Electronic Supplementary Data

Electronic stress tensor of chemical bond

Akitomo Tachibana*
Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan Email: akitomo@scl.kyoto-u.ac.jp

No. Contents
1 Appendix SA - Notation 2

2 Appendix SB - The supersymmetry algebras

3 Appendix SC - The Majorana equations 5

4 Appendix SD - The Salam-Strathdee superfields
6

Appendix - SA

We may first quickly review basic mathematics. ${ }^{17}$ The coordinate x with the contravariant components x^{μ} and the covariant components x_{μ} and the metric tensor $\eta_{\mu \nu}=\eta^{\mu \nu}$ of the Minkowski space, together with the inner product of two 4 -vectors A and B written as $A \cdot B$ as well as the inner product of the Dirac gamma matrices γ^{μ} and a 4 -vector A written as the Dirac slash A are defined as follows:

$$
\begin{align*}
& x^{\mu}=\left(x^{0}, x^{k}\right)=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)=(c t, x, y, z)=(c t, \vec{r})=(c t, \vec{x}) \tag{1}\\
& x_{\mu}=\eta_{\mu \nu} x^{\nu}=\left(x_{0}, x_{k}\right)=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=(c t,-x,-y,-z)=(c t,-\vec{r})=(c t,-\vec{x}) \tag{2}\\
& \eta_{\mu \nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)=\eta^{\mu \nu}, \eta^{\mu \rho} \eta_{\rho \nu}={\delta^{\mu}}_{\nu}=\left\{\begin{array}{l}
1, \mu=v \\
0, \mu \neq v
\end{array}\right. \tag{3}\\
& \partial_{\mu}=\frac{\partial}{\partial x^{\mu}}=\left(\frac{\partial}{\partial x^{0}}, \frac{\partial}{\partial x^{1}}, \frac{\partial}{\partial x^{2}}, \frac{\partial}{\partial x^{3}}\right)=\left(\frac{1}{c} \frac{\partial}{\partial t}, \vec{\nabla}\right)=\left(\frac{1}{c} \frac{\partial}{\partial t}, \operatorname{grad}\right) \tag{4}\\
& \partial^{\mu}=\eta^{\mu \nu} \frac{\partial}{\partial x^{\nu}}=\left(\frac{\partial}{\partial x^{0}},-\frac{\partial}{\partial x^{1}},-\frac{\partial}{\partial x^{2}},-\frac{\partial}{\partial x^{3}}\right)=\left(\frac{1}{c} \frac{\partial}{\partial t},-\vec{\nabla}\right)=\left(\frac{1}{c} \frac{\partial}{\partial t},-\operatorname{grad}\right) \tag{5}\\
& A \cdot B=\eta_{\mu \nu} A^{\mu} B^{\nu}=A^{0} B^{0}-\vec{A} \bullet \vec{B}, \vec{A} \bullet \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z} \tag{6}\\
& A=\eta_{\mu \nu} \gamma^{\mu} A^{\nu}=\gamma^{0} A^{0}-\vec{\gamma} \bullet \vec{A}, \quad \vec{\gamma} \bullet \vec{A}=\gamma^{1} A_{x}+\gamma^{2} A_{y}+\gamma^{3} A_{z} \tag{7}\\
& \square=\partial^{2}=\left(\frac{1}{c} \frac{\partial}{\partial t}\right)^{2}-\Delta, \Delta=(\vec{\nabla})^{2} \tag{8}\\
& \{A, B\}=A B+B A=[A, B]_{+} ;[A, B]=A B-B A=[A, B]_{-} \tag{9}
\end{align*}
$$

where the Einstein summation convention is used.
The spinor $\psi(x)$ in the chiral representation $\psi_{\text {chiral }}(x)$ is constructed by the undotted spinor $\psi_{R}(x)=\xi^{A}(x)$ with right-handed chirality and the dotted spinor $\psi_{L}(x)=\eta_{\dot{U}}(x)$ with left-handed chirality as

$$
\begin{align*}
& \psi=\psi_{\text {chiral }}=\binom{\psi_{R}}{\psi_{L}}=\binom{\xi^{A}}{\eta_{\dot{U}}} \tag{10}\\
& \xi^{A}=\binom{\xi^{1}}{\xi^{2}}, \quad \eta_{\dot{U}}=\binom{\eta_{\mathrm{i}}}{\eta_{\dot{2}}} \tag{11}
\end{align*}
$$

