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In this doctoral thesis, we study the flux compactification of F-theory, and its application
to landscape problem. By its nature, the present thesis is based on the papers [1, 2] in
collaboration with A.P. Braun and T. Watari. Accordingly, the basic set-up of this paper is
the same as [1]. The author reviews his main contributions in the papers [1, 2], then he states
his original results of this doctoral thesis at the final section. We limit our attention to the
case where a compactifying space Y is the product of K3 surfaces.

When four-form flux G is turned on, both the complex structure of the space and
configuration of 7-branes are determined. The presence of flux G® stabilises the complex

structure moduli. The Gukov-Vafa-Witten superpotential[3]

WGVW X / QA G(4) (1)
Y

generates F-term scalar potential. This F-term scalar potential attains local minimum along

the locus where the rank of the intersection of cohomology groups
tk [H'(Y,Z) N H**(Y, R) (2)

enhances. When the four-form flux G® is turned on, vacua are confined to such local minima.

1



When elliptic Calabi-Yau 4-fold Y, as a compactifying space, is the product of K3 surfaces,
the rank (2) enhances when the Picard number of a K3 surface increases. As Picard number
of a K3 surface increases, the number of flat directions inversely decreases. Resultantly,
moduli particles acquire masses in accordance. Therefore, the idealistic situation to stabilise
moduli space is that a K3 surface has the highest Picard number. A K3 surface whose Picard
number attains highest possible, being 20, is called an attractive! K3 surface. Therefore, with
the presence of flux G®, the moduli stabilises to discrete points which correspond to the
product of attractive K3 surfaces [4].

Turning on four-form flux G* generates the ensemble of vacua. Because 7-branes control
the information of gauge groups, the presence of four-form flux G¥) also specifies gauge groups.
Interestingly, a K3 surface, whose complex structure is fixed, admits several distinct elliptic
fibrations, leading to different gauge groups on a 7-brane. So, distinct gauge groups resulting
from different fibrations on a K3 surface, whose complex structure is fixed, correspond to dif-
ferent vacua over the landscape. There is a mathematical technique called Kneser-Nishiyama
method]5, 6], to determine all the gauge groups on a K3 surface (when whose complex struc-
ture is specified). Therefore, taking statistics of the distribution of gauge groups over the
landscape of vacua is possible via Kneser-Nishiyama method, when a compactifying space is
the product of K3 surfaces.

The present doctoral thesis is structured as follows: we review some mathematical notions
and facts needed to investigate the distribution of gauge groups over the F-theory landscape
in section 2. Flux compactification of M-theory on K3xK3 was first studied in [7]. [4] imposed
some physical constraints on the four-form flux to specify all possible pairs of K3 surfaces
on which M-theory is compactified, so that the complex structure moduli stabilises. They
find that such are all some pairs of attractive K3’s. In [1], the collaborators and the present

author relaxed their constraints to extend the list of pairs of attractive K3 surfaces. List of

!We follow the convention of the term as in [8].



K3 surfaces considered in [4], and the extension of the list as examined in [1] will be discussed
in section 3. In [1], we found that there are 98 pairs of attractive K3 surfaces for F-theory
compactification. Section 4 studies relationships between gauge groups and elliptic fibrations.
How gauge groups can be read from elliptic fibration will be explained. This is a well-known
subject, and this section serves as a review. Section 5 deals with Kneser-Nishiyama method;
this section explores how mathematical technique decodes physical information such as gauge
groups, on a K3 surface whose complex structure is specified. In section 6, the author studies
the ratio of SO(10)-vacua and SU(5)-vacua, using Kneser-Nishiyama method. Some physical

conditions are imposed on the four-form flux G®, to practically perform this analysis.
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