Samelson products in p-regular exceptional Lie groups

Sho Hasui ${ }^{\mathrm{a}, *}$, Daisuke Kishimoto ${ }^{\mathrm{a}, 1}$, Akihiro Ohsita $^{\text {b }}$
${ }^{a}$ Department of Mathematics, Kyoto University, Kyoto, 606-8502, Japan
${ }^{b}$ Faculty of Economics, Osaka University of Economics, Osaka 533-8533, Japan

Abstract

The (non)triviality of Samelson products of the inclusions of the spheres into p-regular exceptional Lie groups is completely determined, where a connected Lie group is called p-regular if it has the p-local homotopy type of a product of spheres.

Keywords: exceptional Lie group, Samelson product, Weyl group invariant 2010 MSC: Primary 55Q15; Secondary 57T10

1. Introduction and statement of the result

For a homotopy associative H -space with inverse X, the correspondence $X \wedge X \rightarrow X,(x, y) \mapsto x y x^{-1} y^{-1}$ induces a binary operation

$$
\langle-,-\rangle: \pi_{i}(X) \otimes \pi_{j}(X) \rightarrow \pi_{i+j}(X)
$$

called the Samelson product in X. We consider the basic Samelson products in p-regular Lie groups. Let G be a compact simply connected Lie group. By the Hopf theorem, G has the rational homotopy type of the product $S^{2 n_{1}-1} \times \cdots \times S^{2 n_{\ell}-1}$, where $n_{1} \leq \cdots \leq n_{\ell}$. The sequence n_{1}, \ldots, n_{ℓ} is called the type of G and is denoted by $\mathrm{t}(G)$. We here list the types of exceptional Lie groups.

[^0]| G | $\mathrm{t}(G)$ | G | $\mathrm{t}(G)$ |
| :--- | :--- | :--- | :--- |
| G_{2} | 2,6 | E_{6} | $2,5,6,8,9,12$ |
| $\mathrm{~F}_{4}$ | $2,6,8,12$ | E_{7} | $2,6,8,10,12,14,18$ |
| | | E_{8} | $2,8,12,14,18,20,24,30$ |

We say that G is p-regular if it has the p-local homotopy type of a product of spheres. By the classical result of Serre, it is known that G is p-regular if and only if $p \geq n_{\ell}$, in which case

$$
G_{(p)} \simeq S_{(p)}^{2 n_{1}-1} \times \cdots \times S_{(p)}^{2 n_{\ell}-1}
$$

Suppose that G is p-regular, and let $\epsilon_{2 n_{i}-1}$ be the composite

$$
S^{2 n_{i}-1} \xrightarrow{\mathrm{incl}} S_{(p)}^{2 n_{1}-1} \times \cdots \times S_{(p)}^{2 n_{\ell}-1} \simeq G_{(p)}
$$

where if there are more than one i in $\mathrm{t}(G)$, we distinguish the corresponding $\epsilon_{2 i-1}$ but not write it explicitly. The Samelson products $\left\langle\epsilon_{2 i-1}, \epsilon_{2 j-1}\right\rangle$ are fundamental in studying the homotopy (non)commutativity of $G_{(p)}$ as in $[\mathrm{KK}]$ and its applications (See [KKTh, KKTs, Th], for example). So we would like to determine their (non)triviality. In [B], Bott computes the Samelson products in the classical groups $\mathrm{U}(n)$ and $\mathrm{Sp}(n)$. Then by combining with the information of the p-primary component of the homotopy groups of spheres $[\mathrm{To}]$, the (non)triviality of the Samelson products $\left\langle\epsilon_{2 i-1}, \epsilon_{2 j-1}\right\rangle$ is completely determined when $G=\operatorname{SU}(n), \operatorname{Sp}(n), \operatorname{Spin}(2 n+1)$, where $\operatorname{Sp}(n)_{(p)} \simeq \operatorname{Spin}(2 n+1)_{(p)}$ as loop spaces by $[\mathrm{F}]$ since p is odd. For example, when $G=\operatorname{SU}(n)$ and $p \geq n$, the type of G is given by $2, \ldots, n$ and

$$
\left\langle\epsilon_{2 i-1}, \epsilon_{2 j-1}\right\rangle \neq 0 \quad \text { if and only if } \quad i+j>p
$$

So apart from $\operatorname{Spin}(2 n)$, all we have to consider is the exceptional Lie groups. The (non)triviality of the Samelson products $\left\langle\epsilon_{2 i-1}, \epsilon_{2 j-1}\right\rangle$ is known only in a few cases, and the most general result so far is:

Theorem 1.1 (Hamanaka and Kono [HK]). Let G be a p-regular exceptional Lie group. If $i, j \in \mathrm{t}(G)$ satisfy $i+j=p+1$, then $\left\langle\epsilon_{2 i-1}, \epsilon_{2 j-1}\right\rangle$ is nontrivial.

Remark 1.2. The Samelson products in G_{2} are first computed in [O], and some more Samelson products in E_{7} and E_{8} are computed in [KK].

Based on this result, Kono posed the following conjecture (in a private communication).

Conjecture 1.3. Let G be a p-regular exceptional Lie group. For $i, j \in \mathrm{t}(G)$, there exists $k \in \mathrm{t}(G)$ satisfying $i+j=k+p-1$ if and only if $\left\langle\epsilon_{2 i-1}, \epsilon_{2 j-1}\right\rangle$ is nontrivial.

Notice that the only if part of the conjecture follows immediately from the information of the p-primary component of the homotopy groups of spheres [To] (cf. [KK]). We will prove the if part and obtain:

Theorem 1.4. Conjecture 1.3 is true.
The paper is structured as follows. In $\S 2$, we reduce the nontriviality of the Samelson products $\left\langle\epsilon_{2 i-1}, \epsilon_{2 j-1}\right\rangle$ in the p-regular Lie group G to a certain condition of the Steenrod operation \mathcal{P}^{1} on the $\bmod p$ cohomology of the classifying space $B G$. Then for a p-regular exceptional Lie group G, we compute the $\bmod p$ cohomology of $B G$ as the ring of invariants of the Weyl group of G. With this description of the $\bmod p$ cohomology of $B G$, we compute the action of \mathcal{P}^{1} on it. In $\S 3$, we prove that the above condition on \mathcal{P}^{1} is satisfied to complete the proof of Theorem 1.4.

2. Mod p cohomology of $B G$

2.1. Reduction

Let G be a compact simply connected Lie group. We first reduce Theorem 1.4 to the action of the Steenrod operation \mathcal{P}^{1} on the $\bmod p$ cohomology of the classifying space $B G$ as in [HK, KK]. Recall that if the integral homology of G has no p-torsion, the $\bmod p$ cohomology of the classifying space $B G$ is given by

$$
\begin{equation*}
H^{*}(B G ; \mathbb{Z} / p)=\mathbb{Z} / p\left[x_{2 i} \mid i \in \mathrm{t}(G)\right], \quad\left|x_{j}\right|=j \tag{1}
\end{equation*}
$$

When there are more than one i in $\mathrm{t}(G)$, we distinguish corresponding $x_{2 i}$ but do not write it explicitly as in the case of $\epsilon_{2 i-1}$ in the preceding section.

Lemma 2.1. Suppose that G is p-regular. For $i, j \in \mathrm{t}(G)$, if there is $k \in \mathrm{t}(G)$ such that $\mathcal{P}^{1} x_{2 k}$ involves $\lambda x_{2 i} x_{2 j}$ with $\lambda \neq 0$, then $\left\langle\epsilon_{2 i-1}, \epsilon_{2 j-1}\right\rangle$ is nontrivial.

Proof. Let $\bar{\epsilon}_{2 i}: S^{2 i} \rightarrow B G_{(p)}$ be the adjoint of $\epsilon_{2 i-1}$ for $i \in \mathrm{t}(G)$, and so we may assume that $\bar{\epsilon}_{2 i}^{*}\left(x_{2 i}\right)=u_{2 i}$ for a generator $u_{2 i}$ of $H^{2 i}\left(S^{2 i} ; \mathbb{Z} / p\right)$. Assume that the Samelson product $\left\langle\epsilon_{2 i-1}, \epsilon_{2 j-1}\right\rangle$ is trivial, which is equivalent to the triviality of the Whitehead product $\left[\bar{\epsilon}_{2 i}, \bar{\epsilon}_{2 j}\right]$ by the adjointness of Samelson products and Whitehead products. Then the map $\bar{\epsilon}_{2 i} \vee \bar{\epsilon}_{2 j}: S^{2 i} \vee S^{2 j} \rightarrow B G_{(p)}$ extends to a map $\mu: S^{2 i} \times S^{2 j} \rightarrow B G_{(p)}$, up to homotopy. Hence since $\mathcal{P}^{1} x_{2 k}$ involves $\lambda x_{2 i} x_{2 j}$ with $\lambda \neq 0$, we have

$$
\mu^{*}\left(\mathcal{P}^{1} x_{2 k}\right)=\mu^{*}\left(\lambda x_{2 i} x_{2 j}\right)=\lambda u_{2 i} \times u_{2 j} \neq 0 .
$$

On the other hand, by the naturality of \mathcal{P}^{1}, we also have

$$
\mu^{*}\left(\mathcal{P}^{1} x_{2 k}\right)=\mathcal{P}^{1} \mu^{*}\left(x_{2 k}\right)=0
$$

since \mathcal{P}^{1} is trivial on $H^{*}\left(S^{2 i} \times S^{2 j} ; \mathbb{Z} / p\right)$, which is a contradiction. Therefore the proof is completed.

By Lemma 2.1, we obtain the if part of Theorem 1.4 by the following.
Theorem 2.2. Let G be a p-regular exceptional Lie group. If $i, j, k \in \mathrm{t}(G)$ satisfy $i+j=k+p-1, \mathcal{P}^{1} x_{2 k}$ involves $\lambda x_{2 i} x_{2 j}$ with $\lambda \neq 0$.

The rest of this paper is devoted to prove Theorem 2.2.

2.2. Generators

In this subsection, we choose generators of the $\bmod p$ cohomology of $B G$. We set notation. Hereafter, let p be a prime greater than 5. Recall that the integral homology of G is p-torsion free for $p>5$, and so the $\bmod p$ cohomology of $B G$ is given as (1). For a homomorphism $\rho: H \rightarrow K$ between Lie groups, we denote the induced map $B H \rightarrow B K$ ambiguously by ρ.