The undotted and dotted capital Latin letters run from 1 to 2 and change position by using the antisymmetric matrix \mathcal{E} as

$$
\begin{align*}
& \xi_{A}=\xi^{B} \varepsilon_{B A}, \quad \eta^{\dot{U}}=\varepsilon^{\dot{U} \dot{V}} \eta_{\dot{V}} \tag{12}\\
& \xi^{A}=\varepsilon^{A B} \xi_{B}, \eta_{\dot{U}}=\eta^{\dot{V}} \varepsilon_{\dot{V} \dot{U}} \tag{13}\\
& \varepsilon_{A B}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\varepsilon^{A B}, \quad \varepsilon^{\dot{U} \dot{V}}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\varepsilon_{\dot{U} \dot{V}} \tag{14}
\end{align*}
$$

where the Einstein summation convention is used.

The Pauli matrix σ with the contravariant components σ^{μ} and the covariant components σ_{μ}

$$
\begin{align*}
& \sigma^{\mu}=\left(\sigma^{0}, \sigma^{k}\right)=\left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right)=\left(1, \sigma_{x}, \sigma_{y}, \sigma_{z}\right)=(1, \vec{\sigma}) \tag{15}\\
& \sigma_{\mu}=\eta_{\mu \nu} \sigma^{\nu}=\left(\sigma_{0}, \sigma_{k}\right)=\left(\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right)=\left(1,-\sigma_{x},-\sigma_{y},-\sigma_{z}\right)=(1,-\vec{\sigma}) \tag{16}
\end{align*}
$$

(note the use of 1 as the unit matrix) are cast into the MTW (Misner-Thorne-Wheeler) representation as ${ }^{21}$

$$
\begin{align*}
& \left(\sigma_{0}\right)^{A \dot{U}}=\left(\sigma^{0}\right)_{\dot{V} B}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\sigma^{0} \\
& \left(\sigma_{1}\right)^{A \dot{U}}=\left(\sigma^{1}\right)_{\dot{V} B}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\sigma_{x} \\
& \left(\sigma_{2}\right)^{A \dot{U}}=\left(\sigma^{2}\right)_{\dot{V} B}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=\sigma_{y} \tag{17}\\
& \left(\sigma_{3}\right)^{A \dot{U}}=\left(\sigma^{3}\right)_{\dot{V} B}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\sigma_{z}
\end{align*}
$$

Also, the Dirac gamma matrices γ^{μ} and the chiral matrix γ_{5}

$$
\begin{equation*}
\gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} \tag{18}
\end{equation*}
$$

are given in the chiral representation using the MTW representation of the Pauli matrices as

$$
\begin{align*}
& \gamma^{0}=\left(\begin{array}{cc}
0 & \left(\sigma_{0}\right)^{A \dot{U}} \\
\left(\sigma^{0}\right)_{\dot{V} B} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & \sigma^{0} \\
\sigma^{0} & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \gamma^{k}=\left(\begin{array}{cc}
0 & -\left(\sigma_{k}\right)^{A \dot{U}} \\
\left(\sigma^{k}\right)_{\dot{V} B} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -\sigma^{k} \\
\sigma^{k} & 0
\end{array}\right) \tag{19}\\
& \gamma_{5}=\left(\begin{array}{cc}
\left(\sigma^{0}\right)_{B}^{A} & 0 \\
0 & -\left(\sigma^{0}\right)_{\dot{U}}^{\dot{V}}
\end{array}\right)=\left(\begin{array}{cc}
\sigma^{0} & 0 \\
0 & -\sigma^{0}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=-\gamma^{5}
\end{align*}
$$

