γ線照射装置を利用した建築壁体の非定常含氷率測定法に関する研究

正会員	○中村	暢"」同	岸本	嘉彦*2
同	濱幸	雄*3 同	鉾井	修一*4
		同	小椋	大輔*5

1.材料施工-2.モルタル・コンクリートの物性 y線、含氷率、ALC、凍害、細孔径分布、凍結挙動

1. はじめに

凍害によるコンクリートの劣化は結氷量と強い 関係性があるが、結氷性状と劣化性状が相互の進 行に及ぼす影響については明らかになっていない。 そのため、まずは含氷率分布の経時変化を把握す る必要がある。試験体を破壊することなく連続的 に含氷率を測定する方法は、交流2電極法などが 挙げられるが、センサー類の作製に手間がかかり、 微小な間隔の分布を容易に測定できない。

試験体にセンサーを埋め込むことなく材料の含 水率分布を経時的に測定する方法には、γ線照射 装置を利用する方法がある¹⁾。γ線は、材料内部 の水分量が多いほど透過量が減衰する性質を有す るため、γ線の透過量の変化から含水率の算出が 可能である。一方、材料内部の水が凍結により膨 張するとγ線透過線上の水分子の数が減少するた め、γ線の透過量が増加する。つまり、凍結前の 水分量が既知であり、水分の移動が生じなければ、 透過量の増加分から含氷率の算出が可能と考えら れる。

そこで本研究では、γ線照射装置を用いた含氷 率分布の経時変化を測定する手法の確立を目的と し、空隙構造が比較的一様である ALC を用いて、 試験体を材料内部で含水率勾配による水の移動が 生じない飽水状態とした基礎実験を行った。

2. 実験計画および方法

2.1 実験1: γ線照射装置を用いた含氷率測定a) 試験体

同じ温度における結氷量が異なると想定される 2 種類の ALC(気泡有り、気泡無し)を試験体と して用意した。試験体寸法は 100×200×30[mm] である。これらの試験体を飽水状態とするため、2 日間の真空飽水処理を行った。試験体内部の水の 凍結を補助的に確認するために貼付した熱電対、 ひずみゲージの位置を図1に示す。試験体の底面 から高さ10[mm]毎にひずみゲージを4点、熱電対 を8点貼付した。試験体側面からの水分の蒸発を 防ぐため、これらセンサー類の上からブチルゴム テープを貼り付けた。

b) 測定方法

ここでは、材料内の結氷とγ線の透過量の変化 についての検討を目的とする。実験装置の模式図 を図2に示す。図2に示すように、線源と検出器 の間に、銅箱と、その上に防湿処理した断熱箱を 設置した。銅箱内部には冷媒を循環させ、実験中 はこの冷媒温度を制御した。断熱箱内において、 γ線が試験体の中央を透過する位置に試験体を設

図1 熱電対およびひずみゲージの貼付位置

A Study on Measurement Method for Ice Content in Porous Building Wall by the Gamma-Ray Irradiation System

NAKAMURA Tohru et al.

置した。実験は凍結過程、融解過程の順に行った。 冷媒の温度は、初期値を25[℃]とし、凍結過程の 到達温度を-10[℃]、融解過程の到達温度を25[℃] に設定した。この装置では冷媒温度の変化は成り 行きとなり、各過程の開始から定常状態に達する までに、凍結過程では11時間ほど、融解過程では 6時間ほどを要した。γ線の照射は冷却中に試験 体下部から上面まで1[mm]毎に行った。1点に対 する照射時間は40秒に設定した。試験体の底面か ら上面までの1回の測定に71分を要し、これを照 射回数1回とした。測定は定常状態に達するまで 行い、凍結過程および融解過程におけるγ線の照 射回数は、それぞれ10回および5回となる。測定 は、気泡無しのALC、気泡有りのALCの順に行 った。

2.2 実験 2:水銀圧入法による細孔径分布測定に 基づく結氷量の比較検討

a) 試験体

実験1と同様のALC(気泡有り、気泡無し)を 5[mm]角に切断し、絶乾状態にした試料を用意した。

b) 測定方法

ここでは、 γ 線透過量に基づく含氷率測定の妥 当性の検討を目的とする。まず、水銀ポロシメー ターにより気泡有りと気泡無しの ALC 試料の細 孔径分布を測定した。次に、式(1)に示す Kelvin 式から細孔径に応じた相対湿度を求めた。

$$r = \frac{2\sigma M \cos \theta}{\rho RT \ln(f / f_0)} \tag{1}$$

ここで、r は細孔径[m], σ は表面張力[N/m], M は分子量[kg/mol],θは接触角[°],ρは密度[kg/m³], R は気体定数[J/(mol・K)], T は絶対温度[K],f は 水蒸気圧[Pa],f₀は飽和水蒸気圧[Pa]である。