We first choose generators of the $\bmod p$ cohomology of $B \mathrm{E}_{8}$. Let T be a maximal torus of E_{8}. Then as in $[\mathrm{MT}]$, since $p>5$, the inclusion $T \rightarrow \mathrm{E}_{8}$ induces an isomorphism

$$
\begin{equation*}
H^{*}\left(B \mathrm{E}_{8} ; \mathbb{Z} / p\right) \stackrel{\cong}{\rightarrow} H^{*}(B T ; \mathbb{Z} / p)^{W\left(\mathrm{E}_{8}\right)}, \tag{2}
\end{equation*}
$$

where the right hand side is the ring of invariants of the Weyl group $W\left(\mathrm{E}_{8}\right)$. We calculate invariants of $W\left(\mathrm{E}_{8}\right)$ through a maximal rank subgroup of E_{8}. Let $\epsilon_{1}, \ldots, \epsilon_{8}$ be the standard basis of \mathbb{R}^{8} which is regarded as the Lie algebra of T. As in [MT], we choose simple roots of E_{8} as
$\alpha_{1}=\frac{1}{2}\left(\epsilon_{1}+\epsilon_{8}\right)-\frac{1}{2}\left(\epsilon_{2}+\epsilon_{3}+\epsilon_{4}+\epsilon_{5}+\epsilon_{6}+\epsilon_{7}\right), \quad \alpha_{2}=\epsilon_{1}+\epsilon_{2}, \quad \alpha_{i}=\epsilon_{i-1}-\epsilon_{i-2} \quad(3 \leq i \leq 8)$,
by which the extended Dynkin diagram of E_{8} is described as

where $\tilde{\alpha}$ is the dominant root. Removing α_{1} from the diagram, we get the maximal rank subgroup of E_{8} which is of type D_{8}. Then there is a homomorphism $\rho_{1}: \operatorname{Spin}(16) \rightarrow \mathrm{E}_{8}$ which induces a monomorphism

$$
\rho_{1}^{*}: H^{*}\left(B \mathrm{E}_{8} ; \mathbb{Z} / p\right) \rightarrow H^{*}(B \operatorname{Spin}(16) ; \mathbb{Z} / p)
$$

By putting $t_{1}=-\epsilon_{1}, t_{8}=-\epsilon_{8}$ and $t_{i}=\epsilon_{i}(2 \leq i \leq 7), H^{*}(B T ; \mathbb{Z} / p)$ is identified with the polynomial ring $\mathbb{Z} / p\left[t_{1}, \ldots, t_{8}\right]$. Let c_{i} and p_{i} be the i-th elementary symmetric functions in t_{1}, \ldots, t_{8} and in $t_{1}^{2}, \ldots, t_{8}^{2}$, respectively. As in (2), we have an isomorphism

$$
H^{*}(B \operatorname{Spin}(16) ; \mathbb{Z} / p) \xrightarrow{\cong} \mathbb{Z}\left[t_{1}, \ldots, t_{8}\right]^{W\left(\mathrm{D}_{8}\right)}=\mathbb{Z} / p\left[p_{1}, \ldots, p_{7}, c_{8}\right],
$$

and then since $W\left(\mathrm{E}_{8}\right)$ is generated by $W\left(\mathrm{D}_{8}\right)$ and the reflection φ corresponding to the simple root α_{1}, it follows from (2) that

$$
\begin{equation*}
H^{*}\left(B \mathrm{E}_{8} ; \mathbb{Z} / p\right) \cong \mathbb{Z} / p\left[p_{1}, \ldots, p_{7}, c_{8}\right] \cap \mathbb{Z} / p\left[t_{1}, \ldots, t_{8}\right]^{\varphi} \tag{3}
\end{equation*}
$$

Hence generators of $H^{*}\left(B \mathrm{E}_{8} ; \mathbb{Z} / p\right)$ are chosen as elements of $\mathbb{Z} / p\left[p_{1}, \ldots, p_{7}, c_{8}\right]$ which are invariant under φ. In [HK], the action of φ on $p_{1}, \ldots, p_{8}, c_{8} \in$ $\mathbb{Z} / p\left[t_{1}, \ldots, t_{8}\right]$ is described as

$$
\varphi\left(p_{1}\right)=p_{1}, \quad \varphi\left(p_{i}\right) \equiv p_{i}+h_{i} c_{1}, \quad \varphi\left(c_{8}\right) \equiv c_{8}-\frac{1}{4} c_{7} c_{1} \quad \bmod \left(c_{1}^{2}\right)
$$

for $2 \leq i \leq 8$, where
$h_{2}=\frac{3}{2} c_{3}, \quad h_{3}=-\frac{1}{2}\left(5 c_{5}+c_{3} c_{2}\right), \quad h_{4}=\frac{1}{2}\left(7 c_{7}+3 c_{5} c_{2}-c_{4} c_{3}\right)$,
$h_{5}=-\frac{1}{2}\left(5 c_{7} c_{2}-3 c_{6} c_{3}+c_{5} c_{4}\right), \quad h_{6}=-\frac{1}{2}\left(5 c_{8} c_{3}-3 c_{7} c_{4}+c_{6} c_{5}\right), \quad h_{7}=\frac{1}{2}\left(3 c_{8} c_{5}-c_{7} c_{6}\right)$.

We put

$$
\begin{aligned}
\hat{x}_{4}= & p_{1}, \\
\hat{x}_{16}= & 12 p_{4}-\frac{18}{5} p_{3} p_{1}+p_{2}^{2}+\frac{1}{10} p_{2} p_{1}^{2}+168 c_{8}, \\
\hat{x}_{24}= & 60 p_{6}-5 p_{5} p_{1}-5 p_{4} p_{2}+3 p_{3}^{2}-p_{3} p_{2} p_{1}+\frac{5}{36} p_{2}^{3}+110 c_{8} p_{2}, \\
\hat{x}_{28}= & 480 p_{7}+40 p_{5} p_{2}-12 p_{4} p_{3}-p_{3} p_{2}^{2}-3 p_{4} p_{2} p_{1}+\frac{24}{5} p_{3}^{2} p_{1}+\frac{11}{36} p_{2}^{3} p_{1}+312 c_{8} p_{3}-82 c_{8} p_{2} p_{1}, \\
\hat{x}_{36}= & 480 p_{7} p_{2}+72 p_{6} p_{3}-30 p_{5} p_{4}-\frac{25}{2} p_{5} p_{2}^{2}+9 p_{4} p_{3} p_{2}-\frac{18}{5} p_{3}^{3}-\frac{1}{4} p_{3} p_{2}^{3}+1020 c_{8} p_{5}+102 c_{8} p_{3} p_{2} \\
& -42 p_{6} p_{2} p_{1}+9 p_{5} p_{3} p_{1}-\frac{3}{2} p_{4} p_{2}^{2} p_{1}+\frac{9}{5} p_{3}^{2} p_{2} p_{1}+\frac{1}{24} p_{2}^{4} p_{1}-330 c_{8} p_{4} p_{1}-\frac{89}{2} c_{8} p_{2}^{2} p_{1}-300 c_{8}^{2} p_{1} \\
& +\frac{89}{4} p_{5} p_{2} p_{1}^{2}-\frac{15}{2} p_{4} p_{3} p_{1}^{2}-\frac{11}{20} p_{3} p_{2}^{2} p_{1}^{2}+156 c_{8} p_{3} p_{1}^{2}+\frac{5}{16} p_{4} p_{2} p_{1}^{3}+\frac{9}{8} p_{3}^{2} p_{1}^{3}+\frac{27}{320} p_{2}^{3} p_{1}^{3} \\
& -\frac{323}{8} c_{8} p_{2} p_{1}^{3}-\frac{195}{32} p_{5} p_{1}^{4}-\frac{13}{64} p_{3} p_{2} p_{1}^{4}-\frac{7}{192} p_{2}^{2} p_{1}^{5}+\frac{195}{32} c_{8} p_{1}^{5}+\frac{3}{32} p_{3} p_{1}^{6}-\frac{1}{1024} p_{2} p_{1}^{7}, \\
\hat{x}_{40}= & 480 p_{7} p_{3}+50 p_{6} p_{2}^{2}+50 p_{5}^{2}-10 p_{5} p_{3} p_{2}-\frac{25}{2} p_{4}^{2} p_{2}+9 p_{4} p_{3}^{2}-\frac{25}{36} p_{4} p_{2}^{3}+\frac{3}{4} p_{3}^{2} p_{2}^{2}+\frac{25}{864} p_{2}^{5} \\
& +2400 c_{8} p_{6}+250 c_{8} p_{4} p_{2}+3550 c_{8}^{2} p_{2}+6 c_{8} p_{3}^{2}-\frac{175}{18} c_{8} p_{2}^{3}, \\
\hat{x}_{48}= & -200 p_{7} p_{5}-60 p_{7} p_{3} p_{2}+3 p_{6} p_{3}^{2}+\frac{25}{9} p_{6} p_{2}^{3}+\frac{25}{3} p_{5}^{2} p_{2}-\frac{5}{2} p_{5} p_{4} p_{3}-\frac{25}{24} p_{5} p_{3} p_{2}^{2}-\frac{25}{48} p_{4}^{2} p_{2}^{2} \\
& +p_{4} p_{3}^{2} p_{2}+\frac{25}{864} p_{4} p_{2}^{4}-\frac{3}{10} p_{3}^{4}-\frac{1}{36} p_{3}^{2} p_{2}^{3}-\frac{25}{62208} p_{2}^{6}-400 c_{8} p_{6} p_{2}-115 c_{8} p_{5} p_{3}-\frac{25}{12} c_{8} p_{4} p_{2}^{2} \\
& +3 c_{8} p_{3}^{2} p_{2}+\frac{25}{27} c_{8} p_{2}^{4}+75 c_{8} p_{4}^{2}-300 c_{8}^{2} p_{4}-\frac{1525}{12} c_{8}^{2} p_{2}^{2}+300 c_{8}^{3} .
\end{aligned}
$$

We shall prove that the elements \hat{x}_{i} are invariant under φ and algebraically independent, implying that they are generators of $H^{*}\left(B \mathrm{E}_{8} ; \mathbb{Z} / p\right)$ through the isomorphism (3). Hamanaka and Kono [HK] calculate φ-invariants in dimension 4,16 and 24 as follows.

Proposition 2.3 (Hamanaka and Kono [HK]). Let $\bar{x}_{i} \in \mathbb{Z} / p\left[p_{1}, \ldots, p_{7}, c_{8}\right]$ with $\left|\bar{x}_{i}\right|=i$.

1. If $\varphi\left(\bar{x}_{i}\right) \equiv \bar{x}_{i} \bmod \left(c_{1}^{2}\right)$ in $\mathbb{Z} / p\left[t_{1}, \ldots, t_{8}\right]$ for $i=4,16$, then

$$
\bar{x}_{4}=\alpha \hat{x}_{4} \quad \text { and } \quad \bar{x}_{16}=\beta \hat{x}_{16}+\gamma \hat{x}_{4}^{4} \quad(\alpha, \beta, \gamma \in \mathbb{Z} / p) .
$$

2. If $\varphi\left(\bar{x}_{24}\right) \equiv \bar{x}_{24} \bmod \left(c_{1}^{2}, c_{2}^{2}\right)$ in $\mathbb{Z} / p\left[t_{1}, \ldots, t_{8}\right]$, then

$$
\bar{x}_{24} \equiv \alpha \hat{x}_{24} \quad(\alpha \in \mathbb{Z} / p)
$$

We further calculate φ-invariants in dimension $28,36,40,48$, where a partial calculation in dimension 28 is given in [KK].

Proposition 2.4 (cf. [KK]). Let $\bar{x}_{i} \in \mathbb{Z} / p\left[p_{1}, \ldots, p_{7}, c_{8}\right]$ with $\left|\bar{x}_{i}\right|=i$.

