<table>
<thead>
<tr>
<th>Title</th>
<th>Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Suzuki, Jun; Fujii, Toshihiro; Imao, Takeshi; Ishihara, Kenji; Kuba, Hiroshi; Nagata, Shigekazu</td>
</tr>
<tr>
<td>Citation</td>
<td>The Journal of Biological Chemistry (2013), 288(19): 13305-13316</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-05-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/189843</td>
</tr>
</tbody>
</table>

This research was originally published in The Journal of Biological Chemistry; Jun Suzuki, Toshihiro Fujii, Takeshi Imao, Kenji Ishihara, Hiroshi Kuba, Shigekazu Nagata; Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members; The Journal of Biological Chemistry, 05/10/2013, 228, 13305-13316. © the American Society for Biochemistry and Molecular Biology.

Type | Journal Article

Textversion | author

Kyoto University
Calcium-dependent Phospholipid Scramblase Activity of TMEM16 Family Members*

Jun Suzuki‡,§,1, Toshihiro Fujii‡,§,1, Takeshi Imao‡,2, Kenji Ishihara‡, Hiroshi Kuba1,3, and Shigekazu Nagata‡,§,4

From the ‡Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan, §Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Kyoto 606-8501, Japan, and 1Department of Physiology, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

*Running title: Phospholipid scramblase in TMEM16 family

To whom correspondence should be addressed: Shigekazu Nagata, Department of Medical Chemistry, Kyoto University Graduate School of Medicine, Yoshida-Konoe, Sakyō, Kyoto 606-8501, Japan, Tel.: 81-75-753-9441, Fax: 81-75-753-9446, E-mail: snagata@mfour.med.kyoto-u.ac.jp

Keywords: phospholipid scramblase; TMEM16; Cl⁻ channel; tissue-specific expression

Background: TMEM16A and 16B work as Cl⁻-channel, while 16F works as phospholipid-scramblase. Function of other TMEM16 members is unknown.

Results: Using TMEM16F⁻/⁻ cells, TMEM16C, 16D, 16F, 16G and 16J were shown to be lipid scramblases.

Conclusion: Some TMEM16 members are divided into two Cl⁻-channels and five lipid-scramblases.

Significance: Learning biochemical function of TMEM16 family members is essential to understand their physiological role.

Asymmetrical distribution of phospholipids between the inner and outer plasma membrane leaflets is disrupted in various biological processes. We recently identified TMEM16F, an eight-transmembrane protein, as a Ca²⁺-dependent phospholipid scramblase that exposes phosphatidylserine to the cell surface. In this study, we established a mouse lymphocyte cell line with a floxed allele in the TMEM16F gene. When TMEM16F was deleted, these cells failed to expose PS in response to Ca²⁺ ionophore, but PS-exposure was elicited by Fas ligand treatment. We expressed other TMEM16 proteins in the TMEM16F⁻/⁻ cells, and found that not only TMEM16F, but also 16C, 16D, 16G, and 16J work as lipid scramblases with different preference to lipid substrates. On the other hand, a patch-clump analysis in 293T cells indicated that TMEM16A and 16B, but not other family members, acted as Ca²⁺-dependent Cl⁻ channels. These results indicated that among 10 TMEM16 family members, 7 members could be divided into two subfamilies, Ca²⁺ dependent Cl⁻ channels (16A and 16B) and Ca²⁺-dependent lipid scramblases (16C, 16D, 16F, 16G and 16J).

Phospholipids and glycosphingolipids are distributed asymmetrically in plasma membrane leaflets, with phosphatidylserine (PS) and phosphatidylethanolamine (PE) in the inner leaflet, and phosphatidylcholine (PC), galactosylceramide (GalCer) and glucosylceramide (GluCer) mainly in the outer leaflet (1,2). The lipid asymmetry is disrupted in various processes, including apoptotic cell death (3), activated platelets (4), red blood cell aging (5), pyrenocyte formation in definitive erythropoiesis (6), fusion of macrophages, myocytes, or cytotrophoblasts (7-9), and sperm capacitation (10).

Distribution of lipids in plasma membranes is regulated by three types of lipid transporters: flippases, floppases and scramblases. Flippases, also called ATP-dependent aminophospholipid translocases, transport aminophospholipids from the extracellular leaflet to the cytoplasmic side (1,11). The type IV-P-type ATPases (P4-ATPase), a subfamily of the P-type ATPase multispans transmembrane proteins, are strong candidates for flippases (12). Floppases are transporters that move a wide range of lipids from the cytosolic to the extracellular leaflet in an ATP-dependent manner. The ATP-binding cassette (ABC) ATPase, particularly ABCA1, has been proposed as a floppase (13), but ABCA1-deficient cells exhibit no defects in transbilayer phospholipid movement (14) arguing against this role.
Once established, the phospholipid distribution between the outer and inner leaflets is not easily disrupted; ATP-dependent translocase inactivation alone does not appear sufficient to cause the rapid PS exposure seen in apoptotic cell death and platelet activation. Thus, a phospholipid scramblase that bi-directionally and non-specifically transports phospholipids in response to Ca\(^{2+}\) has been proposed (15). Using a liposome reconstitution system with synthetic phospholipids, Basse et al. (16) purified a 37-kDa protein from human erythrocytes, and named it phospholipid scramblase (PLSCR). Its cDNA was then isolated (17). However, since the Ca\(^{2+}\)-induced PS exposure is normal in PLSCR\(^{-/+}\) cells (18), PLSCR’s function as a phospholipid scramblase has been challenged (15,19).

