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Abstract

The effects of difference in fuel components on the droplet evaporation and com-

bustion are numerically investigated. Jet-A is used as liquid fuel, and one (n-decane)-,

two (n-decane and 1,2,4-trimethyl-benzene)- and three (n-dodecane, iso-octane and

toluene)-component fuels are used as the surrogate fuels of Jet-A. The results show

that the evaporation of the three-component surrogate fuel becomes faster and slower

than those of the one- and two-component surrogate fuels in the initial and subsequent

evaporating periods, respectively. The differences in the gas temperature evolution

among these three different surrogate fuels are remarkable right after the ignition, but

become small with time.
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1. Introduction

Spray combustion is utilized in many industrial devises such as gas turbine engines

and diesel engines. Recently, the spray combustion behavior has been studied by means

of two- or three-dimensional direct numerical simulations (DNSs) (e.g., [1–18]) or large-

eddy simulations (LESs) (e.g., [19–23]). However, the mechanism of spray combustion

has not been fully understood yet.

Evaporation of fuel droplets is one of the most important factors in the spray com-

bustion and strongly depends on the fuel components. Therefore it is important to take
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the fuel components into account in order to precisely predict the combustion phenom-

ena by numerical simulations. Däıf et al. [24] performed an experiment using a single

and a few droplets of multicomponent fuel composed of n-decane and n-heptane, and

compared the evaporation rate and droplet temperature with the results calculated by

the evaporation model of Abramzon and Sirignano [25]. They showed that the evap-

oration model extended to multicomponent droplet evaporation in forced convection

gave good results on the droplet radius regression and the droplet surface temperature

evolution. For multiple droplets, Le Clercq and Bellan [26] performed a direct numeri-

cal simulation of a mixing layer laden with evaporating droplets of multicompoent fuel

(i.e., gasoline and diesel) and compared the results with those of the one-component

fuel. They pointed out that the one-component fuel could be substituted for the mul-

ticomponent fuel, but it caused the increased evaporation time.

Very recently, Borghesi et al. [17] performed a direct numerical simulation of n-

heptane spray autoignition in a turbulent flow. They found that higher turbulence

intensity in the carrier gas enhanced the droplet evaporation and air/fuel mixing, and

then ignition. In this study, however, only a one-component fuel was used and the

effects of fuel component was not discussed.

The purpose of this study is to numerically investigate the effects of difference in

fuel components on the droplet evaporation and combustion. Jet-A is used as liquid

fuel, and a one-component fuel (n-decane), a two-component fuel (n-decane and 1,2,4-

trimethyl-benzene) and a three-component fuel (n-dodecane, iso-octane and toluene)

are used as the surrogate fuels of Jet-A. For the calculation of the reaction, 113 species

and 891 reactions for the one- and two-component fuels and 273 species and 2322 reac-

tions for the three-component fuel are considered, respectively. The ambient pressure

ranges from 0.1 MPa to 1.0 MPa, and the evaporation model for the multicomponent

fuels in the high pressure conditions is extended based on our previous work (Kitano

et al. [27]).
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2. Numerical Simulation

2.1. Numerical method

The set of governing equations of the carrier gas and dispersed droplets phases

and the numerical procedure are described in our previous paper [27]. To remove grid

resolution dependency, source terms for gas phase are calculated for cells surrounding

each droplet by using distance function from droplet position [17].

The evaporation model used in this study is mainly based on a non-equilibrium

Langmuir-Knudsen evaporation model [28, 29] and validated by comparing with the

experiment by Nomura and Ujiie [30]. Multicomponent evaporation is taken into ac-

count using the discrete multicomponent method [31, 32], in which each component

individually evaporates according to its volatility. It is assumed that the temperature

and composition are uniform inside the droplet. It is also assumed that the entire

evaporation rate of multicomponent fuel is calculated in analogous way to that of a

one-component fuel.