次に、式(2)に相対湿度と水分化学ポテンシャル の関係式、式(3)に結氷温度の平衡関係式を示す。 式(2)を用いて、式(1)より算出した相対湿度および 試験体の表面温度から水分化学ポテンシャルを算 出した。次に、式(3)より、算出した水分化学ポテ ンシャルから細孔径に応じた凍結温度を求めた。

$$\mu = \frac{RT}{M_w} ln \left(\frac{f}{f_0}\right) \tag{2}$$

$$\mu = H_{li} ln \left(\frac{T}{T_0} \right) \tag{3}$$

ここで、μは水分化学ポテンシャル[J/kg], M_w は水の分子量[kg/mol], H_{ii} は固相と液相の水分の 相変化熱[J/kg],Tは自由水の凍結温度[K]である。

その後、凍結温度と細孔量の関係から含氷率の 理論値を算出し、γ線透過量に基づく測定値と比 較することにより、測定の妥当性を検討した。

3. 実験結果および考察

3.1 実験1: γ線照射装置を用いた含氷率測定 a) 凍結過程

まず、絶乾および飽水状態の試料質量から算出 した含水率は、気泡有りの ALC では 77.6[vol.%]、 気泡無しの ALC では 52.4[vol.%]であった。つま り、この値が飽和含水率であり、含氷率の最大値 となる。

気泡無しの ALC のγ線透過量から算出した含 氷率分布の凍結過程における時間変化を図 3 に 10[mm]間隔毎に平均化して示す。また、図4に表 面ひずみおよび表面温度の時間変化を示す。図 3 に負の値が見られる理由は、γ線の透過量にバラ ツキが大きいためである。

図3より、いずれの高さにおいても含氷率に10 から15[vol.%]の増加が見られるが、照射回数によ るバラツキとの区別が困難である。図4を見ると、 照射回数5回目の高さ10[mm]においてのみ凍結 によると思われる膨張を検出している。このこと から、γ線による検出に対して、高さ10[mm]の点 では結氷量が十分ではなく、10[mm]以上の点では 結氷が生じていないか、あるいは結氷量が少なす

ぎてひずみが検出できなかったと考えられる。気 泡有りの ALC の γ 線透過量から算出した含氷率 分布の凍結過程における時間変化を図 5 に 10[mm]間隔毎に平均化して示す。図6に表面ひず みおよび表面温度の時間変化を示す。

図5より、気泡有りのALCでは、高さ10、20、 30、40[mm]の位置において、それぞれ、4、5、7、 9回目のγ線照射から、含氷率の増加が見られる。 図6より、高さ10から40[mm]の4箇所全てにおいて、過冷却解消によると思われる膨張および温度上昇が検出された。この膨張および温度上昇と 図5に示す含氷率の増加した照射回数が一致している。また、気泡有りのALCでは、全てのひずみ 測定箇所に急激な収縮が起き、その後急激な膨張 に転じた。これは、測定位置よりも冷却面に近い 部位で凍結が生じると、周辺の未凍結水が凍結部 位へ移動することにより凍結収縮が起こり、その 後、測定位置にも凍結が生じた際に、急激な膨張 に転じたと考えられる²⁾。

以上より、気泡有りの ALC の場合には、少なく とも下面から 40[mm]の範囲において凍結が生じ ており、γ線によりそれを検出できたと考えられ る。ただし水の移動が生じている可能性があるた め、絶対値については今後の検討が必要である。

b) 融解過程

気泡無しの ALC の凍結過程では含氷率の検出 が困難であったため、融解過程の検討においては、 気泡有りの ALC の結果のみを示す。図7に気泡有 りの ALC の融解過程における含氷率の時間変化 を10[mm]毎に平均化して示す。また、図8に表面 ひずみおよび表面温度の時間変化を示す。