where the following MTW representation is found for the diagonal block:

$$
\begin{align*}
& \left(\sigma^{0}\right)_{B}^{A}=\left(\sigma^{0}\right)_{\dot{U}}^{\dot{V}}=\sigma^{0} \\
& \left(\sigma^{1}\right)_{B}^{A}=\left(\sigma^{1}\right)_{\dot{U}}^{\dot{V}}=\sigma_{x} \\
& \left(\sigma^{2}\right)_{B}^{A}=\left(\sigma^{2}\right)_{\dot{U}}^{\dot{V}}=\sigma_{y} \\
& \left(\sigma^{3}\right)_{B}^{A}=\left(\sigma^{3}\right)_{\dot{U}}^{\dot{V}}=\sigma_{z} \tag{20}
\end{align*}
$$

The Clifford algebra of the Dirac gamma matrices should be

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu}\left(\begin{array}{cc}
\left(\sigma^{0}\right)_{B}^{A} & 0 \tag{21}\\
0 & \left(\sigma^{0}\right)_{\dot{U}}^{\dot{\nu}}
\end{array}\right)=2 \eta^{\mu \nu}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=2 \eta^{\mu \nu}
$$

Appendix - SB

The fundamental supersymmetry algebras are summarized. ${ }^{20}$
The chiral spinor representation $D(\lambda)$ of the Poincaré group reduces to the infinitesimal Lorentz transformation as

$$
\begin{align*}
& D_{m^{\prime} m}(1+\omega)=1-\frac{1}{2} i \omega_{k \ell}\left(J^{k \ell}\right)_{m^{\prime} m} / \hbar, \quad m^{\prime}, m=-j,-j+1, \cdots, j \tag{22}\\
& \vec{J}=\left(J^{23}, J^{31}, J^{12}\right) \\
& {\left[J^{k}, J^{\ell}\right]=i \hbar \varepsilon_{k \ell n} J^{n}} \tag{23}\\
& \left(J^{1} \pm i J^{2}\right)_{m^{\prime} m}=\delta_{m^{\prime} m} \sqrt{(j \mp m)(j \pm m+1)} \hbar \tag{24}\\
& \left(J^{3}\right)_{m^{\prime} m}=\delta_{m^{\prime} m} m \hbar \\
& -(\vec{J})_{m^{\prime}, m}^{*}=(-)^{m-m^{\prime}}(\vec{J})_{-m,-m^{\prime}} \tag{25}\\
& {\left[J^{k}, \frac{H}{c}\right]=0, \quad\left[J^{k}, P^{\ell}\right]=i \hbar \varepsilon_{k \ell n} P^{n}} \tag{26}
\end{align*}
$$

and

$$
\begin{align*}
& \vec{K}=\left(J^{10}, J^{20}, J^{30}\right) \\
& {\left[K^{k}, K^{\ell}\right]=-i \hbar \varepsilon_{k \ell n} J^{n}} \tag{27}\\
& {\left[K^{k}, J^{\ell}\right]=\left[J^{k}, K^{\ell}\right]=i \hbar \varepsilon_{k \ell n} K^{n}} \tag{28}\\
& {\left[K^{k}, \frac{H}{c}\right]=i \hbar P^{k}, \quad\left[K^{k}, P^{\ell}\right]=i \hbar \delta_{k \ell} \frac{H}{c}} \tag{29}\\
& \vec{A}=\frac{1}{2}(\vec{J}+i \vec{K}), \quad \vec{B}=\frac{1}{2}(\vec{J}-i \vec{K}) \tag{30}\\
& \vec{J}=\vec{A}+\vec{B}, \quad \vec{K}=-i(\vec{A}-\vec{B}) \tag{31}\\
& {\left[A^{k}, A^{\ell}\right]=i \hbar \varepsilon_{k \ell n} A^{n}} \tag{32}\\
& {\left[B^{k}, B^{\ell}\right]=i \hbar \varepsilon_{k \ell n} B^{n}} \tag{33}\\
& {[\vec{A}, \vec{B}]=0} \tag{34}
\end{align*}
$$