The entire evaporation rate of multicomponent fuel, ṁd, is expressed as

ṁd = −md

τd

(
Sh

3Sc

)
ln(1 + BM), (1)

where

BM =

∑
k

YV,s,k −
∑
k

YV,k

1−
∑
k

YV,s,k

, (2)

τd =
ρdd

2

18µ
, (3)

Sc =
µ

ρ
∑
k

YV,kDk

, Sh = 2 + 0.552Re
1/2
sl Sc1/3. (4)

Here Sc is the averaged Schmit number, Sh the averaged Sherwood number, BM the

mass transfer number, τd the particle response time, YV,k the vapor mass fraction of

kth species, ρd the density of liquid fuel, d the droplet diameter, µ the viscosity of

gas and Resl the slip Reynolds number, respectively. YV,s,k is the surface vapor mass

fraction of kth species calculated as

YV,s,k =
XV,s,k

XV,s,k + (1−XV,s,k)W/WV,k

, (5)

3



XV,s,k = Xk,d
Psat,k

P
−

(
2Lk

d

)
β. (6)

Here XV,s,k is the surface vapor mole fraction of kth species, Xk,d the mole fraction

of fuel in the liquid phase, P the ambient pressure, W the averaged mole weight and

WV,k the mole weight of kth species, respectively. Psat,k is the saturated vapor pressure

calculated by Sato’s empirical equation [33] as

P 0.119
sat,k = 11.9T 0.119 + C. (7)

Here the unit of Psat,k is [mmHg] and C is the empirical constant calculated from values

in a standard condition. Lk and β are the Knudsen layer thickness of kth species and

the non-dimensional constant calculated as

Lk =
µ {2πTd(R/WV,k)}1/2

ScP
, (8)

β = −
(
ρdPr

8µ

)
d

dt
d2, (9)

respectively. Here Td is the droplet temperature, Pr the Prandtl number and R the

universal gas constant, respectively.

The evaporation rate of kth species, ṁd,k, is calculated as

ṁd,k = ϵkṁd. (10)

Here ϵk is the non-dimensional partial evaporation rate calculated as follows [31, 32].

The conservation equation of each component around the droplet leads another form

of ṁd which is expressed by using k-th species properties as

ṁd = −md

τd

(
Shk

3Sck

)
ln(1 +BM,k), (11)

where

BM,k =
YV,s,k − YV,k

ϵk − YV,s,k

, (12)

Sck =
µ

ρDk

, Shk = 2 + 0.552Re
1/2
sl Sc

1/3
k . (13)

Here BM,k is the mass transfer number of kth species, Shk the Sherwood number of

kth species and Sck the Schmit number of kth species. From Eqs. (1) and (11), the

relationship between BM and BM,k is written as

BM,k = (1 + BM)ηk − 1, ηk =
ShSck
ShkSc

. (14)
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From Eqs. (2), (12) and (14) with the assumption of ηk = 1 (unity Lewis number

assumption), ϵk is calculated as

ϵk = YV,s,k + (YV,s,k − YV,k)
1−

∑
YV,s,k∑

YV,s,k −
∑

YV,k

. (15)

2.2. Combustion reaction mechanism

Jet-A is used as liquid fuel, and a one-component fuel (n-decane (C10H22)), a two-

component fuel (n-decane (C10H22) 82.6 wt%, 1,2,4-trimethyl-benzene (C9H12) 17.4

wt%) [34] and a three-component fuel (n-dodecane (C12H26) 45 wt%, iso-octane (C8H18)

29 wt%, toluene (C7H8) 26 wt%) [35–37] are used as the surrogate fuels of Jet-A. For the

calculation of reaction, 113 species and 891 reactions for the one- and two-component

fuels [34] and 273 species and 2322 reactions for the three-component fuel [35–37] are

considered, respectively.

2.3. Computational details

Fig. 1 shows the schematic of the computational domain. The computational

domain is a cube 4.8 mm on a side and divided into 48 uniform computational grid

points in each direction. This grid resolution is determined based on our previous study

[27].

The computations are performed for the evaporation of a single fuel droplet and

for the evaporation/combustion reaction of multiple fuel droplets. Initially, the single

fuel droplet and multiple fuel droplets are allocated at the center of the computational

domain and in the central region as a spherical shape with 2 mm diameter, respectively.

The equivalence ratio in the central region is 2.0 for multiple fuel droplets. The initial

droplet diameters are set to 1.33 mm for a single fuel droplet and 7.5, 15 µm for multiple

fuel droplets. These droplet sizes are decided to compare with the experiments [24]

and to meet the requirement associate with the grid size from the point of view of

numerical accuracy, respectively (the grid spacing needs to be roughly 10 times larger

than the droplet size [10]). The initial gas and droplet temperature are 1500 K and

300 K, respectively.

Table 1 lists the numerical conditions performed for the evaporation/combustion

reaction of the multiple fuel droplets. The ambient pressure, P , is set to 0.1 MPa and
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1.0 MPa. In order to investigate the effects of combustion reaction, the computations

are carried out for different mediums of the ambient gas (i.e., nitrogen and air). Physical

properties of each component are listed in Table 2. In this table, the latent heat, LV ,

is the value at normal boiling point and the heat capacity, cp, and density, ρ, are the

values in a standard condition.

