose electric field E is in the
x direction is emitted by the antenna at z = 0.16 µm with a Gaussian time profile
which reaches the maximum value a0 at t =40 fsec and then keeps the constant
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6.2 Laser beam propagation in vacuum

value. Here, the normalized amplitude is assumed to be a0 =4.41, 4 and 3.84 for
s =2, 4 and 6, respectively, which keep the integrated value of E2 over x the same
for each polynomial s.

6.2 Laser beam propagation in vacuum

First of all, we consider the laser beam propagation in vacuum. In Fig. 6.1, we show
the propagation of (a) s = 2 Gaussian and (b) s = 4, (c) s = 6 super Gaussian
laser beams. The upper figures in Figs. 6.1 (a)-(c) show the time evolution of the
amplitude of laser electric field that are averaged over 5µm along the moving frame
with a constant velocity vz = c in the z direction, and the lower figures show the
amplitude of the laser magnetic field Bz in the x-z plane.

Here, the laser beam propagation in vacuum is determined by the Maxwell equa-
tions, and the general solution under the geometrical approximation can be obtained
as the superposition of the Hermite-Gaussian modes, which is shown in Appendix
E. The s = 2 Gaussian profile is one of the solution, and is referred to as the fun-
damental Hermite-Gaussian mode with m = n = 0 in the Hermite polynomial (See
Eq. (E.37)). Therefore, as shown in Fig. 6.1 (a), the laser beam with s = 2 Gaussian
profile can propagate without changing its transverse structure. Namely, although
the laser field expands in the scale of the Rayleigh length zR, which is evaluated as
zR = 96 µm in this case, the transverse structure maintains the Gaussian shape at
any position in the propagation direction z.

In contrast, s = 4 and 6 super Gaussian profiles are not maintained during the
propagation as can be seen in Figs. 6.1 (b) and (c). This is due to the fact that
these profiles are not the solution for the Maxwell equations in vacuum. Namely,
the super Gaussian profile can be constructed by a superposition of the Hermite-
Gaussian modes at a given position z at initial time; however, as the laser propagates,
the superposition begins to be disintegrated since each Hermite polynomial develops
in the transverse x direction differently depending on the position z. Consequently,
the initial flat-top profiles in Figs. 6.1 (b) and especially (c) change at first to concave
hollow structures and subsequently begin to exhibit a peaking at the beam axis with
many points of curvature transition at the peripheral.

We here note that in the numerical calculations for a single particle orbit per-
formed in Chap. 5, we fixed the laser field profile during the interaction. On the
contrary, simulation results in Fig. 6.1 indicate that the laser field propagating in
vacuum changes its shape in the time scale shorter than the ejection time obtained
in Sec. 5.1. Such a propagation property may be different in the presence of plasmas,
suffering from the self-consistent interaction such as laser self focusing.
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6.3 Laser beam propagation in plasmas

Figure 6.1: Propagation of laser beam with (a) s = 2 Gaussian and (b) s = 4, (c)

s = 6 super Gaussian transverse beam profiles in vacuum. The upper and lower figures

show the time evolutions of the laser electric field profile in the x direction and of the

laser magnetic field amplitude in the x-z plane, respectively.

6.3 Laser beam propagation in plasmas

6.3.1 Equation system describing the laser-plasma interaction

Based on the above discussions, we herein study the effect of the higher order non-
local ponderomotive force in the interaction between laser beams and plasmas. In
such a situation, the effect of plasmas, such as charge separation and Coulomb
force, and the resultant modulation to the laser field, have to be determined self-
consistently. An example of the governing equation for such a situation is the non-
linear Schrödinger (NS) equation which we derived in Sec. 1.3.2 in the introduction.

The NS equation determines the envelope of laser fields in plasmas assuming a
balance relation between the ponderomotive force Fp and Coulomb force −∇φ in
the electron momentum equation, which leads to

ω2
p

δne
Zn0

=
1

me
∇ · Fp. (6.1)

Here, ωp is the plasma frequency, δne the electron density modulation from the
background plasma density n0, and Z the ion charge state. For the ponderomotive
force Fp, the first order formula proportional to the local field gradient is generally
utilized.
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Now, the idea of the nonlocal ponderomotive force proposed in this study can be
applied to generalize the NS equation. In this case, three procedures are necessary,
i.e., one is deriving the corresponding equations of motion keeping the electrostatic
potential in Eqs. (3.144) and (3.145), equivalently in Eqs. (3.33)-(3.35), and the
other two are deriving the wave equation and Poisson equation whose coordinates
are transformed to those in the present noncanonical Lie perturbation analysis. The
inertia term in the equation of motion can be neglected, which leads to a balance
relation between ponderomotive force and Coulomb force. Then, the resultant three
equations form a generalized NS equation system.

Although derivation of the equation system is a future work, we can readily see
that the equation system exhibits higher order spatial derivatives, i.e., the fourth
order spatial derivatives, while the second order in the conventional NS equation.
Therefore, we can expect that the generalized NS equation system describes the
propagation of laser fields with delicate field patterns such that the first order field
gradient vanishes.

6.3.2 PIC simulation for laser beam propagation in plasmas

Plasma channel formation by the super Gaussian laser beam

Now, we consider the interaction between a laser beam and underdense plasma.
Here, we assume a hydrogen plasma that is fully ionized at initial time. The plasma
is distributed in the region 2.5 ≤ z ≤ 80 µm with a linear slope in 2.5 ≤ z ≤ 10 µm.
The electron density in z > 10 µm is ne = 0.02nc where nc is the cutoff density.

In Fig. 6.2 (a), we show the electron density distribution ne in the x-z plane in
the case of s = 4, a super Gaussian case, at t =135, 151 and 167 fsec, respectively.

As the laser propagates, the electrons are evacuated from the central region due
to the transverse ponderomotive force leading to a channel formation with a density
wall at the peripherals of the laser beam. However, it is interesting to note that a
density hump localized near the beam axis can be seen. This is due to the fact that
the ponderomotive force is significantly reduced near the beam axis ascribed to the
flat-top nature of the s = 4 super Gaussian beam.

Self-consistent correlation between electron density and field profiles

The electron density profiles near the axis for s = 4 are shown in Fig. 6.2 (b1) at
three times that are same as those in Fig. 6.2 (a). Note here that the profiles are
averaged over 5µm along the moving frame in the z direction shown by the squares in
Fig. 6.2 (a). The velocity of the moving frame is taken to be vz = c(1− 1/γ) ∼ 0.8c,
which corresponds to the drift velocity of the particle irradiated by the uniform
laser field of a0 = 4. Therefore, the density profiles at the three times correspond
to those of Lagrangian density which consists of almost same particles traveling
with the moving frame. The detailed structures of the density and field are shown
in Figs. 6.2 (c2) and (d2), respectively, where a limited region in Fig. 6.2 (b2) is
enlarged. It is found that the density near the axis exhibits a peaking as time goes
on while the laser field amplitude changes the profile from the flat top structure of
s = 4 to that of a weak concave with a positive curvature.
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Figure 6.2: PIC simulation for the interaction between a plasma and laser beam with

the Gaussian (s = 2) and super Gaussian (s = 4, 6) transverse beam profiles. (a)

Electron density distribution in the x-z plane for s = 4. (b1)-(b3) Transverse electron

density profiles for s = 2, 4 and 6. (c1)-(c3) Electron density and (d1)-(d3) electric field

profiles in a limited region in (b1)-(b3). (e) The first and third order ponderomotive

forces for the field profile given in (d2).

81



6. INTERACTION BETWEEN SUPER GAUSSIAN LASER BEAMS AND
PLASMAS

The structures of density and laser field in the cases of s = 2 Gaussian and s = 6
super Gaussian beams are shown in Figs. 6.2 (b1), (c1), (d1) and Figs. 6.2 (b3),
(c3), (d3), respectively. It is found that the density hump becomes wider for s = 6
than that for s = 4 while almost disappears for s = 2, suggesting that the flatter
the field profile is, the broader the hump becomes. Correspondingly, the field profile
suffers from a significant change leading to a prominent follow structure for s = 6,
whereas from little change essentially keeping the Gaussian profile for s = 2.

Here, we note that the time evolution of field amplitude profile is different from
that in the case of vacuum for both s = 4 and 6. For s = 6 for instance, the field
profile in vacuum once exhibits a hollow concave structure at the beam center and
then shifts to a convex peak structure after t = 167 fs as is seen from Fig. 6.1. On
the other hand, in the case with plasma shown in Fig. 6.2, the field profile at the
beam center keeps a concave structure which is considered to be an effect from the
electrons remaining at the beam center.

Such a delicate response of the laser field profile suggests that the flat-top struc-
ture has an unstable characteristic, and thus, the propagation dynamics and struc-
ture formation are determined by the delicate balance between ponderomotive force
and Coulomb force, where the higher order nonlocal ponderomotive force is expected
to play a crutial role.

Effect of the third order ponderomotive force in the modulated laser
beam profiles in plasma

The first and third order ponderomotive forces, d2(kxX
′)/dη2, obtained from Eq.

(3.147) are shown in Fig. 6.2 (e) for the field profile given in Fig. 6.2 (d2) at t =135
fsec for s = 4. Besides the beam axis, two points (A) and (B) at which the field
gradient and then the first order ponderomotive force vanish, i.e., x ∼ xb ± ∆x
where xb = 20µm the beam axis and ∆x ∼ 0.8µm in this case, are found to appear.
Namely, the higher order ponderomotive force plays an important role in regulating
the interaction around xb−1.5∆x < x < xb+1.5∆x. Interestingly, the width 1.5∆x
roughly corresponds to that of the density hump observed in Fig. 6.2 (c2). This
relation is found to be fulfilled also in the case of s = 6 where ∆x ∼ 1.6 µm is
estimated from Figs. 6.2 (c3) and (d3).

These structure and dynamics are considered to result from plural physical pro-
cesses such as the higher order ponderomotive force near the axis described by
Eq. (3.147), the resultant density modulation, generation of the Coulomb field, and
change of linear and nonlinear susceptibilities.

6.4 Conclusions

In this chapter, we carried out two-dimensional PIC simulations for the propagation
of the fourth and sixth order super Gaussian laser beams in a plasma in order to
examine the nonlocal ponderomotive theory presented in the previous chapters.

During the self-consistent interaction between laser field and plasma, the field
amplitude is found to change its profile from the original flat top structure to that
of a weak concave with a positive curvature. Such a structure modulation becomes
more prominent in the case of flatter super Gaussian beam. At the peripheral of the
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beam axis in the spontaneously-established field profile, we found a region in which
the higher order ponderomotive force becomes dominant.

These structure and dynamics could be represented by a generalized NS equation
system including the higher order nonlocal effect of the ponderomotive force, which
will be studied in future work.
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Chapter 7

Introduction

7.1 Laser-cluster interaction

The interaction between high power laser and matter has opened up various kinds
of application such as high energy particle acceleration for both ions and electrons,
generation of intense radiations (EUV, x-ray and gamma-ray), and neutron pro-
duction [6]. Here, the state of material is a key ingredient which determines the
characteristics of the interaction, and has to be chosen properly according to the
purpose.

Among various mediums, cluster and cluster medium are widely interested. Clus-
ters are few-body systems which show both underdense and overdense properties.
Namely, a medium composed of multi clusters, which we refer to as cluster medium,
has a solid density locally, whereas in average, it can have an intermediate density
between solid and gas. Such a high degree of freedom of cluster medium is attributed
to having many parameters that determine the internal structure of the medium,
e.g., cluster size, packing fraction and spatial configuration of clusters. Clusters
exhibits several prominent features that are essentially due to or existence of the
surface of cluster and the large ratio of surface to volume. A cluster mode (slow
mode) is one of the examples where the laser can propagate even when the average
density of the clustered medium is higher than the critical density [29]. This propa-
gation mode results from the surface polarization of the cluster. Neutron generation
by nuclear fusion utilizing the Coulomb explosion of clusters has been intensively
studied [9]. Recently, high energy ion acceleration has been realized in the interac-
tion between such a cluster medium and high intensity laser [31]. These phenomena
have so far been investigated using laser intensities up to around 1021W/cm2.

In the study in Part II, we investigate such interactions between laser and cluster
medium extending the intensity higher than 1021W/cm2 up to 1024W/cm2 on the
basis of numerical simulation using a fully-relativistic electromagnetic particle-in-cell
(PIC) code (EPIC3D) [33, 34]. At these intensities, ions enter into the relativistic
regime, so that ion acceleration by the cluster Coulomb explosion is incorporated
with dynamics of ions that are relativistically accelerated by the laser piston mech-
anism. Such a new interaction dynamics will lead to high energy ion accelerations
depending on the cluster size, packing flaction, species (Z), etc.
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7. INTRODUCTION

Figure 7.1: A model of cluster Coulomb explosion.

7.2 Cluster Coulomb explosion

When a cluster is irradiated by a laser light, the cluster gains energy from the laser
and expands forming a cloud at the peripheral of the cluster core. The expansion
of cluster is considered to be by a combination of hydrodynamic expansion and
Coulomb explosion. In the laser-cluster interaction in high intensity regime in which
the energy of electrons in the laser electric field is large enough in comparison to
the Coulomb potential built up, the Coulomb explosion dominates the expansion
dynamics.

Here, we introduce fundamental properties of the Coulomb explosion on the ba-
sis of a simple model discussed in Ref. [42]. We note that a self-similar solution for
a cluster expansion is presented by Murakami and Basko which describes nonrela-
tivistic expansion of a finite plasma mass into vacuum with a full account of charge
separation effects [43]. In their paper, an analytical solution is obtained that repre-
sents both the hydrodynamic expansion of a quasineutral plasma and the Coulomb
explosion of a bare ion sphere.

