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Abstract

In this paper, we study domain compositions of proteins via compression of
whole proteins in an organism for the sake of obtaining the entropy that the
individual contains. We suppose that a protein is a multiset of domains.
Since gene duplication and fusion have occurred through evolutionary pro-
cesses, the same domains and the same compositions of domains appear in
multiple proteins, which enables us to compress a proteome by using refer-
ences to proteins for duplicated and fused proteins. Such a network with
references to at most two proteins is modeled as a directed hypergraph.
We propose a heuristic approach by combining the Edmonds algorithm and
an integer linear programming, and apply our procedure to fourteen pro-
teomes of D. discoideum, E. coli, S. cerevisiae, S. pombe, C. elegans, D.
melanogaster, A. thaliana, O. sativa, D. rerio, X. laevis, G. gallus, M. mus-
culus, P. troglodytes, and H. sapiens. The compressed size using both of
duplication and fusion was smaller than that using only duplication, which
suggests the importance of fusion events in evolution of a proteome.

Keywords: grammar-based compression, protein domain composition,
integer linear programming

1. Introduction

A living individual is considered to be an open non-equilibrium system
from the viewpoint of statistical mechanics. In an isolated system, the en-
tropy increases according to the second law of thermodynamics. On the other
hand, in an open system, a dissipative structure is constructed, and it reaches
a reproducible steady state [1]. The DNA base sequences in an individual



are one kind of information to be maintained under non-equilibrium environ-
ments, whereas the sequences have been mutated and substituted through
evolutionary processes. If random mutation and substitution of bases were
always allowed from one generation to another, then the resulted sequences
would be completely random. It can be considered that the case corresponds
to the isolated system in statistical mechanics, and the entropy of the se-
quence is maximized.

There are several studies to compress DNA and protein sequences, which
might be useful to study the entropy of these sequences. It is known that
DNA sequences include abundant repetition and palindromes. Grumbach
and Tahi [2] developed the first compression method specified to DNAs,
called biocompress-2, which is a lossless algorithm using Lempel and Ziv’s
approaches [3, 4], and tries to detect repeats and palindromes in DNA se-
quences. Rivals et al. [5] developed the Cfact algorithm, which uses suffix
trees, and tries to detect the longest exact matching repeat. Chen et al. [6]
developed the DNACompress algorithm, which tries to detect approximate
repeats using some efficient method. Willems et al. [7] developed the context-
tree weighting (CTW) method, which was defined as a suffix tree with edges
weighted by some occurrence probability. Matsumoto et al. [8] proposed
combination methods with CTW for DNA and protein sequences, respec-
tively. Cao et al. [9] proposed an expert model (XM) based on statistical
properties and repetition within sequences, and their method outperformed
all other DNA and protein sequence compressors. Zhu et al. [10] proposed
an approximate repeat vector (ARV) model forming a reference codebook for
compression of DNA sequences, and developed an adaptive particle swarm
optimization-based memetic algorithm (POMA) to maximize the cover rate
and minimize some distance of the code vectors on the sequences. Kuruppu
et al. [11] proposed COMRAD (COMpression using RedundAncy of Dna) by
adapting an existing compression algorithm, RAY [12], to DNA sequences
using some knowledge about alphabet size and sequence evolution. Their
method outperformed RLCSA [13] and RLZ [14] for several organisms, and
was effective in long-range repetition detection. Compression of sequences
in multiple organisms of the same species has been also studied as genomic
repositories are rapidly growing. For the purpose, most methods compress
such sequences using difference from reference sequences [15, 16]. Unlike
these compression methods, we deal with protein domain compositions in-
stead of amino acid sequences. Many proteins contain domains, which are
known as functional and structural units in proteins [17]. In addition, the
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same domain can be included in multiple distinct kinds of proteins. Fur-
thermore, we make use of compression for understanding of evolution by
measuring entropies of proteomes, not for saving memory and disk space.
We regard a protein as a multiset of domains, and compress sets of proteins.
As far as we know, this is the first study to compress a proteome using such
domain compositions.