The Variable-coefficient ODE solver (VODE) [38] is applied to the calculation of the

detailed reaction mechanisms described above. The values of the droplet density, ρd,

and the specific heat of the droplet, cp,d, are calculated by the curve fit data from the

NIST web book [39], and the other thermophysical properties and transport coefficients

under various pressures are obtained from CHEMKIN [40, 41].

The CPU time is 6,400 h for a heaviest case (Case 9) on SGI Altlx ICE8200EX

using Intel X5560 (using 64 cores).

3. Results and discussion

3.1. Evaporation of a single fuel droplet without combustion reaction

In this section, the present evaporation model is validated by comparing with the

experiment by Däıf et al. [24]. In this experiment [24], a n-decane (C10H22)/n-heptane

(C7H16) multicomponent droplet is suspended in a hot air flow whose average velocity

is 3.1 m/s and temperature is 348 K. The initial droplet diameter is 1.33 mm and the

initial droplet temperature is equal to the room temperature. In the calculation, the

composition of the droplet is changed. Namely, the compositions of the droplets of

Cases A and D, Case B and Case C are n-decane/n-heptane (26%/74%), n-heptane

(100%) and n-decane (100%), receptively. In addition, the physical properties of in-

dividual components are considered in Case A, whereas the droplet is treated as a

one-component fuel in which averaged physical properties are used in Case D.

Fig. 2 shows the comparison of the predicted time variations of the squared droplet

diameter with the experiment [24]. It is shown that the decreasing rate in the exper-

iment [24] changes at around t=7.0 s. This is because n-heptane mainly evaporates

before at around t=7.0 s and n-decane mainly evaporates after that. It is found that

Case A correctly predicts this change of decreasing rate, and the curve trend agrees
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well with the experiment [24]. On the other hand, Case D cannot predict this change

of decreasing rate especially after at around t=7.0 s, and Cases B and C fail to predict

the experiment [24]. Therefore, the model in Case A is employed for the computations

in the following sections.

3.2. Evaporation of multiple fuel droplets without combustion reaction

Fig. 3 shows the time variations of normalized masses of gas and liquid fuels in

nitrogen for P=0.1 MPa and d0=15.0 µm for one-, two- and three-component fuels

(Cases 1-3). In these cases, the evaporation and pyrolysis occur without combustion

reaction. It is found that the evaporation rate in Case 3 (three-component fuel) is higher

and lower than those in the other cases before and after at t=0.1 ms, respectively. This

is due to the fact that compared to n-decane and 1,2,4-trimethyl-benzene, iso-octane

and toluene included in the three-component fuel have higher volatilities, whereas

n-dodecane included in the three-component fuel has lower volatility. In all cases,

the amount of gas fuel decreases after around 0.5 ms. This is because the pyrolysis

rate overcomes the evaporation rate. Fig. 4 shows the radial distributions of spatial-

averaged gas temperatures in nitrogen for P=0.1 MPa and d0=15.0 µm for one-, two-

and three-component fuels (Cases 1-3). In all cases, the gas temperatures decrease with

time due to the latent heat of evaporation and heat transferred into the droplets. The

gas temperature in Case 3 (three-component fuel) is found to be lower than those in

the other cases at earlier periods of t=0.125 and 0.200 ms. This is due to the facts that

evaporation in Case 3 (three-component fuel) is faster than those in the other cases as

shown in Fig. 3, and that iso-octane and toluene of three-component fuel have larger

latent heat than that of n-decane.

3.3. Evaporation of multiple fuel droplets with combustion reaction

Fig. 5 shows the typical behavior of droplet evaporation and combustion, namely

the instantaneous distributions of gas temperature, and mass fractions of O2, CO, CO2

and OH in air for P=0.1 MPa and d0=15.0 µm at t=0.125 ms, t=0.200 ms and t=0.400

ms for a one-component fuel (Case 4). It is observed that the gas temperature increases
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with time by combustion and O2 is consumed, and that the combustion products and

radicals such as CO, CO2 and OH are generated.