Besides such a detailed analytical solution, we here evaluate the energy of Coulomb
explosion of a single cluster based on a simple model illustrated in Fig. 7.1. When
the laser intensity is sufficiently high to satisfy that the skindepth c/ωp is much
larger than the cluster radius, the cluster irradiated by the laser is ionized as a
whole, and electrons in the cluster are repelled from it. A single cluster exhibits its
maximum Coulomb potential energy when all the electrons are expelled from the
cluster to infinity while ions remain in the cluster. Such a situation can occur when
the kinetic energy of electrons expelled by the laser field far exceeds the electrostatic
potential caused by the charge separation. After that, the remained ions suffers from
the Coulomb repulsion force that results in the Coulomb explosion.

Here, we assume that the cluster of radius rcl is fully ionized and becomes a pure
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7.2 Cluster Coulomb explosion

ion plasma where ions are distributed uniformly with the density ni and charge state
Z. The kinetic energy of ions resulting from the Coulomb explosion corresponds to
the Coulomb potential energy at their initial positions. The electric field caused by
the fully ionized ions is given by

E (r) =
4π

3
eZnir (0 ≤ r ≤ rcl) , (7.1)

E (r) =
4π

3
eZni

r3cl
r2

(r > rcl) , (7.2)

where r is the position from the center of the cluster and e is the elementary charge.
The corresponding electrostatic potential is

φ (r) = −2π

3
eZni (r − rcl)2 (0 ≤ r ≤ rcl) , (7.3)

φ (r) =
4π

3
eZnir

2
cl

(rcl
r
− 1
)

(r > rcl) , (7.4)

where we assume φ (rcl) = 0. The ion initially located at r = r0 ≤ rcl with kinetic
energy εi(r0) = 0 gains kinetic energy of εi(∞) that can be given by the energy
conservation with the Coulomb potential as

εi(∞) = eZ (φ (r0)− φ (∞))

=
2π

3
e2Z2ni

(
2r2cl − (r0 − rcl)2

)
, (7.5)

at r = ∞. Therefore, the maximum ion energy εimax achieved by the Coulomb
explosion is obtained by taking r = rcl as

εimax =
4π

3
e2Z2nir

2
cl. (7.6)

On the other hand, in the 2D case, in which the present PIC simulation is
performed, the electric field caused by the fully ionized ions is given by

E2D (r) = 2πeZnir (0 ≤ r ≤ rcl) , (7.7)

E2D (r) = 2πeZni
r2cl
r

(r > rcl) . (7.8)

The corresponding electrostatic potential is

φ2D (r) = −πeZni (r − rcl)2 (0 ≤ r ≤ rcl) , (7.9)

φ2D (r) = −2πeZnir2cl ln
(
r

rcl

)
(r > rcl) . (7.10)
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Here, we notice that the potential energy in the 2D geometry exhibit a logarithmic
divergence as r → ∞. This is due to the rod structure of clusters that extend
in the perpendicular z direction infinitely. Therefore, in evaluating the ion energy
resulting from the Coulomb explosion, it should be noted that the 2D simulation
model overestimates them compared with that of 3D.
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Chapter 8

PIC simulation for laser-matter

interaction in cluster medium

8.1 Simulation setup

In the previous chapter, we introduced the background of the study on laser-cluster
interaction. Here, we investigate the interaction between high power laser and cluster
medium in the intensity regime of 1021−24W/cm2 based on the two-dimensional PIC
simulation.

In the numerical calculation, we employ the periodic and outgoing boundary
conditions in x and y directions with the size of Lx = 128 and Ly = 2048 in
normalized unit, which correspond to lx = 1.28 µm and ly = 20.48 µm, respectively.
The mesh number in x and y directions are Nx = 128 and Ny = 2048. A laser pulse
with the wavelength λL = 820 nm excited by the antenna located at y = 0.02 µm
propagates in the y direction with linear p-polarization in the x direction. The laser
field is uniform in the transverse direction while the Gaussian profile in time with
the dulation τ = 40 fs (FWHM) is assumed. Here, we consider five cases of laser
amplitude, i.e., a0 =50, 200, 400, 600 and 800, where laser intensity ranges from
I = 5.1× 1021W/cm2 (a0 = 50) to 1.3× 1024W/cm2 (a0 = 800). The corresponding
transverse excursion lengths of electron and carbon ion with the charge state Z = 6,
ξe and ξi, are found to range from ξe = 6.5 µm and ξi = 0.3 nm for a0 = 50 to
ξe = 104 µm and ξi = 4.7 nm for a0 = 800.

In this study, we introduce three cluster targets consisting of the same mass, i.e.
same packing fraction, but having different cluster radius as shown in Figs. 8.1 (A),
(B) and (C). We also consider a solid thin film as shown in Fig. 8.1 (D) for compar-
ison. Here, we model the cluster by a fully ionized uniform density plasma column
occupying an area of radius rcl =80, 160 and 320 nm for cases (A), (B) and (C),
respectively, in the x-y plane. The species of the cluster is assumed to be a solid

carbon (Z = 6) whose density is that of the diamond, i.e., n
(i)
cl = 1.76× 1023 cm−3.

The electron density of the cluster satisfies n
(e)
cl = Zn

(i)
cl and n

(e)
cl /nc = 637.4, where

nc is the cutoff density defined by nc ≡ meω
2
L/(4πe

2). The skin depth of the cluster
for fully ionized state is δe = 5.17 nm. Such clusters are regularly distributed in the
region 2.56 ≤ y ≤ 6.40 µm. The packing fraction defined by f = Nclπr

2
cl/S is given

by f = 0.21 for all the cases (A)-(C), where S = 3.20×3.84 µm2 is the area occupied
and Ncl is the number of clusters in the area S. Then, the average density of electron
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MEDIUM

Figure 8.1: Initial plasma distributions in the simulation for cases (A) uniform low

density plasma, (B) multi cluster medium with cluster radius rcl = 80nm, (C) rcl =

160nm, and (D) rcl = 320nm, and (E) solid thin foil.

n
(e)
av in the area S is given by n

(e)
av /nc = 130.4 (n

(e)
av = 2.16 × 1023 cm−3). Hence,

the cluster medium is overdense in average if the relativistic effect is not taken into
account. In case (D), i.e., the case of thin film, we also assume the same solid carbon
plasma with Z = 6 that is uniformlly distributed in the region 4.09 ≤ y ≤ 4.87 µm.
Here, we set the film thickness lfilm = 785 nm so that the total mass included in
the medium is same as that in the cluster medium. The relative relation among the
electron and ion excursion lengths, incident laser wavelength, film thickness, cluster
radius, and skin depth is given by ξe > λL > lfilm > rcl � δe ∼ ξi in all the situa-
tions considered in this study.

We here remind that, in Sec. 7.2, we have mentioned the difference of the clus-
ter potential energy and the corresponding maximum ion energy achieved by the
Coulomb explosion between 2D and 3D geomerties. Namely, we have seen that the
2D simulation model might overestimates the ion energy compared with that of 3D
due to a logarithmic divergence of the potential energy in the 2D geometry. How-
ever, we note that the simplified 2D model simulation performed in this study is
physically valuable because we here employ the p-polarized laser field, by which the
interaction dynamics becomes essentially 2D.

8.2 Laser-matter interactions in multi cluster medium

and solid thin film

First, we investigate the interactions for the cluster medium (B) and thin film (D)
in the cases of two laser intensities, a0 = 200 and 800. The time histories of electron
and ion energies, field energy and total energy in the system, and also spatial profiles
of electromagnetic field Ex and ion charge density normalized by enc at t = 80 fsec
are shown for the cluster medium (B) in the case of a0 = 200 (Figs. 8.2 (B1) and
(B2)) and of a0 = 800 (Figs. 8.2 (B3) and (B4)), respectively. The corresponding
figures for the thin film (D) are shown in Figs. 8.2 (D1) and (D2) for a0 = 200 and in
Figs. 8.2 (D3) and (D4) for a0 = 800, respectively. The initial density distribution is
also shown by the dotted line in Figs. 8.2 (B2) and (B4) where six clusters along the
y-axis can be seen and in Figs. 8.2 (D2) and (D4) for the thin film. For comparison,
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the time history of field energy in vacuum and the corresponding spatial profile of
Ex at t = 80 fsec are shown for a0 = 200 in Figs. 8.2 (I) and (II), where laser front
emitted from antenna reaches to the right-hand side boundary and escape from the
system at t ∼ 100 fsec.

At first, we study cases of the thin film (D) and cluster medium (B) for a0 = 200.
In the case of thin film (D), after the laser hits the target, the electron energy in-
creases initially and ion energy does subsequently as seen in Fig. 8.2 (D1). Then,
the electron energy saturates and decreases while the ion energy keeps increasing
gradually, suggesting that ions are accelerated by the target normal sheath accel-
eration (TNSA) at the rear surface. This feature can be seen in the ion density
distribution in Fig. 8.2 (D2) at t = 80 fsec where the large amount of ions are
pushed in the forward direction. As found from the decrease of the total energy at
t ∼ 45 fsec from the maximum value, approximately half of the incident laser energy
is found to be reflected while partially transmitted due to the relativistic effect as
seen in Fig. 8.2 (D2). Namely, the target becomes relativistically transparent with
the quiver energy of γ ∼

√
1 + a20/2 ∼ 140 by which the cutoff density increases

from nc to γnc.

On the other hand, in the case of cluster medium (B), the dynamics is qualita-
tively similar whereas energy partition is found to be significantly different. Firstly,
the energy absorption by electron and then the conversion to ion energy reach almost
double, which is found from the fact that the decrease of the total energy from the
maximum value at t ∼ 45 fsec is small compared with that observed in Fig. 8.2 (D1).
As seen in Fig. 8.2 (B2), the initial discrete cluster distributions are disintegrated
except that of the most rear side. Here, more ions are found to be pushed not only
in forward direction but also backward direction. This is due to the fact that the
cluster Coulomb explosion takes place in both directions, while forward direction is
stronger due to the radiation pressure force.

Next, we consider the same cases (D) and (B) but for a0 = 800. The case of the
thin film is shown in Fig. 8.2 (D3) and (D4). In this case, after the laser hits the
target, electron and ion energies increase simultaneously as seen in Fig. 8.2 (D3).
Interestingly, even after the electron energy saturates, ion energy keeps increasing to
a certain level, which is balanced with the decrease of the laser field energy. Namely,
it is found that the laser field energy is directly transferred to that of ions. As found
in Fig. 8.2 (D4), this corresponds to the situation that the laser pulse pushes the
whole thin film consisting of a bunch of ions, which is referred to as laser piston
by radiation pressure. The Doppler shifted long wavelength reflected laser light can
also be seen.

In the case of the cluster medium (B), the dynamics is qualitatively similar to
those in Figs. 8.2 (D3) and (D4). Namely, initial cluster distribution is disintegrated
and pushed forward by the radiation pressure. The ion energy in Fig. 8.2 (B3) is
slightly smaller than that in case (D3) whereas the ion bunch is preceded compared
with that observed in Fig. 8.2 (D4) at t = 80 fsec.

The ion energy distribution function at t = 200 fsec is shown in (D) in Fig. 8.3 (II).
A quasi-monoenergetic component exhibiting a energy hump around εi = 8 GeV
can be seen. The maximum ion energy, which is approximately 15 GeV, is also
indicated in (D) in Fig. 8.3 (I) together with other laser amplitudes including the
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Figure 8.2: Time evolution of energies of electons, ions and field, and the total energy

in the system for (B) a0 = 200 and (C) a0 = 800. For comparison, the energy evolution

in the case of vacuum propagation for the same pulse used in (B) is shown in (I) and

(II).
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Figure 8.3: (I) Maximum ion energy for various media at t = 200 fs (a0 = 200, 800).

(II) Energy distribution of ions in each medium for a0 = 800 at t = 200 fs.

case of a0 = 200 which is around 3 GeV.
It is interesting to note in Fig. 8.3 (II) that in case (B), the maximum ion energy

reaches to approximately 22 GeV which is significantly larger than that in case (D),
while the quasi-monoenergetic component located around 10 GeV is slightly larger
than case (D). This feature is also shown in (B) in Fig. 8.3 (I). This is found to
result from the acceleration due to the Coulomb explosion of clusters which is added
to that of the laser piston.

8.3 Dependence of ion energy on the internal structure

of targets

Here, we summarize the ion energy distribution for a0 = 800 and the maximum ion
energy achieved in the interaction for different laser intensities including the case of
(A) rcl = 80 and (C) 320 nm in Fig. 8.1 in addition to those of rcl = 160 nm and thin
film. Note that the energy of the ion bunch due to the laser piston is estimated as
(A) 7 GeV, (B) 9.5 GeV, (C) 6 GeV and (D) 8 GeV per ion which are, for nucleon,
(A) 580 MeV/u, (B) 790 MeV/u, (C) 500 MeV/u and (D) 670 MeV/u, respectively.
It is found that the maximum ion energy achieved in the cluster media (A), (B) and
(C) leads to higher values than that in the solid thin film (D) for for a0 ≥ 200.