1. If $\varphi\left(\bar{x}_{28}\right) \equiv \bar{x}_{28} \bmod \left(c_{1}^{2}, c_{2}^{2}\right)$ in $\mathbb{Z} / p\left[t_{1}, \ldots, t_{8}\right]$, then

$$
\bar{x}_{28} \equiv \alpha \hat{x}_{28}+\beta \hat{x}_{4} \hat{x}_{24} \quad \bmod \left(p_{1}^{2}\right) \quad(\alpha, \beta \in \mathbb{Z} / p) .
$$

2. If $\varphi\left(\bar{x}_{36}\right) \equiv \bar{x}_{36} \bmod \left(c_{1}^{2}\right)$ in $\mathbb{Z} / p\left[t_{1}, \ldots, t_{8}\right]$, then

$$
\bar{x}_{36}=\alpha_{1} \hat{x}_{36}+\alpha_{2} \hat{x}_{4} \hat{x}_{16}^{2}+\alpha_{3} \hat{x}_{4}^{2} \hat{x}_{28}+\alpha_{4} \hat{x}_{4}^{3} \hat{x}_{24}+\alpha_{5} \hat{x}_{4}^{5} \hat{x}_{16}+\alpha_{6} \hat{x}_{4}^{9} \quad\left(\alpha_{i} \in \mathbb{Z} / p\right) .
$$

3. If $\varphi\left(\bar{x}_{i}\right) \equiv \bar{x}_{i} \bmod \left(c_{1}^{2}, c_{2}\right)$ in $\mathbb{Z} / p\left[t_{1}, \ldots, t_{8}\right]$ for $i=40,48$, then

$$
\bar{x}_{40} \equiv \alpha_{1} \hat{x}_{40}+\alpha_{2} \hat{x}_{24} \hat{x}_{16}, \quad \bar{x}_{48} \equiv \beta_{1} \hat{x}_{48}+\beta_{2} \hat{x}_{24}^{2}+\beta_{3} \hat{x}_{16}^{3} \quad \bmod \left(p_{1}\right) \quad\left(\alpha_{i}, \beta_{i} \in \mathbb{Z} / p\right) .
$$

Proof. The proof is the same as Proposition 2.3 given in [HK], and we only consider \bar{x}_{28} since other cases are analogous. Excluding the indeterminacy $\hat{x}_{4} \hat{x}_{24}$, we may suppose that \bar{x}_{28} is a linear combination
$\lambda_{1} p_{7}+\lambda_{2} p_{5} p_{2}+\lambda_{3} p_{4} p_{3}+\lambda_{4} p_{4} p_{2} p_{1}+\lambda_{5} p_{3}^{2} p_{1}+\lambda_{6} p_{3} p_{2}^{2}+\lambda_{7} p_{2}^{3} p_{1}+\lambda_{8} c_{8} p_{3}+\lambda_{9} c_{8} p_{2} p_{1}$
for $\lambda_{i} \in \mathbb{Z} / p$. By the congruence $\varphi\left(\bar{x}_{28}\right) \equiv \bar{x}_{28} \bmod \left(c_{1}^{2}, c_{2}^{2}\right)$ and the equality $p_{i}=\sum_{j+k=2 i}(-1)^{i+j} c_{j} c_{k}$, we get linear equations in $\lambda_{1}, \ldots, \lambda_{9}$. Solving these equations, we see that $\bar{x}_{28} \equiv \alpha \hat{x}_{28} \bmod \left(c_{1}^{2}, c_{2}^{2}\right)$, thus the proof is completed since the intersection of the ideal $\left(c_{1}^{2}, c_{2}^{2}\right)$ and the subring $\mathbb{Z} / p\left[p_{1}, \ldots, p_{7}, c_{8}\right]$ of $\mathbb{Z} / p\left[t_{1}, \ldots, t_{8}\right]$ is the ideal $\left(p_{1}^{2}\right)$ in $\mathbb{Z} / p\left[p_{1}, \ldots, p_{7}, c_{8}\right]$.

As an immediate consequence of Proposition 2.3 and 2.4, we obtain:
Corollary 2.5. We can choose a generator x_{i} of $H^{*}\left(B \mathrm{E}_{8} ; \mathbb{Z} / p\right)$ for $i \neq 60$ in such a way that
$\rho_{1}^{*}\left(x_{i}\right)=\hat{x}_{i} \quad(i=4,16,36), \quad \rho_{1}^{*}\left(x_{i}\right) \equiv \hat{x}_{i} \quad \bmod \left(p_{1}^{2}\right) \quad(i=24,28)$
$\rho_{1}^{*}\left(x_{i}\right) \equiv \hat{x}_{i} \quad \bmod \left(p_{1}\right) \quad(i=40,48)$.

Hereafter, we choose generators of $H^{*}\left(B \mathrm{E}_{8}, \mathbb{Z} / p\right)$ as in Corollary 2.5. From these generators, we next choose generators of $H^{*}(B G ; \mathbb{Z} / p)$ for $G=$ $\mathrm{F}_{4}, \mathrm{E}_{6}, \mathrm{E}_{7}$. Recall that there is a commutative diagram of canonical homomorphisms

Let us consider the induced map of arrows in the mod p cohomology of the classifying spaces. Obviously, we have

$$
\begin{array}{lll}
\theta_{1}^{*}\left(p_{i}\right)=p_{i}(i=1,2,3,4,5), & \theta_{1}^{*}\left(p_{6}\right)=c_{6}^{2}, & \theta_{1}^{*}\left(p_{7}\right)=0, \quad \theta_{1}^{*}\left(c_{8}\right)=0, \\
\theta_{2}^{*}\left(p_{i}\right)=p_{i}(i=1,2,3,4), & \theta_{2}^{*}\left(p_{5}\right)=c_{5}^{2}, & \theta_{2}^{*}\left(c_{6}\right)=0, \\
\theta_{3}^{*}\left(p_{i}\right)=p_{i}(i=1,2,3,4), & \theta_{3}^{*}\left(c_{5}\right)=0 . & \tag{7}
\end{array}
$$

To determine the induced map of α_{i}, we recall the results of $[\mathrm{A}, \mathrm{C}, \mathrm{N}, \mathrm{TW}, \mathrm{W}]$.
Proposition 2.6. 1. $H^{*}\left(\mathrm{E}_{6} / \operatorname{Spin}(10) ; \mathbb{Z} / p\right)=\mathbb{Z} / p\left[y_{8}\right] /\left(y_{8}^{3}\right) \otimes \Lambda\left(y_{17}\right),\left|y_{i}\right|=$ i.
2. $H^{*}\left(\mathrm{E}_{6} / \mathrm{F}_{4} ; \mathbb{Z} / p\right)=\Lambda\left(z_{9}, z_{17}\right),\left|z_{i}\right|=i$.
3. $\widetilde{H}^{*}\left(\mathrm{E}_{7} / \mathrm{E}_{6} ; \mathbb{Z} / p\right)=\mathbb{Z} / p\left\langle z_{10}, z_{18}\right\rangle,\left|z_{i}\right|=i$ for $*<37$.
4. $H^{*}\left(\mathrm{E}_{8} / \mathrm{E}_{7} ; \mathbb{Z} / p\right)=\mathbb{Z} / p\left[z_{12}, z_{20}\right],\left|z_{i}\right|=i$ for $*<40$,

We next choose generators of $H^{*}(B G ; \mathbb{Z} / p)$ for $G \neq \mathrm{E}_{8}$. Let

$$
\hat{x}_{10}=c_{5}, \quad \hat{x}_{12}=-6 p_{3}+p_{2} p_{1}-60 c_{6}, \quad \hat{x}_{18}=p_{2} c_{5} \quad \text { and } \quad \hat{x}_{20}=p_{5}+p_{2} c_{6} .
$$

We abbreviate $\theta_{i}\left(\hat{x}_{j}\right)$ by \hat{x}_{j}.
Corollary 2.7. We can choose a generator x_{i} of $H^{*}\left(B \mathrm{E}_{7} ; \mathbb{Z} / p\right)$ so that
$\rho_{2}^{*}\left(x_{i}\right)=\hat{x}_{i} \quad(i=4,12,16,36) \quad$ and $\quad \rho_{2}^{*}\left(x_{i}\right) \equiv \hat{x}_{i} \quad \bmod \left(p_{1}^{2}\right) \quad(i=20,24,28)$.
Proof. Consider the Serre spectral sequence of the homotopy fiber sequence $\mathrm{E}_{8} / \mathrm{E}_{7} \rightarrow B \mathrm{E}_{7} \rightarrow B \mathrm{E}_{8}$. Then by Proposition 2.6, we get $\alpha_{1}^{*}\left(x_{i}\right)=x_{i}$ for $i=4,16,24,28,36$, hence the desired result for $\rho_{2}^{*}\left(x_{i}\right)$ by Corollary 2.5. As in $[\mathrm{BH}]$, we can choose a generator x_{12} of $H^{*}\left(B \mathrm{~F}_{4} ; \mathbb{Z} / p\right)$ so that $\rho_{4}^{*}\left(x_{12}\right)=-6 p_{3}+$ $p_{2} p_{1}$. On the other hand, it is calculated in $[\mathrm{N}]$ that $\rho_{2}^{*}\left(x_{12}\right) \equiv-6 p_{3}-60 c_{6}$
modulo decomposables. Then we get $\rho_{2}^{*}\left(x_{12}\right)=\hat{x}_{12}$ by (6) and (7). By the Serre spectral sequence of the homotopy fiber sequence $\mathrm{E}_{6} / \operatorname{Spin}(10) \rightarrow$ $B \operatorname{Spin}(10) \rightarrow B \mathrm{E}_{6}$ and Proposition 2.6, we have $\rho_{3}^{*}\left(x_{10}\right) \neq 0$. Then for a degree reason, we may choose $x_{10} \in H^{*}\left(B \mathrm{E}_{6} ; \mathbb{Z} / p\right)$ so that $\rho_{3}^{*}\left(x_{10}\right)=c_{5}$. Consider next the Serre spectral sequence of the homotopy fiber sequence $\mathrm{E}_{7} / \mathrm{E}_{6} \rightarrow B \mathrm{E}_{6} \rightarrow B \mathrm{E}_{7}$. Then it follows from Proposition 2.6 that we may choose $x_{20} \in H^{*}\left(B \mathrm{E}_{7} ; \mathbb{Z} / p\right)$ so that $\alpha_{2}^{*}\left(x_{20}\right)=x_{10}^{2}$, hence $\rho_{2}^{*}\left(x_{20}\right) \equiv p_{5}+\alpha p_{2} c_{6}$ $\bmod \left(p_{1}^{2}\right)$ by (6), where $\alpha \in \mathbb{Z} / p$. For a degree reason, we have $\alpha_{1}^{*}\left(x_{40}\right) \equiv \lambda x_{20}^{2}$ $\bmod \left(x_{4}, x_{12}, x_{16}\right)$, hence

$$
\theta_{2}^{*}\left(\hat{x}_{40}\right)=\lambda\left(p_{5}+\alpha p_{2} c_{6}\right)^{2} \quad \bmod \left(\hat{x}_{4}, \hat{x}_{12}, \hat{x}_{16}\right)
$$

