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Electronic stress tensor of chemical bond 
Sτ
�

 is a 3-dim real symmetric component of a 3-dim real stress tensor τ Π�
. 

The complementary antisymmetric component 
A Sτ τ τΠ= −
� � �

 drives the torque of electron spin s
�

 through the vorticity 

rots
�

. The whole picture has quite recently been unified on the variation principle of gravity using the semiclassical action 

integral. This theory is extended in this paper using a quantum action integral based on a simple SUGRA (supergravity), 

which is a simple SUSY (supersymmetry) model of gravity. 
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Recently, we have developed the concept of energy 

density using the stress tensor of QED (quantum 

electrodynamics).
1-5

 The symmetrical component 
Sτ
�

 

of the electronic stress tensor has been proved to 

predict the emergence of the covalent bond in terms 

of the spindle structure.
4
 The theory of the spindle 

structure has also been developed to visualize the 

regional chemical potential of chemical reactivity and 

the bond order of chemical bond.
6-11

 

The energy density concept itself has been essential 

in the quantum field theory and the stress tensors are 

used ubiquitously for description of internal forces of 

matter. They have been originally formulated by 

Pauli
12

 in the quantum mechanical context with the 

differential force law showing that it can be derived 

from the divergence relations applied to the energy-

momentum tensor under general situations in the 

presence of electromagnetic fields, while the basic 

idea dates back to Schrödinger.
13 

We have also found a new picture of electron spin 

torque, where the chirality of the electronic structure 

has played an essential important role.
5,8

 The theory 

of the electron spin torque has also been developed to 

visualize the chirality characteristics of atoms and 

chiral molecules.
14-16

 

Quite recently, the concept of energy density has 

been formulated in terms of stress tensor in general 

relativity.
17-19

 The spin vorticity of electron rots
�

 has 

been hidden in the energy-momentum tensor and 

plays a significant role in the dynamics of electron. 

The dynamics of electron spin is driven by the 

antisymmetric component of the stress tensor of 

electron through the vorticity. The symmetric 

component of the stress tensor of electron drives the 

tensorial energy density of chemical reactivity. The 

whole picture of the electronic stress tensor has been 

established on the variation principle of gravity using 

the semiclassical action integral.
17-19

  

In this paper, this theory is extended, following a 

short review of the preceding papers, using a quantum 

action integral based on a simple SUGRA (supergravity), 

which is a simple SUSY (supersymmetry) model of 

gravity. To make the paper self-contained, fundamental 

mathematics
17-21

 are collected in Appendices SA-SD 

(see Supplementary Data). 
 

Stress Tensor 

The Dirac equation of the Dirac spinor ψ  with the 

covariant derivative Dµ  of QED is given as Eqs (1) 

and (2), 

( ) 0i D mc
µ

µγ ψ− =ℏ
 
 … (1) 

q
D i A

c
µ µ µ= ∂ +

ℏ  
 … (2) 

where m
 
is the mass of electron, c

 
is the speed of 

light in vacuum, q e= −
 
is the charge of electron and 

Aµ
 is the Abelian gauge potential of photon. 

The kinetic momentum density Π
�

 defined as Eq. (3), 

( )( )†1
. .

2
i D h cψ ψΠ = +
��
ℏ

 
 … (3) 
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satisfies the equation of motion with the force density 

in the right hand side of Eq. (4), 

L
t

τ Π∂
Π = +

∂

�� �
 … (4) 

The force density is composed not only of the 

Lorentz force density L
�

, but also of the tension 

density τ Π�
 which is the divergence of the 3-dim real 

stress tensor τ Π�
 Eqs (5) and (6). 

div ,   k kτ τ τ τΠ Π Π Π= = ∂ ℓ

ℓ

� � �
 … (5) 

( )( ). .
2

c
i D h cµν ν µτ ψγ ψΠ = − +ℏ  … (6) 

The stress tensor itself is not defined uniquely since 

mathematically any tensor whose divergence is zero 

can be added to. The stress tensor τ Π�
 in Eq. (6) is 

defined in such a way that it appears in the equation 

of motion of Π
�

 as in Eq. (4).  
 