By repeatedly selecting cell populations that efficiently exposed PS in response to Ca\(^{2+}\) ionophore, we recently established a subline of mouse pro B cell line (Ba/F3) that constitutively exposes PS (20). The Ba/F3 subline harbours a mutated form of TMEM16F protein, a protein carrying eight transmembrane regions with cytoplasmic N- and C-termini. Ba/F3 cells carrying the mutated form of TMEM16F constitutively exposed PS and PE, and internalized PC and SM. We thus proposed TMEM16F as a phospholipid scramblase (20). Confirming that TMEM16F is a Ca\(^{2+}\)-dependent phospholipid scramblase, recessive TMEM16F mutations were identified in human patients with Scott syndrome (20,21), which is known to result from a phospholipid-scrambling defect; these patients suffer from impaired blood clotting. However, it is not clear if TMEM16F is involved in other processes, such as apoptotic cell death or cell fusion. Two of the TMEM16 family’s 10 members, TMEM16A and 16B, are Ca\(^{2+}\)-dependent Cl\(^{-}\) channels (22-24); this raises a question of whether TMEM16F is likewise a Cl\(^{-}\) channel, and whether any other TMEM16 family members are phospholipid scramblases.

In this report, we established an immortalized fetal thymocyte (IFET) cell line from fetal thymus of mice carrying a floxed TMEM16F allele. IFETs express TMEM16F, 16H, and 16K, and expose PS in response to a Ca\(^{2+}\) ionophore. Deleting TMEM16F in the IFETs completely abolished their ability to expose PS in response to Ca\(^{2+}\)-ionophore. On the other hand, Fas ligand (FasL) treatment efficiently induced PS exposure in the TMEM16F- deficient cells. In the presence of TMEM16C, 16D, 16F, 16G, and 16J, TMEM16F\(^{-/-}\) IFETs responded to Ca\(^{2+}\) ionophore by scrambling phospholipids and galactosylceramide, while other family members did not. On the other hands, the two family members, TMEM16A and 16B, but not others showed the Ca\(^{2+}\)-dependent Cl\(^{-}\) channel activity. These results, together with their tissue-specific expression, suggest that the TMEM16 family members have distinct functions in lipid scrambling and Cl\(^{-}\)-channel functions in various biological processes.

EXPERIMENTAL PROCEDURES

Materials and Cell Lines---Leucine-zipper-tagged human FasL was produced in COS7 cells as described (25). One unit of FasL is defined as the activity that kills 1.0 x 10\(^{5}\) mouse WR19L cell expressing Fas (W3 cells) in 4 h. A caspase inhibitor, Q-VD-OPh (quinolyl-valyl-0- methylaspartyl-[2,6-difluoro-phenoxyl]-methyl ketone) was purchased from R&D systems (Minneapolis, MN). IFETs were maintained in RPMI medium containing 10% FCS (Nihonm BIOscience, Tokyo, Japan) and 50 µM β-mercaptoethanol. HEK293T and Plat-E cells (26) were cultured in DMEM containing 10% FCS.

cDNA Cloning---Mouse TMEM16F cDNA (NCBI: NM_175344) was described (20). Mouse cDNAs for TMEM16A (GenBank: BC062959.1), 16B (GenBank: BC033409.1), and 16G (GenBank: BC116706.1) were from DNAFORM (Yokohama, Japan). Mouse cDNAs for TMEM16C (NCBI: NM_001128103.1), 16D (Ensemble: ENSMUST_00000071075), and 16K (NCBI: NM_133979.2) were cloned from brain tissue by RT-PCR, while cDNAs for TMEM16E (NCBI: NM_177694.5), 16H (NCBI: NM_001164679.1), and 16J (NCBI: NM_178381.3) were isolated from the skeletal muscle, thymus, and stomach, respectively. All cDNAs were verified by sequencing. The following primers were used to isolate TMEM16 cDNAs (the extra sequence for the restriction enzyme is underlined):

<table>
<thead>
<tr>
<th>Name</th>
<th>Primer Sequence</th>
<th>Length</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMEM16A</td>
<td>5’-ATATGGATCCACCATGAGGGTCCCCGAGAAGTA, 5’-ATATGAATTCCAGCGGCTCCCCATGGTACTCTATG</td>
<td>590</td>
<td>Forward</td>
</tr>
<tr>
<td>TMEM16B</td>
<td>5’-ATATGGAATCTCCGCATGACTTTACAGCAACCA, 5’-ATATGAATTCTACATTGGTGTGCTGGGACC</td>
<td>548</td>
<td>Reverse</td>
</tr>
<tr>
<td>TMEM16C</td>
<td>5’-ATATGGATCCAAATGTGGTCCACCACCTCAGGCTC, 5’-ATATCAATTGAGCCATTCAATGGTACAT</td>
<td>560</td>
<td>Forward</td>
</tr>
<tr>
<td>TMEM16D</td>
<td>5’-ATATAGATCTAAATGGAGGACCTCCTTCTGG, 5’-ATATCAATTGTGAGCCACTCTATTGTGATGTG</td>
<td>560</td>
<td>Reverse</td>
</tr>
<tr>
<td>TMEM16E</td>
<td>5’-ATATGGATCCGAGATGTGGGAGCAGGAAGCTT, 5’-ATATCAATTGGACTGTAGTATTAGCCTTCA</td>
<td>502</td>
<td>Forward</td>
</tr>
<tr>
<td>TMEM16G</td>
<td>5’-ATATAGATCTGACATGCTCGGAGGGCGCGGAACCGCG, 5’-ATATGAATTCCGCTCCGTAACCCCTACTG</td>
<td>548</td>
<td>Reverse</td>
</tr>
</tbody>
</table>
and 5'-ATATGAAATTCAAGGCTGTGACCTGCTCCT; TMEM16J, 5'-ATATGAAATCGATGAGATGAGATGTTCC, and 5'-ATATCAATTGTACATCCGTGCTCCTGGGAAC; TMEM16K, 5'-ATATGGATCCAGTAGAATGAGCTTTATCAAC, and 5'-ATATCAATTGGGTAGCTTCCCCACATCTT.