Since $\theta_{2}^{*}\left(\hat{x}_{40}\right) \equiv 50 p_{5}^{2}-10 p_{5} p_{3} p_{2}+\frac{1}{2} p_{3}^{2} p_{2}^{2}$ and $\hat{x}_{20}^{2} \equiv p_{5}^{2}-\frac{\alpha}{5} p_{5} p_{3} p_{2}+\frac{\alpha^{2}}{100} p_{3}^{2} p_{2}^{2}$ $\bmod \left(\hat{x}_{4}, \hat{x}_{12}, \hat{x}_{16}\right)$, we get $\alpha=1$ and $\lambda=50$.
Corollary 2.8. We can choose a generator x_{i} of $H^{*}\left(B \mathrm{E}_{6} ; \mathbb{Z} / p\right)$ so that

$$
\rho_{3}^{*}\left(x_{i}\right)=\hat{x}_{i} \quad(i=4,10,12,16,18) \quad \text { and } \quad \rho_{3}^{*}\left(x_{24}\right)=\hat{x}_{24} \quad \bmod \left(p_{1}^{2}\right) .
$$

Proof. By the Serre spectral sequence of the homotopy fiber sequence $\mathrm{E}_{7} / \mathrm{E}_{6} \rightarrow$ $B \mathrm{E}_{6} \rightarrow B \mathrm{E}_{7}$ together with Proposition 2.6 and Corollary 2.7, we get $\alpha_{2}^{*}\left(x_{i}\right)=$ x_{i} for $i=4,12,16,24$. Then we obtain the desired result for $x_{i}(i=$ $4,12,16,24)$ by Corollary 2.7. By Proposition 2.6 , we have $\rho_{3}^{*}\left(x_{10}\right) \neq 0$, so we may put $\rho_{3}^{*}\left(x_{10}\right)=c_{5}$ for a degree reason. By Proposition 2.4, Corollary 2.7 and $\alpha_{2} \circ \rho_{3}=\rho_{2} \circ \theta_{2}$, we see that $\rho_{3}^{*} \circ \alpha_{2}^{*}\left(x_{28}\right)$ includes the term $p_{2} c_{5}^{2}$ which does not belong to $\rho_{3}^{*}\left(\mathbb{Z} / p\left[x_{4}, \ldots, \widehat{x_{18}}, \ldots, x_{24}\right]\right)$. Then we get $\rho_{3}^{*}\left(x_{18}\right) \neq 0$, implying that we may put $\rho_{3}^{*}\left(x_{18}\right)=p_{2} c_{5}$ for a degree reason.
Corollary 2.9. We can choose a generator x_{i} of $H^{*}\left(B F_{4} ; \mathbb{Z} / p\right)$ so that

$$
\rho_{4}^{*}\left(x_{i}\right)=\hat{x}_{i} \quad(i=4,12,16) \quad \text { and } \quad \rho_{4}^{*}\left(x_{24}\right) \equiv \hat{x}_{24} \quad \bmod \left(p_{1}^{2}\right) .
$$

Proof. The result follows from the Serre spectral sequence of the homotopy fiber sequence $\mathrm{E}_{6} / \mathrm{F}_{4} \rightarrow B \mathrm{~F}_{4} \rightarrow B \mathrm{E}_{6}$ together with Proposition 2.6 and Corollary 2.8.

Recall that G_{2} is a subgroup of $\operatorname{Spin}(7)$. We denote the inclusion $\mathrm{G}_{2} \rightarrow$ $\operatorname{Spin}(7)$ by ρ.

Proposition 2.10. The induced map of $\rho: B \mathrm{G}_{2} \rightarrow B \operatorname{Spin}(7)$ in $\bmod p$ cohomology satisfies

$$
\rho^{*}\left(p_{1}\right)=x_{4}, \quad \rho^{*}\left(p_{2}\right)=0 \quad \text { and } \quad \rho^{*}\left(p_{3}\right)=x_{12} .
$$

Proof. It is well known that $\operatorname{Spin}(7) / \mathrm{G}_{2}=S^{7}$. Then by considering the Serre spectral sequence of the homotopy fiber sequence $\operatorname{Spin}(7) / \mathrm{G}_{2} \rightarrow B \mathrm{G}_{2} \rightarrow$ $B \operatorname{Spin}(7)$, we obtain the desired result.

For the rest of this paper, we choose generators of $H^{*}(B G ; \mathbb{Z} / p)$ as in Corollary 2.7, 2.8, 2.9, 2.10.

2.3. Calculation of $\mathcal{P}^{1} \rho_{i}^{*}\left(x_{j}\right)$

We first calculate the action of \mathcal{P}^{1} on $H^{*}(B \operatorname{Spin}(2 m) ; \mathbb{Z} / p)$. Recall that $H^{*}(B \operatorname{Spin}(2 m) ; \mathbb{Z} / p)=\mathbb{Z} / p\left[p_{1}, \ldots, p_{m-1}, c_{m}\right]$ as above.

Lemma 2.11. In $H^{*}(B \operatorname{Spin}(2 m) ; \mathbb{Z} / p)$, we have

$$
\begin{aligned}
\mathcal{P}^{1} p_{i}=\sum_{i_{1}+2 i_{2}+\cdots+m i_{m}=i+\frac{p-1}{2}} & (-1)^{i_{1}+\cdots+i_{m}+\frac{p+1}{2}} \frac{\left(i_{1}+\cdots+i_{m}-1\right)!}{i_{1}!\cdots i_{m}!} \\
& \times\left(2 i-1-\frac{\sum_{j=1}^{i-1}(2 i+p-1-2 j) i_{j}}{i_{1}+\cdots+i_{m}-1}\right) p_{1}^{i_{1}} \cdots p_{m}^{i_{m}}
\end{aligned}
$$

and $\mathcal{P}^{1} c_{m}=s_{p-1} c_{m}$, where $p_{m}=c_{m}^{2}$ and $s_{k}=t_{1}^{k}+\cdots+t_{m}^{k}$.
Proof. By [S], we have the mod $p \mathrm{Wu}$ formula

$$
\begin{aligned}
\mathcal{P}^{1} c_{i}=\sum_{i_{1}+2 i_{2}+\cdots+2 m i_{2 m}=i+p-1} & (-1)^{i_{1}+\cdots+i_{2 m}-1} \frac{\left(i_{1}+\cdots+i_{2 m}-1\right)!}{i_{1}!\cdots i_{2 m}!} \\
& \times\left(i-1-\frac{\sum_{j=2}^{i-1}(i+p-1-j) i_{j}}{i_{1}+\cdots+i_{2 m}-1}\right) c_{1}^{i_{1}} \cdots c_{2 m}^{i_{2 m}}
\end{aligned}
$$

in $H^{*}(B \mathrm{U}(2 m) ; \mathbb{Z} / p)$. Since the natural map $\mathbf{c}: B \operatorname{Spin}(2 m) \rightarrow B \mathrm{U}(2 m)$ satisfies $\mathbf{c}^{*}\left(c_{2 i}\right)=(-1)^{i} p_{i}$ and $\mathbf{c}^{*}\left(c_{2 i+1}\right)=0$, we obtain the first equation. The second equation is obvious.

We now calculate $\mathcal{P}^{1} \rho_{i}^{*}\left(x_{j}\right)$.
Proposition 2.12. Define ideals I_{j} of $\mathbb{Z} / p\left[p_{1}, \ldots, p_{7}, c_{8}\right]$ for $j=0, \ldots, 8$ as
$I_{0}=\left(p_{1}, p_{2}^{2}, p_{3}^{3}, p_{4}^{2}, p_{6}^{2}, c_{8}\right), \quad I_{1}=I_{0}+\left(p_{3}, p_{6}\right), \quad I_{2}=I_{0}+\left(p_{2}, p_{3}^{2}, p_{4}, p_{7}^{2}\right)$,
$I_{3}=I_{0}+\left(p_{2}, p_{3}^{2}, p_{6}\right), \quad I_{4}=I_{0}+\left(p_{2}, p_{3}^{2}, p_{4}\right), \quad I_{5}=I_{0}+\left(p_{2}, p_{3}, p_{4}, p_{6}, p_{7}\right)$,
$I_{6}=I_{0}+\left(p_{2}, p_{3}^{2}, p_{4}, p_{6}\right), \quad I_{7}=I_{0}+\left(p_{2}, p_{3}^{2}, p_{4}, p_{6}, p_{7}^{2}\right), \quad I_{8}=I_{0}+\left(p_{2}, p_{4}, p_{7}^{4}, \hat{x}_{24}\right)$.

Then for a generator $x_{k} \in H^{*}\left(B \mathrm{E}_{8} ; \mathbb{Z} / p\right)$, we have the following table.

p	k	$\mathcal{P}^{1} \rho_{1}^{*}\left(x_{k}\right) \bmod I$	I	p	k	$\mathcal{P}^{1} \rho_{1}^{*}\left(x_{k}\right) \bmod I$	I
31	16	$9 p_{7}^{2} p_{5}+24 p_{7} p_{5}^{2} p_{2}+22 p_{5}^{3} p_{4}$	I_{1}	37	4	$p_{7}^{2} p_{5}+34 p_{7} p_{5}^{2} p_{2}+36 p_{5}^{3} p_{4}$	I_{1}
	24	$28 p_{7} p_{6} p_{5} p_{3}+16 p_{6} p_{5}^{3}$	I_{2}		16	$8 p_{7}^{2} p_{5} p_{3}+27 p_{7} p_{5}^{3}+2 p_{5}^{3} p_{4} p_{3}$	I_{3}
	28	$27 p_{7}^{2} p_{5} p_{3}+30 p_{7} p_{5}^{3}+30 p_{5}^{3} p_{4} p_{3}$	I_{3}		24	$5 p_{7}^{3} p_{3}+27 p_{7}^{2} p_{5}^{2}+36 p_{6} p_{5}^{3} p_{3}$	I_{4}
	36	$p_{7}^{3} p_{3}+10 p_{7}^{2} p_{5}^{2}+6 p_{6} p_{5}^{3} p_{3}$	I_{4}		28	$7 p_{5}^{5}$	I_{5}
	40	$8 p_{5}^{5}$	I_{5}		36	$20 p_{7}^{2} p_{5}^{2} p_{3}+35 p_{7} p_{5}^{4}$	I_{6}
	48	$4 p_{7}^{2} p_{5}^{2} p_{3}+5 p_{7} p_{5}^{4}$	I_{6}		48	$36 p_{7} p_{5}^{4} p_{3}+3 p_{5}^{6}$	I_{7}
41	4	$35 p_{7} p_{6} p_{5} p_{3}+40 p_{6} p_{5}^{3}$	I_{2}	43	4	$3 p_{7}^{2} p_{5} p_{3}+p_{7} p_{5}^{3}+39 p_{5}^{3} p_{4} p_{3}$	I_{3}
	16	$9 p_{7}^{3} p_{3}+38 p_{7}^{2} p_{5}^{2}+16 p_{6} p_{5}^{3} p_{3}$	I_{4}		16	$9 p_{5}^{5}$	I_{5}
	28	$7 p_{7}^{2} p_{5}^{2} p_{3}+6 p_{7} p_{5}^{4}$	I_{6}		24	$11 p_{7}^{2} p_{5}^{2} p_{3}+40 p_{7} p_{5}^{4}$	I_{6}
	40	$34 p_{7} p_{5}^{4} p_{3}+16 p_{5}^{6}$	I_{7}		36	$35 p_{7} p_{5}^{4} p_{3}+42 p_{5}^{6}$	I_{7}
47	4	$p_{7}^{3} p_{3}+25 p_{7}^{2} p_{5}^{2}+43 p_{6} p_{5}^{3} p_{3}$	I_{4}	53	4	$6 p_{7}^{2} p_{5}^{2} p_{3}+p_{7} p_{5}^{4}$	I_{6}
	16	$35 p_{7}^{2} p_{5}^{2} p_{3}+10 p_{7} p_{5}^{4}$	I_{6}		16	$23 p_{7} p_{5}^{4} p_{3}+39 p_{5}^{6}$	I_{7}
	28	$17 p_{7} p_{5}^{4} p_{3}+23 p_{5}^{6}$	I_{7}	59	4	$5 p_{7} p_{5}^{4} p_{3}+10 p_{5}^{6}$	I_{7}