This tendency can be explained by the Coulomb explosion of clusters contained
in the medium. Here, we estimate the effect from the Coulomb explosion on the basis
of the simple model for a single cluster explosion shown in Fig. 7.1. In Sec. 7.1, we
obtained the maximum ion energy achieved by the single cluster Coulomb explosion
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as εi max = 4πZ2e2nir
2
cl (Eq. (7.6)). Therefore, the values of εi max for clusters with

radius (A) 80 nm, (B) 160 nm and (C) 320 nm are obtained as 0.24 GeV, 0.98 GeV
and 3.92 GeV per ion, respectively, in the 3D model. In Fig.8.3 (I), the increases of
εi max in the cluster mediums compared with the thin film are 5.0-8.0 GeV in the
case of a0 = 800, which are in the same order as the estimated maximum energy
εi max shown in the above. Thus, the large maximum ion energy achieved in the
cluster media can be regarded as a result of the Coulomb explosion inside of the
media. In other words, the higher internal free energy of the cluster media is used
to accelerate the ions to higher energy.

Here, the above comparison of maximum ion energy between theory and sim-
ulation is based on the 3D model, whereas our simulation is carried out using the
2D calculation code. As is discussed in Sec. 7.1, in the 2D geometry, the potential
energy exhibits a logarithmic divergence as r →∞ as shown in Eq. (7.10). Thus, it
is expected that the ion maximum energy increases as the the system length in the
rear side of the target is extended. For this reason, the value of the ion maximum
energy εi max obtained in the present 2D simulation cannot be simply compared with
experiments. However, the increase of εi max due to the clusters and its difference
depending on the cluster radius, which are obtained using a fixed simulation system
length, are considered to be valuable.

It is also interesting to note that the relation between the maximum ion energy
and cluster radius is different depending on a0. Namely, in the case of a0 = 200,
medium with smaller cluster radius, e.g. (A) and (B), exhibit larger εi max than
case (C). In contrast, in the case of a0 =400 and 600, larger εi max is achieved in
the medium with larger cluster radius. Finally, in the case of a0 = 800, the case (B)
shows the largest εi max compared with the other cases. The details will be studied
in future work.

8.4 Conclusions

In this chapter, based on the two-dimensional PIC simulation, we studied the in-
teraction between laser field in the regime of a0 = 50-800 and targets consisting of
same mass but having different internal structure, i.e., cluster media with different
cluster radii and solid thin film.

Comparison of ion energies achieved in the interactions with different targets
shows the effects of the Coulomb explosion of the clusters constituting the medium.
The results indicate that the internal structure, which corresponds to the free energy
of the target medium, is important in determining the interaction dynamics and the
resulting ion accerelation.

In this study, we have not included the radiation damping effect, which will
be important in discussing intense radiation emissions from cluster medium. The
ion maximum energy shown here is obtained in an ideal one-dimensional situation
where transverse expansions of laser field and target are not taken into account.
These issues are devoted to future work.

Finally, it is interesting to note that in the interaction between laser fields and
cluster mediums, even when the incident laser field is uniform in the transverse
direction as is assumed in this chapter, such an uniform field profile is deformed
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by the interaction with the nonuniform surface of the cluster medium, which will
generate a fine scale pattern on the field amplitude. This corresponds to a generation
of the ponderomotive force, where the higher order nonlocal effect derived in Part
I of the present thesis is expected to be crucial. Namely, the laser propagation and
channeling in the cluster medium will be determined by the balance relation among
the ponderomotive force including the higher order nonlocal effects, Coulomb force
due to the charge separation, and also pressure of the hot electrons from clusters.
In addition, the polarization of the cluster surface inside of the medium will lead to
an unique propagation dynamics different from the case of uniform plasma studied
in Part I of this thesis [29].

To consider the role of ponderomotive force in the high intensity laser-cluster
interaction, an problem is such that the ponderomotive theory becomes ambiguous
as the expansion parameter ε tends to unity in the ultra high intensity regime where
the particle excursion length is no longer small compared with the scale length of field
amplitude variation. However, in the parameter regime in which the scale separation
is well-satisfied, e.g. see Fig. 1.5, the interaction between laser and cluster medium
can be an important example for the application of the nonlocal ponderomotive
theory which we established in Part I.
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Chapter 9

Concluding remarks

9.1 Summary

With the advent of laser technologies and innovative ideas for applications of high
power short pulse lasers, requirements for precise control of laser-matter interaction
is increasing in recent years. In this thesis, to achieve the fine scale control of laser-
matter interaction and to understand the underlying physics, two parts of studies
are presented.

In part I, we established a theory of the relativistic ponderomotive force that
includes higher order nonlocal effect. Here, based on the noncanonical Lie pertur-
bation method, we derived a new formula for the relativistic ponderomotive force
that depends not only on the local field gradient but also on the curvature and its
variation. Such higher-order derivative terms originate from nonlocal particle mo-
tion not simply expressed by the local field gradient as Fick’s law. The formula is
then accessible to the regime in which laser fields exhibit characteristic transverse
structures such that higher derivatives of the field amplitude regulate the interac-
tion. The higher-order terms are found to be subject to the symmetry of the field
structure and also to a constraint that the ponderomotive force is a pressure force
free from the sign of the particle charge. These terms are of importance in pursuing
long time scale particle dynamics in high power lasers with complex field patterns
that are spontaneously established within the medium during interaction and/or
artificially designed for specific applications.

As an example, we have applied the formula to study particle motion in a flat-top
super Gaussian laser beam. In this profile, since the local field gradient is diminished
near the beam center, the higher derivatives dominate the dynamics. Comparison
with the direct integration of the particle orbit demonstrates the validity of the
derived formula with sufficient convergence of the expansion series up to O

(
ε3
)
. This

suggests that information along the excursion of the particle over a wider range than
that only estimated by the local field gradient has to be taken into account. The
result could be checked by measuring the amount of X-ray which may reflects the
number of interacting particles [44]. As another example, we have also considered
particle confinement in a hollow concave laser profile. In this case, the difference
between the first- and third-order formulae is observed as a betatron frequency shift.

To demonstrate the advantage of the noncanonical phase space Lagrangian ap-
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proach performed here, we have applied the averaging method directly to the par-
ticle equation of motion in deriving the higher-order terms. We found that the
higher-order terms exhibit the same parametric dependence as Eq. (3.147) but the
coefficients are different. As a result, the oscillation center trajectory derived by the
averaging method does not agree with the direct integration of the particle orbit.
This discrepancy is considered to be a direct consequence of the lack of Hamilto-
nian structure in the averaging method whereas it is kept rigorously in the present
approach.

In the present study, we only consider the vacuum case, whereas various addi-
tional fields and their corresponding forces, e.g., self-induced electromagnetic fields
and longitudinal and/or transverse plasma waves, are incorporated in plasmas. Such
fields can be phenomenologically included in the present theoretical framework [38].
However, in plasmas, the laser field is suffered from the reaction from plasma particle
dynamics, so that the interaction has to be determined self-consistently. We con-
sider applying the idea of the nonlocal ponderomotive force to obtain the governing
equation system that describes such a self-consistent interaction. To achieve it, it is
necessary to derive the equations of motion keeping the electrostatic potential and
also to derive the Maxwell equations whose coordinates are transformed to those
in the noncanonical Lie perturbation analysis. Though derivation of the equation
system is a future work, we can readily see that the equation system exhibits higher
order spatial derivatives, i.e., the fourth order spatial derivatives, while the second
order in the conventional NS equation. Therefore, we can expect that the gener-
alized equation system describes the propagation of laser fields with delicate field
patterns such that the first order field gradient vanishes. In the case of the super
Gaussian shape discussed here, the related problem is whether such a shape can be
sustained in plasma channels, in which the long time scale interaction between the
self-focused laser beam and particles dominated by the ponderomotive force plays a
key role [35]. The formula derived here thus provides a theoretical basis for exploring
such a delicate nonlinear laser-plasma interaction.

In order to examine the nonlocal ponderomotive theory, we carried out two-
dimensional (2D) particle-in-cell (PIC) simulations for the propagation of the fourth
and sixth order super Gaussian laser beams in a plasma. It is found that the electron
density exhibits a peaking near the axis as time goes on, while at the same time,
the field amplitude changes the profile from the original flat top structure to that
of a weak concave with a positive curvature. Such a structure modulation becomes
more prominent in the case of flatter super Gaussian beam. Besides the beam
axis, two points at which the field gradient and then the first order ponderomotive
force vanish are found to appear. Namely, the higher order ponderomotive force
plays an important role in regulating the interaction around these points. These
structure and dynamics are considered to result from plural physical processes such
as the higher order ponderomotive force near the axis described by Eq. (3.147), the
resultant density modulation, generation of the Coulomb field, and change of linear
and nonlinear susceptibilities.

In considering a fine scale control of high power laser-matter interaction, the
state and structure of the target material are key ingredients to be chosen prop-
erly according to the purpose. In Part II of the thesis, we studied the effect from
internal structure of target mediums on the laser-matter interaction based on the
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PIC simulation. Here, we investigated the interaction between high power laser and
targets consisting of same mass but having different internal structures, i.e., cluster
mediums with different cluster radii and solid thin film, in the intensity regime of
1021−24W/cm2 (a0 = 50−800) . Comparison of interaction dynamics and ion energy
distribution among different targets show the effects of the cluster Coulomb explo-
sion inside of the medium. The results indicate that the internal structure, which
corresponds to the free energy of the target medium, is important in determining
the interaction dynamics and the resulting ion acceleration.

We also discussed that, even when the incident laser field is uniform, a fine
scale pattern will be generated on the field amplitude by the interaction with the
nonuniform surface of the cluster medium. This corresponds to a generation of the
ponderomotive force, where the higher order nonlocal effect derived in Part I is
expected to be crucial.

In summary, through the study in Part I and II, we have explored a theory which
can be a basis in considering fine scale control of high power laser-matter interaction.
As the key ingredients determining the interaction, we focused on the incident laser
beam profile and the corresponding ponderomotive force in Part I and the internal
structure of target mediums in Part II, respectively. These studies are expected to
contribute to the development of mathematical and numerical methodologies for the
analyses of nonlinear laser-plasma interactions. The results obtained in this thesis
can give basic understandings for delicate control of laser-matter interaction which
will be of special importance in developing various applications using high power
lasers.
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9.2 Future works

Several issues are remained as future work. Some topics are summarized as follows:

(1) In the Lie perturbation analysis, we used a paraxial approximation for the laser
field in vacuum, while the modification to the field in satisfying the Maxwell
equations is also an important ingredient to be discussed.

(2) In the case where the field exhibits more gentle and/or fine-scale structures in-
cluding asymmetry, i.e., ax = a0

∑
s≥5 fs exp [− (x/ws)

s], which can be achieved
even in present experiments, we may need to evaluate nonlocal effects of higher
order than O

(
ε3
)
, e.g., the next is O

(
ε5
)
, to determine the particle dynamics

correctly.

(3) To further improve the nonlocal ponderomotive theory, to generalize the nonlin-
ear Schrödinger equation system in order to describe the self-consistent laser-
plasma interaction is an important issue.

(4) In describing higher order nonlocal effects, an empirical integral representation
using a modulated kernel should also be an interesting subject for future work.

(5) In the numerical study on laser-cluster interaction, we have not included the
radiation damping effect, which will be important in discussing intense radia-
tion emissions from cluster medium. The ion maximum energy shown here is
obtained in an ideal one-dimensional situation where transverse expansions of
laser field and target are not taken into account. These issues are devoted to
future work.

100



Appendix A

Derivation of the higher-order

ponderomotive force by using

the averaging method

In Part I, we have derived the higher order ponderomotive force on the basis of the
noncanonical Lie perturbation theory, in which one considers purturbation expansion
based on the phase space Lagrangian so that the Hamilton structure is maintained
rigorously. On the other hand, we showed in the introduction Sec. 1.3 that more
direct approach, i.e., the averaging method, is applicable to derive the first order
ponderomotive force. Different from the Hamiltonian mechanics, in the averaging
method, the scale separation and perturbation expansion are applied directly to the
equation of motion. As a result, in the averaging method, the equation of motion
in higher orders does not generally maintain the Hamiltonian structure. From this
fact, we can expect that the equations of motion derived by the averaging method
and Hamiltonian-based perturbation theory are different in higher orders.

In this Appendix, we obtain the higher-order ponderomotive force by using the
averaging method starting from the equation of motion of a charged particle in
electromagnetic field.

A.1 Variable transformation from time t to phase η

The equations of motion of a charged particle in electromagnetic field is given by

dx

dt
= v =

p

γm
, (A.1)

dp

dt
= e

(
E+

v

c
×B

)
= mc

[
−∂a
∂t

+ v × (∇× a)

]
. (A.2)

Here, a is the normalized vector potential and the scalar potential φ is assumed to
be zero, i.e., φ = 0. The total derivative can be separated to partial derivatives as

d

dt
=

∂

∂t
+
dx

dt
· ∂
∂x

=
∂

∂t
+ v · ∇. (A.3)
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Here, we assume a scalar function f that has a explcit variable dependence on α (t,x)
and x, i.e., f = f (α,x), where x has the dependence x = x (α). Then, the total
time derivative operates on f as

df (α,x)

dt
=

[(
∂

∂t
+ v · ∇

)
α (t,x)

]
df (α,x)

dα
, (A.4)

where v = dx/dt and

df (α,x)

dα
=
∂f

∂α

∣∣∣∣
x

+
dx

dα
· ∇f

∣∣
α
. (A.5)

Here, we consider the case α = ωt − kz ≡ η (t, z). The total time derivative of η is
calculated as (

∂

∂t
+ v · ∇

)
η (t, z) = ω − vzk =

ω

γmc
(γmc− pz) . (A.6)

The quantity γmc−pz appearing in the RHS is a constant given by pz−γmc = −ζ0mc
when we assume a vector potential a without z component. Then, followed from the
relation Eq (A.5), the total time derivative of f = f (η(t, z),x) is written in terms
of η derivative as

df (η,x)

dt
=
ω

γ
ζ0
df (η,x)

dη
, (A.7)

which corresponds to the change of the variables from (t, z) to (η, z). Then, the total
time derivatives of p (η) and x (η) in the LHS of the equations of motion Eqs. (A.1)
and (A.2) are translated into the total η-derivative as

dx

dη
=

γ

ωζ0

p

γm
=

p

mωζ0
, (A.8)

dp

dη
=
γmc

ωζ0

[
−∂a
∂t

+ v × (∇× a)t

]
. (A.9)

Here, subscript t after the operator ∇ indicates that the spatial derivative is taken
while the time t, not η, is fixed; therefore, the RHS is not yet transformed to the
notation (η, z).