Several studies have been done for evolution of protein domains [18, 19].
Gene duplication can occur when an mRNA is retrotranscribed to cDNA
and randomly inserted into the genome [20]. As a result, the protein can
be generated also from the duplicated gene in a different chromosome, and
has evolved independently from the original one. It is known that unequal
crossing-over induces another gene duplication [20]. If positions of hybridiza-
tion in crossing-over are not the same between two strands, genes in the
strand can be also duplicated. Fusion and fission of genes are evolutionary
events that two or more genes in an organism are connected and compose
a gene in a descendent organism, and, in contrast, that a gene is split into
multiple genes, respectively. Kummerfeld and Teichmann applied their max-
imum parsimony method to several completely sequenced genomes, and re-
ported that the number of fusion events is about fourfold larger than that of
fission events [21]. The number of total domains and the number of domain
families in a protein follow power-law and exponential distributions in many
organisms, respectively. Nacher et al. [22] proposed evolutionary models in-
cluding gene duplication, fusion, and internal duplication events to explain
both distributions. It should be noted that the internal duplication event is
also known as tandem repeats within a gene, and is not different from the
usual external gene duplication event [23]. Thus, compressing a proteome is
considered to be possible because genes and domains have been duplicated
through evolutionary processes. We make use of gene duplication and fusion
events, generate a directed hypergraph with weighted hyperedges from a pro-
teome, and try to find the minimum spanning hypertree, where each vertex
corresponds to a protein, and an edge weight represents the compressed cost
for a protein using some proteins. However, Brejová et al. [24] showed that
the problem of finding the minimum directed spanning hypertree in the hy-
pergraph is NP-hard even if each hyperedge has at most three vertices. In
addition, they proposed an integer linear programming (ILP) formulation
and applied it to the problem of maximizing some likelihood function for
detecting signals in DNA, which are short subsequences located near func-
tional sites. Although ILP outputs the exact optimum, if we consider the
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gene fusion events that correspond to hyperedges with size three, the exe-
cution time is too long to obtain the solution because the number of pairs
of proteins in an organism is large. Hence, we propose a greedy method to
reduce the number of hyperedges for compressing a proteome. Our method
first finds the optimum solution for a graph with usual edges. To this end,
it minimizes a cost function, which means the compressed size, and is based
on the cost function proposed by Adler and Mitzenmacher [25] for compress-
ing web graphs. After that, hyperedges with size three are added to the
solution in some heuristic way. We apply our proposed method to fourteen
organisms of D. discoideum, E. coli, S. cerevisiae, S. pombe, C. elegans, D.
melanogaster, A. thaliana, O. sativa, D. rerio, X. laevis, G. gallus, M. muscu-
lus, P. troglodytes, and H. sapiens. The results suggest that the same domain
would be frequently utilized in higher organisms.

2. Method

In this section, we formulate our problem for compressing a proteome,
briefly review the integer linear programming (ILP)-based method for mini-
mum spanning directed hypertree problems [24], and describe our proposed
heuristic method.

2.1. Problem formulation

Let P and D be the set of proteins and domains in a given proteome,
respectively. Each protein Pi (∈ P) consists of several domains in D, and is
supposed to represent a multiset. For instance, if Pi consists of two D1s and
one D2, then Pi = {D1, D1, D2}. We define the cost representing a protein
using only domains by

cost(Pi) = dlog |D|e · |Pi|, (1)

where |S| denotes the number of elements in the (multi) set S, and dxe is the
minimum integer no smaller than x. Then, a proteome without compression
is represented with size

∑
Pi∈P cost(Pi).