For $p=31$, we also have
$\mathcal{P}^{1} \rho_{1}^{*}\left(x_{48}\right) \equiv 17 p_{7}^{3} p_{3}^{2}+4 p_{7}^{2} p_{5}^{2} p_{3}+5 p_{7} p_{5}^{4}, \quad \mathcal{P}^{2} \rho_{1}^{*}\left(x_{48}\right) \equiv 26 p_{7}^{3} p_{5}^{3} p_{3}^{2}+5 p_{7}^{2} p_{5}^{5} p_{3}+8 p_{7} p_{5}^{7} \quad \bmod I_{8}$.
Proof. For $i=4,16,24,28,36$, we have $\rho_{1}^{*}\left(x_{i}\right) \equiv \hat{x}_{i} \bmod \left(p_{1}^{2}\right)$. Since $\mathcal{P}^{1}\left(p_{1}^{2}\right) \subset$ $\left(p_{1}\right)$ by the Cartan formula, we have $\mathcal{P}^{1} \rho_{1}^{*}\left(x_{i}\right) \equiv \mathcal{P}^{1} \hat{x}_{i} \bmod \left(p_{1}\right)$. For $i=$ 40, 48, we analogously have $\mathcal{P}^{1} \rho_{1}^{*}\left(x_{i}\right)=\mathcal{P}^{1} \hat{x}_{i}+\left(\mathcal{P}^{1} p_{1}\right) q$ for some polynomial q in $p_{2}, \ldots, p_{7}, c_{8}$. For a degree reason, we have $q \equiv 0 \bmod \left(p_{1}, p_{2}, p_{3}^{2}, p_{4}, p_{6}, c_{8}\right)$, implying that $\mathcal{P}^{1} \rho_{1}^{*}\left(x_{i}\right) \equiv \mathcal{P}^{1} \hat{x}_{i} \bmod I$ for the prescribed ideal I. Thus in order to fill the table, we only need to calculate $\mathcal{P}^{1} \hat{x}_{i}$ by Lemma 2.11.

For $p=31$, we have $\mathcal{P}^{1} \rho_{1}^{*}\left(x_{48}\right) \equiv \mathcal{P}^{1} \hat{x}_{48}+\left(\mathcal{P}^{1} p_{1}\right) q \bmod \left(p_{1}\right)$ for some polynomial q in $p_{2}, \ldots, p_{7}, c_{8}$ as above. Since $\hat{x}_{i} \in I_{8}$ for $i=4,16,24,36$, we have $\mathcal{P}^{1} p_{1} \equiv 0 \bmod I_{8}$ for a degree reason, hence $\mathcal{P}_{1} \rho_{1}^{*}\left(x_{48}\right) \equiv \mathcal{P}^{1} \hat{x}_{48}$ $\bmod I_{8}$. Then we can calculate $\mathcal{P}^{1} \rho_{1}^{*}\left(x_{48}\right) \bmod I_{8}$ by Lemma 2.11. Since $\mathcal{P}^{2} p_{1}=p_{1}^{p}$ and $\rho_{1}^{*}\left(x_{48}\right) \equiv \hat{x}_{48} \bmod \left(p_{1}\right)$, we have $\mathcal{P}^{2} \rho_{1}^{*}\left(x_{48}\right) \equiv \mathcal{P}^{2} \hat{x}_{48} \bmod \left(p_{1}\right)$. Now $\mathcal{P}^{2} \rho_{1}\left(x_{48}\right)$ for $p=31$ can be calculated from Lemma 2.11 and the Adem relation $\mathcal{P}^{1} \mathcal{P}^{1}=2 \mathcal{P}^{2}$.

Quite similarly to Proposition 2.12 , we can calculate $\mathcal{P}^{1} \rho_{i}^{*}\left(x_{j}\right)$ for $G=$ $\mathrm{E}_{7}, \mathrm{E}_{6}$.

Proposition 2.13. For a generator $x_{k} \in H^{*}\left(B \mathrm{E}_{7} ; \mathbb{Z} / p\right)$, we have the following table.

p	k	$\mathcal{P}^{1} \rho_{2}^{*}\left(x_{k}\right) \bmod I$	I
19	$\begin{aligned} & 12 \\ & 16 \\ & 20 \\ & 24 \\ & 28 \\ & 36 \end{aligned}$	$\begin{aligned} & 18 p_{5}^{2} p_{2}+3 p_{5} p_{4} p_{3}+15 p_{5} p_{3} p_{2}^{2}+10 p_{4}^{3}+17 p_{4}^{2} p_{2}^{2}+6 p_{4} p_{2}^{4}+15 p_{2}^{6} \\ & 11 p_{5} p_{4}^{2}+16 p_{5} p_{4} p_{2}^{2}+15 p_{5} p_{2}^{4} \\ & p_{5}^{2} p_{4}+18 p_{5}^{2} p_{2}^{2}+17 p_{5} p_{4} p_{3} p_{2}+p_{5} p_{3} p_{2}^{3}+4 c_{6} p_{5} p_{4} p_{2}+12 c_{6} p_{5} p_{2}^{3} \\ & +16 c_{6} p_{4}^{2} p_{3}+8 p_{4} c_{6} p_{3} p_{2}^{2}+7 c_{6} p_{3} p_{2}^{4} \\ & 13 p_{5} p_{4}^{2} p_{2}+7 p_{5} p_{4} p_{2}^{3}+8 p_{5} p_{2}^{5} \\ & 14 p_{5}^{2} p_{4} p_{2}+p_{5}^{2} p_{2}^{3}+8 p_{5} p_{4}^{2} p_{3}+10 p_{5} p_{4} p_{3} p_{2}^{2}+17 p_{5} p_{3} p_{2}^{4}+p_{4}^{4}+9 p_{4}^{3} p_{2}^{2} \\ & +6 p_{4}^{2} p_{2}^{4}+p_{4} p_{2}^{6}+3 p_{2}^{8} \\ & 9 p_{5}^{2} p_{4}^{2}+4 p_{5}^{2} p_{4} p_{2}^{2}+6 p_{5}^{2} p_{2}^{4}+17 p_{5} p_{4}^{2} p_{3} p_{2}+15 p_{5} p_{3} p_{2}^{5}+4 p_{4}^{4} p_{2}+5 p_{4}^{3} p_{2}^{3} \\ & +2 p_{4}^{2} p_{2}^{5}+11 p_{4} p_{2}^{7}+3 p_{2}^{9} \end{aligned}$	$\begin{aligned} & \left(p_{1}, p_{3}^{2}, c_{6}\right) \\ & \left(p_{1}, p_{3}, c_{6}\right) \\ & \left(p_{1}, p_{3}^{2}, c_{6}^{2}\right) \\ & \left(p_{1}, p_{3}, p_{5}^{2}, c_{6}\right) \\ & \left(p_{1}, p_{3}^{2}, c_{6}^{2}\right) \\ & \left(p_{1}, p_{3}^{2}, c_{6}^{2}\right) \end{aligned}$
23	$\begin{aligned} & 4 \\ & 12 \\ & 16 \\ & 28 \end{aligned}$	$\begin{aligned} & 22 p_{5}^{2} p_{2}+21 p_{5} p_{4} p_{3}+3 p_{5} p_{3} p_{2}^{2}+15 p_{4}^{3}+13 p_{4}^{2} p_{2}^{2}+22 p_{4} p_{2}^{4}+4 p_{2}^{6} \\ & 7 p_{5}^{2} p_{4}+6 p_{5}^{2} p_{2}^{2}+14 p_{5} p_{4} p_{3} p_{2}+13 p_{5} p_{3} p_{2}^{3}+10 p_{4}^{3} p_{2}+18 p_{4}^{2} p_{2}^{3}+21 p_{4} p_{2}^{5} \\ & +4 p_{2}^{7}+14 c_{6} p_{5} p_{4} p_{2}+16 c_{6} p_{5} p_{2}^{3}+7 c_{6} p_{4}^{2} p_{3}+2 p_{4} c_{6} p_{3} p_{2}^{2}+7 c_{6} p_{3} p_{2}^{4} \\ & 3 p_{5} p_{4}^{2} p_{2}+20 p_{5} p_{4} p_{2}^{3}+19 p_{5} p_{2}^{5} \\ & 9 p_{5}^{2} p_{4}^{2}+3 p_{5}^{2} p_{4} p_{2}^{2}+2 p_{5}^{2} p_{2}^{4}+10 p_{5} p_{4}^{2} p_{3} p_{2}+10 p_{5} p_{4} p_{3} p_{2}^{3}+8 p_{5} p_{3} p_{2}^{5} \\ & +14 p_{4}^{4} p_{2}+15 p_{4}^{3} p_{2}^{3}+14 p_{2}^{9}+9 p_{4}^{2} p_{2}^{5}+15 p_{4} p_{2}^{7} \\ & \hline \end{aligned}$	$\begin{aligned} & \left(p_{1}, p_{3}^{2}, c_{6}\right) \\ & \left(p_{1}, p_{3}^{2}, c_{6}^{2}\right) \\ & \left(p_{1}, p_{3}, p_{5}^{2}, c_{6}\right) \\ & \left(p_{1}, p_{3}^{2}, c_{6}^{2}\right) \end{aligned}$
29	$\begin{aligned} & 4 \\ & 16 \end{aligned}$	$\begin{aligned} & 26 p_{5} p_{4}^{2} p_{2}+4 p_{5} p_{4} p_{2}^{3}+28 p_{5} p_{2}^{5} \\ & 19 p_{5}^{2} p_{4}^{2}+p_{5}^{2} p_{4} p_{2}^{2}+19 p_{5}^{2} p_{2}^{4}+10 p_{5} p_{4}^{2} p_{3} p_{2}+6 p_{5} p_{4} p_{3} p_{2}^{3}+13 p_{5} p_{3} p_{2}^{5} \\ & +p_{4}^{4} p_{2}+7 p_{4}^{3} p_{2}^{3}+2 p_{4}^{2} p_{2}^{5}+16 p_{4} p_{2}^{7}+21 p_{2}^{9} \\ & \hline \end{aligned}$	$\begin{aligned} & \left(p_{1}, p_{3}, p_{5}^{2}, c_{6}\right) \\ & \left(p_{1}, p_{3}^{2}, c_{6}^{2}\right) \end{aligned}$
31	12	$\begin{aligned} & p_{5}^{3} p_{3}+17 p_{5}^{2} p_{4}^{2}+10 p_{5}^{2} p_{4} p_{2}^{2}+28 p_{5}^{2} p_{2}^{4}+4 p_{5} p_{4}^{2} p_{3} p_{2}+18 p_{5} p_{4} p_{3} p_{2}^{3} \\ & +21 p_{2} p_{4}^{4}+3 p_{4}^{3} p_{2}^{3}+6 p_{4} p_{2}^{7}+4 p_{5}^{3} p_{2}^{9}+10 c_{6} p_{5}^{3}+3 c_{6} p_{5}^{2} p_{3} p_{2}+3 c_{6} p_{5} p_{4}^{2} p_{2} \\ & +27 c_{6} p_{5} p_{4} p_{2}^{3}+c_{6} p_{5} p_{2}^{5}+c_{6} p_{4}^{3} p_{3}+25 c_{6} p_{4}^{2} p_{3} p_{2}^{2}+5 c_{6} p_{4} p_{3} p_{2}^{4}+30 c_{6} p_{3} p_{2}^{6} \\ & \hline \end{aligned}$	$\left(p_{1}, p_{3}^{2}, c_{6}^{2}\right)$