図7より、10から40[mm]の位置において、照 射回数2回目から含氷率の減少が見られる。図8 より、照射回数1回目までに全てのひずみ測定箇 所に収縮が生じ、その後、緩やかに膨張している。 このことから、融解過程では、まず試験体と水が 収縮し、その後、温度上昇による緩やかな膨張と 同時に氷が溶け始めていると考えられる。その後、 0から40[mm]の位置において、照射回数を重ねる 毎に含氷率が減少している。また、照射回数5回 目で高さ40から60[mm]において、含氷率が 25[vol.%]であった。図8を見ると、照射回数1回 目以降に温度上昇に伴う緩やかな膨張が見られた が、氷の融解によると思われる収縮が見られなか った。しかし、図には示していないが、凍結過程 開始前と凍結過程終了後の含水率を比較すると、 高さ40から60[mm]においては含水率が減少して いた。しかし、高さ0から30[mm]および70から 80[mm]の領域では含水率の変化が見られなかっ たことから、高さ40から60[mm]の位置の水は高 さ方向に移動しておらず、照射回数5回目におい ても、氷が溶けずに存在している可能性が高い。

図8 気泡有りALCの表面ひずみおよび表面温度(融解過程)

ただし、高さ方向の水の収支が合わず、試験体の 長辺方向に水の移動が生じた可能性があるため、 今後、水平方向についての検討が必要である。

以上のことから、気泡有り ALC の場合には、γ 線により試験体内部の氷が減少する様子を概ね検 出できた可能性が高いと考えられる。

3.2 実験 2:水銀圧入法による細孔径分布測定に 基づく結氷量の比較検討

図9に水銀圧入法により測定した気泡有りおよ び気泡無しのALCの空隙径分布を示す。また、図 中には-6.5[℃]の凍結温度と平衡する径も示す。

図9より、気泡無しのALCより気泡有りのALC において、30[μm]以上の空隙(気泡)が多いこと を確認できた。

実験1の気泡無しALCの高さ10[mm]における 照射回数 10 回目の最低到達温度は-6.5[℃]であ った。図9の結果を用いて算出される結氷量の理 論値は 15.4[vol.%]となる。つまり、試料が ALC の場合には結氷量がこの値以下では表面ひずみの 検出は困難だと言える。

次に、図 10 に気泡有りの ALC について、図 9 に示す空隙径分布から算出した含氷率の理論値と γ線による測定結果から算定した含氷率の測定値 (照射回数 10 回目)の比較を表面温度分布ととも に示す。

図 10 より、実験 1 の結果から凍結したと考えら れる高さ 10 から 40[mm]の領域において、測定値 と理論値の相対誤差は、20[%]前後であった。

γ線により測定した含氷率は、空隙径分布から 算出した含氷率と、分布範囲は概ね一致しており、 絶対値については今後検討が必要である。

4. まとめ

本研究は、γ線照射装置を利用した建築壁体の 非定常含氷率測定手法に関する研究として、空隙 構造が比較的一様であり材料内部で水の移動が生 じない飽水状態の ALC を用いて含水率勾配によ る水の移動が無い基礎実験を行った。

得られた知見を以下に示す。

- (1) 試験体が ALC の場合は、15.4[vol.%]以下の結 氷量に対して表面ひずみの検出は困難である。
- (2) 細孔径分布の結果に基づく熱力学的な理論値 と比較すると、y線の測定結果は結氷の生じ ている範囲が概ね一致しており、妥当な結果 が得られることがわかった。絶対値について は今後も検討が必要である。

謝辞

本研究は、科学研究費補助金(若手研究(B)、 No.21360259)により行ったものである。記して謝 辞を表す。

[参考文献]

1)小椋大輔, 鉾井修一, 松下敬幸, 恩村定幸, 小南和也, 安井 義貴, 「強度の異なるコンクリートの熱・湿気物性に関する研 究:その5 ガンマ線含水率測定装置を用いた吸水実験による 水分物性値の同定」, 日本建築学会大会学術講演梗概集, D-2, pp. 339-340, 2006. 2)三橋博三, 周志云, 多田眞作: 微視的メカニズムを考慮した コンクリートの凍結作用による変形挙動の数理モデル, コン

クリート工学論文集, 第 14 巻 3 号, 2003 年 9 月.

*1	室蘭工業大学大学院	博士前期課程	Graduate Student, Muroran Institute of Technology
*2	室蘭工業大学大学院	助教博(工)	Assist. Professor, Muroran Institute of Technology, Dr. Eng.
*3	室蘭工業大学大学院	教授博(工)	Professor, Muroran Institute of Technology, Dr. Eng.
*4	京都大学大学院 教授	工学博士	Professor, Kyoto University, Dr. Eng.
*5	京都大学大学院 准教	(授博(工)	Associate Professor, Kyoto University, Dr. Eng.