Since the native mouse cDNAs for TMEM16C, 16D, and 16E produced a low level of proteins in mammalian cells, sequences with enhanced mRNA stability and translational efficiency were custom ordered from GENEART (Regensburg, Germany)(Fig. S1-S3).

Establishment of TMEM16F^{fl} IFET Cell Line---TMEM16F conditionally targeted mice were generated by UNITECH (Chiba, Japan) as a custom order. In brief, a neo-loxP cassette carrying the PGK promoter-driven neo gene and flanked by FRT sequences was inserted into intron 3 of the TMEM16F gene (Fig. 1A). A 1.0 kb-DNA fragment containing exon 2 was replaced with a fragment carrying the corresponding sequence and a loxP sequence. The diphtheria toxin A-fragment (DT-A) driven by the thymidine kinase (tk) promoter, was inserted at 5' end of the vector. Mouse Bruce-4 ES cells were transfected with the targeting vector by electroporation, and G418-resistant clones were screened for homologous recombination by PCR. Positive clones were injected into blastocysts to generate TMEM16F^{fl}/Neo^{FRT} mice. The TMEM16F^{fl}/Neo^{FRT} mice were crossed with CAG-FLP^e transgenic mice to remove the Neo cassette (27). Offspring were backcrossed to wild-type C57BL/6 mice to remove the CAG-FLP^e transgene, generating TMEM16F^{fl}/lox^e mice. Mice were housed in a specific pathogen-free facility at Kyoto University, and all animal experiments were carried out in accordance with protocols approved by Kyoto University.

IFET cell lines were established as described (28). In brief, TMEM16F^{fl}/lox^e mice were intercrossed, and fetal thymocytes were obtained at embryonic day 14.5. Thymocytes were cultured in DMEM containing 10% FCS, 1 x non-essential amino acids, 10 mM Hepes-NaOH buffer (pH 7.4), and 50 µM β-mercaptoethanol. Retroviruses carrying genes for H-ras^{V12} and c-myc were produced in Plat-E cells with pCX4 vector (29), concentrated by centrifugation, and attached to RetroNectin-coated plates (Takara Bio, Kyoto, Japan). Thymocytes were attached to the retrovirus-coated plate by centrifugation at 400 x g for 5 min, and cultured in medium containing 5 ng/ml mouse IL-7 (PeproTech, Rocky Hill, NJ) (30). The resultant IFETs were infected with 1 x 10⁶ pfu/ml Adeno-Cre (Takara Bio) and cloned by limited dilution. Clones carrying the TMEM16F^C allele were selected by PCR with following primers: wild-type specific sense primer, CTCCAGAGTTTGAAGTAAACCAT, mutant specific sense primer, CAGTCATCGGTAATTCATACTT, and common anti-sense primer, AAGACTGATTTCCAAGGTTATCGAA.

Transformation of TMEM16F^C IFETs---Mouse TMEM16 cDNAs were inserted into pMXs puro c-FLAG (20) to express proteins tagged with FLAG at the C-terminus. Retrovirus was produced in Plat-E cells, and used to infect TMEM16F^C IFETs. Stable transformants were selected in medium containing 2 µg/ml puromycin. Mouse Fas cDNA (GenBank: NM_007987) was introduced into IFETs by retrovirus-mediated transformation, and its expression was confirmed by flow cytometry with an anti-Fas mAb (Jo2) (MBL, Nagoya, Japan).

Real-time PCR---Total RNA was reverse-transcribed using Superscript III reverse-transcriptase (Invitrogen, Carlsbad, CA) or a High Capacity RNA-to-cDNA™ kit (Applied Biosystems, Foster City, CA). Aliquots of the products were amplified in a reaction mixture containing LightCycler®480 SYBR Green I Master (Roche Diagnostics, Basel, Switzerland). Primers used for real-time PCR were as follows: TMEM16A, 5'-ACCCCGAGCGCAGAATGCAAG, and 5'-GTGGTGCTGAGCCTGG; 16B, 5'-AGGGCGACACCTGGGTCAC, and 5'-ATGGGGGCGTAGATCCGGACA; 16C, 5'-GCCAGCAATGGCAACCCCGG, and 5'-GAGTCGACTCTCAGGCTCT; 16D, 5'-ACAGGCGATGCTCTCCCGCG, and 5'-GCACTACTGCTCCGGCC; 16E, 5'-GCCAGCAATGGCAACCCCGG, and 5'-GAGTCGACTCTCAGGCTCT; 16F, 5'-GCCAGCAATGGCAACCCCGG, and 5'-GAGTCGACTCTCAGGCTCT; 16G, 5'-GCCAGCAATGGCAACCCCGG, and 5'-GAGTCGACTCTCAGGCTCT; 16H, 5'-GCCAGCAATGGCAACCCCGG, and 5'-GAGTCGACTCTCAGGCTCT; 16I, 5'-GCCAGCAATGGCAACCCCGG, and 5'-GAGTCGACTCTCAGGCTCT; 16J, 5'-GCCAGCAATGGCAACCCCGG, and 5'-GAGTCGACTCTCAGGCTCT;

