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We study the universal relationship between the hot-spot size and the intensity of terahertz emission from
intrinsic Josephson junctions by dynamically controlling the temperature distributions in mesas of
Bi2Sr2CaCu2O8þδ. The uniform current bias leads to a significant increase in local temperature compared
to the nonuniform current bias. The thermal response of emission differs between the high- and low-bias
regimes. We find a strong positive correlation between the emission intensity and the volume of the
superconducting parts in the emitting stack. We identify the remarkable increase in the emission intensity
by up to 20% by eliminating the excess Joule heat from the mesa.
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I. INTRODUCTION

The terahertz wave with a frequency range of
0.3–10 THz is thought to have a great deal of potential
both in research and industry [1]. Since the first demon-
stration of terahertz emission from intrinsic Josephson
junctions [2] (IJJs) in high-transition-temperature super-
conductor Bi2Sr2CaCu2O8þδ (Bi-2212) [3], terahertz gen-
eration using stacks of IJJs has become a major topic of
research, both in terms of experiment [3–23] and theory
[24–38]. In the IJJ system, an application of a dc voltage V
leads to an ac current and electromagnetic emission at the
Josephson frequency in the form [39] fJ ¼ ð2e=hÞV=N,
where e is the electric charge, h is Plank’s constant, and N is
the number of active junctions [12]. The intense emission
occurs when fJ matches the cavity conditions: in the case of
a long rectangular mesa, the fundamental cavity resonance
can be excited at fc10 ¼ c0=2nw, where n is the refractive
index of Bi-2212 and w is the width of the mesa [3].
The most intriguing physics of the terahertz emissions is

the synchronization among thousands of stacked IJJs with
distributed widths due to the trapezoidal cross section of
the mesa. This system is an instructive demonstration of
the Kuramoto model, in which a large number of nonlinear
oscillators synchronize due to weak couplings [32]: a
Josephson junction array shunted by an inductance-
capacitance-resistance load can spontaneously synchronize
to a common frequency despite differences in bare frequen-
cies [40]. We perceive essentially the same phenomena in
many physical and biological systems, including relaxation
oscillator circuits, networks of neurons, and fireflies that
flash in unison [41]. In the IJJ system, mutual synchroniza-
tion based on hot-spot formation has been identified in a
recent mixing experiment [36]. A complete study of

increases in local temperature in the emitting stack will lead
to a further understanding of the nonlinear phase dynamics
of the IJJ system. Meanwhile, the effective prevention of
overheating is required to increase the emission intensity
and may be essential for designing powerful sources [20].
The steady-state temperature distribution in the Bi-2212

mesa is determined by a delicate balance of local Joule
heating [29]. In this work, we dynamically control the
temperature distributions by altering the dc current distri-
butions and simultaneously monitor the change in the
emission intensity. We use a florescent technique to directly
image temperature distributions. We find that we can
increase emission intensity considerably by preventing the
excessive heating that increases hot-spot size. This finding
allows for the construction of powerful sources capable of
emitting intense terahertz waves.

II. EXPERIMENTAL SETUP

Single crystals of Bi-2212 grown using a traveling-
solvent floating-zone technique are annealed at 650 °C for
12 h. The temperature dependence of the c-axis resistivity
ρcðTÞ (not shown here) shows the behavior typical of
underdoped crystals with Tc ¼ 78 K. A small piece of a
cleaved crystal is glued onto a sapphire substrate using
epoxy resin. The mesa structure with two silver stripe
electrodes depicted in Fig. 1(a) is milled from the crystal
surface by photolithography and argon ion milling tech-
niques. Figure 1(b) presents the profile of the mesa
structure measured using a stylus profiler. The mesa width
is w ¼ 73 μm and length l ¼ 400 μm. The thickness of
t ¼ 1.1 μm corresponds to N ¼ 720. Two stripe electrodes
20 μm apart have widths of 15 μm and thicknesses of
0.1 μm. The emitting sample is installed into the He-flow
cryostat. The terahertz emission is detected by a Si-composite
bolometer with a 1-THz low-pass filter.*tsujimoto@sk.kuee.kyoto‑u.ac.jp
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Figure 1(a) also presents the electrical circuit diagram.
Two digital voltmeters V and V1 are used for measuring
voltage V and current I, respectively. We adjust the variable
resistors VR1 and VR2 in order to alter the ratio of the
currents injected via two stripe electrodes. The electrical
null method using V0 enables us to monitor current passing
through each electrode. In this paper, we present the results
for the following two conditions: nonuniform bias using a
left electrode shown in Fig. 1(a) and uniform bias using
both electrodes with an equivalent amount of current.
Note that in the former case, a left-right reversal produces
the same results.

