Input Variable Scaling for Statistical Modeling

Sanghong Kima,*, Manabu Kanob, Hiroshi Nakagawac, Shinji Hasebea

aDept. of Chemical Engineering, Kyoto University, Kyoto 6158510, Japan
bDepartment of Systems Science, Kyoto University, Kyoto, 6068501, Japan
cFormulation Technology Research Laboratories, Daiichi Sankyo Co., Ltd., Hiratsuka 2540014, Japan

Abstract

Input variable scaling is one of the most important steps in statistical modeling. However, it has not been actively investigated, and autoscaling is mostly used. This paper proposes two input variable scaling methods for improving the accuracy of soft sensors. One method statistically derives the input variable scaling factors; the other one uses spectroscopic data of a material whose content is estimated by the soft sensor. The proposed methods can determine the scales of the input variables based on their importance in output estimation. Thus, it can reduce the negative effects of input variables which are not related to an output variable. The effectiveness of the proposed methods was confirmed through a numerical example and industrial applications to a pharmaceutical and a distillation processes. In the industrial applications, the proposed methods improved the estimation accuracy by up to 63% compared to conventional methods such as autoscaling with input variable selection.

Keywords: Statistical model, Soft sensor, Input variable scaling, Pharmaceutical process, Distillation process

1. Introduction

In the process industry, one of the most important tasks is to ensure quality and to reduce operating cost. However, real-time measurement of product quality is not always available due to unacceptable measurement equipment cost and long measurement time. To solve this problem, research on soft sensors,

*Corresponding author. Tel.:+81-(0)75-383-2677; fax: +81-(0)75-383-2677.
Email address: kim@cheme.kyoto-u.ac.jp (Sanghong Kim)

Preprint submitted to Computers and Chemical Engineering December 19, 2014
which estimate product quality using real-time measurements, has been actively conducted (Kadlec et al., 2009; Kano and Fujiwara, 2013; Oh et al., 2013; Khatibisepehr et al., 2014). According to a questionnaire survey (Kano and Fujiwara, 2013), in 2009 soft sensors were working in over 400 distillation and chemical reaction processes at 15 companies in Japan. In addition, soft sensors have recently attracted much interest in the pharmaceutical industry to achieve a new quality assurance system composed of Quality by Design (QbD) and process analytical technology (PAT) (Roggo et al., 2007; Rajalahti and Kvalheim, 2011).

Building a soft sensor requires many steps such as data acquisition, abnormal data detection, data preprocessing, input variable selection, model building, and model validation. Although input variable scaling, a data preprocessing method in which the values of each input variable are multiplied by the scaling factor of the input variable, can have significant effect on the estimation performance of soft sensors, research on input variable scaling has not been actively conducted. Hence, this paper focuses on input variable scaling, which is mathematically represented as

\[
\tilde{X} = X\Lambda \\
\Lambda = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_M)
\]

where \(X \in \mathbb{R}^{N \times M}\) is the raw input variable matrix, in which the input variables are not scaled, \(\tilde{X} \in \mathbb{R}^{N \times M}\) is the scaled input variable matrix, \(\lambda_m\) is a nonnegative input variable scaling factor for the \(m\)-th input variable, \(N\) is the number of samples, and \(M\) is the number of input variables. It is assumed that the mean of each input variable is zero without loss of generality. The input variable scaling affects important statistical properties of the data such as the distance between samples and the covariance of samples. It also affects the estimation result. For example, the \(m\)-th input variable \(x_m\) cannot have any influence on output estimation when \(\lambda_m\) is zero. Thus, \(\Lambda \in \mathbb{R}^{M \times M}\) should be carefully selected to create accurate soft sensors.