Variation principle and the spin connection 

To seek for the variation principle of the equation 

of motion, the semiclassical Einstein-Hilbert action 

integral has been used under the symmetry of the 

general coordinate transformation of gravity (Eq. 7), 

4 4

2

1
0,    + ,  

2

8

c
I I R gd x L gd x

c

G

c

= = − −

=

∫ ∫δ
κ

π
κ

 … (7) 

where R  is the Ricci scalar, G  is the universal 

gravitational constant and L  is the Lagrangian 

density of QED including the interaction with gravity. 

The gravitational covariant derivative ( )D gµ  is 

then given as Eq. (8), 

( )
1

2

1

2

ab

ab

ab

ab

q
D g i A i J

c

D i J

= ∂ + + +

= +

ℏ ℏ

ℏ

µ µ µ µ

µ µ

γ

γ

 … (8) 

with the spin angular momentum 
ab

J  as Eq. (9), 

,
4

ab a bi
J γ γ =  

ℏ
 … (9) 

and spin connection as Eq. (10). 

;

b bc

a a c
e e

ν
µ ν µγ η=  … (10) 

Using the gravitational covariant derivative ( )D gµ , 

the stress tensor of electron ( )gµντ Π
 becomes Eq. (11). 

( ) ( )( )( )g . .
2

c
i D g h cµν ν µτ ψγ ψΠ = − +ℏ  … (11) 

In this variation principle, due to the presence of 

the spin connection 
abµγ , a new symmetry-polarized 

geometrical tensor µνε Π
 appears and whose 

antisymmetric component cancels with that of 

( )gµντ Π
 (Eq. 12), 

( ) 0
A A

g
µν µνε τ+ =  … (12) 

where  

( )1

2

Aµν µν νµε ε εΠ Π= −  … (13) 

( ) ( ) ( )( )1

2

A
g g g

µν µν νµτ τ τΠ Π= −  … (14) 

 

Symmetry of the stress tensor with spin vorticity 

This cancellation ( ) 0
A A

g
µν µνε τ+ =  (Eq. 12), 

originates from the fact that in order to satisfy the 

symmetry under the general coordinate 

transformation, the energy-momentum tensor Tµν  

should be symmetric (Eq.15).  

T Tµν νµ=  … (15) 

It follows that the electronic part of the energy-

momentum tensor 
e

T µν  of Tµν  should be symmetric 

Eq. (16). 

( )e eT g Tµν µν µν νµε τΠ Π= − − =  … (16) 

Consequently, the cancelling equation 

( ) 0A A
g

µν µνε τ+ =  (Eq. 12), is mandatory. It has the 

physical meaning, which in the limit to the 

Minkowski spacetime turns out to be two-fold;  

the time-like change of spin, namely the equation  

of motion of spin s
�

 with torque t
�

 and zeta  

force ζ
�

 (Eq. 17), 

s t
t

ζ
∂

= +
∂

���
 … (17) 

and the space-like change of spin, namely, the spin 

vorticity (Eq. 18). 

( )( )0

1
rot . .

2
s i D h cψγ ψ= + − Π

���
ℏ  … (18) 

Thus, in the limit to the Minkowski spacetime, the 

equation of motion of electron, Eq. (4),  is  reduced  to 
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1
rot

2

S
s L

t
τ

∂  
Π + = + 

∂  

�� � �  … (19) 

div ,   S S Sk Skτ τ τ τ= = ∂ ℓ

ℓ

� � �
 … (20) 

( )1

2

Sµν µν νµτ τ τΠ Π= +  … (21) 

It should be noted that half the vorticity, 1
rot

2
s
�  

appears as a component of the electronic momentum, 

as found in Eq. (19). Also, this assures the equation of 

motion of electron using solely the symmetric part of 

the tensor 
S

kτ
ℓ
 in the right hand side. 

 

The SUGRA spin connection and the symmetry of the stress tensor 

In the tetrad formalism, the Dirac spinor field is a 

coordinate scalar and a Lorentz spinor. 

( ) ( ) ( )' 'x x xα α αψ ψ ψ→ =  … (22) 

( ) ( ) ( )( ) ( )'x x D x x
α α αβ β

ψ ψ ψ→ = Λ  … (23) 

Also, what is important is that the covariant 
derivative ( )D gµ  is not only a coordinate scalar, but 
also a Lorentz vector. 