We further rewrite the RHS of Eq.(A.9). By using the relations

−∂a
∂t

= −da
dt

+ (v · ∇)t a, (A.10)

v × (∇× a)t =
(←→
∇a
)
t
· v − (v · ∇)t a, (A.11)

Eq. (A.9) is written as
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A.1 Variable transformation from time t to phase η

dp

dη
=
γmc

ωζ0

[
−da
dt

+ (v · ∇)t a+ v × (∇× a)t

]
=
γmc

ωζ0

[
−da
dt

+
(←→
∇a
)
t
· v
]
.

(A.12)

Using Eq. (A.7), we obtain

dp

dη
= −mc

(
∂a

∂η
+

1

mωζ0
(p · ∇)η a

)
+

c

ωζ0
[(γmv · ∇)t a+ γmv × (∇× a)t]

= −mc
(
∂a

∂η
+

1

mωζ0
(p · ∇)η a

)
+

mc

mωζ0
[(p · ∇)t a+ p× (∇× a)t] . (A.13)

The last term on the RHS of Eq. (A.13) needs careful treatment: The z derivative
is performed with fixed time t, thus, it operates both on z in η(t, z) and bare z of
a = a [η(t, z),x]. Namely, the general relation is given by

∇
∣∣∣
t
f [α(t,x),x] =

(
(∇α)t

∂

∂α

∣∣∣∣
x

+∇
∣∣∣
α

)
f (α,x) . (A.14)

For f = ai (ai = x, y, z) and α(t,x) = η(t, z), the relation is given as

∂

∂x

∣∣∣∣
t

a (η,x) =
∂

∂x

∣∣∣∣
η

a (η,x) , (A.15)

∂

∂y

∣∣∣∣
t

a (η,x) =
∂

∂y

∣∣∣∣
η

a (η,x) , (A.16)

∂

∂z

∣∣∣∣
t

a (η,x) =

(
−k ∂

∂η

∣∣∣∣
z

+
∂

∂z

∣∣∣∣
η

)
a (η,x) . (A.17)

Then, Eq. (A.13) becomes

dp

dη
= −mc

(
∂a

∂η
+

1

mωζ0
(p · ∇)η a

)
+

mc

mωζ0

[
(p · ∇)η a+ p× (∇× a)η

]
−mck

(
p · ∂a

∂η

∣∣∣∣
x

)
êz

= mc

[
−∂a
∂η

+
1

mωζ0

(
p× (∇× a)η − k

(
p · ∂a

∂η

∣∣∣∣
x

)
êz

)]
. (A.18)

Together with Eq. (A.8), the equation of motion with variables (η,x) is obtained as

dx

dη
=

p

mωζ0
, (A.19)

dp

dη
= mc

[
−∂a
∂η

∣∣∣∣
x

+
1

mωζ0

(
p× (∇× a)η − k

(
p · ∂a

∂η

∣∣∣∣
x

)
êz

)]
. (A.20)
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By using the energy equation

d

dt
γmc2 = −mcv · ∂a

∂t

∣∣∣∣
x

, (A.21)

and assuming that a does not depend on z explicitly and also az = 0, Eq. (A.20) is
reduced to

dp⊥
dη

= mc

[
−∂a⊥
∂η

∣∣∣∣
x

+
1

mωζ0

(
p× (∇× a)η

)
⊥

]
, (A.22)

d

dη
(pz − γmc) = 0. (A.23)

When we additionally assume

a = a(x, η)êx or a = a(y, η)êy or ∂xay − ∂yax = 0,

which is satisfied in the Lie perturbation analysis in Part I, the last term on the
RHS of Eq. (A.22) becomes zero, and then the equation of motion is obtained as

dx

dη
=

p

mωζ0
, (A.24)

dp⊥
dη

= −mc∂a
∂η

∣∣∣∣
x

, (A.25)

d

dη
(pz − γmc) = 0. (A.26)

A.2 Scale separation

Based on the Eq. (A.25), we consider the scale separation

p = 〈p〉+ [p]os. = ps + pf , (A.27)

which we introduced in Sec. 1.3.1. Namely, the angle bracket denotes taking average
over one cycle of η and the bracket [ ]os. denotes taking oscillatory part. The
subscripts s and f represent slowly and fastly varying parts, respectively.

Here, we define the variable dependence as follows:

x = x (η) , (A.28)

p = p (x(η), η) , (A.29)

a = a (x(η), η) . (A.30)
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We also note that partial derivatives are now defined as

∂

∂η
=

∂

∂η

∣∣∣∣
x

and ∇ = ∇
∣∣∣
η
. (A.31)

By using the scale separation Eq. (A.27), the equation of motion Eq. (A.25) is
written as

∂ (ps⊥ + pf⊥)

∂η
+

ps · ∇ps⊥
mωζ0

+
ps · ∇pf⊥
mωζ0

+
pf · ∇ps⊥
mωζ0

+
pf · ∇pf⊥
mωζ0

= −mc∂a
∂η
.

(A.32)

Taking the average over η, Eq. (A.32) leads to the slow scale equation,

∂ps⊥
∂η

+
ps · ∇ps⊥
mωζ0

+
〈pf · ∇pf⊥〉

mωζ0
= 0. (A.33)

Then, subtracting Eq. (A.33) from Eq. (A.32), we obtain the fast scale equation as

∂pf⊥
∂η

+
ps · ∇pf⊥
mωζ0

+
pf · ∇ps⊥
mωζ0

+
[pf · ∇pf⊥]os.

mωζ0
= −mc∂a

∂η
. (A.34)

A.3 Perturbation analysis up to the third order

Here, we consider perturbation expansion based on the expansion parameter ε that
is defined by Eq. (1.46) in Sec. 1.3.1 as

l∇fs (x, η) ∼ ε and l∇ff (x, η) ∼ ε, (A.35)

which indicate that both slow and fast components vary gently in space.

A.3.1 Zeroth order equation of motion

The zeroth order component of Eqs. (A.33) and (A.34) are given as

∂p
(0)
s⊥

∂η
= 0, (A.36)

∂p
(0)
f⊥
∂η

= −mc∂a
∂η
, (A.37)

The RHS of Eq. (A.36) can be approximated to the total derivative of η, i.e.,

dp
(0)
s⊥
dη

= 0+ O (ε) , (A.38)
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which corresponds to the zeroth order slow scale equation of motion. The solution
for ps⊥ in the zeroth order is then found to be

p
(0)
s⊥ (x, η) = 0, (A.39)

where we assumed an initial condition p0 = 0 at η = 0. From Eq. (A.37), the
solution for pf⊥ in the zeroth order is derived as

p
(0)
f⊥ (x, η) = −mca (x, η) . (A.40)

A.3.2 First order equation of motion

The first order component of Eqs. (A.33) and (A.34) are given as

∂p
(1)
s⊥

∂η
+

p
(0)
s · ∇p(0)

s⊥
mωζ0

+

〈
p
(0)
f · ∇p

(0)
f⊥

〉
mωζ0

= 0, (A.41)

∂p
(1)
f⊥
∂η

+
p
(0)
s · ∇p(0)

f⊥
mωζ0

+
p
(0)
f · ∇p

(0)
s⊥

mωζ0
+

[
p
(0)
f · ∇p

(0)
f⊥

]
os.

mωζ0
= 0. (A.42)

By using the solution Eq. (A.39), the above equations are reduced to

∂p
(1)
s⊥

∂η
+

〈
p
(0)
f · ∇p

(0)
f⊥

〉
mωζ0

= 0, (A.43)

∂p
(1)
f⊥
∂η

+

[
p
(0)
f · ∇p

(0)
f⊥

]
os.

mωζ0
= 0. (A.44)

Substituting the solution Eq. (A.40), Eq. (A.43) becomes

∂p
(1)
s⊥

∂η
= −mc

2

ωζ0
〈((a · ∇)a)〉 . (A.45)

The RHS of Eq. (A.45) can be approximated to the total derivative of η. Therefore,
from Eqs. (A.36) and (A.45), we obtain the slow scale equation of motion up to the
first order as

dps⊥
dη

= −mc
2

ωζ0
〈(a · ∇)a〉+ O

(
ε2
)
. (A.46)

This equation corresponds to the ponderomotive formula of order ε, which is consis-
tent with that obtained by the Lie perturbation analysis Eq. (3.119). The solution
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for ps⊥ up to the first order is obtained from Eq. (A.45) as

ps⊥ (x, η) = −mc
2

ωζ0
〈a (x, η) · ∇a (x, η)〉 η + O

(
ε2
)
. (A.47)

For the fast component, by substituting the solution Eq. (A.40) into Eq. (A.44), we
have

∂p
(1)
f⊥
∂η

= −mc
2

ωζ0
[(a · ∇)a]os. , (A.48)

from which the solution for pf⊥ in the first order can be obtained as

p
(1)
f⊥ (x, η) = −mc

2

ωζ0

∫
∂η [a (x, η) · ∇a (x, η)]os. , (A.49)

where we use the notation
∫
∂η to denote the integration that corresponds to the

partial derivative ∂/∂η.

A.3.3 Second order equation of motion

The second order component of Eqs. (A.33) and (A.34) are given as

∂p
(2)
s⊥

∂η
+

p
(0)
s · ∇p(1)

s⊥
mωζ0

+
p
(1)
s · ∇p(0)

s⊥
mωζ0

+

〈
p
(0)
f · ∇p

(1)
f⊥

〉
mωζ0

+

〈
p
(1)
f · ∇p

(0)
f⊥

〉
mωζ0

= 0,

(A.50)

∂p
(2)
f⊥
∂η

+
p
(0)
s · ∇p(1)

f⊥
mωζ0

+
p
(1)
s · ∇p(0)

f⊥
mωζ0

+
p
(0)
f · ∇p

(1)
s⊥

mωζ0
+

p
(1)
f · ∇p

(0)
s⊥

mωζ0

+

[
p
(0)
f · ∇p

(1)
f⊥

]
os.

mωζ0
+

[
p
(1)
f · ∇p

(0)
f⊥

]
os.

mωζ0
= 0. (A.51)

By using the solution Eq. (A.39), the above equations are reduced to

∂p
(2)
s⊥

∂η
= −

〈
p
(0)
f · ∇p

(1)
f⊥

〉
mωζ0

−

〈
p
(1)
f · ∇p

(0)
f⊥

〉
mωζ0

, (A.52)

∂p
(2)
f⊥
∂η

= −
p
(1)
s · ∇p(0)

f⊥
mωζ0

−
p
(0)
f · ∇p

(1)
s⊥

mωζ0
−

[
p
(0)
f · ∇p

(1)
f⊥

]
os.

mωζ0
−

[
p
(1)
f · ∇p

(0)
f⊥

]
os.

mωζ0
.

(A.53)

Substituting the solution p
(0)
f⊥ and p

(1)
f⊥, which are respectively given by Eqs. (A.40)

and (A.49), Eq. (A.52) becomes
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∂p
(2)
s⊥

∂η
= −mc

2

ω2ζ20

〈[(∫
∂η [(a · ∇)a]os.

)
· ∇
]
a

〉
− mc2

ω2ζ20

〈
(a · ∇)

(∫
∂η [(a · ∇)a]os.

)〉
. (A.54)

The LHS of Eq. (A.54) can be approximated to the total derivative of η in the
second order. Therefore, from Eqs. (A.36), (A.45) and (A.54), we obtain the slow
scale equation of motion up to the second order as

dps⊥
dη

= −mc
2

ωζ0
〈(a · ∇)a〉

− mc2

ω2ζ20

〈[(∫
∂η [(a · ∇)a]os.

)
· ∇
]
a

〉
− mc2

ω2ζ20

〈
(a · ∇)

(∫
∂η [(a · ∇)a]os.

)〉
+ O

(
ε3
)
. (A.55)

The solution for p
(2)
s⊥ can be obtained by integrating Eq. (A.54). Here, the integrants

in the second and third terms on the RHS of Eq. (A.55) have the dependence a3.
Noting that the cube of phase functions, such as the sine and cosine functions, has
no secular term, one can find that the a3 terms become zero after averaging in this
order. Hence, the slow scale equation of motion up to the second order is

dps⊥
dη

= −mc
2

ωζ0
〈(a · ∇)a〉+ O

(
ε3
)
. (A.56)

For the fast component, substituting the solution Eqs. (A.40), (A.47) and (A.49),
we obtain each term on the RHS of Eq. (A.53) as follows:

−
p
(1)
s · ∇p(0)

f⊥
mωζ0

= −mc
3

ωζ0
(〈(a · ∇)a〉 η · ∇)a, (A.57)

−
p
(0)
f · ∇p

(1)
s⊥

mωζ0
= −mc

3

ωζ0
(a · ∇) 〈(a · ∇)a〉 η

= −mc
3

ωζ0
a
[〈

(∇a)2
〉
η + a

(
∇2a

)
η
]
, (A.58)

−

[
p
(0)
f · ∇p

(1)
f⊥

]
os.

mωζ0
= −mc

3

ωζ0

[
(a · ∇)

∫
∂η [(a · ∇)a]os.