Western Blotting---Cells were lysed in RIPA buffer [50 mM Hepes-NaOH buffer (pH 8.0) containing 1% NP-40, 0.1% SDS, 0.5% sodium deoxycholate, 150 mM NaCl, and protease inhibitor cocktail (Complete Mini, Roche Diagnostics)]. After
removing debris, cell lysates were mixed with 5 x SDS sample buffer [200 mM Tris-HCl (pH 6.8), 10% SDS, 25% glycerol, 5% β-mercaptoethanol, and 0.05% Bromophenol blue], incubated at room temperature for 30 min, and separated by 10% SDS-PAGE (Bio Craft, Tokyo, Japan). After transferring proteins to a PVDF membrane (Millipore, Billerica, MA), membranes were probed with HRP-conjugated mouse anti-FLAG M2 (Sigma-Aldrich, St. Louis, MO), and peroxidase activity was detected using a Western Lightning®-ECL system (PerkinElmer, Waltham, MA).

To prepare rabbit antibody against mouse TMEM16F, the N-terminal region of mouse TMEM16F (amino acids from 1-289) was fused to glutathione-S-transferase (GST) in a pGEX-5X-1 vector (GE Healthcare, England). The recombinant protein was produced in E. coli, purified with Glutathione-Sepharose, and used to immunize rabbits at Takara Bio as a custom order. Western blotting with the rabbit anti-TMEM16F and HRP-labeled goat anti-rabbit IgG (Dako, Copenhagen, Denmark) was carried out as described above using Immunoreaction Enhancer Solution (Can Get Signal®, Toyobo Life Science, Tokyo, Japan).

Analysis of PS Exposure—The Ca²⁺-induced PS exposure were examined as described (20). In brief, 5 x 10⁵ cells were stimulated at 20°C with 3.0 µM A23187 in 500 µl of 10 mM Hepes-NaOH buffer (pH 7.4) containing 140 mM NaCl, 2.5 mM CaCl₂ and 5 µg/ml Propidium Iodide (PI), and 1000-fold-diluted Cy5-labeled Annexin V (Bio Vision, Milpitas, CA), and applied to the injection chamber of a FACSAria (BD Biosciences, Franklin Lakes, NJ) set at 20°C.

Internalization of NBD-PC and NBD-GalCer—Cells (10⁶) were stimulated at 15°C with 250 nM A23187 in 1 ml Hank’s Balanced Salt Solution (HBSS)(Gibco, Billings, MT) containing 1 mM CaCl₂, with a fluorescent probe, 100 nM 1-oleoyl-2-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl]-sn-glycero-3-phosphocholine (NBD-PC)(Avanti Polar Lipids, Alabaster, AL), or 250 nM N-[6-{[7-nitro-2-1,3-benzoxadiazol-4-yl]amino}[hexanoyl]-D-galactosyl-[β1-1']-sphingosine (C6-NBD galactosyl ceramide or NBD-GalCer) (Avanti Polar Lipids). Aliquots (150 µl) were mixed with 150 µl HBSS containing 5 mg/ml fatty-acid free BSA (Sigma-Aldrich) and 500 nM Sytoxblue (Molecular Probes, Eugene, OR), and analyzed by FACSAria.

Induction of Apoptosis—Apoptosis was induced with FasL as described (25). In brief, IFETs expressing mouse Fas were treated with 60 units/ml FasL at 37°C for 2 h, and PS exposure was determined by flow cytometry with Cy5- Annexin V. To detect activated caspase 3, cells were fixed at 37°C for 10 min in PBS containing 1% paraformaldehyde, permeabilized with 90% methanol at -20°C, and stained with rabbit mAb against active caspase 3 (Cell Signaling, Danvers, MA). Cells were then incubated with Alexa 488-labeled goat anti-rabbit IgG (Invitrogen), and analyzed by FACSAria.

Electrophysiology—TMEM16 sequences, FLAG-tagged at C-terminus, were inserted into pEF-BOS-EX (31). HEK293T cells (2.5 x 10⁵) were co-transfected with 1.0 µg of TMEM16 expression vector and 0.1 µg of pMAX-EGFP (Lonza Group, Basel, Switzerland) using FuGENE6 (Promega, Madison, WI). At 24 h after transfection, cells were re-seeded on glass coverslips coated with fibronectin (Sigma-Aldrich). Within 24 h after re-seeding, whole-cell recordings of cells expressing EGFP were performed using a patch-clamp amplifier (Axopatch 200B, Molecular Devices, Sunnyvale, CA) as described (23,32). The extracellular solution contained 140 mM NaCl, 5 mM KCl, 2 mM CaCl₂, 1 mM MgCl₂, 30 mM glucose, and 10 mM Heps-NaOH (pH 7.4). The intracellular solution contained 140 mM NaCl, 1.12 mM EGTA, 1 mM CaCl₂, 30 mM glucose, and 10 mM Heps-NaOH (pH7.4). The free Ca²⁺ concentration (500 nM) was calculated with WEBMAXC software (http://www.stanford.edu/~cpaton/maxc.html).