In past research, autoscaling was commonly used (Engel et al., 2013; van den Berg et al., 2006; Todeschini et al., 1999). In addition, Pareto scaling, level scaling, poisson scaling, range scaling, and VAST scaling (Keun et al., 2003)
have been considered. The scaling factors in these methods are defined as

$$\frac{1}{\lambda_m} = \begin{cases}
\sigma_m \quad & \text{(autoscaling)} \\
\sqrt{\sigma_m} \quad & \text{(pareto scaling)} \\
\bar{x}_m \quad & \text{(level scaling)} \\
\sqrt{x_m} \quad & \text{(poisson scaling)} \\
x_{m,\text{max}} - x_{m,\text{min}} \quad & \text{(range scaling)} \\
\frac{\sigma_m^2}{\bar{x}_m} \quad & \text{(VAST scaling)}
\end{cases} \tag{3}$$

where σ_m is the standard deviation of x_m, \bar{x}_m is the mean value of x_m, $x_{m,\text{max}}$ is the maximum value of x_m, and $x_{m,\text{min}}$ is the minimum value x_m. These methods define the input variable scaling factors based only on the information from the input variables such as their standard deviations and means. Hence, input variable scaling factors can be large for the input variables which are irrelevant to the output variable when these method are used, and the estimation performance of soft sensors may deteriorate. Some of the irrelevant input variables might be removed by using input variable selection methods such as the stepwise method (Hocking, 1976), variable influence on projection (VIP) (Wold et al., 2001) and least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996). It is, however, very difficult to remove all irrelevant input variables without removing any relevant input variables, and some irrelevant input variables generally remain after input variable selection. Thus, it is needed to determine the input variable scaling factors according to the importance of the input variables in output estimation. To take into account the importance of input variables in the output estimation, Kuzmanovski et al. (Kuzmanovski et al., 2009) used the genetic algorithm to optimize the input variable scaling factor. However, the computational burden of the genetic algorithm is considerable. Martens et al. (Martens et al., 2003) proposed to use the magnitude of the undesired signals in measurements to determine the input variable scaling factors. But, this method is applicable only to spectroscopic data. To solve the above-mentioned problems, two input variable scaling methods are proposed. The proposed methods can determine the input variable scaling factors based on the importance of input variables in output estimation with short computational time. One of the proposed methods can be applied to any data.
2. Input variable scaling methods

Conventional input variable scaling methods such as autoscaling and range scaling do not determine the input variable scaling factors based on the importance of individual input variables in output estimation. These methods, therefore, can cause overfitting especially when the number of samples is small. One can reduce the effect of irrelevant input variables on output estimation by assigning small input variable scaling factors to those input variables. On the other hand, large input variable scaling factors should be assigned to input variables which have a large influence on an output variable.

We propose two methods to evaluate the influence of each input variable on an output variable and assign appropriate input variable scaling factors to input variables. The first one statistically derives the input variable scaling factors, while the second one uses spectroscopic data of a material whose content is estimated by a soft sensor.

2.1. Proposed method 1: data-based approach

Proposed method 1 statistically calculates the input variable scaling factor in an iterative manner. In this paper, the standardized regression coefficients of input variables in a partial least squares (PLS) model and the VIP scores are used as the input variable scaling factor, since they correlate to the importance of each input variable. The standardized regression coefficient is defined as the product of the regression coefficient β and the standard deviation σ of an input variable. The algorithm of proposed method 1 is as follows:

1. Prepare the raw input variable matrix X and an output variable vector $y \in \mathbb{R}^N$.
2. Set the iteration number i to 1 and the maximum iteration number to I.
3. Calculate the input variable scaling factor matrix $\Lambda_0 = \operatorname{diag}(\lambda_{10}, \lambda_{20}, \cdots, \lambda_{M0})$ where λ_{m0} is $1/\sigma_{m0}$. Here, σ_{m0} is the standard deviation of the m-th input variable ($m = 1, 2, \cdots, M$) in the raw input variable matrix X.
4. Let the scaled input matrix $\tilde{X}_0 = X \Lambda_0$.
5. Calculate the new input variable scaling factor matrix

$$\Lambda_i = \operatorname{diag}(\lambda_{1i}, \lambda_{2i}, \cdots, \lambda_{Mi})$$

$$\lambda_{mi} = \begin{cases} |\beta_{mi}|\sigma_{mi} & \text{(standardized regression coefficient)} \\ VIP_{mi} & \text{(VIP score)} \end{cases}$$
for every \(m \). Here, \(\beta_{mi}, \sigma_{mi} \) and \(\text{VIP}_{mi} \) denote the regression coefficient, the standard deviation and VIP score of the \(m \)-th input variable obtained using the scaled input matrix \(\tilde{X}_{i-1} \) and the output variable vector \(y_i \), respectively.