Adler and Mitzenmacher [25] considered the cost generating a web page
using another page as follows. A web page consists of links to other web
pages. A new page is often created by copying some links from an existing
page to itself. This is similar to gene duplication that a new gene is created
by copying an existing gene. They used a 0-1 vector each element of which
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P1={D1, D1, D2, D3}

P4={D1, D1, D2,       D4, D5}

1 1 1 0

Figure 1: Illustration of cost(Pi, Pj) for P1 = {D1, D1, D2, D3}, P4 =
{D1, D1, D2, D4, D5}, P = {P1, P2, P3, P4}, and D = {D1, D2, D3, D4, D5}. The rectangle
denotes a 0-1 vector representing absence (0) or presence (1) of domains.

represents absence or presence of a web page linked from the existing page.
The cost includes the size of the vector, the length representing the existing
page, and new links not included in the existing one. For our purpose, the
cost generating a protein Pi from another protein Pj by deleting and/or
adding domains appropriately, Pj → Pi, is defined by

cost(Pi, Pj) = dlog |P|e+ |Pj|+ dlog |D|e · |Pi − Pj|, (2)

where |Pi − Pj| denotes the number of domains of Pi that are not included
in Pj, and |Pj| means the size of the 0-1 vector representing whether or not
each domain in Pj is included in Pi. If the gene coding Pi is duplicated
from that coding Pj, cost(Pi, Pj) can be smaller than cost(Pi) and costs for
duplication and fusion from other genes. Fig. 1 illustrates the cost generating
P4 = {D1, D1, D2, D4, D5} from P1 = {D1, D1, D2, D3} in a proteome P =
{P1, P2, P3, P4} with D = {D1, D2, D3, D4, D5}. The rectangle denotes a 0-1
vector representing absence (0) or presence (1) of domains of P1 in P4, two
D1s and D2 of P1 remain in P4, and D3 disappears in P4. Furthermore, D4

and D5 are added. Thus, cost(P4, P1) = dlog 4e+ 4 + dlog 5e · 2 = 12.
In addition to gene duplication events, we consider gene fusion events that

two different genes in an organism are fused into one gene in a descendent
organism [21]. Then, we consider to generate a protein Pi using two proteins
Pj and Pk. Since the number of combinations of three proteins is large

for an actual proteome, for instance, the number is

(
1000

3

)
= 166167000

if |P| = 1000, we consider only the case that Pi completely contains both
proteins, that is, Pj ∪ Pk ⊆ Pi. Thus, we define the cost generating Pi from
Pj and Pk by adding domains appropriately, Pj + Pk → Pi, by

cost(Pi, Pj, Pk) = 2 · dlog |P|e+ dlog |D|e · |Pi − Pj − Pk|. (3)
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Figure 2: Example of the hypergraph generated from P = {P1, P2, P3, P4}, where D =
{D1, D2, D3, D4, D5}, P1 = {D1, D1, D2, D3}, P2 = {D1, D1, D2}, P3 = {D4, D5}, and
P4 = {D1, D1, D2, D4, D5}. A number denotes the cost for the corresponding hyperedge.

In this equation, the first term of the right-hand side means the length rep-
resenting Pj and Pk, and the second term means the length representing
domains newly appeared in Pi. It should be noted that the 0-1 vector in the
case of gene duplication is not needed because all the domains in Pj and Pk

are used in Pi.
Let G(V,E) be a directed hypergraph with a set V of vertices and a set E

of hyperedges, where each hyperedge e (= (L, h) ∈ E) has tail vertices L (⊂
V ) and a head vertex h (∈ V ), h /∈ L holds, and is weighted by we. In terms of
compressing a proteome, the set V consists of vertices vi (∈ V ) corresponding
to proteins Pi (∈ P) and a root vertex v0 that means a special protein with-
out any domains, then, |V | = |P| + 1. The set E consists of ({v0}, vi) with
weight cost(Pi), ({vj}, vi) with weight cost(Pi, Pj) if cost(Pi, Pj) < cost(Pi),
and ({vj, vk}, vi) with weight cost(Pi, Pj, Pk) if Pj ∪Pk ⊆ Pi. Fig. 2 shows an
example of the hypergraph generated from four proteins P = {P1, P2, P3, P4},
where D = {D1, D2, D3, D4, D5}, P1 = {D1, D1, D2, D3}, P2 = {D1, D1, D2},
P3 = {D4, D5}, and P4 = {D1, D1, D2, D4, D5}. In this figure, each number
denotes the cost for the corresponding hyperedge, for instance, for the hyper-
edge ({v2, v3}, v4), the weight is cost(P4, P2, P3) = 2 · dlog 4e+ dlog 5e · 0 = 4.