The $\left(0, \frac{1}{2}\right)$-fermionic generator $Q_{\dot{U r}}$ is transformed under the Lorentz transformation as

$$
\begin{align*}
& U\left(\Lambda^{-1}\right) Q_{\dot{U} r} U(\Lambda)=\lambda_{\eta \dot{U}}^{\dot{V}}(\Lambda) Q_{\dot{V} r} \tag{35}\\
& {\left[\vec{J}, Q_{\dot{U} r}\right]=-\frac{\hbar}{2} \vec{\sigma}_{\dot{U}}^{\dot{\dot{V}}} Q_{\dot{V} r}, \quad\left[\vec{K}, Q_{\dot{U} r}\right]=-\frac{\hbar}{2} i \vec{\sigma}_{\dot{U}}^{\dot{V}} Q_{\dot{V} r}} \tag{36}\\
& {\left[\vec{A}, Q_{\dot{U} r}\right]=0, \quad\left[\vec{B}, Q_{\dot{U} r}\right]=-\frac{\hbar}{2} \vec{\sigma}_{\dot{U}} \dot{\dot{V}} Q_{\dot{V} r}} \tag{37}
\end{align*}
$$

with the charge conjugation operator \mathbf{C} and the complex conjugate operator K,

$$
\begin{equation*}
\mathbf{C}\binom{e^{A W} K Q_{\dot{W} r}}{Q_{\dot{U} r}} \mathbf{C}^{-1}=-\binom{e^{A W} K Q_{\dot{\dot{W}_{r}}}}{Q_{\dot{U} r}} \tag{38}
\end{equation*}
$$

Likewise, the $\left(\frac{1}{2}, 0\right)$-fermionic generator $P^{A s}$ is transformed as

$$
\begin{align*}
& U\left(\Lambda^{-1}\right) P^{A s} U(\Lambda)=\lambda^{A}(\Lambda) P^{B s} \tag{39}\\
& {\left[\vec{J}, P^{A s}\right]=-\frac{\hbar}{2} \vec{\sigma}_{B}^{A} P^{B s} \quad, \quad\left[\vec{K}, P^{A s}\right]=+\frac{\hbar}{2} i \vec{\sigma}_{B}^{A} P^{B s}} \tag{40}\\
& {\left[\vec{A}, P^{A s}\right]=-\frac{\hbar}{2} \vec{\sigma}_{B}^{A} P^{B s} \quad, \quad\left[\vec{B}, P^{A s}\right]=0} \tag{41}\\
& \mathbf{C}\binom{P^{A s}}{-e_{\dot{U} \dot{B}} K P^{B s}} \mathbf{C}^{-1}=-\binom{P^{A s}}{-e_{U \dot{U}} K P^{B s}} \tag{42}
\end{align*}
$$

The Haag-Lopuszanski-Sohnius theorem states that

$$
\begin{align*}
& \left\{Q_{\dot{U r}}, K Q_{\dot{\dot{V}}}\right\}=2 \delta_{r s}\left(\sigma^{\mu}\right)_{\dot{U} V} P_{\mu} \tag{43}\\
& \left\{Q_{\dot{U} r}, Q_{\dot{V} s}\right\}=e_{\dot{U} V} Z_{r s}, Z_{r s}=-Z_{s r} \tag{44}\\
& \left\{\binom{e^{A W} K Q_{\dot{W} r}}{Q_{\dot{U} r}},\binom{e^{B X} K Q_{\dot{X} s}}{Q_{\dot{U} s}}^{\dagger} \gamma_{0}\right\}=2 \gamma^{\mu} P_{\mu} \delta_{r s}-\frac{1+\gamma_{5}}{2} K Z_{r s}+\frac{1-\gamma_{5}}{2} Z_{r s} \tag{45}
\end{align*}
$$

where P_{μ} is the 4-momentum operator and $Z_{r s}$ are the central charges.
For simple supersymmetry, we have null $Z_{r s}$.