6. Calculate the new scaled input matrix \(\tilde{X}_i = X_i \Lambda_i \).

7. Finish the calculation if \(i = I \). Otherwise set \(i = i + 1 \) and go to step 5.

Steps 3 and 4 in the above algorithm correspond to autoscaling. In step 5, the input variable scaling factors are updated, and the input variable matrix is updated in step 6. The explicit expression of the regression coefficient in a PLS model and the VIP score is available in section 4.2 of (Kim et al., 2013). The convergence of this method is not guaranteed in all cases. However, the values of regression coefficients converged in most cases at least in the case studies conducted in this paper as shown in the next section.

The regression coefficient vector obtained by PLS is represented as

\[
\beta_{\text{PLS}} = W (P^T W)^{-1} q \tag{6}
\]

\[
W = [w_1, w_2, \ldots, w_R] \tag{7}
\]

\[
P = [p_1, p_2, \ldots, p_R] \tag{8}
\]

\[
q = [q_1, q_2, \ldots, q_R]^T \tag{9}
\]

where \(w_r, p_r \) and \(q_r \) are the weight vector, the loading vector of the input variable and the regression coefficient for the \(r \)-th latent variable.

The VIP score (Wold et al., 2001) of the \(m \)-th variable is defined as

\[
\text{VIP}_m = \sqrt{\frac{M}{R} \sum_{r=1}^{R} \left(\frac{q_r^2 t_r^T t_r}{\|w_r\|^2} \right)^2} \sum_{r=1}^{R} (q_r^2 t_r^T t_r) \tag{10}
\]

where \(w_{mr} \) is the \(m \)-th component of the \(r \)-th weight vector \(w_r \). \(t_r \) is the \(r \)-th latent variable score.

2.2. Proposed method 2: knowledge-based approach

In the pharmaceutical and food industries, soft sensors are often used to estimate the content of an important material from the spectroscopic data of products (Cen and He, 2007; Roggo et al., 2007; Jamragiewicz, 2012). In such a situation, it is crucial to identify the important variables/wavelengths.
A large number of statistical wavelength selection methods have been proposed (Jouen-Rimbauda and Massart, 1995; Nørgaard et al., 2000; Jiang et al., 2002; Kim et al., 2011; Fujiwara et al., 2012). These methods, however, may not work well when the number of samples is small. In addition, they have tuning parameters, which are difficult to determine. To solve this problem, this paper proposes a knowledge-based input variable scaling method using the spectrum of the important material, in which the input variable scaling factor λ_m is defined as

$$\lambda_m = \frac{\xi_m}{\sigma_{x_m}}$$

where ξ_m is the (preprocessed) spectrum signal of an important material at the m-th wavelength and σ_{x_m} is the standard deviation of the (preprocessed) spectrum signal at the m-th wavelength in the raw input variable matrix X. Here, the spectrum signals of the important material and the products might be preprocessed before the input variable scaling factor is calculated. For example, the Savitsky-Golay filter (Savitzky and Golay, 1964) and standard normal variate (SNV) (Barnes et al., 1989) can be used.

This method is based on the idea that the wavelengths where the ratio λ_m is small are not important for soft-sensor design, because they have low signal-to-noise ratios and the (preprocessed) spectrum signal of the products would not significantly change with the amount of the important material at those wavelengths. Proposed method 2 is free from parameter tuning and uses process knowledge. Thus, it is expected to achieve higher estimation performance especially when the number of samples is small compared to proposed method 1, which uses only statistical information of the process data.

3. Illustrative numerical example

In this section, an illustrative numerical example is shown to confirm that input variable scaling can have significant influence on the estimation accuracy of soft sensors and that proposed method 1 can improve estimation accuracy.