Since the hypergraph constructed as above contains many redundant hy-
peredges for representing a proteome, it can be considerably compressed.
In order to obtain the minimum compressed size, the number of incident
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Figure 3: The minimum spanning directed hypertree for the example of Fig. 2.

hyperedges must be at most one for each vertex. It means that one rule
is enough to generate the set of domains in a protein. In addition to this
condition, to extract the original domain compositions from the hypergraph,
the compressed hypergraph must not have a cycle. For instance, in Fig. 2,
if hyperedges, ({v1}, v2), ({v4}, v1), and ({v2}, v4), are selected, then P2 is
generated from P1, P1 is generated from P4, P4 is generated from P2, and
we cannot determine the sets of domains in P1,P2, and P4. Hence, we can
compress a proteome P by finding the minimum spanning directed hypertree
T (V, F ) of G(V,E) such that F ⊆ E, |F | = |P|, and T has no cycle.

Problem 1. Given a set of proteins P with domain compositions, find the
minimum spanning directed hypertree for the hypergraph constructed from P.

Fig. 3 shows the minimum spanning directed hypertree for the example
of Fig. 2. Then, the compressed size is 27.

2.2. Integer linear programming-based method

It has been shown that the problem of finding the minimum spanning
directed hypertree T (V, F ) in the hypergraph G(V,E) is NP-hard even if
each hyperedge has at most three vertices, and an integer linear programming
(ILP) formulation has been proposed [24]. Based on their formulation, we
introduce the following ILP formulation by utilizing the set S of strongly
connected components in G.
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Figure 4: Illustration of our heuristic approach for the example of Fig. 2. Left) The graph
G′, each of whose edges consists of exactly two vertices. Right) The hypergraph G′′. The
solid arrows in G′′ denote the edges F of the minimum spanning tree U for G′ in Step 1.
The dotted arrow denotes a hyperedge to be added to E′′ in Step 2, whose weight, 4, is
less than the weight, 11, of the edge pointing to v4 in U .

minimize
∑
e∈E

wexe,

subject to∑
{e∈E|e=(L,vi)}

xe = 1 for all vi ∈ V − {v0},

xe ≤ yj,i for all e = (L, vi) ∈ E and vj ∈ L,
yi,j + yj,i = 1 for all S ∈ S and vi, vj ∈ S,
yi,j + yj,k + yk,i ≤ 2 for all S ∈ S and vi, vj, vk ∈ S,
xe, yi,j ∈ {0, 1}.

Here, xe = 1 if the hyperedge e is selected as the optimal solution, otherwise
xe = 0. yi,j = 1 means that vi is on the upstream of vj, otherwise yi,j = 0 or
yj,i = 1. The fourth constraint forbids that all of yi,j, yj,k, and yk,i become 1
at the same time. It means that any cycle is not allowed. Although this ILP
provides the exact solution, the execution time might be too long to obtain
the solution because the number of pairs of proteins in an organism is large.

2.3. Heuristic approach

We propose a heuristic approach by reducing the number of hyperedges
to obtain a smaller compressed size. If each hyperedge consists of exactly two
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vertices, the minimum spanning tree can be found deterministically in time
O(|V | log |V | + |E|) [26, 27, 28]. Hence, by making use of this polynomial
time algorithm, we propose the following procedure for hypergraph G(V,E).

Input: hypergraph G(V,E) transformed from a proteome P .

Output: hypertree representing the minimum grammar for the proteome.

Step 1. Find the minimum spanning tree U(V, F ) for G′(V,E ′) in polynomial
time, where E ′ is the set of all edges having exactly two vertices in E.

Step 2. Construct E ′′ that consists of the edges F and some hyperedges hav-
ing three vertices, which is defined by E ′′ = F ∪ {({vj, vk}, vi) | e =
({vj, vk}, vi) ∈ E,we < wf for f = ({vl}, vi) ∈ F}.