Appendix - SC

The fundamental equations of motion of the Majorana particle are summarized.
The Majorana equations are

$$
\begin{align*}
& \left(i \hbar \partial^{\nu}\left(\sigma_{v}\right)^{A \dot{U}} \pm m_{L} e^{i \delta_{L}} c e^{A U} K\right) \eta_{\dot{U}}=0 \tag{46}\\
& \left(i \hbar \partial_{v}\left(\sigma^{\nu}\right)_{\dot{U A}} \mp m_{R} e^{i \delta_{R}} c e_{\dot{U} \dot{A}} K\right) \xi^{A}=0 \tag{47}
\end{align*}
$$

with the Klein-Gordon equations

$$
\begin{align*}
& \left((i \hbar \partial)^{2}-\left(m_{L} c\right)^{2}\right) \eta_{\dot{U}}=0 \tag{48}\\
& \left((i \hbar \partial)^{2}-\left(m_{R} c\right)^{2}\right) \xi^{A}=0 \tag{49}
\end{align*}
$$

where $m_{R, L}$ are the real masses and $\delta_{R, L}$ are the real phases.
The charge conjugation properties are

$$
\begin{gather*}
\mathbf{C}\left|\psi_{\mathrm{M}_{1}}\right\rangle=\xi_{\mathrm{M}_{1}}\left|\psi_{\mathrm{M}_{1}^{c}}\right\rangle=\left|\psi_{\mathrm{M}_{1}}\right\rangle \tag{50}\\
\psi_{\mathrm{M}_{1}^{c}}=C \gamma^{0} K \psi_{\mathrm{M}_{1}}=-\psi_{\mathrm{M}_{1}} \tag{51}\\
\mathbf{C}\left|\psi_{\mathrm{M}_{2}}\right\rangle=\xi_{\mathrm{M}_{2}}\left|\psi_{\mathrm{M}_{2}^{c}}\right\rangle=\left|\psi_{\mathrm{M}_{2}}\right\rangle \tag{52}\\
\psi_{\mathrm{M}_{2}^{c}}=C \gamma^{0} K \psi_{\mathrm{M}_{2}}=-\psi_{\mathrm{M}_{2}} \tag{53}\\
\xi_{\mathrm{M}_{1}}=\xi_{\mathrm{M}_{2}}=-1 \tag{54}
\end{gather*}
$$

The Dirac spinor representations are

$$
\begin{align*}
& \left(i \hbar \partial \pm m_{L} e^{i \delta_{L}} c\right) \psi_{\mathrm{M}_{1}}=0, \quad \psi_{\mathrm{M}_{1}}=\binom{e^{A W} K \eta_{\dot{W}}}{\eta_{\dot{U}}} \tag{55}\\
& \left(i \hbar \partial \pm m_{R} e^{i \delta_{R}} c\right) \psi_{\mathrm{M}_{2}}=0, \quad \psi_{\mathrm{M}_{2}}=\binom{\xi^{A}}{-e_{\dot{U} \dot{B}} K \xi^{B}} \tag{56}
\end{align*}
$$

and

$$
\begin{align*}
& i \hbar \partial \Psi_{\mathrm{M}} \pm m_{\mathrm{M}} c(-) \Psi_{\mathrm{M}^{c}}=0 \tag{57}\\
& \Psi_{\mathrm{M}}=\binom{\xi^{A}}{\eta_{\dot{U}}} \tag{58}\\
& \Psi_{\mathrm{M}^{c}}=C \gamma^{0} K \Psi_{\mathrm{M}}=(-)\binom{e^{A W} K \eta_{\dot{\dot{W}}}}{-e_{\dot{U} \dot{B}} K \xi^{B}} \tag{59}\\
& m_{\mathrm{M}} c=\left(\begin{array}{cc}
m_{L} e^{i \delta_{L}} c & 0 \\
0 & m_{R} e^{i \delta_{R}} c
\end{array}\right) \tag{60}
\end{align*}
$$