Results

Establishment of TMEM16F-/- Fetal Thymocyte Cell Lines—Ca²⁺-dependent PS exposure is reduced by knocking down TMEM16F mRNA and accelerated by TMEM16F overexpression, suggesting that TMEM16F is a phospholipid scramblase (20). To demonstrate TMEM16F’s involvement in Ca²⁺-dependent phospholipid scrambling and to determine whether TMEM16F plays a role in exposing PS to the cell surface during apoptotic cell death, we established from fetal thymus tissue a TMEM16F-deficient mouse cell line that expresses a small number of TMEM16 family members, including TMEM16F (see below).

A targeting vector in which exon 2 of TMEM16F gene was flanked by loxP sequences was used to replace the TMEM16F allele in a mouse embryonic stem cell (ES) line from a C57BL/6 background (Fig. 1A). Mice carrying the floxed allele were generated from the ES clone, and intercrossed. Embryos were genotyped at embryonic day 14.5, and fetal TMEM16Ffllox/flox thymus cells were infected with a retrovirus carrying H-ras12 and c-myc to establish IFET cell lines. Flow cytometry analysis showed that IFETs expressed Thy-1 weakly and CD44 strongly, but did not express CD4 or CD8; this indicated that they were derived from a T-cell lineage at an early developmental stage. A real-time RT-PCR analysis showed that IFETs expressed TMEM16F, 16H and 16K (Fig. 1B). Next, IFETs were infected with adenovirus carrying the
CRE recombinase gene, and cells missing exon 2 of the TMEM16F gene were cloned (Fig. 1C). Removing exon 2 causes a frame-shift and truncates TMEM16F protein at the N-terminal region. Accordingly, Western blotting with an anti-TMEM16F antibody showed broad bands around 120 kDa in TMEM16F^{fl^{ox}fl^{ox}} but not TMEM16F^{-/-} IFETs (Fig. 1D). An apparent Mr of TMEM16F detected by SDS-PAGE is slightly larger than the expected Mr for TMEM16F (106 kDa), which may be explained by glycosylation, since mouse TMEM16F carry 6 putative N-glycosylation sites (Asn-X-Ser/Thr).

Requirement of TMEM16F for Ca²⁺-Induced, but not Apoptotic PS-Exposure---TMEM16F^{fl^{ox}fl^{ox}} IFETs treated at 20°C with a Ca²⁺ ionophore A23187 quickly exposed PS (Fig. 2A); however, this exposure was completely absent in TMEM16^{-/-} IFETs. Similarly, the treatment of TMEM16F^{fl^{ox}fl^{ox}} but not TMEM16F^{-/-} IFETs with A23187 caused rapid PE-exposure, detected by binding of RO-peptide (20) (data not shown). We then examined the role of TMEM16F in lipid internalization, and found that TMEM16F^{fl^{ox}fl^{ox}} but not TMEM16F^{-/-} IFETs internalized NBD-PC and NBD-GalCer upon Ca²⁺-ionophore treatment (Fig. 2B and 2C). These results indicated that TMEM16F is responsible for Ca²⁺-dependent lipid scrambling in IFETs.

In agreement with previous report showing that Fas is not expressed in T cells at early developmental stages (33), IFETs do not express Fas (Fig. 2D). When IFETs were transformed with mouse Fas, FasL efficiently activated caspase 3 (Fig. 2E) and the cells quickly responded by exposing PS (Fig. 2F). A TMEM16F-null mutation did not affect either FasL-induced PS exposure or caspase activation (Fig. 2E and 2F). In cells undergoing apoptosis, cell size decreases and cellular granularity increases (34). Treating the TMEM16F^{fl^{ox}fl^{ox}} and TMEM16F^{-/-} IFETs with FasL decreased the cell size (forward-scattered light, FSC) and increased the cellular granularity (side-scattered light, SSC) to the same extent (Fig. 2G). Therefore, we concluded that caspase-dependent apoptotic PS exposure and cell shrinkage take place independently of TMEM16F.

TMEM16 Family Members’ Abilities to Scramble Lipids---TMEM16F scrambled not only PS and PE, but also other lipids (Fig. 2). To examine the lipid scramble activity of other TMEM16 family members, TMEM16F^{-/-} IFETs expressing TMEM16 family members were incubated with a fluorescent probe, NBD-PC or NBD-GalCer. As shown in Fig. 4A, the TMEM16F^{-/-} IFETs expressing TMEM16D constitutively, or without A23187-treatment, internalized NBD-PC, and this internalization was strongly enhanced by the A23187 treatment. The A23187-induced NBD-PC uptake with the TMEM16D transformants was stronger than that observed with the 16F-transformants. Pre-treatment of TMEM16D-transformants with BAPTA-AM, a cell-permeable Ca²⁺-chelator, reduced the NBD-PC uptake observed without Ca²⁺-ionophore (Fig. 4B), suggesting that the endogenous cellular level of Ca²⁺ is sufficient to activate the scrambling activity of TMEM16D. As with PS exposure, the A23187-treatment did not induce NBD-PC uptake in IFETs expressing TMEM16A, 16B, 16E, 16H, or 16K (Fig. 4A). However, cells expressing TMEM16C, 16G, or 16J did internalize NBD-PC when treated with Ca²⁺-ionophore.
A similar result was obtained using NBD-GalCer as a substrate. When treated with A23187, TMEM16F−/− transformants expressing TMEM16F incorporated NBD-GalCer, but those expressing TMEM16A, 16B, 16E, 16H, or 16K did not (Fig. 4C). Cells expressing TMEM16D constitutively incorporated NBD-GalCer, and this uptake was enhanced by A23187 treatment. The cells expressing TMEM16C, 16G, or 16J also internalized NBD-GalCer, although TMEM16C’s ability to internalize NBD-GalCer was weaker compared with others. These results suggested that TMEM16C, 16D, 16F, 16G and 16J scramble various phospholipids and glycosphingolipids with some different substrate preference.