Step 3. Find the set S of strongly connected components of hypergraph G′′(V,E ′′).

Step 4. Solve the ILP for G′′(V,E ′′) and S.

Fig. 4 illustrates the procedure for the example of Fig. 2. The left figure
shows the graph G′ generated from the original hypergraph G by deleting
hyperedges having three or more vertices, that is, ({v2, v3}, v4) in this case.
The right figure shows the hypergraph G′′, which contains the edges of the
minimum spanning tree U for G′ and hyperedges having three vertices with
a smaller weight than the edge in U having the same head vertex, where the
number of inedges for each vertex in U is one except v0. In this example,
there is only one hyperedge ({v2, v3}, v4). This hyperedge is included in E ′′

because the weight, 4, is less than the weight, 11, of the edge pointing to v4
in U . By solving an ILP instance corresponding to G′′(V,E ′′), we obtain the
solution shown in Fig. 3.

It should be noted that the procedure is not guaranteed to output the
minimum spanning directed hypertree for G, and the time complexity can
be exponential in the worst case because ILP instances in Step 4 include
hypergraphs with hyperedges having at most three vertices. The source
code in C++ implementation is available at our supplementary web page,
http://sunflower.kuicr.kyoto-u.ac.jp/morihiro/pdcomp/.

3. Results

We used the UniProt database (release 2013 03) [29] to get the multiset
of domains included in each protein, and used two databases, Pfam [30] and
SMART [31], to define domains. We examined fourteen proteomes of D.
discoideum, E. coli, S. cerevisiae, S. pombe, C. elegans, D. melanogaster, A.
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Table 1: Results on the compressed size using Pfam domains for D. discoideum, E. coli,
S. cerevisiae, S. pombe, C. elegans, D. melanogaster, A. thaliana, D. rerio, X. laevis, M.
musculus, and H. sapiens.

organism # prot # dom original dup both |E ′′| +
D. discoideum 3253 1772 52393 45688 45653 7786 24
E. coli 3979 2455 65784 58645 58605 5384 58
S. cerevisiae 4756 2707 77460 69936 69902 5345 31
S. pombe 4318 2751 70776 64969 64939 4550 26
C. elegans 2854 1735 44814 40665 40637 3042 21
D. melanogaster 2868 1916 46475 42484 42451 3054 24
A. thaliana 10836 2085 189936 154425 154401 25202 47
O. sativa 2872 926 41910 35509 35503 4742 7
D. rerio 2464 1600 37763 34784 34765 2730 14
X. laevis 2959 1664 46123 41776 41761 3139 12
G. gallus 2066 1423 35167 31510 31488 2410 18
M. musculus 14234 4353 282698 230511 — 53859 —
P. troglodytes 639 428 8181 7529 7527 644 2
H. sapiens 16204 4450 324428 260392 — 92494 —

‘# prot’ and ‘# dom’ denote the numbers of proteins and domains, respectively. ‘original’

denotes the original size, ‘dup’ and ‘both’ denote the compressed sizes with duplication

rules, and with both duplication and fusion rules, respectively. ‘—’ denotes that the

execution was not finished within ten hours. ‘E′′’ denotes the set of hyperedges in G′′ to

be applied to the ILP in Step 4. ‘+’ denotes the number of proteins that fusion rules are

selected by our approach.

thaliana, O. sativa, D. rerio, X. laevis, G. gallus, M. musculus, P. troglodytes,
and H. sapiens. We used CPLEX (version 12.5) to solve ILP instances.