III. RESULTS AND DISCUSSION

Figure 1(c) shows the four-terminal I-V characteristics
(IVCs) with color-coded bolometer outputP at various bath
temperatures Tb. A vertical dashed line at V ¼ 0.884 V
represents the calculated voltage that satisfies fJ ¼ fc10,
where we assume that n has no temperature variation.
We indeed observe intense emissions when fJ matches fc10
in two characteristic bias regimes: a high-bias regime
(I ¼ 12–20 mA) and a low-bias regime (I ¼ 4–9 mA).
We can perceive a gap regime between the two regimes at
I ¼ 9–12 mA, where the emission intensities are rather
suppressed. This regime suggests the existence of a missing
mechanism other than the Josephson and cavity effects in
the IJJ stack with distributed widths as an intrinsic disorder.
According to an exactly solvable mean-field model for
coupled Josephson arrays [40], low-bias emission is rea-
sonably attributable to generic frequency locking, whereas
the current condition for high-bias emission has to be
modified due to the hot-spot formation. We suppose that
extreme temperature inhomogeneity in the mesa is a key
ingredient for synchronization in the IJJ stack.
To image the local temperature, we use a fluorescent

technique based on the strong temperature dependence of

the fluorescence intensity of the coordination complex
[42]. A film that consists of europium thenoyltrifluoroa-
cetonate in a polymer matrix of polybutylmethacrylate as
the temperature marker is deposited on the surface of
the sample by a spin-coating technique and irradiated by
365-nm light emitted by an UV light-emitting diode. A
room-temperature CMOS camera with an UV filter is used
to acquire the fluorescent image. The acquired data may
be directly converted to a surface local temperature T local
by calibrating the temperature dependence of the fluo-
rescence intensity. Because the sensitivity of the film
depends on the surface materials, i.e., Bi-2212 or silver,
a calibration curve must be determined for each surface.
Nevertheless, since the inevitable edge effect at the narrow
electrode stripes may degrade image quality and obscure
details [18], in the present experiment we image T local
distributions for only the Bi-2212 surface in order to
facilitate the analysis.
Figures 2(a) and 2(b) display the temperature distribu-

tions for nonuniform and uniform-bias conditions, respec-
tively. The images are taken with decreasing I from 33 to
9 mA at 6-mA intervals. The orange parts are no longer
superconducting with T local > Tc. The data for the silver
electrodes are not shown here (cf. blacked-out stripes).
Note that in the case of nonuniform bias, the current is
injected from the lower electrode in Fig. 2(a), as indicated
by the red triangle in the upper left. To make a quantitative
evaluation of T local in terms of Tc, the temperature profiles
along the length (y) of the mesa extracted from Figs. 2(a)
and 2(b) are presented in Figs. 2(c) and 2(d), respectively.
The temperature profiles along the width (x) are also
presented in Figs. 2(e) and 2(f), respectively. Each profile
curve is obtained from a smooth fit to the measured data
with an uncertainty below 10%.
As shown in Figs. 2(a) and 2(b), the bias uniformity is

found to lead to a major difference in T local distributions.

BSCCO
STYCAST

Sapphire

Silver

V1

V

V0

10 Ω10 Ω

FG

VR1

VR2

10 Ω

I 
(a)

(b)

(c)
FIG. 1. (a) Schematic view and (b) cross-
sectional profile of the Bi-2212 mesa.
(c) Four-terminal IVCs in the range of Tb ¼
10–50 K at 5-K intervals. The color code
indicates the bolometer output P. The ver-
tical dashed line represents fJ ¼ fc10.
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First, for nonuniform bias, the hot spot that is initially
localized on the left side moves to the center of the mesa as
I decreases to 21 mA. The hot spot disappears at 12 mA,
resulting in a uniform distribution. Such hot-spot behavior
closely correlates with previous observations [4,8,9,23]. In
contrast, for uniform bias, although the hot spot moves
from the left to the center as I decreases, it has a diameter
more than twice that seen in Fig. 2(a). The temperature
profiles presented in Fig. 2(d) guide our understanding
of the anomalous behavior for the uniform-bias case. As I
decreases further, T local over a large area remains higher
than Tc, and hot-spot formation lasts until 10 mA. Note
that the temperature profiles along x are nearly centrally
symmetric even with uniform bias.
From the results of temperature imaging, we presume

that emission intensity also has a strong correlation with the
volume of the superconducting parts in the emitting mesa.
Figure 3(a) shows the IVCs at Tb ¼ 20 K for two bias
conditions. In the case of uniform bias, the IVC has a
contact resistance due to the three-terminal measurement.
Figures 3(b) and 3(c) plot PðVÞ in the high-bias and low-
bias regimes, respectively. The blue and red data corre-
spond to nonuniform- and uniform-bias cases, respectively,
where V for the latter case has an offset of 0.2 V for ease
of comparison. Note that the obtained IVCs are nearly
independent of the current conditions except for the contact
resistance despite differences in the surface temperature
shown in the insets. In the high-bias regime, there is a clear
difference in PðVÞ of 20% between the two cases, whereas
in the low-bias regime, PðVÞ behaves independently of
the current conditions. The same behaviors are observed
for the whole range of Tb in which emission takes place.
In view of the differences in PðVÞ combined with the