Appendix - SD

The fundamental properties of the Salam-Strathdee superfields are summarized. ${ }^{20}$
First, the Majorana spinors satisfy

$$
\begin{align*}
& \mathbf{C} \theta=-\theta \tag{61}\\
& \bar{\theta}=\theta^{\dagger} \gamma^{0}=-^{t} \theta C={ }^{t} \theta^{t} C={ }^{t}(C \theta) \tag{62}\\
& { }^{t}\left(\frac{\partial}{\partial \bar{\theta}}\right)(\bar{\theta} M \theta)=2 M \theta \tag{63}\\
& \bar{\theta}_{1} M \theta_{2}=\bar{\theta}_{2} C^{-1 t} M C \theta_{1} \tag{64}\\
& \theta \bar{\theta}=-\frac{1}{4}(\bar{\theta} \theta)+\frac{1}{4} \gamma_{\mu} \gamma^{5}\left(\bar{\theta} \gamma_{5} \gamma^{\mu} \theta\right)+\frac{1}{4} \gamma^{5}\left(\bar{\theta} \gamma_{5} \theta\right) \tag{65}
\end{align*}
$$

A spinor is decomposed into a pair of the Majorana spinors as

$$
\begin{align*}
& s=\theta_{+}+i \theta_{-} \tag{66}\\
& \theta_{+}=\frac{1}{2}(1-\mathbf{C}) \mathrm{s}, \quad \theta_{-}=\frac{1}{2 i}(1+\mathbf{C}) \mathrm{s} \tag{67}\\
& \mathbf{C} \theta_{ \pm}=-\theta_{ \pm} \tag{68}
\end{align*}
$$

The Salam-Strathdee superfield is constructed by using the Majorana spinors θ, ω, and λ as

$$
\begin{align*}
& S=C-i\left(\bar{\theta} \gamma_{5} \omega\right) \\
& -\frac{1}{2} i\left(\bar{\theta} \gamma_{5} \theta\right) M-\frac{1}{2}(\bar{\theta} \theta) N-\frac{1}{2}\left(\bar{\theta} \gamma_{5} \gamma_{\mu} \theta\right) V^{\mu} \tag{69}\\
& -i\left(\bar{\theta} \gamma_{5} \theta\right)\left(\bar{\theta}\left(\lambda-\frac{1}{2} i \hbar \partial \omega\right)\right)-\frac{1}{4}\left(\bar{\theta} \gamma_{5} \theta\right)^{2}\left(D-\frac{1}{2} \hbar^{2} \square C\right)
\end{align*}
$$

where the component C of S is further denoted as C^{S}, etc. Taking the h.c., we have

$$
\begin{align*}
& S^{\dagger}=C^{\dagger}-i\left(\bar{\theta} \gamma_{5} \omega\right) \\
& -\frac{1}{2} i\left(\bar{\theta} \gamma_{5} \theta\right) M^{\dagger}-\frac{1}{2}(\bar{\theta} \theta) N^{\dagger}-\frac{1}{2}\left(\bar{\theta} \gamma_{5} \gamma_{\mu} \theta\right)\left(V^{\mu}\right)^{\dagger} \tag{70}\\
& -i\left(\bar{\theta} \gamma_{5} \theta\right)\left(\bar{\theta}\left(\lambda-\frac{1}{2} i \hbar \partial \omega\right)\right)-\frac{1}{4}\left(\bar{\theta} \gamma_{5} \theta\right)^{2}\left(D^{\dagger}-\frac{1}{2} \hbar^{2} \square C^{\dagger}\right)
\end{align*}
$$