Chloride Channel Activity of Tmem16 Family Members—TMEM16A and 16B are Ca2+-dependent Cl− channels (22-24). To determine whether there are any other TMEM16 family Cl− channels, and whether the scramblase activity of TMEM16 family members depends on Cl−-channel activity, human 293T cells were co-transfected with the TMEM16 expression plasmid and a vector expressing GFP (Fig. 5A). The Ca2+-dependent chloride channel activity in GFP-positive cells was then determined by whole-cell patch clamp analysis (23). We chose 293T cell line as host cells because it has little Ca2+-dependent Cl−-channel activity (Fig. 5B) and was used successfully to show that TMEM16A and 16B act as Cl− channels (22-24).

In the patch-clamp analysis, increasing the intracellular free Ca2+ in the pipette solution to 500 nM yielded large outward rectifying currents in cells expressing TMEM16A or 16B (Fig. 5B and 5C). In contrast, other TMEM16 family members induced little if any Ca2+-dependent current in 293T cells, and the effect of increasing the pipette solution Ca2+ concentration from 500 nM to 5 μM was negligible (data not shown). Therefore, we concluded that within the TMEM16 family, only TMEM16A and 16B act as Ca2+-dependent Cl− channels, and that the phospholipid scrambling activity of TMEM16C, 16D, 16F, 16G, and 16J is independent of Cl−-channel activity.

Expression of Tmem16 Family Members in Mouse Tissues—Real-time PCR analysis of TMEM16 mRNA in various mouse tissues showed that each tissue expressed only a limited number of TMEM16 family members (Fig. 6). Of the two Cl− channels of TMEM16 family, TMEM16A and 16B, we found that TMEM16B was strongly expressed in brain and eye tissues, but weakly expressed or absent in tissues where TMEM16A was strongly expressed, such as the pancreas, liver, salivary glands, stomach, lung, skin, and mammary glands. Of the 5 lipid scramblases of TMEM16 family, 16C, 16D, 16F, 16G and 16J, TMEM16F was ubiquitously expressed in various tissues. Whereas, other scramblases were present only in a few tissues: TMEM16C and 16J were strongly expressed in the brain and skin, respectively, while 16D was found at a low level in a few tissues such as the brain, ovary, heart, and eyes, and 16G and 16J were found in the stomach and intestines. Of the TMEM16 proteins that did not show scramblase or Cl−-channel activity, 16H and 16K were expressed ubiquitously in various tissues, while 16E was expressed only in the muscle and skin.

Discussion

Various biological processes require that PS, normally located in the inner plasma membrane leaflets, be exposed to the outer leaflet in response to Ca2+ (11,15). Previously, our search for a Ca2+-activated phospholipid scramblase identified TMEM16F, a protein with eight transmembrane regions (20). Here we showed that Tmem16F−/− deficient cells failed to expose PS in response to Ca2+. However, FasL-induced cell shrinkage, PS exposure, and caspase activation, were all comparable between the wild-type and Tmem16F−/− IFET cells; this agrees with our previous results that a constitutively active form of TMEM16F has no effect on FasL-induced apoptotic cell death (38). This is also consistent with the report by Williamson et al. (39) that an EBV-transformed cell line established from a Scott patient exposed PS in response to apoptotic signals but not in response to Ca2+, and it supports the proposal that there are two distinct pathways for PS exposure in platelets (40). On the other hand, Martins et al. (41) recently suggested that TMEM16F is involved in apoptotic cell death, based on PS-exposure and cell shrinkage in a study using the siRNA and the TMEM16F inhibitor CaCC_inh-AO1. Whether these apparently different results are due to different methods and cell lines remains to be clarified.

IFETs expressed TMEM16F, 16H and 16K; of these only 16F acted as a Ca2+-dependent phospholipid scramblase. This result was consistent with our finding that Tmem16F−/− deficient IFETs failed to expose PS when treated with Ca2+ ionophore. However, our results are inconsistent with a previously reported finding that Ca2+ is required to expose PS during apoptotic cell death (42). Preliminary analysis with several cell lines suggests that the Ca2+ requirement for apoptotic PS exposure depends on cell lines; Ca2+ is required for apoptotic PS exposure in mouse T cell lymphoma WR19L, but not in Ba/F3 and IFETs (J. S. and S. N., unpublished results). How this is regulated may become clear only when the scramblase responsible for apoptotic PS exposure is identified.