Tables 1 and 2 show, for each organism, the numbers of proteins and
Pfam/SMART domains, the original size, the compressed sizes with duplica-
tion rules, and with both duplication and fusion rules, the number of hyper-
edges applied to the ILP, and the number of proteins that fusion rules are
selected, where proteins without any known domains were removed, and we
dealt with Pi as a set, not a multiset. We can see from the tables that the
compressed size with duplication rules was smaller than the original size for
each organism, and furthermore the compressed size with both duplication
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Table 2: Results on the compressed size using SMART domains for D. discoideum, E. coli,
S. cerevisiae, S. pombe, C. elegans, D. melanogaster, A. thaliana, D. rerio, X. laevis, M.
musculus, and H. sapiens.

organism # prot # dom original dup both |E ′′| +
D. discoideum 1425 338 16857 15500 15499 2827 13
E. coli 769 242 8064 7378 7377 1010 5
S. cerevisiae 1662 449 19107 17874 17870 4192 16
S. pombe 1525 453 18225 16900 16894 3918 17
C. elegans 1339 439 17802 16018 16008 2233 26
D. melanogaster 1379 480 18711 16806 16787 2210 32
A. thaliana 4372 387 49716 46370 46363 5171 4
O. sativa 1296 176 13256 12283 12282 1305 1
D. rerio 1145 358 15192 13607 13604 1761 15
X. laevis 1645 404 19998 18292 18285 1992 16
G. gallus 1186 428 15966 14192 14186 1786 17
M. musculus 8153 753 123840 103632 103586 33007 77
P. troglodytes 315 154 3512 3253 3250 329 2
H. sapiens 9554 757 146970 124659 — 20661 —

‘# prot’ and ‘# dom’ denote the numbers of proteins and domains, respectively. ‘original’

denotes the original size, ‘dup’ and ‘both’ denote the compressed sizes with duplication

rules, and with both duplication and fusion rules, respectively. ‘—’ denotes that the

execution was not finished within ten hours. ‘E′′’ denotes the set of hyperedges in G′′ to

be applied to the ILP in Step 4. ‘+’ denotes the number of proteins that fusion rules are

selected by our approach.

and fusion rules was slightly smaller than that with duplication rules. For
M. musculus with Pfam domains and H. sapiens, we could not obtain the
compressed size with both rules within ten hours under Xeon 2.67GHz CPU.
In particular, we could not obtain the compressed size for H. sapiens using
SMART domains even though the number of hyperedges E ′′ for H. sapiens
was less than that for M. musculus (see Table 2). On the other hand, the
number of variables yi,j in the ILP for H. sapiens was 406630, which was more
than that for M. musculus, 144204. It means that the hypergraph G′′(V,E ′′)
for H. sapiens was more complicated than that for M. musculus. For other
organisms, the decrease of the compressed size with both rules was small. It
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Figure 5: Results on the compression ratio by duplication rules and by both duplication
and fusion rules. Left) Pfam domains. Right) SMART domains.

is considered because some hyperedges belonging to the minimum spanning
directed hypertree for G were reduced before the ILP was applied.

It is intractable in many cases to solve the ILP directly for the original
hypergraph G(V,E) without reducing the number of hyperedges as in Steps
1 and 2. For evaluation of our method, we however tried to find the optimal
solution for each dataset. Then, we obtained the optimal solution of the
ILP only for the original hypergraph G(V,E) of P. troglodytes with SMART
domains, where the number of hyperedges |E| was 761, and the minimum cost
was 3249. We can see that the minimum cost was closed to the cost solved by
our method, 3250, and our method was able to compress the proteome well
although further evaluation using organisms with more domains and without
restriction to the fusion rule is needed.

Fig. 5 compares the compression ratios by duplication rules and by both
duplication and fusion rules using Pfam and SMART domains, which were
calculated from Tables 1 and 2. For Pfam domains, the ratios of the com-
pressed size with duplication rules to the original size in A. thaliana, O.
sativa, M. musculus, and H. sapiens, 80% to 85%, were lower than those
in other organisms, 87% to 92%. It is considered that gene duplication in
A. thaliana, O. sativa, M. musculus, and H. sapiens tends to occur more
frequently than in other organisms. For SMART domains, the ratios of the
compressed size with duplication rules to the original size in M. musculus,
and H. sapiens were still lower than 85%, and those in other organisms were
higher than 88%. These results suggest that the same domain would be fre-
quently utilized in higher organisms because the compression ratio was higher
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Table 3: Fusion rules selected for the proteome of C. elegans with Pfam domains.