]
os.

= −mc
3

ωζ0

[
a

∫
∂η
[
(∇a)2 + a

(
∇2a

)]
os.

]
os.

, (A.59)

−

[
p
(1)
f · ∇p

(0)
f⊥

]
os.

mωζ0
= −mc

3

ωζ0

[(∫
∂η [(a · ∇)a]os. · ∇

)
a

]
os.

. (A.60)
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Then, the solution for p
(2)
f⊥ is found to be

p
(2)
f⊥ (x, η) = −mc

3

ωζ0

∫
∂η ([〈(a · ∇)a〉 η · ∇]a)

− mc3

ωζ0

∫
∂η
(
a
[〈

(∇a)2
〉
η + a

(
∇2a

)
η
])

− mc3

ωζ0

∫
∂η

[
a

∫
∂η
[
(∇a)2 + a

(
∇2a

)]
os.

]
os.

− mc3

ωζ0

∫
∂η

[(∫
∂η [(a · ∇)a]os. · ∇

)
a

]
os.

. (A.61)

A.3.4 Third order equation of motion

The second order component of Eqs. (A.33) is given as

∂p
(3)
s⊥

∂η
+

p
(0)
s · ∇p(2)

s⊥
mωζ0

+
p
(1)
s · ∇p(1)

s⊥
mωζ0

+
p
(2)
s · ∇p(0)

s⊥
mωζ0

+

〈
p
(0)
f · ∇p

(2)
f⊥

〉
mωζ0

+

〈
p
(1)
f · ∇p

(1)
f⊥

〉
mωζ0

+

〈
p
(2)
f · ∇p

(0)
f⊥

〉
mωζ0

= 0. (A.62)

By using the solution Eq. (A.39), the above equation is reduced to

∂p
(3)
s⊥

∂η
+

p
(1)
s · ∇p(1)

s⊥
mωζ0

= −

〈
p
(0)
f · ∇p

(2)
f⊥

〉
mωζ0

−

〈
p
(1)
f · ∇p

(1)
f⊥

〉
mωζ0

−

〈
p
(2)
f · ∇p

(0)
f⊥

〉
mωζ0

. (A.63)

Substituting the solution Eqs. (A.40), (A.49) and (A.61), each term on the RHS of
Eq. (A.63) becomes

−

〈
p
(0)
f · ∇p

(2)
f⊥

〉
mωζ0

=
c

ω2ζ20
〈(a · ∇) (A.61)〉 , (A.64)

−

〈
p
(1)
f · ∇p

(1)
f⊥

〉
mωζ0

= −mc
4

ω3ζ30

〈(∫
∂η [(a · ∇)a]os. · ∇

)∫
∂η [(a · ∇)a]os.

〉
= −mc

4

ω3ζ30

〈∫
∂η [(a · ∇)a]os.

∫
∂η
[
(∇a)2 + a

(
∇2a

)]
os.

〉
,

(A.65)

−

〈
p
(2)
f · ∇p

(0)
f⊥

〉
mωζ0

=
c

ω2ζ20
〈((A.61) · ∇)a〉 , (A.66)
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where (A.61) on the RHS of Eqs. (A.64) and (A.66) indicates the RHS of Eq. (A.61).
Together with Eq. (A.55), we obtain the slow scale equation of motion up to the

third order as

∂p
(0+1+2+3)
s⊥
∂η

+
p
(1)
s · ∇p(1)

s⊥
mωζ0

= (A.55) + (A.64) + (A.65) + (A.66) + O
(
ε4
)
. (A.67)

This equation denotes the ponderomotive force up to the third order with respect
to ε.

Hereafter, we assume the laser field given by

a (x, η) = a (x) sin η êx, (A.68)

which is same as that assumed in the Lie perturbation analysis in Chap. 3. By
substituting Eq. (A.68) to the RHS of Eq. (A.67), we obtain

(
∂

∂η
+

ps · ∇
mωζ0

)
ps⊥

= −ε mc
2

2ωζ0
a(x)

∂a(x)

∂x
êx

− ε3

16

mc4

ω3ζ30
a(x)

[
43

2
a(x)

∂a(x)

∂x

∂2a(x)

∂x2
+ 3a2(x)

∂3a(x)

∂x3
+

25

2

(
∂a(x)

∂x

)3
]
êx

+ O
(
ε4
)
. (A.69)

Using the notation

L−1 (x) ≡ 1

a(x)

∂a(x)

∂x
, (A.70)

R−1 (x) ≡ 1

a(x)

∂2a(x)

∂x2
, (A.71)

T−1 (x) ≡ 1

a(x)

∂3a(x)

∂x3
, (A.72)

(A.73)

Eq. (A.69) can be written as

(
∂

∂η
+

ps · ∇
mωζ0

)
ps⊥ = −εmca(x)

2

l

L

∣∣∣∣
x

êx

− ε3mca(x)
16

[
43

2

l

L

l2

R

∣∣∣∣
x

+ 3
l3

T

∣∣∣∣
x

+
25

2

l3

L3

∣∣∣∣
x

]
êx + O

(
ε4
)
.

(A.74)
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A.4 Oscillation center description

In the above equation Eq. (A.74), the field amplitude a and also the excursion
length l is written in terms of x, which generally includes oscillatory component.
Hence, we cannot obtain the averaged motion, i.e., the motion of the oscillation
center of the particle, by solving only Eqs. (A.74) and (A.1). Namely, to obtain the
trajectory p (η) and x (η), one needs to additionally solve the oscillatory motion in
order to evaluate x appears in the RHS of Eq. (A.74). This is different from the
ponderomotive formula obtained in the Lie perturbation analysis, which is expressed
in terms of the oscillation center variable X. Therefore, in the next step, we rewrite
Eqs. (A.74) and (A.1) to those expressed in terms of oscillation center variables x
and p where overline indicates the average over η.

For this purpose, we consider the Taylor expansion of a(x) around x where

x = x−
(
x̃(0) + x̃(1) + x̃(2) + · · ·

)
, (A.75)

as

a (x) = a (x) +
∂a

∂x

∣∣∣∣
x

(
x̃(0) + x̃(1) + x̃(2) + · · ·

)
+

1

2!

∂2a

∂x2

∣∣∣∣
x

(
x̃(0) + x̃(1) + x̃(2) + · · ·

)2
+ · · · . (A.76)

Since we are deriving the ponderomotive force up to the third order ε3, and the force
in Eq. (A.74) has only the first and smaller order terms of ε, we need to consider
the Taylor expansion Eq. (A.76) only up to the second order ε2, i.e.,

a (x) = a (x) +
∂a

∂x

∣∣∣∣
x

(
x̃(0) + x̃(1)

)
+

1

2!

∂2a

∂x2

∣∣∣∣
x

x̃(0)2 + O
(
ε3
)
. (A.77)

Here, x̃(0) and x̃(1) are obtained by Eqs. (A.40) and (A.49) as

x̃(0) = l (x) cos η, (A.78)

x̃(1) =
l (x)

8

l

L

∣∣∣∣
x

cos 2η. (A.79)

Then, the expansion Eq. (A.77) yields to

a (x) = a (x) +
∂a

∂x

∣∣∣∣
x

l (x) cos η +
∂a

∂x

∣∣∣∣
x

l (x)

8

l

L

∣∣∣∣
x

cos 2η +
1

2!

∂2a

∂x2

∣∣∣∣
x

l2 (x)

+ O
(
ε3
)
. (A.80)

Then, in taking average in Eqs. (A.46) and (A.55), we now take into account not
only explicit but also implicit dependences on η, i.e. a (x(η), η). By considering
the implicit dependence, the additional secular terms appear due to the coupling
with the explicit cos 2η in the RHS of Eq. (A.46) or the first term on the RHS in
Eq. (A.55), and cos η on the second and third terms in Eq. (A.55). Namely, they
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are expanded as

〈(a · ∇)a〉 =
〈
a (x)

∂a

∂x

∣∣∣∣
x

1

2
(1− cos 2η)

〉
+

〈(
∂a

∂x

∣∣∣∣
x

l (x)

8

l

L

∣∣∣∣
x

cos 2η

)
∂a

∂x

∣∣∣∣
x

1

2
(1− cos 2η)

〉
+

〈(
1

2!

∂2a

∂x2

∣∣∣∣
x

l2 (x)
1

2
(1 + cos 2η)

)
∂a

∂x

∣∣∣∣
x

1

2
(1− cos 2η)

〉
+

〈(
∂a

∂x

∣∣∣∣
x

l (x) cos η

)(
∂2a

∂x2

∣∣∣∣
x

l (x) cos η

)
1

2
(1− cos 2η)

〉
=
k2zζ

2
0

2
l (x)

l

L

∣∣∣∣
x

− k2zζ
2
0

32
l (x)

l3

L3

∣∣∣∣
x

+
3

16
k2zζ

2
0 l (x)

l

L

∣∣∣∣
x

l2

R

∣∣∣∣
x

, (A.81)

〈[(∫
∂η [(a · ∇)a]os.

)
· ∇
]
a

〉
=

〈
a (x)

(
∂a

∂x

∣∣∣∣
x

)2

sin η

∫
∂η

[
1

2
(1− cos 2η)

]
os.

〉

= −k
3
zζ

3
0

16
l (x)

(
l3

L3

∣∣∣∣
x

+ 2
l

L

∣∣∣∣
x

l2

R

∣∣∣∣
x

)
, (A.82)

〈
(a · ∇)

(∫
∂η [(a · ∇)a]os.

)〉
=

〈[
a (x)

(
∂a

∂x

∣∣∣∣
x

)2

+ a2 (x)
∂2a

∂x2

∣∣∣∣
x

]
sin η

∫
∂η

[
1

2
(1− cos 2η)

]
os.

〉

= −k
3
zζ

3
0

16
l (x)

(
l3

L3

∣∣∣∣
x

+ 4
l

L

∣∣∣∣
x

l2

R

∣∣∣∣
x

+
l3

T

∣∣∣∣
x

)
. (A.83)

Using Eqs. (A.81), (A.82) and (A.83), we express Eq. (A.67) by the oscillation center
variables as(

∂

∂η
+

p · ∇
mωζ0

)
p⊥ = −εmca(x)

2

l

L

∣∣∣∣
x

êx

− ε3mca(x)
16

[
37

2

l

L

l2

R

∣∣∣∣
x

+ 2
l3

T

∣∣∣∣
x

+ 10
l3

L3

∣∣∣∣
x

]
êx + O

(
ε4
)
.

(A.84)

This equation corresponds to the ponderomotive formula up to the third order which
is described by the oscllation center variables. Therefore, one can obtain the oscilla-
tion center trajectory by integrating Eq. (A.84) together with the slow scale relation
between p and x, i.e.,

dx

dη
=

p

mωζ0
(A.85)

One can see that Eq. (A.84) possesses the same dependence on the field structure
consisting of terms proportional to l3/LR, l3/T and l3/L3 with same signs as those
derived by the Lie perturbation method, however, the coefficients of each terms are
different.
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Appendix B

Degree of freedom of the

coordinate and gauge

transformations

B.1 Removal of oscillations using the degree of freedom

of the coordinate transformation

In Sec. 3.2.2, we have noted that the undesirable oscillation in the oscillation center
equation of motion can be removed both by the gauge transformation and by using
the degree of freedom of the coordinate transformation, i.e., taking δz = −1 in the
definition of the coordinate transformation Eq. (3.74). For reference, we here show
the definition of the coordinate transformation Eqs. (3.72)-(3.77):

x (X, η) = X + δxx̃
(0) = X + δxσl(X) cos η, (B.1)

y (Y ) = Y, (B.2)

z (Z,X, η) = Z + δz z̃
(0) = Z − δz

kzl
2(X)

8
sin 2η, (B.3)

px (X,Px, η) = Px + δxp̃
(0)
x = Px − δxσmcax(X) sin η, (B.4)

py (Py) = Py, (B.5)

pη (pη) = pη, (B.6)

In this appendix, we derive the equations of motion up to the third order of ε
by the same Lie perturbation procedure performed in Sec. 3.2, without using the
gauge transformation described in Sec. 3.2.3, and instead using δz = −1. Here, we
start from the coordinates Zµ given in Eq. (3.71), i.e., Zµ = (η;X,Y, Z, Px, Py, pη),
and the corresponding covariant vector Γµ in Eqs. (3.103)-(3.80). Here we assume
δx = 1 and rewrite the zeroth order 1-form Eq. (3.107):
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Γ
(0)
0 =

m2c2 + P 2
x + p2η

2pηkz
− (1 + α)Pxl(X)σ sin η + α2 pηkzl

2(X)

4

− pηkzl
2(X)

4

(
δz + α2

)
cos 2η, (B.7)

Γ
(0)
6 = 0, (B.8)

and Γ
(0)
1 = Px, Γ

(0)
2 = Py, Γ

(0)
3 = pη and Γ

(0)
4 = Γ

(0)
5 = Γ

(0)
6 = 0. In this case, the

resultant equations of motion in the X and Z directions are obtained as

dX

dη
=

Px

mcζ0kz
, (B.9)

dPx

dη
= −εmcax

2

l

L
+ ε

mcax
2

l

L
(δz + 1) cos 2η, (B.10)

dZ

dη
=

1− ζ20
2ζ20kz

+
kzl

2

4
+

1

2kz

(
Px

mcζ0

)2

− Px

mcζ0
σl sin η +

kzl
2

4
(δz − 1) cos 2η,

(B.11)

which are the same as Eqs. (3.94)-(3.96) with δx = 1. For comparison, we remind
that when the preparatory gauge transformation defined by Eq. (3.99) is employed,
the zeroth order 1-form and the resultant equations of motion in the X and Z
directions are given by Eq. (3.107) and Eqs. (3.118)-(3.120), respectively. We here
rewrite them remaining δz:

Γ
(0)
0

∣∣∣
S
=
m2c2 + P 2

x + p2η
2pηkz

− (1 + α)Pxl(X)σ sin η + α2 pηkzl
2(X)

4
, (B.12)

Γ
(0)
6

∣∣∣
S
=
kzl

2

8

(
δz − α2

)
sin 2η, (B.13)

and Γ
(0)
1

∣∣
S
= Px, Γ

(0)
2

∣∣
S
= Py, Γ

(0)
3

∣∣
S
= pη and Γ

(0)
4

∣∣
S
= Γ

(0)
5

∣∣
S
= Γ

(0)
6

∣∣
S
= 0 are the

zeroth order components of the covariant vector, and the equations of motion in the
X and Z directions are given by

dX

dη

∣∣∣∣
S

=
Px

mcζ0kz
, (B.14)

dPx

dη

∣∣∣∣
S

= −εmcax
2

l

L
, (B.15)

dZ

dη

∣∣∣∣
S

=
1− ζ20
2ζ20kz

+
kzl

2

4
+

1

2kz

(
Px

mcζ0

)2

− Px

mcζ0
σl sin η +

kzl
2

4
(δz − 1) cos 2η,

(B.16)

We herein use the subscript |S for the 1-form and the resulting equation of motion
in which the gauge transformation Eq. (3.99) is applied, in order to avoid confusing
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with those without the gauge transformation Eqs. (B.9)-(B.11). Here we fix δz = −1
in Eqs. (B.9)-(B.11) and δz = 1 in Eqs. (B.14)-(B.16) that lead to

dX

dη
=

Px

mcζ0kz
, (B.17)

dPx

dη
= −εmcax

2

l

L
, (B.18)

dZ

dη
=

1− ζ20
2ζ20kz

+
kzl

2

4
+

1

2kz

(
Px

mcζ0

)2

− Px

mcζ0
σl sin η − kzl

2

2
cos 2η, (B.19)

and

dX

dη

∣∣∣∣
S

=
Px

mcζ0kz
, (B.20)

dPx

dη

∣∣∣∣
S

= −εmcax
2

l

L
, (B.21)

dZ

dη

∣∣∣∣
S

=
1− ζ20
2ζ20kz

+
kzl

2

4
+

1

2kz

(
Px

mcζ0

)2

− Px

mcζ0
σl sin η. (B.22)

From Eqs. (B.18) and (B.21), one can see that both procedures, i.e., the coordinate
transformation with δz = −1 and the gauge transformation Eq. (3.99), successfully
remove the oscillation from the X direction. However, comparing Eq. (B.19) and
Eq. (B.22), we find that an additional oscillatory term proportional to cos 2η appears
in the case employing δz = −1, i.e., the last term on the RHS of Eq. (B.19). This
oscillation is twice the zeroth order figure-eight oscillation in the z direction (See
the figure-eight motion obtained in Eq. (3.67)). The appearance of such a term is
consistent with the fact that Eq. (B.19) is derived on the basis of the non-oscillation
center coordinates where the sign of oscillation is reversed as δz = −1.

Hereafter, we proceed the Lie perturbation analysis up to the third order of
ε using the 1-form without the gauge transformation considered in Sec. 3.2.2. In
the following analysis, we remain δz not being fixed to −1 in order to see its role
explicitly. Finally, a comparison between the equations of motion derived in this
appendix and those obtained in Sec. 3.2 is disscussed.

B.2 Lie perturbation analysis in the non-oscillation cen-

ter coordinates

First-order analysis

The first-order component of the covariant vector Γµ is given by

Γ(1)
µ =

(
− pηkzl

2

4
ασ

l

L
(cos η − cos 3η) ;

pηkzl

2

l

L

(
α− δz

2

)
sin 2η + Pxσ

l

L
cos η, 0, 0, 0, 0, 0

)
= C(1)

µ , (B.23)
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from which Γ′
0 in the Lie-transformed coordinates is obtained as

Γ
′(1)
0 = C

(1)
µ

(
V (0)µ

)(0)
= 0, (B.24)

Hence, the first order 1-form Γ
′(1)
µ dZ ′ is independent of δz, and the equation of

motion up to the first order of ε is same as that of the zeroth order.
The first order oscillatory terms are obtained from the first-order Lie generator,

which is given by

g(1)1 = −1

4

(
1 +

δz
2

)
l
l

L
cos 2η, (B.25)

g(1)3 = −kzl
2

4
σ
l

L

(
1 +

δz
2

)(
sin η − 1

3
sin 3η

)
, (B.26)

g(1)4 =
mcax
2

l

L

(
1 +

δz
2

)
sin 2η, (B.27)

and g(1)2 = g(1)5 = g(1)6 = 0 where we have substituted the solution pη = −mcζ0
and α (= pη/mcζ0) = −1. The components g(1)1, g(1)3 and g(1)4 are found to depend
on δz, which indicates that the choice of δz affects the first order oscillation of X, Z
and Px after the backward Lie transformation G µ

b (·) = I µ(·)− εg(1)µ(·).
Here, we consider the relation between Eqs. (B.27) and (B.10). By solving the

equation of motion (B.10) assuming ax and l/L are constant, we can obtain an
approximated solution for the oscillatory part of P ′

x as

[
P ′
x

]
os.

= ε
mcax
4

l

L
(δz + 1) sin 2η, (B.28)

which indicates that δz = 1 adds the oscillation εmcaxlL
−1 sin(2η)/2 to the solution

for δz = −1. This solution is transformed backwardly as

Px = P ′
x −

mcax
2

l

L

(
1 +

δz
2

)
sin 2η. (B.29)

In the above backward transformation, δz = −1 adds εmcaxlL
−1 sin(2η) /2 to the

solution for δz = 1. As a consequense, the same first-order oscillation in the original
coordinate Px is obtained after the backward transformation regardless of δz = ±1.

Second-order analysis

The second-order component of the covariant vector Γµ is independent of δz and is
given by

Γ(2)
µ =

(
− pη

16
kzl

2α
l2

R
(1− cos 4η)

;
pηkzl

8
ασ

(
l2

R
+ 2

l2

L2

)
(sin 3η + sin η) , 0, 0, 0, 0, 0

)
. (B.30)
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B.2 Lie perturbation analysis in the non-oscillation center coordinates

Here, note that as can be seen from Eqs. (3.103) and (3.104), the components smaller
than order ε2 have no dependence on δz. Γ′′

0 in the Lie-transformed coordinates is
calculated from

Γ
′′(2)
0 = D

(2)
µ

(
V (0)µ

)(0)
, (B.31)

which finally leads to the 1-form up to the second-order in the Lie-transformed
coordinates:

Z ′′µ =
(
η;X ′′, Y ′′, Z ′′, P ′′

x , P
′′
y , p

′′
η

)
(B.32)

Γ′′
µ =

(
m2c2 + P ′′2

x + P ′′2
y + p′′2η

2p′′ηkz
− (1 + α)P ′′

xσl sin η +
p′′ηkzl

2

4

[
α2 −

(
δz + α2

)
cos 2η

]
+ ε2

l

16
p′′ηkzl

[
−
(
2α3 + (1− δz)α2 − 2δzα− δz

) l2
R

−
(
4α3 +

(
−3

2
δz + 4

)
α2 − 4δzα− 2δz +

δ2z
4

)
l2

L2

]

+ ε2
P ′′2
x

p′′ηkz

[
1

2
(1 + α)

l2

R
−
(
α+

1

4

)
l2

L2

]
;P ′′

x , P
′′
y , p

′′
η, 0, 0, 0

)
, (B.33)

As in Sec. 3.2, by using the solution p′′η = −mcζ0 ⇔ 1 + α = 0, we obtain the
equations of motion in the X direction as

dX ′′

dη
=

P ′′
x

mcζ0kz

(
1 + ε2

3

2

l2

L2

)
, (B.34)

dP ′′
x

dη
= −mcax

2

[
ε
l

L
+
ε3

8

(
A1

l

L

l2

R
+
l3

T
+A2

l3

L3

)]
+ ε

mcax
2

l

L
(1 + δz) cos 2η, (B.35)

where

A1 = −δz −
δ2z
2

+ 3, (B.36)

A2 = −δz −
δ2z
2
. (B.37)

Here, we neglected the term proportional to P ′′2
x L−1R−1 ∼ ε5 as in Sec. 3.2. We

have (A1,A2) = (3/2,−3/2) for δz = 1 and (A1,A2) = (7/2, 1/2) for δz = −1. The
equation of motion for Z ′′ is obtained from (B.33) and using the solution p′′η = −mcζ0
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as

dZ ′′

dη
=

1− ζ20
2ζ20kz

+
kzl

2

4
+

1

2kz

(
P ′′
x

mcζ0

)2

− δpx
P ′′
x

mcζ0
σl sin η +

kzl
2

4
(δz − 1) cos 2η

− ε2kzl
2

16

[
−3 l

2

R
+
l2

L2

(
−4 + δz

2
− δ2z

4

)]
. (B.38)

First, we discuss the equations of motion in the X ′′ direction, i.e., Eqs. (B.34)
and (B.35), for cases δz = 1 and −1. In the case of δz = 1, which corresponds to the
usual oscillation center coordinate, Eq. (B.35) becomes

dP ′′
x

dη
= −mcax

2

[
ε
l

L
+
ε3

8

(
3

2

l

L

l2

R
+
l3

T
− 3

2

l3

L3

)]
+ εmcax

l

L
cos 2η, (B.39)

while in the case of δz = −1, it becomes

dP ′′
x

dη
= −mcax

2

[
ε
l

L
+
ε3

8

(
7

2

l

L

l2

R
+
l3

T
+

1

2

l3

L3

)]
. (B.40)

Equations (B.39) and (B.40) exhibit two different points; one is the coefficients of the
third order terms, and another is the oscillatory term appearing only in Eq. (B.39).
The latter indicates that the coordinate transformation with δz = −1 successfully
removes the 1st-order oscillatory term originating from the 0th-order 1-form. To
consider the difference in the coefficients of the secular terms, we compare them with
the secular term obtained in Sec. 3.2, in which a preparatory gauge transformation
is employed. The equation of motion derived in Sec. 3.2 is given by Eq. (3.145), i.e.,

dP ′′
x

dη
= −mcax

2

[
ε
l

L
+
ε3

8

(
7

2

l

L

l2

R
+
l3

T
+

1

2

l3

L3

)]
. (B.41)

From Eqs. (B.39)-(B.41), it is found that the secular terms are same in Eqs. (B.40)
and (B.41), whereas different in Eq. (B.39). This result can be considered as follows.
In Eq. (B.39), a first-order oscillatory term is remained, which generates an oscilla-
tion in the X ′′ direction in the order of ε. Here, notice that the first-order oscillatory
term includes ax, l and L−1 that are evaluated at X ′′. Therefore, when the oscil-
lating X ′′ is substituted in ax, l and L

−1, it may generates the higher order secular
terms. For this reason, we can conclude that the third order term in Eq. (B.39) does
not represent the secular force completely. This result indicates the importance of
elliminating the oscillatory terms completely from the equation of motion.

Next, we discuss the equation of motion in the Z ′′ direction, i.e., Eqs. (B.38),
for cases δz = 1 and −1. In the case of δz = 1, which corresponds to the oscillation

118



B.2 Lie perturbation analysis in the non-oscillation center coordinates

center coordinate, Eq. (B.38) becomes

dZ ′′

dη
=

1− ζ20
2ζ20kz

+
kzl

2

4
+

1

2kz

(
P ′′
x

mcζ0

)2

− P ′′
x

mcζ0
σl sin η

+ ε2
kzl

2

16

(
3
l2

R
+

15

4

l2

L2

)
, (B.42)

while in the case of δz = −1, it becomes

dZ ′′

dη
=

1− ζ20
2ζ20kz

+
kzl

2

4
+

1

2kz

(
P ′′
x

mcζ0

)2

− P ′′
x

mcζ0
σl sin η − kzl

2

2
cos 2η

+ ε2
kzl

2

16

(
3
l2

R
+

19

4

l2

L2

)
. (B.43)

Here, we again see the zeroth order figure-eight oscillation proportional to cos 2η
in the fifth term of Eq. (B.43), which is consistent with the fact that Eq. (B.43)
is derived on the basis of the non-oscillation center coordinates with δz = −1. In
addition, we find that the coefficient of the last term in Eqs. (B.42) and (B.43) is
different. The difference is considered to originate from the oscillatory term in the
X ′′ direction in Eq. (B.39), as same as the discussion for Eqs. (B.39) and (B.40)
in the previous paragraph. Namely, the difference of coefficient suggests that the
first-order oscillation of P ′′

x and X ′′ couples in the fourth fifth term on the RHS of
Eq. (B.42).
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Appendix C

Equations of motion in a laser

field with a small longitudinal

component

C.1 Vector potential with the longitudinal z-component

In the Lie perturbation analysis presented in Chap. 3, we assumed a laser field given
by a = ax(x) sin η êx. However, electromagnetic fields with non-uniform amplitude
profiles in vacuum must have extra components of the vector potential in satisfying
the Maxwell equations. For instance, when the gradient of the field amplitude is
assumed to be O (ε) as in the present study, the z-component of the vector potential
az in the first order of ε appears as the solution for the Maxwell equations [45, 46].
In this appendix, we investigate how the inclusion of εaz affects the formulation of
the higher-order ponderomotive force.