There are ten TMEM16 family members, which all have 8 transmembrane regions with cytosolic N- and C-termini (35,36). When TMEM16A and 16B were found to be Cl− channels, it was thought that other family members would
have the same function. This family was therefore designated as the “anoctamin” or “ano” (anion and octa) family (24,35,43). However, except for one report of Cl-channel activity in TMEM16F, 16G and 16K (44), Cl-channel activity has only been detected for TMEM16A and 16B [(45) and this report]. Duran et al. (2012) suggested that other family members might not act as Cl channels because of their intracellular localization. Here, we showed that five TMEM16 family members, 16C, 16D, 16F, 16G, and 16J can scramble phospholipids and/or glycosphingolipids, with different preference to lipids. TMEM16G and 16F are present in the plasma membrane (20)(K.I. and S.N., unpublished results), and it is likely that other TMEM16- family scramblases are also located in the plasma membrane. On the other hand, TMEM16 family members (16E, 16H, and 16K) that have neither scramblase activity nor Cl channel activity may not be present in the plasma membrane. In fact, immunohistochemical analysis with hamster mAb against TMEM16E and 16K showed that they are localized in endoplasmic reticulum or Golgi apparatus (S. Gyobu, K.I., J.S., and S.N., unpublished results). We found here that TMEM16C scrambles PC and GalCer, but not PS, suggesting a substrate specificity for TMEM16 family members. Identification of the active site, and its mutational analysis will be necessary to understand how this specificity is generated.

The ABC transporters and P-type ATPases encompass transporters that regulate lipid efflux and influx, respectively, in an ATP-dependent manner (46,47). These families include channels for cationic and anionic ions. We showed here that TMEM16 family members, which are activated by Ca\(^{2+}\), also can be divided into lipid scramblases (16C, 16D, 16F, 16G and 16J) and Cl channels (16A and 16B). The amino acid sequence in the first cytoplasmic region is well-conserved among TMEM16 family members, and suggests its common role such as Ca\(^{2+}\)-signaling (38,48). The third extracellular loop, which forms a “pore region” and plays an important role in the Cl channel activity (24), is also well conserved among the family members. Whether this region is involved in the lipid scrambling remains to be determined. In any case, it will be an interesting challenge to determine how some TMEM16 members work as Cl-channel, while others work as lipid scramblases.

The amino acid sequences of TMEM16E that showed neither scramblase nor Cl-channel activity is 49.2% identical with that of TMEM16F; this is higher than the 40.7% identity between lipid scramblase TMEM16D and 16F. This, along with TMEM16E’s localization to intracellular vesicles (49), suggests that it may be a lipid scramblase that works at intracellular vesicles. TMEM16E mutations cause human diseases GDD (gnathodiaphyseal dysplasia), MMD3 (Miyoshi muscular dystrophy 3), and LGMD2L (muscular dystrophy, limb-girdle, type 2L) (50,51) in bone and muscle, and understanding whether TMEM16E functions as a Cl channel or lipid scramblase will be important to understanding the pathology of these diseases. TMEM16H and 16K, that also have neither the scramblase nor Cl channel activity, are primordial members of the TMEM16 family, and their orthologs can be found in C. elegans and Drosophila. To understand how the loss-of function mutations of TMEM16K gene causes cerebellar ataxia in humans (52), it will be necessary to elucidate the TMEM16K’s biochemical function.

The PS exposure to the cell surface plays an important role not only in apoptotic cell death and of platelet activation, but also in cell fusion (8,53), neutrophils turnover (54), and the interaction of lymphocytes with antigen-presenting cells (55,56). In most of these processes, the PS exposure depends on Ca\(^{2+}\), suggesting that a TMEM16 family member is involved. However, of the five TMEM family members (16C, 16D, 16F, 16G and 16J) that can scramble lipids, only 16F is expressed in muscle, lymphocytes, and bone marrow. In fact, Ehlen et al. recently showed that TMEM16F\(^{-/-}\) osteoblasts lost the ability to scramble PS, leading to the decreased deposition of mineral in the bone tissues (57). It will be interesting to examine whether the other tissues such as muscles and immune system develop normally in TMEM16F\(^{-/-}\) mice, or in patients with Scott’s syndrome.

References

Acknowledgments—We are grateful to Dr. H. Ohmori (Department of Physiology, Graduate School of Medicine, Kyoto University) for valuable advices on electrophysiology, and Dr. T. Akagi (KAN Research Institute, Kobe, Japan) for pCX4 vector. We thank Mr. E. Imanishi for technical assistance, and Ms. M. Fujii for secretarial assistance.

FOOTNOTES

This work was supported in part by Grants-in-Aid from the Ministry of Education, Science, Sports, and Culture in Japan, and Research Grants from the Naito Foundation and Nakajima Foundation to J.S.
FIGURE 3.

are shown.

and analyzed by FACSAria. Fas

determined at the indicated time by FACSAria

reaction mixture, the BSA

-treated at 15°C with 250 nM A23187 in the presence of 100

fluorescence intensity) Annexin V

PS exposure.

FIGURE 2.

weight standards (Precision Plus Standard, Bio

SDS

Chromosomal DNA from

the IFET cell line.

experiment was carried out for three times, and the average value was plo

TMEM16F family members in IFETs.

In

was replaced by a

allele together with the targeting vector. Recognition sites for

alleles

T. I. is a Research Fellow of the Japan Society for the Promotion of Science.

Abbreviations used are: ES, embryonic stem cells; FasL, Fas ligand; IFET, immortalized fetal thymocyte; NBD-PC,

1-oleoyl-2-{6-[7-nitro-2-1,3-benzoxadiazol-4-yl]amino}hexanoyl]-sn-glycero-3-phosphocholine; NBD-GalCer,

N-[6-[7-nitro-2-1,3-benzoxadiazol-4-yl]amino]hexanoyl]-D-galactosyl-β1-1’-sphingosine; PC, phosphatidylcholine; PE,

phosphatidylethanolamine; PI, Propidium Iodide; PS, phosphatidyserine; Q-VD-OPh, quinolyl-valyl-4-methylaspartyl

-[2,6-difluorophenoxy]-methyl ketone; MFI, mean fluorescence intensity.