Proposition 2.14. For a generator $x_{k} \in H^{*}\left(B \mathrm{E}_{6} ; \mathbb{Z} / p\right)$, we have the following table.

p	k	$\mathcal{P}^{1} \rho_{3}^{*}\left(x_{k}\right) \bmod I$	I
13	10	$6 c_{5} p_{4} p_{2}+11 c_{5} p_{2}^{3}$	$\left(p_{1}, p_{3}^{2}, c_{5}^{2}\right)$
	12	$10 p_{4} p_{3} p_{2}+12 p_{3} p_{2}^{3}+4 c_{5}^{2} p_{4}+c_{5}^{2} p_{2}^{2}$	$\left(p_{1}, p_{3}^{2}\right)$
	16	$5 p_{2}^{5}$	$\left(p_{1}, p_{3}, p_{4}, c_{5}\right)$
	18	$5 c_{5} p_{4}^{2}+9 c_{5} p_{4} p_{2}^{2}+7 c_{5} p_{2}^{4}$	$\left(p_{1}, p_{3}, c_{5}^{2}\right)$
	24	$p_{4}^{3}+4 p_{4}^{2} p_{2}^{2}+12 p_{4} p_{2}^{4}+7 p_{2}^{6}$	$\left(p_{1}, p_{3}, c_{5}\right)$
17	4	$2 p_{4} p_{3} p_{2}+16 p_{3} p_{2}^{3}+16 c_{5}^{2} p_{4}+c_{5}^{2} p_{2}^{2}$	$\left(p_{1}, p_{3}^{2}\right)$
	10	$4 c_{5} p_{4}^{2}+9 c_{5} p_{4} p_{2}^{2}+2 c_{5} p_{2}^{4}$	$\left(p_{1}, p_{3}, c_{5}^{2}\right)$
	16	$11 p_{4}^{3}+p_{4}^{2} p_{2}^{2}+8 p_{4} p_{2}^{4}+8 p_{2}^{6}$	$\left(p_{1}, p_{3}, c_{5}\right)$

We finally calculate $\mathcal{P}^{1} x_{k}$ for a generator $x_{k} \in H^{*}\left(B \mathrm{G}_{2} ; \mathbb{Z} / p\right)$.
Proposition 2.15. For a generator $x_{k} \in H^{*}\left(B \mathrm{G}_{2} ; \mathbb{Z} / p\right)$, we have

$$
\mathcal{P}^{1} x_{k}= \begin{cases}x_{4} x_{12}+2 x_{4}^{4} & (k, p)=(4,7) \\ 6 x_{12}^{2}+2 x_{4}^{3} x_{12} & (k, p)=(12,7) \\ 6 x_{12}^{2}+x_{4}^{3} x_{12}+2 x_{4}^{6} & (k, p)=(4,11)\end{cases}
$$

Proof. By Proposition 2.10 and the naturality of \mathcal{P}^{1}, we have $\mathcal{P}^{1} x_{4 k}=$ $\mathcal{P}^{1} \rho^{*}\left(p_{k}\right)=\rho^{*}\left(\mathcal{P}^{1} p_{k}\right)$, hence the proof is completed by Lemma 2.11.

3. Proof of Theorem 2.2

In this section, we prove Theorem 2.2 by using results in the previous section.

3.1. The case of E_{8}

Suppose that E_{8} is p-regular, that is, $p>30$. By an easy degree consideration, we see that if $\mathcal{P}^{1} x_{k} \bmod \left(x_{2 i} \mid i \in \mathrm{t}\left(\mathrm{E}_{8}\right)\right)^{3}$ is nontrivial for a generator x_{k} of $H^{*}\left(B \mathrm{E}_{8} ; \mathbb{Z} / p\right)$, it is as in the following table.

	$\mathcal{P}^{1} x_{k} \bmod \left(x_{2 i} \mid i \in \mathrm{t}\left(\mathrm{E}_{8}\right)\right)^{3}$	(k, p)
(1)	$\lambda_{1} x_{4} x_{60}+\lambda_{2} x_{16} x_{48}+\lambda_{3} x_{24} x_{40}+\lambda_{4} x_{28} x_{36}$	$(4,31)$
(2)	$\lambda_{1} x_{16} x_{60}+\lambda_{2} x_{28} x_{48}+\lambda_{3} x_{36} x_{40}$	$(16,31),(4,37)$
(3)	$\lambda_{1} x_{24} x_{60}+\lambda_{2} x_{36} x_{48}$	$(24,31),(4,41)$
(4)	$\lambda_{1} x_{28} x_{60}+\lambda_{2} x_{40} x_{48}$	$(28,31),(16,37),(4,43)$
(5)	$\lambda_{1} x_{36} x_{60}+\lambda_{2} x_{48}^{2}$	$(36,31),(24,37),(16,41),(4,47)$
(6)	$\lambda_{40} x_{60}$	$(40,31),(28,37),(16,43)$
(7)	$\lambda x_{48} x_{60}$	$(48,31),(36,37),(28,41),(24,43)$,
		$(16,47),(4,53)$
(8)	λx_{60}^{2}	$(60,31),(48,37),(40,41),(36,43)$,
		$(28,47),(16,53),(4,59)$

Let I_{k} for $k=1, \ldots, 8$ be the ideals of $\mathbb{Z} / p\left[p_{1}, \ldots, p_{7}, c_{8}\right]$ as in Proposition 2.12 .
(1) It is proved in [HK] that $\lambda_{i} \neq 0$ for $i=1,2,3,4$.
(2) Since $\hat{x}_{i} \in I_{1}$ for $i=4,16,24$, for a degree reason, we have
$\rho_{1}^{*}\left(\mathcal{P}^{1} x_{k}\right) \equiv \lambda_{2} \hat{x}_{28} \hat{x}_{48}+\lambda_{3} \hat{x}_{36} \hat{x}_{40} \equiv-4000\left(24 \lambda_{2} p_{7}^{2} p_{5}+\left(\lambda_{2}-6 \lambda_{3}\right) p_{7} p_{5}^{2} p_{2}\right) \bmod I_{1}+\left(p_{4}\right)$.
On the other hand, by the naturality of \mathcal{P}^{1} and Proposition 2.12,

$$
\rho_{1}^{*}\left(\mathcal{P}^{1} x_{k}\right)=\mathcal{P}^{1} \rho_{1}\left(x_{k}\right) \equiv\left\{\begin{array}{ll}
24 p_{7} p_{5}^{2} p_{2}+9 p_{7}^{2} p_{5} & (p=31) \\
34 p_{7} p_{5}^{2} p_{2}+p_{7}^{2} p_{5} & (p=37)
\end{array} \quad \bmod I_{1}+\left(p_{4}\right)\right.
$$

implying that $\left(\lambda_{2}, \lambda_{3}\right)=(19,2),(5,30)$ according as $p=31,37$. Since $\hat{x}_{4}, \hat{x}_{16}^{2}, \hat{x}_{24}, \hat{x}_{36} \in I_{1}+\left(p_{2}, p_{7}\right)$, we also have
$\rho_{1}^{*}\left(\mathcal{P}^{1} x_{k}\right) \equiv \lambda_{1} \hat{x}_{16} \rho_{1}^{*}\left(x_{60}\right)+\lambda_{3} \hat{x}_{36} \hat{x}_{40} \equiv \lambda_{1} \hat{x}_{16} \rho_{1}^{*}\left(x_{60}\right)-1500 \lambda_{3} p_{5}^{3} p_{4} \quad \bmod I_{1}+\left(p_{2}, p_{7}\right)$,
and by Proposition 2.12,

$$
\rho_{1}^{*}\left(\mathcal{P}^{1} x_{k}\right)=\mathcal{P}^{1} \rho_{1}^{*}\left(x_{k}\right) \equiv\left\{\begin{array}{ll}
22 p_{5}^{3} p_{4} & (p=31) \\
36 p_{5}^{3} p_{4} & (p=37)
\end{array} \quad \bmod I_{1}+\left(p_{2}, p_{7}\right)\right.
$$

Then we see that $\lambda_{1} \hat{x}_{16} \rho_{1}^{*}\left(x_{60}\right) \equiv\left(1500 \lambda_{3}+\delta\right) p_{5}^{3} p_{4} \not \equiv 0 \bmod I_{1}+\left(p_{2}, p_{7}\right)$ for $\delta=22,36$ according as $p=31,37$, implying $\lambda_{1} \neq 0$.
(3) Since $\hat{x}_{i}, \hat{x}_{j}^{2} \in I_{2}$ for $i=4,16$ and $j=24,28,36$, we have
$\rho_{1}^{*}\left(\mathcal{P}^{1} x_{k}\right) \equiv \lambda_{1} \hat{x}_{24} \rho_{1}^{*}\left(x_{60}\right)+\lambda_{2} \hat{x}_{36} \hat{x}_{48} \equiv \lambda_{1} \hat{x}_{24} \rho_{1}^{*}\left(x_{60}\right)-14400 \lambda_{2} p_{7} p_{6} p_{5} p_{3} \bmod I_{2}$.
By the naturality of \mathcal{P}^{1} and Proposition 2.12, we also have

$$
\rho_{1}^{*}\left(\mathcal{P}^{1} x_{k}\right)=\mathcal{P}^{1} \rho_{1}^{*}\left(x_{k}\right) \equiv\left\{\begin{array}{ll}
28 p_{7} p_{6} p_{5} p_{3}+16 p_{6} p_{5}^{3} & (p=31) \\
35 p_{7} p_{6} p_{5} p_{3}+40 p_{6} p_{5}^{3} & (p=41)
\end{array} \quad \bmod I_{2}\right.
$$