( )D gµ µ µ= ∂ + Γ  … (24) 

( ) ( ) ( )( ) ( ) ( )( )

( )( )( ) ( )( )

1

1

'x x D x x D x

D x D x

−

−

Γ → Γ = Λ Γ Λ

− ∂ Λ Λ

µ µ µ

µ

 … (25) 

The spin connection is not unique. In SUGRA,  

we have a new term ( )SUGRA
abµγ  added to  

abµγ  (Eq.26). 

( )

( )

( ) ( )

1
SUGRA

2

1
SUGRA

2

1
SUGRA

2

ab

ab

ab

ab

ab

ab

q
D i A i J

c

i J

D g i J

= ∂ + + +

+

= +

ℏ ℏ

ℏ

ℏ

µ µ µ µ

µ

µ µ

γ

γ

γ

 … (26)
 

Then the symmetry-polarized stress tensor of 

electron ( )gµντ Π
 is changed to ( )SUGRAµντ Π

 

with the covariant derivative ( )SUGRADµ  (Eq. 27). 

( ) ( )( )( )SUGRA SUGRA . .
2

c
i D h c

µν ν µ

τ ψγ ψΠ = − +ℏ   

… (27) 

With the new spin connection term given, the new 

symmetry-polarized geometrical tensor ( )SUGRAµνε Π  

appears, and again now that the energy-momentum 

tensor ( )SUGRATµν  is symmetric, and hence the 

electronic part ( )e SUGRAT µν  is symmetric, the 

resultant antisymmetric component of the 

( )SUGRAAµνε  cancels with ( )SUGRAAµντ : 

( ) ( )SUGRA SUGRA 0A Aµν µνε τ+ =  … (28) 

where 

( ) ( ) ( )( )1
SUGRA SUGRA SUGRA

2

Aµν µν νµε ε εΠ Π= −  …(29) 

( ) ( ) ( )( )1
SUGRA SUGRA SUGRA

2

Aµν µν νµτ τ τΠ Π= −  …(30) 

 

Examples of symmetric energy-momentum tensor 

We shall examine an example of the symmetric 

energy-momentum tensor of a simple SUGRA in the 

case of a simple SUSY with linearized gravity.
 

A weak classical gravity is represented by the 

infinitesimal transformation
20 

( ) ( ) ( ) ( )'x x x x x x x
µ µ µ µξ→ = +  … (31) 

( ) ( ) ( )'a a a a

b b b bx x xδ ωΛ → Λ = +  … (32) 

( ) ( ) ( )

( )

2 ' '

2 ' '

a a a a

a a

e x k x e x

k x

= + →

= +

µ µ µ µ

µ µ

δ φ

δ φ
 … (33) 

( ) ( ) ( )

( )
( )

' '

1

2

x x x

x
x

k x

→ =

 ∂
+ − + 

∂ 

µν µν µν

µ

µνν

φ φ φ

ξ
ω

 … (34) 

where 

2
8k G

c
π=
ℏ

 … (35) 

This leads to a weak gravitational field ( )h xµν  

Eqs (36) and (37).  

( ) ( )2g x kh xµν µν µνη= +  … (36) 

( ) ( ) ( )h x x xµν µν νµφ φ= +  … (37) 

The action integral given in Eq. (7) is cast into the 

linearized form as follows: 

( )( )

4 4

linearized

04 2
linearized linearized

1

2

1

c
I R gd x L gd x

c

I d x E h kT h L
c

µν µν
µν µν

κ
= − + −∫ ∫

→

= − − +∫ ℏ

  

 … (38) 
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1

2

h h h
E

h h h

E

µν α µ ν α ν µ
α αµν

ν µ α µν α µν α β
α α α β

νµ

η η

 − ∂ ∂ − ∂ ∂
=  

 +∂ ∂ − + ∂ ∂ 

=

□

□
 … (39) 

where E µν
 is the linearized Einstein tensor and 

( )0

linearizedL  is the linearized Lagrangian density of 

QED excluding the interaction with gravity. In  

the right hand side of Eq. (38), we have the  

symmetric energy-momentum tensor T Tµν νµ= ,  

and hence the symmetric stress tensor 
e e

T Tµν νµ=  as  

the electronic part. 