If with the Hermitean superfield $S^{\dagger}=S$, we have

$$
\begin{equation*}
C^{\dagger}, M^{\dagger}, N^{\dagger}, V^{\mu \dagger}, D^{\dagger}=C, M, N, V^{\mu}, D \tag{71}
\end{equation*}
$$

The infinitesimal translation δS is defined as

$$
\begin{align*}
& \delta S=\frac{1}{i \hbar}\left(\bar{\alpha}\binom{e^{A W} K Q_{\dot{W} r}}{Q_{\dot{U} r}}\right) S \tag{72}\\
& =(\bar{\alpha} \mathcal{Q}) S \\
& {\left[\binom{e^{A W} K Q_{\dot{W} r}}{Q_{\dot{U} r}}, S\right\}=i \hbar \mathcal{Q} S} \tag{73}
\end{align*}
$$

The generator q should then satisfy

$$
\begin{align*}
& \left\{\mathcal{Q}_{\dot{U}},{ }^{t}(C \mathcal{Q})_{V}\right\}=-2 i \hbar\left(\sigma^{\mu}\right)_{\dot{U} V} \partial_{\mu} \\
& \left\{\mathcal{Q}_{\dot{U}}, \mathcal{Q}_{\dot{V}}\right\}=0 \tag{74}
\end{align*}
$$

with the Dirac spinor representation

$$
\begin{equation*}
\left\{\mathcal{Q}_{\ell}, \overline{\mathcal{Q}}_{\bar{\ell}}\right\}=-2 i \hbar\left(\gamma^{\mu}\right)_{\ell \bar{\ell}} \partial_{\mu} \tag{76}
\end{equation*}
$$

Also, the generator in the superfield coordinate representation is given as

$$
\begin{align*}
& \mathcal{Q}=-\left(\frac{\partial}{\partial \bar{\theta}}\right)-i \hbar \partial \theta={ }^{t} C \frac{\partial}{\partial \theta}-i \hbar \partial \theta \tag{77}\\
& \overline{\mathcal{Q}}={ }^{t}(C q)={ }^{t}\left(\frac{\partial}{\partial \theta}\right)+i \hbar \overline{\bar{\theta} \partial} \tag{78}
\end{align*}
$$

with the Dirac spinor representation

$$
\begin{align*}
& \mathcal{Q}_{\ell}=C_{\bar{\ell} \ell} \frac{\partial}{\partial \theta_{\bar{\ell}}}-i \hbar\left(\gamma^{\mu}\right)_{\bar{\ell} \bar{\ell}} \theta_{\bar{\ell}} \partial_{\mu} \tag{79}\\
& \overline{\mathcal{Q}}_{\ell}=\mathcal{Q}_{\bar{\ell}} C_{\overline{\ell \bar{\ell}}}=\left(\frac{\partial}{\partial \theta_{\ell}}\right)-i \hbar^{t}\left(C \gamma^{\mu} \theta\right)_{\ell} \partial_{\mu} \tag{80}
\end{align*}
$$

The derivative in the superfield coordinate representation is defined as

$$
\begin{align*}
& \mathcal{D}=-{ }^{t}\left(\frac{\partial}{\partial \bar{\theta}}\right)+i \hbar \partial \theta={ }^{t} C \frac{\partial}{\partial \theta}+i \hbar \partial \theta \tag{81}\\
& \overline{\mathcal{D}}={ }^{t}(C \mathcal{D})={ }^{t}\left(\frac{\partial}{\partial \theta}\right)-i \hbar \bar{\theta} \bar{\theta} \tag{82}
\end{align*}
$$

with the Dirac spinor representation

$$
\begin{equation*}
\left\{\mathcal{D}_{\ell}, \overline{\mathcal{D}}_{\bar{\ell}}\right\}=2 i \hbar\left(\gamma^{\mu}\right)_{\ell \bar{\ell}} \partial_{\mu} \tag{83}
\end{equation*}
$$