FIGURE LEGENDS

FIGURE 1. Establishment of TMEM16F+/− IFET cell line. A, Schematic representation of wild-type and mutant TMEM16F alleles together with the targeting vector. Recognition sites for Eco RI (E), Eco RV (V), Kpn I (K), and Sma I (S) in the flanking region of exon 2 (filled box) are indicated. In the target vector, a 1.0-kb DNA fragment carrying exon 2 and its flanking region was replaced by a 2.7-kb fragment carrying two loxP sequences (filled arrowhead) and PGK-neo (Neo5) flanked by FRT sequences (gray arrowhead). Diphtheria toxin A-fragment (DT-A) driven by the tk promoter was inserted at 5’ site of the vector. In NeoFRT allele, TMEM16F chromosomal gene was replaced by the targeting vector. In Floxed allele, the FRT-flanked NeoR gene was removed by FLP recombines. In deleted allele, the loxP-flanked exon 2 of TMEM16F gene was deleted by Cre recombines. Primers used in Fig. 1C are indicated by arrows. Scale bar, 1.0 kb. B, Real-time PCR analysis for mRNA of TMEM16F family members in IFETs. An IFET cell line was established from TMEM16F+/− fetal thymocytes. TMEM16A-16H, 16J and 16K mRNA in TMEM16F+/− IFETs was quantified by real-time PCR, and expressed relative to β-actin mRNA. The experiment was carried out for three times, and the average value was plotted with S.D. (bar). C, Deletion of TMEM16F exon 2 in the IFET cell line. TMEM16F+/− IFETs were infected by Cre-bearing adenovirus to establish TMEM16F−/− IFET cells. Chromosomal DNA from TMEM16F+/− and TMEM16F−/− IFETs was analyzed by PCR with the primers indicated in Fig. 1A. D, Western blots for TMEM16F in TMEM16F+/− and TMEM16F−/− IFETs. Cell lysates (10 µg proteins) were separated by 7.5% SDS-PAGE, and blotted with rabbit anti-TMEM16F serum (upper panel) or anti-α-tubulin antibody (lower panel). Molecular weight standards (Precision Plus Standard, Bio-Rad) are shown in kDa at left.

FIGURE 2. An indispensable role of TMEM16F for Ca2+-induced but not apoptotic PS exposure. A, Ca2+- ionophore induced PS exposure. TMEM16F+/− and TMEM16F−/− IFETs were treated at 20°C with 3.0 µM A23187 in the presence of Cy5-labeled Annexin V. Annexin V-binding to the cells was monitored by flow cytometry for 10 min, and expressed in MFI (mean fluorescence intensity). B and C, Ca2+ ionophore induced lipid internalization. TMEM16F+/− and TMEM16F−/− IFETs were treated at 15°C with 250 nM A23187 in the presence of 100 nM NBD-PC (B) or 250 nM NBD-GalCer (C). Using aliquots of the reaction mixture, the BSA-non extractable level of NBD-PC or NBD-GalCer in the SytoxBlue-negative population was determined at the indicated time by FACSaria, and expressed in MFI. D, Transformation of IFETs with mouse Fas. TMEM16F+/− and TMEM16F−/− IFETs were infected with a retrovirus carrying mouse Fas, and were stained with a PE-labeled hamster mAb against mouse Fas (green). The staining profile of parental cells is also shown (red). E-G, FasL-induced apoptosis. Fas-expressing TMEM16F+/− and TMEM16F−/− IFETs were treated at 37°C for 2 h with 60 units/ml FasL in the absence or presence of 50 µM Q-VD-OPh. In E, the cells were permeabilized with 90% methanol, and stained with rabbit anti-active caspase 3 followed by incubation with Alexa 488-labeled goat anti-rabbit IgG. In F, cells were stained with Cy5-labeled Annexin V and PI and analyzed by FACSaria. In G, cells were analyzed by FACSaria before and after FasL treatment; the FSC and SSC profiles are shown.

FIGURE 3. Ca2+-dependent PS exposure by TMEM16 family members. The ten TMEM16 family members were FLAG-tagged at C-terminus and introduced into TMEM16F−/− IFETs to establish stable transformants. A, Western blotting. TMEM16 protein expression in each transformant was analyzed by Western blotting with an anti-FLAG mAb. Note that the amount of
TMEM16K lysate protein analyzed was one-eighth that of the others. B, Ca\(^{2+}\)-induced PS exposure by TMEM16 family members. TMEM16\(F^{-/-}\) IFETs transformed with the indicated TMEM16 family member were stimulated with 3.0 \(\mu\)M A23187. Annexin V binding was monitored with a FACS Aria at 20°C for 2 min, and expressed in MFI. The experiments were carried out for three times, and the average values were plotted with S.D. (bars).

FIGURE 4. Ca\(^{2+}\)-dependent internalization of NBD-PC and NBD-GalCer by TMEM16 family members. A and C, The ability of TMEM16 family members to internalize NBD-PC and NBD-GalCer. TMEM16\(F^{-/-}\) IFETs transformed with the indicated TMEM16 family member were stimulated with 3.0 \(\mu\)M A23187. Annexin V binding was monitored with a FACSAria at 20°C for 2 min, and expressed in MFI. The experiments were carried out for three times, and the average values were plotted with S.D. (bars).
Suzuki et al. Figure 2
Suzuki et al. Figure 5