Fig. 6 shows the time variations of normalized masses of gas and liquid fuels in air

for one-, two- and three-component fuels for (a) P=0.1 MPa and d0=15.0 µm (Cases

4-6), (b) P=1.0 MPa and d0=15.0 µm (Cases 7-9) and (c) P=0.1 MPa and d0=7.5

µm (Cases 10-12). In Fig. 6 (a), it is found that the evaporation rate in Case 6

(three-component fuel) is higher and lower than those in Cases 4 (one-component fuel)

and 5 (two-component fuel) before and after at t=0.1 ms, respectively. This is due

to the same reason as mentioned earlier. Namely, compared to n-decane and 1,2,4-

trimethyl-benzene, iso-octane and toluene included in the three-component fuel have

higher volatilities, whereas n-dodecane included in the three-component fuel has lower

volatility.

The comparisons of Fig. 6 (a) with Figs. (b) and (c) show that the differences

in the evaporation rate observed between the three-component fuel and the one- and

two-component fuels for P=0.1 MPa and d0=15.0 µm still exist for P=1.0 MPa, but

disappear for d0=7.5 µm. This suggests that the effects of the droplet composition on

the evaporation rate do not depend on the ambient pressure very much, but the effects

become remarkable with increasing the droplet size.

Fig. 7 shows the radial distributions of spatial-averaged gas temperatures in air

for one-, two- and three-component fuels for (a) P=0.1 MPa and d0=15.0 µm (Cases

4-6), (b) P=1.0 MPa and d0=15.0 µm (Cases 7-9) and (c) P=0.1 MPa and d0=7.5 µm

(Cases 10-12). For all pressure and initial-droplet-diameter conditions, the differences

in the gas temperature among the one-, two- and three-component fuels are observed

to be marked initially, and become small with time. Also, the trends of the differences

in the gas temperature among one-, two- and three-component fuels are found to be

different for each pressure and initial-droplet-diameter condition. In Fig.7 (b), the gas

temperature in Case 9 (three-component fuel) is higher than those in Cases 7 (one-

component fuel) and 8 (two-component fuel) at t=0.125 ms. This is due to the fact

that the evaporation rate in Case 9 (three-component fuel) is higher than those in

Cases 7 (one-component fuel) and 8 (two-component fuel) as shown in Fig. 6 (b), and
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therefore the higher concentration of the evaporated fuel accelerates the combustion

reaction.

On the other hand, in Fig. 7 (a), the gas temperatures not only in Case 6 (three-

component fuel) but also in Case 4 (one-component fuel) indicate the higher values

than that in Case 5 (two-component fuel) at t=0.125 ms. This is because the ignition

delay time of the one-component fuel is shorter than that of the two-component fuel.

The reason why the gas temperature of the one-component fuel is not higher than that

of the two-component fuel in the case of P=1.0 MPa (see Fig. 7 (b)) is considered to be

that since the ignition delay time becomes much shorter due to the higher combustion

reaction rate, the difference in the ignition delay time does not affect the difference in

the time variation of the gas temperature very much.

It is found in Fig. 7 (c) that the trend of the differences in the gas temperature

among the one-, two- and three-component fuels is different from those in the other

pressure and initial-droplet-diameter conditions. Namely, the gas temperatures in Case

10 (one-component fuel) and Case 12 (three-component fuel) are highest and lowest at

t=0.125 ms, respectively. This is due to the fact that in the cases of small droplets,

the time variation of the gas temperature mainly depends on the ignition delay time

because evaporation of the small droplets becomes fast and there exists little difference

in the evaporation rate as shown in Fig. 6 (c).

4. Conclusions

In this study, the effects of difference in fuel components on droplet evaporation

and combustion were numerically investigated. Jet-A is used as liquid fuel, and one

(n-decane)-, two (n-decane and 1,2,4-trimethyl-benzene)- and three (n-dodecane, iso-

octane and toluene)-component fuels are used as the surrogate fuels of Jet-A. The main

results obtained in this study can be summarized as follows.

1. The multicomponent droplet evaporation model which considers each compo-

nent’s physical properties such as boiling point and saturated vapor pressure

individually precisely predicts the change of decreasing rate of droplet diame-

ter, compared to the evaporation model which uses the averaged values of the
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components.