implying that $\lambda_{1} \neq 0$ and $\lambda_{2} \neq 0$ for both $p=31,41$.
(4) Since $\hat{x}_{i}, \hat{x}_{28}^{2} \in I_{3}+\left(p_{3}, p_{4}, p_{7}^{2}, \hat{x}_{40}\right)$ for $i=4,16,24,36,40$, it follows from Proposition 2.12 that

$$
\lambda_{1} \hat{x}_{28} \rho_{1}^{*}\left(x_{60}\right) \equiv \rho_{1}^{*}\left(\mathcal{P}^{1} x_{k}\right) \equiv \mathcal{P}^{1} \rho_{1}^{*}\left(x_{k}\right) \not \equiv 0 \quad \bmod I_{3}+\left(p_{3}, p_{4}, p_{7}^{2}, \hat{x}_{40}\right)
$$

so $\lambda_{1} \neq 0$. We can similarly get $\lambda_{2} \neq 0$ by considering $\rho_{1}^{*}\left(\mathcal{P}^{1} x_{k}\right) \bmod I_{3}+$ $\left(p_{7}^{2}, \hat{x}_{28}\right)$ since $\hat{x}_{i} \in I_{3}+\left(p_{7}^{2}, \hat{x}_{28}\right)$ for $i=4,16,24,28$.
(5), (6) and (7) We get $\lambda \neq 0$ similarly to (4) by considering $\rho_{1}^{*}\left(\mathcal{P}^{1} x_{k}\right)$ modulo the ideals $I_{4}+\left(p_{7}\right), I_{5}, I_{6}+\left(\hat{x}_{40}^{2}\right)$ respectively for (5), (6) and (7) since $\hat{x}_{4}, \hat{x}_{16}, \hat{x}_{24}^{2}, \hat{x}_{36}^{2} \in I_{4}+\left(p_{7}\right), \hat{x}_{i} \in I_{5}$ for $i=4,16,24,18,36$ and $\hat{x}_{i} \in I_{6}+\left(\hat{x}_{40}^{2}\right)$ for $i=4,16,24,36,40$.
(8) Suppose $(k, p) \neq(60,31)$. Since $\hat{x}_{i}, \hat{x}_{28}^{2}, \hat{x}_{40}^{3} \in I_{7}+\left(\hat{x}_{40}^{3}\right)$ for $i=4,16,24,36$, we get $\lambda \neq 0$ by considering $\rho_{1}^{*}\left(\mathcal{P}^{1} x_{k}\right) \bmod I_{7}+\left(\hat{x}_{40}^{3}\right)$ as above.

Suppose next that $(k, p)=(60,31)$. By a degree reason, we have

$$
\rho_{1}^{*}\left(x_{60}\right) \equiv \alpha p_{5}^{3}+\beta p_{7} p_{5} p_{3} \quad \bmod I_{8}+\left(\hat{x}_{40}^{2}\right)
$$

for $\alpha, \beta \in \mathbb{Z} / p$. Since $\hat{x}_{i}, \hat{x}_{40}^{2} \in I_{8}+\left(\hat{x}_{40}^{2}\right)$ for $i=4,16,24,36$ and $\rho_{1}^{*}\left(x_{48}\right) \equiv$ $-200 p_{7} p_{5} \bmod I_{8}$, we have

$$
\rho_{1}^{*}\left(\mathcal{P}^{1} x_{48}\right) \equiv \mu \hat{x}_{48} \rho_{1}^{*}\left(x_{60}\right) \equiv-200 \mu\left(\alpha p_{7} p_{5}^{4}+\beta p_{7}^{2} p_{5}^{2} p_{3}\right) \quad \bmod I_{8}+\left(\hat{x}_{40}^{2}\right)
$$

for some $\mu \in \mathbb{Z} / p$. By Proposition 2.12, we also have

$$
\rho_{1}^{*}\left(\mathcal{P}^{1} x_{48}\right)=\mathcal{P}^{1} \rho_{1}^{*}\left(x_{48}\right) \equiv 10 p_{7} p_{5}^{4}+11 p_{7}^{2} p_{5}^{2} p_{3} \quad \bmod I_{8}+\left(\hat{x}_{40}^{2}\right)
$$

Then we may put $(\alpha, \beta)=(17,28)$ and $\mu=1$. In the case (7), we have seen that $\mathcal{P}^{1} x_{48} \equiv \mu x_{48} x_{60} \bmod \left(x_{2 i} \mid i \in \mathrm{t}\left(\mathrm{E}_{8}\right)\right)^{3}$, implying that $\mathcal{P}^{1} \mathcal{P}^{1} x_{48} \equiv(\lambda+$ 1) $x_{48} x_{60}^{2} \bmod \left(x_{2 i} \mid i \in \mathrm{t}\left(\mathrm{E}_{8}\right)\right)^{4}$, where $\mathcal{P}^{1} x_{60} \equiv \lambda x_{60}^{2} \bmod \left(x_{2 i} \mid i \in \mathrm{t}\left(\mathrm{E}_{8}\right)\right)^{3}$. Then for a degree reason, we get

$$
\rho_{1}^{*}\left(\mathcal{P}^{1} \mathcal{P}^{1} x_{48}\right) \equiv(\lambda+1) \hat{x}_{48} \rho_{1}^{*}\left(x_{60}\right)^{2} \equiv 21(\lambda+1) p_{7}^{3} p_{5}^{3} p_{3}^{2} \quad \bmod I_{8}+\left(\hat{x}_{40}^{2}\right)
$$

On the other hand, by the Adem relation $\mathcal{P}^{1} \mathcal{P}^{1}=2 \mathcal{P}^{2}$ and Proposition 2.12, we have

$$
\rho_{1}^{*}\left(\mathcal{P}^{1} \mathcal{P}^{1} x_{48}\right)=\rho_{1}^{*}\left(2 \mathcal{P}^{2} x_{48}\right)=2 \mathcal{P}^{2} \rho_{1}^{*}\left(x_{48}\right) \equiv 7 p_{7}^{3} p_{5}^{3} p_{3}^{2} \quad \bmod I_{8}+\left(\hat{x}_{40}^{2}\right),
$$

hence $\lambda \neq 0$.

3.2. The case of E_{7}

Suppose that E_{7} is p-regular, that is, $p>18$. Then if $\mathcal{P}^{1} x_{k} \bmod \left(x_{2 i} \mid i \in\right.$ $\left.\mathrm{t}\left(\mathrm{E}_{7}\right)\right)^{3}$ is non-trivial, it is as in the following table.

	$\mathcal{P}^{1} x_{k} \bmod \left(x_{2 i} \mid i \in \mathrm{t}\left(\mathrm{E}_{7}\right)\right)^{3}$	(k, p)
(1)	$\lambda_{1} x_{4} x_{36}+\lambda_{2} x_{12} x_{28}+\lambda_{3} x_{16} x_{24}+\lambda_{4} x_{20}^{2}$	$(4,19)$
(2)	$\lambda_{1} x_{12} x_{36}+\lambda_{2} x_{20} x_{28}+\lambda_{3} x_{24}^{2}$	$(12,19),(4,23)$
(3)	$\lambda_{1} x_{16} x_{36}+\lambda_{2} x_{24} x_{28}$	$(16,19)$
(4)	$\lambda_{1} x_{20} x_{36}+\lambda_{2} x_{28}^{2}$	$(20,19),(12,23)$
(5)	$\lambda x_{24} x_{36}$	$(24,19),(16,23),(4,29)$
(6)	$\lambda x_{28} x_{36}$	$(28,19),(4,31)$
(7)	λx_{36}^{2}	$(36,19),(28,23),(16,29),(12,31)$

(1) It is proved in [HK] that $\lambda_{i} \neq 0$ for $i=1,2,3,4$.
(2) Put $I=\left(p_{1}, p_{3}^{2}, c_{6}, \hat{x}_{16}\right)$. Since $\hat{x}_{4}, \hat{x}_{12}^{2}, \hat{x}_{16} \in I$, by Corollary 2.7, we have
$\rho_{2}^{*}\left(\mathcal{P}^{1} x_{k}\right) \equiv \lambda_{1} \hat{x}_{12} \hat{x}_{36}+\lambda_{2} \hat{x}_{20} \hat{x}_{28}+\lambda_{3} \hat{x}_{24}^{2} \equiv 60 \lambda_{1} p_{5} p_{3} p_{2}^{2}+40 \lambda_{2} p_{5}^{2} p_{2}+\frac{25}{81} \lambda_{3} p_{2}^{6} \quad \bmod I$.
On the other hand, it follows from Proposition 2.13 that

$$
\rho_{2}^{*}\left(\mathcal{P}^{1} x_{k}\right)=\mathcal{P}^{1} \rho_{2}\left(x_{k}\right) \equiv\left\{\begin{array}{ll}
18 p_{5}^{2} p_{2}+10 p_{5} p_{3} p_{2}^{2}+p_{2}^{6} & (p=19) \\
22 p_{5}^{2} p_{2}+7 p_{5} p_{3} p_{2}^{2}+7 p_{2}^{6} & (p=23)
\end{array} \quad \bmod I\right.
$$

hence $\lambda_{1} \neq 0, \lambda_{2} \neq 0$ and $\lambda_{3} \neq 0$.
(3) In this case, we have $(k, p)=(16,19)$. Put $I=\left(p_{1}, p_{3}, c_{6}, \hat{x}_{16}^{2}\right)$. Since $\hat{x}_{4}, \hat{x}_{12}, \hat{x}_{16}^{2} \in I$, it follows from Proposition 2.7 that
$\rho_{2}^{*}\left(\mathcal{P}^{1} x_{16}\right) \equiv \lambda_{1} \hat{x}_{16} \hat{x}_{36}+\lambda_{2} \hat{x}_{24} \hat{x}_{28} \equiv\left(13 \lambda_{1}+9 \lambda_{2}\right) p_{5} p_{4} p_{2}^{2}+\left(9 \lambda_{1}+14 \lambda_{2}\right) p_{5} p_{2}^{4} \bmod I$.
By Proposition 2.13, we also have $\rho_{2}^{*}\left(\mathcal{P}^{1} x_{16}\right)=\mathcal{P}^{1} \rho_{2}^{*}\left(x_{16}\right) \equiv 11 p_{5} p_{4} p_{2}^{2}+14 p_{5} p_{2}^{4}$ $\bmod I$, implying $\lambda_{1} \neq 0$ and $\lambda_{2} \neq 0$.
(4) Put $I=\left(p_{1}, p_{3}^{2}, c_{6}^{2}, \hat{x}_{12}, \hat{x}_{16}^{2}, \hat{x}_{24}, \hat{x}_{16} \hat{x}_{20}^{2}\right)$. Since $\hat{x}_{i}, \hat{x}_{16}^{2}, \hat{x}_{16} \hat{x}_{20}^{2} \hat{x}_{24} \in I$ for $i=4,12,24$, we have
$\rho_{2}^{*}\left(\mathcal{P}^{1} x_{k}\right) \equiv \lambda_{1} \hat{x}_{20} \hat{x}_{36}+\lambda_{2}^{2} \hat{x}_{28}^{2} \equiv\left(-10 \lambda_{1}+1600 \lambda_{2}\right) p_{5}^{2} p_{2}^{2}+\left(\frac{2}{3} \lambda_{1}-\frac{320}{3} \lambda_{2}\right) p_{5} p_{3} p_{2}^{3} \bmod I$.
By Proposition 2.13, we also have

$$
\rho_{2}^{*}\left(\mathcal{P}^{1} x_{k}\right)=\mathcal{P}^{1} \rho_{2}^{*}\left(x_{k}\right) \equiv\left\{\begin{array}{ll}
10 p_{5}^{2} p_{2}^{2}+12 p_{5} p_{3} p_{2}^{3} & (p=19) \\
15 p_{5}^{2} p_{2}^{2}+22 p_{5} p_{3} p_{2}^{3} & (p=23)
\end{array} \quad \bmod I\right.
$$

hence $\lambda_{1} \neq 0$ and $\lambda_{2} \neq 0$.
(5) and (7) Put $I=\left(p_{1}, p_{3}, p_{5}^{2}, c_{6}, \hat{x}_{16}\right)$ and $J=\left(p_{1}, p_{3}^{2}, c_{6}^{2}, \hat{x}_{12}, \hat{x}_{16}, \hat{x}_{20}^{3}, \hat{x}_{24}^{2}, \hat{x}_{20} \hat{x}_{24} \hat{x}_{28}\right)$.