In Sec. 1.3.2 in the introduction, we derived the wave equation in vacuum in the
form

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ai = 2ikz

∂

∂z
ai, (C.1)

i.e., Eq. (E.13),where ai(i = x, y, z) is the amplitude part of the normalized vector
potential. Here, the Coulomb gauge ∇·a = 0 is employed, which is expressed in the
coordinates (η = ωt− kzz, x, y, z) as

∇ · a+ kz
∂

∂η
êz · a = 0. (C.2)

When the field amplitude is x-dependent, i.e. ax = ax (x), as assumed in the present
study, Eqs. (C.1) and (C.2) lead to
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C.2 Fundamental one-form with az component

∂2a

∂x2
= 0, (C.3)

∂

∂x
êx · a− kz

∂

∂η
êz · a = 0. (C.4)

Because the spatial derivative of the field amplitude is clasified to O(ε), Eqs. (C.3)
and (C.4) can be satisfied up to the first order of ε when the amplitude in the z
direction az is assumed to be O(ε).

Therefore, here we assume the laser field as

a = ax(x) sin η êx + εaz cos η êz, (C.5)

where az is a finite constant amplitude in the order of ε. In the following, we
investigate how the inclusion of εaz affects the nonlocal ponderomotive force.

C.2 Fundamental one-form with az component

In the case where the laser field is assumed to be Eq. (C.5), the covariant vector
that corresponds to the coordinates given by Eq. (3.54) has an εaz term in the µ = 3
component as

γµ =

(
1

2pηkz

(
m2c2 + p2x + p2y + p2η

)
;

px +mcσax(x) sin η, py, pη + εmcσaz cos η, 0, 0, 0

)
. (C.6)

After transforming the coordinates to those of the oscillation center given by Eq. (3.71),
i.e., Zµ = (η;X,Y, Z, Px, Py, pη), and using the gauge transformation given by the
gauge function Eq. (3.99), Eq. (C.6) is transformed to the new one Λµ as

γµ 7→ Λµ = Γµ + Γadd.µ, (C.7)

where Γµ is given by Eqs. (3.103)-(3.106) and the additional term Γadd.µ is given by

Γadd.0 = −ε
kzl

2

4

mc

2
azσ (cos 3η + cos η) , (C.8)

Γadd.1 = −ε2
kzl

8
mcazσ

l

L
(sin 3η + sin η) , (C.9)

Γadd.3 = εmcσaz cos η, (C.10)

Γadd.i = 0 (i = 2, 4, 5, 6) . (C.11)

Here, we see that since the amplitude az is assumed to be O (ε), the inclusion of az
does not affect the zeroth order 1-form and the resulting equation of motion.
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C. EQUATIONS OF MOTION IN A LASER FIELD WITH A SMALL
LONGITUDINAL COMPONENT

C.3 Effect of the az component to the higher order sec-

ular motion

The first-order component of the covariant vector Λµ includes az in the µ = 0 and
µ = 3 components as

Λ(1)
µ =

(
− pηkzl

2

4
ασ

l

L
(cos η − cos 3η)− εkzl

2

8
mcazσ (cos η + cos 3η) ;

pηkzl

2

l

L

(
α+

α2

2

)
sin 2η + Pxσ

l

L
cos η, 0, εmcσaz cos η, 0, 0, 0

)
= C(1)

µ .

(C.12)

By the first order Lie transformation Zµ 7→ Z ′µ = exp
(
εL (1)

)
Zµ, the covariant

vector is transformed to Λ′
µ. Here, its first order component, Λ

′(1)
µ , which is derived

from the relation Λ
′(1)
µ =

((
C

(1)
µ V (0)µ

)(0)
;0

)
, is found to be zero even in the case

we include the field component az. This indicates that the inclusion of az has no
influence on the oscillation center motion which is derived from the 1-form up to the
first order of ε.

Therefore, at first we find dp′η/dη = 0, which leads to the solution p′η = const.
Here, we define p′η ≡ −mcζ ′0 with a constant ζ ′0 which is determined by the initial
condition for p′η. Then, by substituting the above solution for p′η, we obtain the
equations of motion up to the first order of ε in the X ′ and Z ′ directions as

dX ′

dη
=

P ′
x

mcζ ′0kz
+ σl

(
1− ζ0

ζ ′0

)
sin η, (C.13)

dP ′
x

dη
= −εζ0

ζ ′0

mcax
2

l

L
− εP ′

xσ
l

L

(
1− ζ0

ζ ′0

)
sin η, (C.14)

dZ ′

dη
=

1− ζ ′20
2ζ ′20 kz

+
kzl

2

4

ζ20
ζ ′20
− P ′

x

mcζ ′0
σl
ζ0
ζ ′0

sin η +
kzl

2

4

(
1− ζ20

ζ ′20

)
cos 2η, (C.15)

Note that in the case without the az component, ζ ′0 = ζ0 is satisfied, and the above
equations become equivalent to Eqs. (3.118)-(3.120). However, in the present case
with az, ζ

′
0 6= ζ0 is found, which means that the initial condition for pη in the original

coordinates Zµ is different from that for p′η in the Lie transformed coordinates Z ′µ.
This can be seen from the first order Lie generator as follows.

In the case with az component, the first order gauge function and Lie generator
include oscillatory terms that depend on az. Namely, the first-order gauge function
S(1) is obtained by the relation

∂S(1)

∂η
= −

[
C(1)
µ

(
V (0)µ

)]
os.
, (C.16)

and then, the i = 6 component of the first-order Lie generator is obtained as

122



C.3 Effect of the az component to the higher order secular motion

g(1)6 = εmcσaz cos η, (C.17)

From Eq. (C.17), we find the initial value of g(1)6 as g(1)6(η = 0) = εmcσaz. Hence,
we obtain the relationship between initial conditions in the coordinates Zµ and Z ′µ

as

pη(η = 0) = p′η(η = 0)− g(1)6(η = 0), (C.18)

⇔ p′η(η = 0) = −mcζ0 + εmcσaz. (C.19)

In this case, the equations of motion up to the first order, Eqs. (C.13)-(C.15),
suffer from a modification originated from the inclusion of az. Namely, the relation
ζ ′0 = ζ0 − εσaz leads to

dX ′

dη
=

P ′
x

mcζ0kz

(
1 + εσ

az
ζ0

)
− εaz

ζ0
l sin η, (C.20)

dP ′
x

dη
= −εmcax

2

l

L
, (C.21)

dZ ′

dη
=

1− ζ20
2ζ20kz

+
kzl

2

4

(
1 + 2εσ

az
ζ0

)
− P ′

x

mcζ0
σl sin η + εσ

az
ζ0

kzl
2

2
cos 2η, (C.22)

where we used the expansion ζ ′−1
0 = ζ−1

0 (1 + εσaz/ζ0) + O
(
ε2
)
and neglected ε2

order terms. Note that the equation of motion in the Y direction is also affected by
az as

dY ′

dη
=

P ′
y

mcζ0kz

(
1 + εσ

az
ζ0

)
, (C.23)

dP ′
y

dη
= 0. (C.24)

From Eqs. (C.20) and (C.21), we see that the secular motion in the X ′ direction is
affected by the inclusion of az in the second order by the coupling ε2azl/L.

In summary, it is found that the 1-form up to the first order, which is obtained
from Eqs. (C.12), has the same form as that in the case without including εaz.
Consequently, the equations of motion derived from the 1-form up to the first order
are not affected by the inclusion of εaz. However, since the initial condition for pη
and p′η are different, the equations of motion after substituting the solution p′η have
terms related to az in the first order of ε as shown in Eqs. (C.20)-(C.24).

Here, note that the correction terms from az have σ dependence, that is different
from the usual characteristic of the ponderomotive force, i.e., the force does not
depend on the charge of particles since it is a pressure force. From this feature, we
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can expect that the modulation from az denotes not an additional ponderomotive
force (light pressure) on the particle, but a modulation related to the coordinate
transformation to a different X ′ in comparison to the case without the az component
and the corresponding Lorentz transformation of the physical quantities.

For instance, assuming positively charged particles (σ > 0), we see from Eq. (C.20)
that the ponderomotive force is found to be larger than the case without az compo-
nent. Note here that for positive charges σ > 0, the relation ζ ′0 (= ζ0 − εσaz) < ζ0
is found. Then, from the definition of ζ0, i.e., pz0/mc = γ0 − ζ0, one can see that
the above decrease of ζ0 corresponds to the increase of the initial momentum in the
positive z direction, pz0. Therefore, we recognize that the X ′ frame with az compo-
nent is moving in the negative z direction in comparison to the X ′ frame without
az component. Then, the modulation of the secular term in the X ′ direction that is
proportional to ε2azl/L is considered to be the effect associated with the change of
the transverse Ex field in the moving frame.

In the third order ε3, a term proportional to ε3azl
2/R is considered, however,

is expected to disappear due to the symmetric nature of curvature. The other is a
term proportional to ε3azl

2/L2, which essentially denotes a local effect. Thus, the
az component is expected not to affect the qualitative characteristics of the nonlocal
ponderomotive force derived in Chap. 3.
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Appendix D

Ponderomotive potential up to

ε3

In Sec. 3.4.3, we have mentioned that the third order ponderomotive force derived
by the Lie perturbation method cannot be expressed as a potential force that is
proportional to the gradient of a scalar potential. In this appendix, we verify the
above fact.

The equation of motion in the X ′′ direction up to the third order of ε, which
represents the nonlocal ponderomotive force up to ε3, is given by Eq. (3.147), i.e.,

d2X ′′

dη2
= −ε l

2

l

L
− ε3 l

16

(
7

2

l

L

l2

R
+
l3

T
+

25

2

l3

L3

)
. (D.1)

As is noted in Sec. 3.4.3, the first order ponderomotive force, i.e., the first term
on the RHS of Eq. (D.1), can be expressed in the potential form as

d2X ′′(1)

dη2
= −∇φ(1)p ; φ(1)p =

1

4
l2, (D.2)

where ∇ = ∂/∂X ′′.

Next, we consider to express the third order term on the RHS of Eq. (D.1) also
in the scalar potential form ∇φp. Here, we write down all the candidates for φp that
has the dimension of l4∇2 so that the dimension of ∇φp becomes l4∇3, which is same
as the dimension of the third order term on the RHS of Eq. (D.1). Then, considering
a superposition of the candidate terms, we seek the possibility of obtaining the third
order ponderomotive potential φp.

First, we find that the possible scalar can be cathegolized into the following three
groups A-C:

Group A: Those equivalent to

∇
(
l2 (∇l) (∇l)

)
= 2l (∇l)3 + 2l2

(
∇2l

)
(∇l) = 2l

(
l3

L3
+
l

L

l2

R

)
, (D.3)
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i.e.,

∇
(
l (∇l)

(
∇l2

))
= 2∇

(
l2 (∇l) (∇l)

)
, (D.4)

∇
((
∇l2

) (
∇l2

))
= 4∇

(
l2 (∇l) (∇l)

)
, (D.5)

∇
(
(∇l)

(
∇l3

))
= 3∇

(
l2 (∇l) (∇l)

)
, (D.6)

Group B:

∇
(
l3
(
∇2l

))
= 3l2 (∇l)

(
∇2l

)
+ l3∇3l = l

(
3
l

L

l2

R
+
l3

T

)
, (D.7)

Group C:

∇
(
l2
(
∇2l2

))
= 2l (∇l)

(
∇2l2

)
+ l2∇3l2 = 2l

(
2
l3

L3
+ 5

l

L

l2

R
+
l3

T

)
. (D.8)

Note that the other possible derivative operations,

∇
(
l
(
∇2l3

))
= (∇l)

(
∇2l3

)
+ l∇3l2 = 3l

(
4
l3

L3
+ 7

l

L

l2

R
+
l3

T

)
, (D.9)

and

∇
((
∇2l4

))
= 8l

(
3
l3

L3
+ 9

l

L

l2

R
+ 2

l3

T

)
, (D.10)

can be constructed from groups A and B as

1

8
(Eq. (D.10)) =

3

2
(Eq. (D.3)) + 2(Eq. (D.7)), (D.11)

and from groups B and C as

1

3
(Eq. (D.9)) = (Eq. (D.8))− (Eq. (D.7)), (D.12)

respectively. Combining the independent bases A-C, we construct the second term
on the RHS of Eq. (D.1) which consists of terms for L−3, R−1L−1 and T−1 with the
ratio 25 : 7 : 2. Namely, we consider the following equation with coefficients A, B
and C to be determined:

A
(
L−3 + L−1R−1

)
+B

(
3L−1R−1 + T−1

)
+ C

(
2L−3 + 5L−1R−1 + T−1

)
= 25L−3 + 7L−1R−1 + 2T−1. (D.13)

By comparing coefficients of L−3, L−1R−1 and T−1, we have a system of equations
given by

 1 0 2
1 3 5
0 1 1

 A
B
C

 =

 25
7
2

 . (D.14)
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The augmented matrix is simplified to

 1 0 2 1
0 1 1 2
0 0 0 1

 , (D.15)

whose rank is 3 whereas that of the coefficient matrix is 2. Therefore, we conclude
that the solution for A, B and C that satisfies Eq. (D.14) does not exist except
(A,B,C) = (0, 0, 0).

The above result indicates that there exists no scalar potential φp that can repre-
sent the third order ponderomotive force as the potential form as d2X ′′/dη2 = −∇φp.
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Appendix E

Laser beam propagation in

vacuum

E.1 Laser beam propagation in the Hermite-Gaussian

mode

In the introduction, we discussed the laser beam propagation in plasmas. In this
appendix, we consider the laser beam propagation in vacuum.