2. Evaporation of the three-component surrogate fuel of Jet-A becomes faster and

slower than those of the one- and two-component surrogate fuels in the initial

and subsequent evaporating periods, respectively. This is due to the fact that

compared to n-decane and 1,2,4-trimethyl-benzene, iso-octane and toluene in-

cluded in the three-component surrogate fuel have higher volatilities, whereas

n-dodecane included in the three-component fuel has lower volatility.

3. Differences in the gas temperature evolution among three different surrogate fuels

of Jet-A are remarkable right after the ignition, but they become small with time.
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NOMENCLATURE

BM mass transfer number , -

cp heat capacity , J/(K kg)

D diffusion coefficient , m2/s

d droplet diameter , m

L Knudsen layer thickness , m

LV latent heat , J/kg

m mass , kg

P pressure , Pa

Pr Prandtl number , -

R universal gas constant , J/(K mol)

Resl slip Reynolds number , -

Sc Schmit number , -

Sh Sherwood number , -

T temperature , K

W mole weight , g/mol

X mole fraction , -

Y mass fraction , -

ϵ partial evaporation rate , -

µ viscosity , Pa s

ρ density , kg/m3

τ particle response time , s

0 initial value

avg averaged

c at critical point

d droplet’s

k kth species

nb at normal boiling point

s at droplet surface

sat saturated

V vapor’s

14



Table 1: Computational conditions.

Cases P [MPa] d0 [µm] Ambient gas Fuel

Case 1 0.1 15.0 nitrogen one-component fuel

Case 2 0.1 15.0 nitrogen two-component fuel

Case 3 0.1 15.0 nitrogen three-component fuel

Case 4 0.1 15.0 air one-component fuel

Case 5 0.1 15.0 air two-component fuel

Case 6 0.1 15.0 air three-component fuel

Case 7 1.0 15.0 air one-component fuel

Case 8 1.0 15.0 air two-component fuel

Case 9 1.0 15.0 air three-component fuel

Case 10 0.1 7.5 air one-component fuel

Case 11 0.1 7.5 air two-component fuel

Case 12 0.1 7.5 air three-component fuel
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Table 2: Physical properties.

Components Tc [K] Tnb [K] LV,nb [kJ/kg] cp [J/(K kg)] ρ [kg/m3] W [g/mol]

n-decane 619.0 447.3 279.7 2199.8 724.7 142.3

n-heptane 540.0 371.6 317.1 2232.5 679.4 100.2

1,2,4-trimethyl-benzene 654.7 442.6 398.8 1773.0 872.2 120.2

n-dodecane 658.2 489.0 256.5 2218.3 744.4 170.3

iso-octane 543.9 372.4 269.5 2045.9 690.0 114.2

toluene 593.0 383.8 360.1 1707.0 860.51 92.1
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Figure 1: Computational domain.
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Figure 2: Comparison of predicted time variations of squared droplet diameter with experiment.
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Figure 3: Time variations of normalized masses of gas and liquid fuels in nitrogen for P=0.1 MPa

and d0=15.0 µm for one-, two- and three-component fuels (Cases 1-3).
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Figure 4: Radial distributions of spatial-averaged gas temperatures in nitrogen for P=0.1 MPa and

d0=15.0 µm for one-, two- and three-component fuels (Cases 1-3).
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Figure 5: Instantaneous distributions of gas temperature, and mass fractions of O2, CO, CO2 and OH

in air for P=0.1 MPa and d0=15.0 µm at t=0.125 ms, t=0.200 ms and t=0.400 ms for a one-component

fuel (Case 4).
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(a) P=0.1 MPa and d0=15.0 µm (Cases 4-6)
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(b) P=1.0 MPa and d0=15.0 µm (Cases 7-9)
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Figure 6: Time variations of normalized masses of gas and liquid fuels in air for one-, two- and three-

component fuels for (a) P=0.1 MPa and d0=15.0 µm (Cases 4-6), (b) P=1.0 MPa and d0=15.0 µm

(Cases 7-9) and (c) P=0.1 MPa and d0=7.5 µm (Cases 10-12).
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(a) P=0.1 MPa and d0=15.0 µm (Cases 4-6)
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(b) P=1.0 MPa and d0=15.0 µm (Cases 7-9)
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Figure 7: Radial distributions of spatial-averaged gas temperatures in air for one-, two- and three-

component fuels for (a) P=0.1 MPa and d0=15.0 µm (Cases 4-6), (b) P=1.0 MPa and d0=15.0 µm

(Cases 7-9) and (c) P=0.1 MPa and d0=7.5 µm (Cases 10-12).
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