Then since $\hat{x}_{i}, \hat{x}_{20}^{2} \in I$ for $i=4,12,16$ and $\hat{x}_{i}, \hat{x}_{20}^{3}, \hat{x}_{24}^{2}, \hat{x}_{20} \hat{x}_{24} \hat{x}_{28} \in J$ for $i=4,12,16$, we have $\lambda \neq 0$ similarly to (4) of E_{8} by considering $\rho_{2}^{*}\left(\mathcal{P}^{1} x_{k}\right)$ modulo I and J respectively for (5) and (7).
(6) The case $p=31$ follows from the above case of E_{8} together with Corollary 2.7. Then we consider the case $p=19$. Put $I=\left(p_{1}, p_{3}^{2}, c_{6}^{2}, \hat{x}_{12}, \hat{x}_{16}, \hat{x}_{20}^{2}, \hat{x}_{24}^{2}\right)$. Since $\hat{x}_{i}, \hat{x}_{j}^{2} \in I$ for $i=4,12,16$ and $j=20,24$, we get $\lambda \neq 0$ as above by considering $\rho_{2}^{*}\left(\mathcal{P}^{1} x_{k}\right) \bmod I$.

3.3. The cases of E_{6} and F_{4}

We first consider the case of E_{6}. Suppose that E_{6} is p-regular, that is, $p \geq 13$. By an easy dimensional consideration, we see that if $\mathcal{P}^{1} x_{k} \not \equiv 0$ $\bmod \left(x_{2 i} \mid i \in \mathrm{t}\left(\mathrm{E}_{6}\right)\right)^{3}$, it is as in the following table.

	$\mathcal{P}^{1} x_{k} \bmod \left(x_{2 i} \mid i \in \mathrm{t}\left(\mathrm{E}_{6}\right)\right)^{3}$	(k, p)
(1)	$\lambda_{1} x_{4} x_{24}+\lambda_{2} x_{10} x_{18}+\lambda_{3} x_{12} x_{16}$	$(4,13)$
(2)	$\lambda_{1} x_{10} x_{24}+\lambda_{2} x_{16} x_{18}$	$(10,13)$
(3)	$\lambda_{1} x_{12} x_{24}+\lambda_{2} x_{18}^{2}$	$(12,13),(4,17)$
(4)	$\lambda x_{16} x_{24}$	$(16,13),(4,19)$
(5)	$\lambda x_{18} x_{24}$	$(18,13),(10,17)$
(6)	λx_{24}^{2}	$(24,13),(16,17),(12,19),(4,23)$

When $p=19,23$, the result follows from the above case of E_{7} and Corollary 2.8.
(1) It is proved in [HK] that $\lambda_{1} \neq 0, \lambda_{2} \neq 0$ and $\lambda_{3} \neq 0$.
(2) Put $I=\left(p_{1}, p_{3}^{2}, c_{5}^{2}\right)$. Since $\hat{x}_{4}, \hat{x}_{10}^{2}, \hat{x}_{12}^{2} \in I$, we have
$\rho_{3}^{*}\left(\mathcal{P}^{1} x_{10}\right) \equiv \lambda_{1} \hat{x}_{10} \hat{x}_{24}+\lambda_{2} \hat{x}_{16} \hat{x}_{18} \equiv 5 \lambda_{1}\left(-p_{4} p_{2} c_{5}+\frac{1}{36} p_{2}^{3} c_{5}\right)+\lambda_{2}\left(12 p_{4} p_{2} c_{5}+p_{2}^{3} c_{5}\right) \quad \bmod I$,
where $\hat{x}_{10}=c_{5}$ and $\hat{x}_{18}=p_{2} c_{5}$. On the other hand, by Proposition 2.14, we have $\rho_{3}^{*}\left(\mathcal{P}^{1} x_{10}\right)=\mathcal{P}^{1} \rho_{3}^{*}\left(x_{10}\right) \equiv 6 p_{4} p_{2} c_{5}+7 p_{2}^{3} c_{5} \bmod I$ for $p=13$, hence $\lambda_{1} \neq 0$ and $\lambda_{2} \neq 0$.
(3) Put $I=\left(p_{1}, p_{3}^{2}, \hat{x}_{16}\right)$. It is sufficient to consider the case $p=13,17$. Since $\hat{x}_{i}, \hat{x}_{12}^{2} \in I$ for $i=4,16$,

$$
\rho_{3}^{*}\left(\mathcal{P}^{1} x_{k}\right) \equiv \lambda_{1} \hat{x}_{12} \hat{x}_{24}+\lambda_{2} \hat{x}_{18}^{2} \equiv-\frac{10}{3} \lambda_{1} p_{3} p_{2}^{3}+\lambda_{2} p_{2}^{2} c_{5}^{2} \quad \bmod I .
$$

By Proposition 2.14, we have

$$
\rho_{3}^{*}\left(\mathcal{P}^{1} x_{k}\right)=\mathcal{P}^{1} \rho_{3}^{*}\left(x_{k}\right) \equiv\left\{\begin{array}{ll}
9 p_{3} p_{2}^{3}+5 c_{5}^{2} p_{2}^{2} & (p=13) \\
13 p_{3} p_{2}^{3}-11 c_{5}^{2} p_{2}^{2} & (p=17)
\end{array} \quad \bmod I\right.
$$

implying $\lambda_{1} \neq 0$ and $\lambda_{2} \neq 0$.
(4), (5) and (6) Put $I=\left(p_{1}, p_{3}, p_{4}, c_{5}\right), J=\left(p_{1}, p_{3}, c_{5}^{2}, \hat{x}_{16}\right)$ and $K=\left(p_{1}, p_{3}, c_{5}, \hat{x}_{16}\right)$.

Then since $\hat{x}_{i} \in I$ for $i=4,10,12, \hat{x}_{i}, \hat{x}_{10}^{2} \in J$ for $i=4,12,16$ and $\hat{x}_{i} \in K$ for $i=4,12,10,16$, we get $\lambda \neq 0$ similarly to (4) of E_{8} by considering $\rho_{3}^{*}\left(\mathcal{P}^{1} x_{k}\right)$ modulo I, J, K respectively for (4), (5) and (6).

We next consider the case of F_{4}. Notice that F_{4} is p-regular if and only if so is E_{6}, and that as in the proof of Corollary 2.9, the map α_{3}^{*} : $H^{*}\left(B \mathrm{E}_{6} ; \mathbb{Z} / p\right) \rightarrow H^{*}\left(B \mathrm{~F}_{4} ; \mathbb{Z} / p\right)$ is surjective. Then the result for F_{4} follows from that for E_{6} above.

3.4. The case of G_{2}

For a degree reason, if G_{2} is p-regular and $\mathcal{P}^{1} x_{k} \not \equiv 0 \bmod \left(x_{2 i} \mid i \in\right.$ $\left.\mathrm{t}\left(\mathrm{G}_{2}\right)\right)^{3}$, then $(k, p)=(4,7),(12,7),(4,11)$. Hence Theorem 2.2 for G_{2} readily follows from Proposition 2.15.

References

[A] S. Araki, On the non-commutativity of Pontrjagin rings mod 3 of some compact exceptional groups, Nagoya Math. J. 17 (1960) 225-260.
[BH] A. Borel, F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958) 458-538.
[B] R. Bott, A note on the Samelson products in the classical groups, Comment. Math. Helv. 34 (1960), 249-256.
[C] L. Conlon, On the topology of EIII and EIV, Proc. Amer. Math. Soc. 16 (1965) 575-581.
[F] E. M. Friedlander, Exceptional isogenies and the classifying spaces of simple Lie groups, Ann. of Math. 101 (1975), 510-520.
[HK] H. Hamanaka and A. Kono, A note on Samelson products and $\bmod p$ cohomology of classifying spaces of the exceptional Lie groups, Topology Appl. 157 (2010), no. 2, 393-400.
[KK] S. Kaji and D. Kishimoto, Homotopy nilpotency in p-regular loop spaces, Math. Z., 264 (2010), no.1, 209-224.
[KKTh] D. Kishimoto, A. Kono and S. Theriault, Homotopy commutativity in p-localized gauge groups, Proc. Royal Soc. Edinburgh: Sect. A 143, no. 4 (2013), 851-870.
[KKTs] D. Kishimoto, A. Kono and M. Tsutaya, Mod p decompositions of gauge groups, Algebr. Geom. Topol. 13 (2013) 1757-1778.
[MT] M. Mimura and H. Toda, Topology of Lie groups I, II, Translations of Math. Monographs 91, American Mathematical Society, Providence, RI, 1991.
[N] M. Nakagawa, The integral cohomology ring of E_{7} / T, J. Math. Kyoto Univ. 41 (2001), no. 2, 303-321.
[O] H. Ōshima, Samelson products in the exceptional Lie group of rank 2, J. Math. Kyoto Univ. 45 (2005) 411-420.
[S] P.B. Shay, mod p Wu formulas for the Steenrod algebra and the DyerLashof algebra, Proc. Amer. Math. Soc. 63 (1977), no. 2, 339-347.
[Th] S. Theriault, Power maps on p-regular Lie groups, preprint.
[To] H. Toda, Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Studies 49, Princeton Univ. Press, Princeton N.J., 1962.
[TW] H. Toda, T. Watanabe, The integral cohomology ring of F_{4} / T and E_{6} / T, J. Math. Kyoto Univ. 14 (1974) 257-286.
[W] T. Watanabe, The integral cohomology ring of the symmetric space EVII, J. Math. Kyoto Univ. 15 (1975) 363-385.

[^0]: *Corresponding author
 Email addresses: s.hasui@math.kyoto-u.ac.jp (Sho Hasui),
 kishi@math.kyoto-u.ac.jp (Daisuke Kishimoto), ohsita@osaka-ue.ac.jp (Akihiro Ohsita)
 ${ }^{1}$ The second author is partially supported by JSPS KAKENHI 25400087