We start from the wave equation for the vector potential,

1

c2
∂2a

∂t2
−∇2a =

4πe

mec
J, (E.1)

and the Poisson equation for the scalar potential,

−∇2φ =
4πe

mec2
ρ. (E.2)

which are derived in Sec. 1.3.2.

In the case of vacuum, the laser vector potential satisfies the wave equation
Eq. (E.1) with J = 0, i.e.,

1

c2
∂2a

∂t2
−∇2a = 0. (E.3)

A laser beam is assumed to be linearly polarized and propagate in the z direction,
while its amplitude is non-uniform transversely and also longitudinally. We here
employ the paraxial approximation assuming that the wave vector of the electro-
magnetic field lies in a narrow cone with a small opening angle:

|k⊥|
kz
� 1, (E.4)

Here, we note that the plane wave solution for the Maxwell equation, in which
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E.1 Laser beam propagation in the Hermite-Gaussian mode

|k⊥| = 0 is satisfied, has a spatially uniform amplitude as

a = a0e
iωt−ikzz, (E.5)

where a0 is constant. From this fact, we can expect that the paraxial field satisfying
Eq. (E.4) has a gentle amplitude variation. In expressing such a gentle amplitude
variation in the z (or time t) direction, we note the fact that the envelope propa-
gates rapidly with the group velocity vg = dω/dk, which is equivalent to c in vacuum.
Therefore, we here introduce coordinates that moves in the z direction with velocity
vg. Namely, we define a new coordinate variable τ = t− vg

c2
z and transform coordi-

nates as

(t, z) 7→ (τ, z) . (E.6)

In this coordinate, the gently-varying field amplitude may be a function of x, y and
z. Hence, we assume an electric field given by

ax = f (x, y, z) eiωτ , (E.7)

ay = 0, (E.8)

az = g (x, y, z) eiωτ , (E.9)

where spatial derivative of the amplitude are small compared with the wavelength,
i.e.,

k−1
z ∇f � 1, k−1

z ∇g � 1. (E.10)

In the coordinate (τ, x, y, z), derivatives in the wave equations Eq. (E.3) becomes

∂2

∂t2
=

∂2

∂τ2
, (E.11)

∂2

∂z2
=

∂

∂z

(
∂

∂z
− vg
c2

∂

∂τ

)
=

∂2

∂z2
− 2

vg
c2

∂2

∂τ∂z
+
v2g
c4

∂2

∂τ2
. (E.12)

By using these relations, the wave equation Eq. (E.3) leads to the equation for the
envelope f given by

∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
= 2ikz

∂f

∂z
. (E.13)

The same relation is obtained for the envelope g, and the relation between f and g
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are derived from the Poisson equation Eq. (E.2) as

∂f

∂x
= ikzg −

∂g

∂z
. (E.14)

To analize Eq. (E.3), we here define a smallness parameter ε � 1 by the ratio
between spatial derivatives of the field amplitude and the wavelength as

k−1
z

∂f

∂x
∼ k−1

z

∂f

∂y
∼ ε. (E.15)

Then, the order of each term in Eq. (E.13) can be expressed as

(
ε2

1

k2z

∂2

∂x2
+ ε2

1

k2z

∂2

∂y2
+

1

k2z

∂2

∂z2
− 2

i

kz

∂

∂z

)
f = 0. (E.16)

From Eq. (E.16), we can see that the last term on the LHS needs to be the order of
ε2, i.e.,

k−1
z

∂f

∂z
∼ ε2. (E.17)

Under this assumption, we neglect the third term on the LHS of Eq. (E.16), which
is O

(
ε4
)
, and then we obtain the Helmholtz equation for the paraxial field:

∂2f

∂x2
+
∂2f

∂y2
= 2ikz

∂f

∂z
. (E.18)

Here, we find a solution for Eq. (E.18) in the form

f (x, y, z) = X (ξ)Y (η)Z (z) exp

[
−x

2 + y2

F (z)

]
, (E.19)

where ξ = x/G (z) and η = y/G (z). In this case, Eq. (E.18) becomes

1

X

(
X ′′

G2
− 4ξX ′

F
+

2ikzξG
′X ′

G

)
+

1

Y

(
Y ′′

G2
− 4ηY ′

F
+

2ikzηG
′Y ′

G

)
− 4

F
− 2ikzZ

′

Z
+

2
(
ξ2 + η2

)
G2

F 2

(
2− ikzF ′) = 0. (E.20)

Here, since F , X and Y must be a function only of z, ξ and η, respectively, terms
on the LHS of Eq. (E.20) yield to

2− ikzF ′ = 0, (E.21)
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and requirements such that

X ′′ − 2ξX ′
(
2G2

F
− ikzGG′

)
, (E.22)

must be a function of ξ and

Y ′′ − 2ηY ′
(
2G2

F
− ikzGG′

)
, (E.23)

must be a function of η. The above two requirements are satisfied by

2G2

F
− ikzGG′ = C1 = const. (E.24)

Here, we choose C1 = 1 without loss of generality. From Eqs. (E.21) and (E.24), the
relation

−2F ′G2

F 3
+

2GG′

F 2
= − F

′

F 2
, (E.25)

is obtained, which can be solved as

G2 = F + C2F
2, (E.26)

where C2 is a constant of integration.
On the other hand, Eq. (E.21) can be satisfied by

F =
2

ikz
(z − z0) + w2

0, (E.27)

where w0 is the beam waist size at z = z0.
Finally, by substituting Eqs. (E.21) and (E.24) to Eq. (E.20), we obtain

(
X ′′ − 2ξX ′) 1

X
+
(
Y ′′ − 2ηY ′) 1

Y
−
(
4

F
+

2ikzZ
′

Z

)
G2 = 0. (E.28)

Separation of variables leads to

X ′′ − 2ξX ′ + 2nX = 0, (E.29)

Y ′′ − 2ηY ′ + 2mY = 0, (E.30)

−
(
4

F
+ 2ikz

Z ′

Z

)
G2 = 2 (m+ n) , (E.31)

where we choose constants in the separation bym and n. The solutions for Eqs. (E.29)
and (E.30) are khown to be the Hermite polynomial, and therefore, we obtain

X = Hm (ξ) , Y = Hn (η) . (E.32)
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Figure E.1: The lowest order mode of the Hermite Gaussian beam profile in the x-z

plane.

The fundamental properties of the Hermite polynomial are given in the next section
(Sec. E.2). On the other hand, the solution for Z is obtained from Eq. (E.31) as

Z = C3F
−m+n+2

2 (1 + C2)
m+n

2 , (E.33)

where C3 is a constant of integration. Thus, the general solution for Eq. (E.20) is
given by

f =

∞∑
n=0

∞∑
m=0

fmn, (E.34)

where

fmn =
C3

F

(
1 + C2F

F

)m+n
2

Hm

(
x√

F + C2F 2

)
Hn

(
y√

F + C2F 2

)
exp

[
−x

2 + y2

F

]
,

(E.35)

Here, F = F (z) is given by Eq. (E.27). When we choose C2 = 0, Eq. (E.35) reduces
to

fmn =
C3

F
m+n+2

2

Hm

(
x√
F

)
Hn

(
y√
F

)
exp

[
−x

2 + y2

F

]
, (E.36)

which is referred to as the Hermite-Gaussian mode with the mode number of (m,n).
The lowest order mode f00 is referred to as the fundamental Gaussian mode which is
given using the relationH0 (x) = 1 and introducing the Rayleigh length zR = kzw

2
0/2

as
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f00 (x, y, z) =
1

w0

√
1 + z2/z2R

exp

[
− x2 + y2

w2
0

(
1 + z2/z2R

)]

× exp

[
i

(
kzz +

z

zR

x2 + y2

w2
0

(
1 + z2/z2R

) − arctan

(
z

zR

))]
, (E.37)

where C3 = w2
0 is defined to satisfy f00 (0, 0, z0) = 1. The last term in the phase

component, −arctan (z/zR), is referred to as Gouy phase. In Fig. E.1, we show f00
in the x-z plane.

E.2 Hermite polynomial

Here, we show the fundamental properties of the Hermite polynomial used in ex-
pressing the transverse laser beam profile as in Eq. (E.36). The Hermite polynomial
Hn (ξ) is defined as the coefficient of the Taylor expansion of exp

(
−t2 + 2ξt

)
in t as

e−t2+2ξt = eξ
2
e−(t−ξ)2 ≡

∞∑
n=0

1

n!
Hn (ξ) t

n. (E.38)

The Hermite polynomial satisfies the following equation for a function u (ξ):(
d2

dξ2
− 2ξ

d

dξ
+ 2n

)
un (ξ) = 0. (E.39)

Namely, the solution of this equation becomes un (ξ) = AnHn (ξ) with an integral
coeficient An. One can see that Eq. (E.39) is equivalent to the one-dimensional
Schödinger equation (

− ~2

2m

d2

dx2
+ V (x)

)
φ (x) = Eφ (x) , (E.40)

with a pendular potential

V (x) =
k

2
x2, (E.41)

by using the relations

ω =

√
k

m
, (E.42)

ξ =

√
mω

~
x, (E.43)

φ (ξ) = u (ξ) e−ξ2/2, (E.44)

E =
~ω
2

(2n+ 1) (n = 0, 1, 2, · · · ) . (E.45)
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Figure E.2: Hermite polynomialHn (ξ) for n = 0, · · · , 4 (left) and n = 4, · · · , 6 (right).

The Hermite polynomial satisfies the orthogonal relationship∫ ∞

−∞
Hm (ξ)Hn (ξ) e

−ξ2dξ = 2n
√
πn!δmn. (E.46)

The normalize condition for the wave function φ (ξ), i.e.,∫ ∞

−∞
|φn (ξ)|2 dξ = |An|2 2n

√
πn! ≡ 1, (E.47)

determines the coefficient An as

An =
1

(2n
√
πn!)

1/2
. (E.48)

The series of the Hermite polynomial can be obtained by

H0 (ξ) = 1, (E.49)

Hn+1 (ξ) = eξ
2/2

(
ξ − d

dξ

)
e−ξ2/2Hn (ξ) (n ≥ 1) , (E.50)

as

H1 (ξ) = 2ξ, (E.51)

H2 (ξ) = 4ξ2 − 2, (E.52)

H3 (ξ) = 8ξ3 − 12ξ, (E.53)

H4 (ξ) = 16ξ4 − 48ξ2 + 12, (E.54)

H5 (ξ) = 32ξ5 − 160ξ3 + 120ξ, (E.55)

H6 (ξ) = 64ξ6 − 480ξ4 + 720ξ2 − 120, (E.56)

· · · , (E.57)

or, directly from the following formula:

Hn (ξ) = (−1)n eξ2 d
dξ
e−ξ2 . (E.58)

134



E.2 Hermite polynomial

From Eqs. (E.51)-(E.56), one can easily see that the Hermite functions with odd and
even polynomials are odd and even functions, respectively. The Hermite functions
Hn (ξ) (n = 0, · · · , 6) are shown in Fig. E.2.
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Appendix F

Covergence of maximum ion

energy

In Sec. 8.3 in Part II, we showed the ion energy distribution and ion maximum energy
obtained by the PIC simulation for targets (A)-(D), which are given in Fig. 8.1.
Based on the obtained energy distribution, we also evaluated the maximum ion
energy for each cases. In the numerical calculations, we used 42.7 super particles
per mesh for electrons in the cases of cluster medium (A)-(C), i.e. Nspe = 42.7/mesh,
and Nspe = 64.1/mesh in the case of thin film (D). In this appendix, we show the
convergence of calculations by changing the super particle numbers.

Fig. F.1 shows the ion energy distributions for a0 = 800, which are obtained
by the same conditions in Sec. 8.3 except the super particle numbers. Namely, in
Sec. 8.3, particle numbers shown by the blue lines (Nspe = 42.7/mesh) for cases
(A)-(C) and that shown by the brown line (Nspe = 64.1/mesh) for case (D) are
utilized.

From these figures, we see that in the case of thin film (D), although the energy
humps around 8 GeV are almost same for all the calculations, the maximum value
varies significantly among cases using different Nspe. In contrast, the maximum
energies in cases (A)-(C) show almost the same values for different Nspe. For this
reason, in the simulation in Sec. 8.3, we have used a larger super particle number
per mesh for case (D). Here, it is found that the difference of the maximum energy
between different Nspe is smaller in the case using larger cluster size.

We also confirmed that in the case of a0 = 200, the difference of ion distribution
and also the maxmum ion energy among calculations using different Nspe are small
compared with the case of a0 = 800.
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Figure F.1: Convergence of ion energy distributions in the case of a0 = 800 for PIC

simuilations performed in Sec. 8.3 in Part II.
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Energy Kyoto 2011”, January 30, 2012, Kihada Hall, Obaku Plaza, Kyoto
University Uji Campus, Uji, Kyoto, Japan.

• Best Poster Award, Jorge Gomez-Paredes, Rakesh M. Das, Shota Higashikura,
Natsumi Iwata, RyoKoda, Yasunori Nakai, Kenji Nishioka, Haruki Seto, H.N.
Zhang and Kazuchika Yamauchi,“Accomplishing Japan’s CO2 emission re-
duction targets in the absence of nuclear power”, 2012 Annual Report Meeting
of Kyoto University G-COE, ”Energy Science in the Age of Global Warming”,
January 16, 2013, Clock Tower Centennial Hall, Kyoto University, Kyoto,
Japan.

Fellowship

Japan Society for the Promotion of Science (JSPS) research fellow (日本学術振興会
　特別研究員（DC2））, No. 24-7688, April 2012 - March 2014.
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