We have the commutation relationships

$$
\begin{align*}
& \{\mathcal{D}, \mathcal{Q}\}=0 \tag{84}\\
& {[\mathcal{D}, \delta]=0} \tag{85}
\end{align*}
$$

The infinitesimal translation of the components of S should then be obtained as

$$
\begin{align*}
& \delta C=i\left(\bar{\alpha} \gamma_{5} \omega\right) \tag{86}\\
& \delta \omega=\left(-\hbar \gamma_{5} \partial C-M+i \gamma_{5} N+i V\right) \alpha \\
& \delta M=-(\bar{\alpha}(\lambda-i \hbar \partial \omega)) \tag{87}\\
& \delta N=i\left(\bar{\alpha} \gamma_{5}(\lambda-i \hbar \partial \omega)\right) \tag{89}\\
& \delta V^{\mu}=\left(\bar{\alpha} \gamma^{\mu} \lambda\right)-i \hbar\left(\bar{\alpha} \partial^{\mu} \omega\right) \tag{90}\\
& \delta \lambda=\left(\frac{1}{2} \hbar\left[\partial_{\mu} V, \gamma^{\mu}\right]+i \gamma_{5} D\right) \alpha \tag{91}\\
& \delta D=i\left(\bar{\alpha} \gamma_{5}(-i \hbar \partial \lambda)\right) \tag{92}
\end{align*}
$$

The supercurrent is defined as

$$
\begin{equation*}
\Theta_{\mu}=\frac{i}{12} \sum_{n}\left(-4 \hbar^{2}\left(\Phi_{n}^{\dagger} \partial_{\mu} \Phi_{n}-\Phi_{n} \partial_{\mu} \Phi_{n}^{\dagger}\right)-i \hbar\left(\left(\overline{\mathcal{D}} \Phi_{n}^{\dagger}\right) \gamma_{\mu}\left(\mathcal{D} \Phi_{n}\right)\right)\right) \times c \tag{93}
\end{equation*}
$$

where Φ_{n} is the chiral superfield

$$
\begin{align*}
\Phi_{n} & =\phi_{n}-\sqrt{2}\left(\bar{\theta} \frac{1+\gamma_{5}}{2} \psi_{n}\right)+\left(\bar{\theta} \frac{1+\gamma_{5}}{2} \theta\right) F_{n}-\frac{1}{2} i \hbar\left(\bar{\theta} \gamma_{5} \partial \phi_{n} \theta\right) \tag{94}\\
& +\frac{1}{\sqrt{2}} i \hbar\left(\bar{\theta} \gamma_{5} \theta\right)\left(\bar{\theta} \frac{1-\gamma_{5}}{2} \partial \psi_{n}\right)+\frac{1}{8} \hbar^{2}\left(\bar{\theta} \gamma_{5} \theta\right)^{2} \square \phi_{n}
\end{align*}
$$

The supercurrent conservation laws are found to be

$$
\begin{align*}
& \gamma^{\mu} \mathcal{D} \Theta_{\mu}(x)=\mathcal{D} X(x) \tag{95}\\
& \overline{\mathcal{D}} \Theta_{\mu}(x) \gamma^{\mu}=-\overline{\mathcal{D}} X(x) \tag{96}
\end{align*}
$$

where X denotes the real chiral superfield

$$
\begin{align*}
& X=A-(\bar{\theta} \psi) \\
& -\frac{1}{2} i\left(\bar{\theta} \gamma_{5} \theta\right) G+\frac{1}{2}(\bar{\theta} \theta) F+\frac{1}{2} \hbar\left(\bar{\theta} \gamma_{5} \gamma_{\mu} \theta\right) \partial^{\mu} B \tag{97}\\
& +\left(\bar{\theta} \gamma_{5} \theta\right)\left(\bar{\theta}\left(-\frac{1}{2} i \hbar \gamma_{5} \partial \psi\right)\right)+\frac{1}{8} \hbar^{2}\left(\bar{\theta} \gamma_{5} \theta\right)^{2} \square A
\end{align*}
$$