temperature distributions, eliminating excessive heating
may prevent the conditions that lead to the loss of super-
conductivity over the whole mesa, resulting in an increase of

the emission intensity. This interpretation is also supported
by the fact that increases in P are observable only in the
high-bias regime. In addition, low-bias emission seems to be
more intense than high-bias emission, suggesting that only
the superconducting parts are indeed able to contribute to the
emission—nonsuperconducting parts just weaken the emis-
sion intensity. We measure three isolated mesas formed on
the same base crystal and find that they show reproducible
results. The effect is at all significant and universal, and it
reveals the new physical finding that the high-bias emission
is qualitatively different from the low-bias emission.
We consider a 1D heat-transfer model for the simplest

continuous case to explain a major difference in surface

FIG. 3. (a) Four-terminal IVCs at Tb ¼ 20 K. PðVÞ in the high-
and low-bias regimes is shown in (b) and (c), respectively, where
the blue and red plots indicate the data for nonuniform and
uniform bias. V for the latter case has offsets of 0.2 V. The insets
beside the data present the corresponding temperature distribu-
tions in the mesa.

FIG. 2. Temperature distributions in the emitting mesa at Tb ¼ 4.2 K for the (a) nonuniform- and (b) uniform-bias cases. The upper
triangles mark the electrodes used for the current injection. (c),(d) Temperature profiles along the length of the mesa at x ¼ w=2. Arrows
indicate the center of the hot spot. (e),(f) Temperature profiles along the width of the mesa at y ¼ l=2.

DYNAMIC CONTROL OF TEMPERATURE DISTRIBUTIONS … PHYS. REV. APPLIED 2, 044016 (2014)

044016-3



temperature caused by current conditions. In the following
simulation, we take into account both Joule heating and
conserved cooling at the electrode contacts. The temper-
ature distribution TðxÞ along the width in thermal equilib-
rium can be calculated according to the following diffusion
equation:

− t
d
dx

�
κabðTÞ

d
dx

T

�
þ
�
κcðTÞ
L1

þ
�
A2

A1

�
κAg
L2

�
ðT − TbÞ

¼ V2

ρcðTÞt
þ i2ðRcA1Þ: ð1Þ

The second term describes the cooling due to the base
crystal and the electrode with the coefficients κc=L1 and
κAg=L2, where A2=A1 represents the contact area ratio as
a reduction factor. The two terms in the right-hand side
describe Joule heating due to the c-axis and contact
resistances. We use realistic parameters: L1 ¼ 20 μm,
L2 ¼ 300 μm, A2=A1 ¼ 2.5 × 10−3, Rc ¼ 10 Ω, κab and
κc from Ref. [43], and κAg ¼ 1.9 × 10−4 W=mK. The
boundary conditions are chosen to be dT=dx ¼ 0 (zero
flux) at the positions 150 μm apart from both ends of the
mesa. The current density at the electrode contacts i is
given by I=A1 for nonuniform bias and by I=2A1 for
uniform bias. We numerically solve Eq. (1) using finite
element analysis [44]. To find a nontrivial TðxÞ, a proper
initial function has to be used. Figure 4 shows calculated
TðxÞ profiles with I ¼ 21 mA at Tb ¼ 4.2 K. We also plot
the calculation results without considering electrode cool-
ing (cf. dashed lines) for comparison. Because we neglect
temperature variations along the y and z directions, the
calculated T is reasonably lower than the measured
T localðxÞ at y ¼ l=2.
Interestingly, for the nonuniform-bias case, a temper-

ature rise at the left contact is shown to be inhibited by the
electrode cooling despite stronger heating at the same
contact, resulting in lower peak T than that for the
uniform-bias case. This is attributed to a larger cooling
efficiency determined by (T − Tb). In contrast, the uniform

bias leads to higher peak T at the center due to less electrode
cooling. This tendency is consistent with observed dif-
ferences in T local for the two bias cases. Although further
studies using a 2D model in order to evaluate temperature
variations along the y direction are needed, the present
model reveals a substantial difference in T distributions due
to both heating and cooling at the electrode contact that have
not been studied in previous simulations.

IV. CONCLUSION

In conclusion, we investigate the universal relationship
between coherent terahertz-wave emission from mesas of
Bi-2212 and temperature distributions by dynamically
controlling the temperature distributions. The temperature
distributions in emitting mesas are directly imaged using a
fluorescent technique. For the high-bias regime, we find
that the temperature distributions and the consequent
emission intensity vary remarkably depending on the
current conditions. This rather surprising phenomenon
can be understood by using the simplest 1D model with
considering both heating and cooling at the electrode
contact. The emission intensity increases by up to 20%
with a decrease in the hot-spot size. In contrast to high-bias
emission, the low-bias emission intensity remains constant
independently of the bias condition consistent with no
change in the temperature distribution. Because no regard
has been given to the elimination of the excess heat from
mesas, further improvements in terms of the sample
structure and the bias condition may allow for the con-
struction of powerful and tunable sources that fill a
technical gap in the terahertz regime.
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