In SUGRA, we have the gauge transformation of 

the spin-2 field of graviton ( )h xµν  (Eq. 40). 

( ) ( ) ( )
( ) ( )1

'
2

x x
h x h x h x

k x x

µ ν
µν µν µν ν µ

ξ ξ ∂ ∂
→ = − +  ∂ ∂    

… (40)

 
The graviton is associated with the superpartner, 

called the gravitino ( )xµψ , represented by the  

spin-3/2 Rarita-Schwinger field, whose gauge 

transformation is (Eq. 40), 

( ) ( ) ( ) ( )'x x x xµ µ µ µψ ψ ψ ψ→ = − ∂
 

… (41)
 

where ( )xψ  is a spin-1/2 Majorana field. These are 

the components of the metric superfield ( )H xµ , 
whose gauge transformation is given by Eq. (42), 

( ) ( ) ( ) ( )'H x H x H x xµ µ µ µ→ = − ∆  … (42) 

where ( )xµ∆  is the linear superfield (Eq. 43). 

( ) ( )x d xµ µγ∆ = Ξ  … (43) 

The gauge fields are then calculated to be 

( ) ( ) ( )
1

3

HH
x V x V x

λ
µν µν µν λφ η= −  … (44) 

( ) ( ) ( ) ( )
2 2

2
3 3

H H H
x x x i x

ρ
µ µ µ µ ρψ λ γ λ γ ω= − / + ∂ℏ  … (45)

 

with 

( ) ( )2x kv xµ µξ =  … (46) 

( ) ( ) constv x xµ µω γΞ= − +ℏ  … (47) 

( ) ( ) ( ) ( ) ( )( )x k v x v x V x V x
∆ ∆

= ∂ − ∂ − +µν ν µ µ ν µν νµω  … (48) 

( ) ( ) ( )54 4 constx i M x N xψ γ
Ξ Ξ

= − +ℏ ℏ  … (49) 

Consequently, the gauge-invariant linearized 

SUGRA action integral is found to be  

( )

( )

( )

linearized

1

4 2 2

linearized

1

SUGRA

1 1

2 2

1 4
2 2

3

2 2

new

X X

I

L c k S

I d x b b p s
c

k R b pA sB

µ µ
µ µ

µ
µ

µ
µ

ψ ψ−

−

 
× − 

 
 = − − + + 
 

+ − + − 
 
 

∫

ℏ

ℏ

 … (50)

 

where newS µ
 is the supersymmetry current, and 

2R C
µ µΘ=  … (51) 

is the R -current, and 

5L
c

σ νµκσ
κ ν µε γ γ ψ= − ∂

ℏ
 … (52) 

2 1

2

H H H
b D C V

σ σ σ µ νµκσ
µ κ µνε= − ∂ ∂ + ∂ℏ ℏ  … (53) 

H
p i N

µ
µ= ∂ℏ  … (54) 

H
s i M

µ
µ= ∂ℏ  … (55) 

Further optimization of the auxiliary fields ,  b pµ
, 

and s  leads to Eq. (56) 

( )

( ) ( )

linearized

1

4

linearized
2 2

2 2

SUGRA

1 1

2 2
1 1

3 2
8

opt

new

X X

I

L c k S

I d x R R
c

k

A B

µ µ
µ µ

µ
µ

ψ ψ−

−

=

 
× − 

 
  −
  

+   
  + +  

∫

ℏ

ℏ

 … (56)

 

We may identify the negative energy density, 

( ) ( )( )2 2
2 23

8

X X
k A B

−− +ℏ , for the anti-de Sitter 

spacetime.  

We have the SUGRA action added to
linearizedI , as 

shown in Eqs (50) and (56), so that we have again the 

symmetric energy-momentum tensor T Tµν νµ= , and 

hence the symmetric stress tensor 
e e

T Tµν νµ=  as the 

electronic part.  
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Conclusions 
We have extended the theory of the electronic 

stress tensor of chemical bond on the variation  

principle of gravity using the semiclassical action 

integral to the one using a quantum action  

integral. The central symmetrical properties of  

the theory have shown to be intact. Further 

characteristics of the supersymmetry
20

 may play a 

significant role in the theory of the electronic stress 

tensor of chemical bond.  
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