SDK CAEEL + VRK1 CAEEL → UNC22 CAEEL
YNG2 CAEEL + UNC22 CAEEL → UNC89 CAEEL

Table 4: Fusion rules selected for the proteome of A. thaliana with Pfam domains.

BCCP2 ARATH + ACCC ARATH → MCCA ARATH
MCCA ARATH + ACCD ARATH → ACC1 ARATH
XB31 ARATH + AKT5 ARATH → AKT2 ARATH
XB34 ARATH + KAT1 ARATH → AKT5 ARATH

in higher organisms whose proteomes have been sufficiently investigated. It
should be noted that the numbers of proteins and domains, and the com-
pression ratio of P. troglodytes were largely different from those of H. sapiens
although P. troglodytes is considered to be similar to H. sapiens. It implies
that the number of known domains stored in these databases varies with or-
ganisms. In addition, the numbers of SMART domains for the organisms in
this study were quite fewer than those of Pfam domains, and for our purpose,
the Pfam database is more suitable. In addition to the domain databases,
we examined InterPro database [32], which is an integrated database of mul-
tiple, diverse databases with reduction of redundancy. We could not find
the solution by our method with InterPro database for more organisms than
with Pfam database (see Table S1 at the supplementary web page). The
compressed size using both of duplication and fusion was smaller than that
using only duplication, which suggests the importance of fusion events in
evolution of a proteome. At least, assuming the fusion events contributes to
reducing the entropy of biological sequences.

Tables 3 and 4 show some fusion rules selected by our approach for the
proteome of C. elegans and A. thaliana with Pfam domains, respectively,
where each protein is specified by the UniProt identity (see also results on
the selected rules for each organism at the supplementary web page). In C. el-
egans, protein SDK CAEEL appeared three times, contained Pfam domains,
PF00041 and PF07679, and was used to generate proteins DIG1 CAEEL,
UNC22 CAEEL, and LAR CAEEL. In particular, UNC22 CAEEL was used
for another protein UNC89 CAEEL. In A. thaliana, fused proteins MCCA
ARATH and AKT5 ARATH were used for generating other proteins using
fusion rules, respectively. These results imply that fused genes can be itera-
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tively taken by gene fusion events.

4. Conclusion

We proposed a heuristic approach to compress a proteome based on pro-
tein domain compositions. The proteome was transformed to a hypergraph
having hyperedges with at most three vertices on the basis of evolutionary
mechanisms of gene duplication and fusion. We applied our approach to
fourteen proteomes of D. discoideum, E. coli, S. cerevisiae, S. pombe, C. ele-
gans, D. melanogaster, A. thaliana, O. sativa, D. rerio, X. laevis, G. gallus,
M. musculus, P. troglodytes, and H. sapiens. As a result, the compressed
size using both duplication and fusion rules was smaller than that using only
duplication and the original size. Furthermore, we observed the difference of
gene duplication rates between organisms. It is considered that gene dupli-
cation in M. musculus and H. sapiens tends to occur more frequently than
other organisms examined in this study. In addition, we observed the phe-
nomenon in several organisms that a fused gene was used in another gene
fusion event again. For correlation between the compression ratio of each
proteome and the phylogenetic tree, further analysis is needed.

However, the decrease of the compressed size was still small because our
method might reduce hyperedges belonging to the minimum spanning hy-
pertree. We need to improve our method with respect to both aspect of the
efficiency and accuracy. For the efficiency, one possible way is to develop
polynomial-time approximation algorithms instead of use of the integer lin-
ear programming. Another future work is to obtain the compressed size by
dealing with a protein as a multiset of domains. The proteome compression
using domain compositions in this study can be applied to compression of
protein amino acid sequences and DNA base sequences, and the compression
ratio may be improved by making use of sequences included in domains as
reference.
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[23] A. Moore, Å.K. Björklund, D. Ekman, E. Bornberg-Bauer, A. Elofsson,
Trends in Biochemical Sciences 33 (2008) 444–451.
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