3.1. Problem setting

In this example, the number of input variables x_m is 30 and the number of output variable y is 1. Input and output variables are the sum of real values of...
state variables s_m and measurement noises w_m, which are defined as follows.

\[w_m \sim N(0, 0.005^2) \quad (m = 0, 1, \cdots, 30) \quad (12) \]
\[s_m \sim \text{rand}(0, 1) \quad (m = 1, 2, \cdots, 30) \quad (13) \]
\[x_m = s_m + w_m \quad (14) \]
\[y = s_1 + 3s_2 + 5s_3 + w_0 \quad (15) \]

Here, $N(\mu, \sigma^2)$ denotes the normal distribution whose mean is μ and standard deviation is σ, and rand(a, b) denotes the uniform random distribution on the open interval from a to b. w_m and s_m are independent from each other. x_m and y are the measurements used for soft-sensor design while s_m and w_m are not measured.

In this example, only three input variables (x_1-x_3) are related to the output variable and the input-output relationship is linear. The other 27 variables (x_4-x_{30}), which are not related to the output variable, are used for model building. Thus, the probability of chance correlation could be high when the number of samples for model building is small. Input variable selection methods were not used to check whether input variable scaling can reduce the risk of chance correlation when irrelevant variables cannot be removed by input variable selection.

From Equations (12)-(15), 15 samples are generated and used for model building. The number of samples is realistic since it is usual that the number of samples is much smaller than that of input variables when spectroscopic data is used for soft-sensor design. For example, the number of samples for model building is 9 or 45, and the number of input variable is 1868 in the example described in Section 4.1. To validate the soft sensor built using the 15 samples, 3000 samples are independently generated and used as model validation data. It should be noted that 3000 samples are used just for model validation and not available when the soft sensor is built. In addition, because w_m and s_m are randomly determined and their values affect estimation performance, 1000 sets of model building and validation data are generated and each dataset was used separately.

For soft-sensor design, PLS was used with one of the following input variable scaling methods:

1. Autoscaling.
2. A reference method in which $\lambda_m = 1$ ($m = 1, 2, 3$) and $\lambda_m = 0.1$ ($m = 4, 5, \cdots, 30$).
3. Proposed method 1 with different maximum iteration numbers $I = 1, 3$ and 5.
In the reference method, larger input variable scaling factors are assigned to x_1-x_3 than x_4-x_{30}. It should be noted that the reference method cannot be used in real situations because the importance of each input variable is generally unknown. The number of the latent variables for each PLS model is determined by leave-one-out cross-validation.

3.2. Results and discussion

The model validation results for 1000 sets of model building and validation data are shown in Figure 1. Comparing autoscaling and the reference method confirms that the estimation accuracy can be greatly improved by properly setting the input variable scaling factors. In addition, proposed method 1 successfully reduced average of the root mean square error (RMSE) for the validation data as well as the reference method. Proposed method 1 had higher standard deviation of the RMSE than the reference method. This is because the standardized regression coefficients and the VIP scores do not always accurately represent the importance of the input variables when they are obtained from only 15 samples. Figure 2 shows an example of the change of the regression coefficients for input variables before input scaling in a model building data. The values at iteration number 0 are those obtained by autoscaling. The convergence is not guaranteed in all cases. However, the values of regression coefficients converged in most cases at least in the case studies conducted in this paper as shown in Figure 2.

In this example, smaller RMSE was obtained by using VIP scores than using the standardized regression coefficients, but the difference is not significant and using the standardized regression coefficients might be better in another example. The method for selecting the best statistical index is outside the scope of this research.
Figure 1: Model validation result for 1000 datasets in the numerical example.
Figure 2: Change of regression coefficients for input variables before input scaling with the iteration number.
4. Industrial application

4.1. Pharmaceutical process

In the pharmaceutical industry, it is required to measure the amount of residual drug substances in manufacturing equipment after cleaning for product quality assurance and safety. Soft sensors are useful for achieving rapid and low-cost measurement of the amount of residual drug substances. In this paper, soft sensors were built to estimate the amount of magnesium stearate, which is a standard excipient in tablets, using the infrared spectrum of the methanol solution for different magnesium stearate concentrations. The overview of the experimental data is shown in Table 1. The absorbance spectra were measured at 400-4000 cm\(^{-1}\). The spectra were secondary differentiated to reduce the effect of baseline shift. Secondary differentiation was applied also to the spectrum of magnesium stearate. The differentiated spectra of magnesium stearate and the methanol solutions of different magnesium stearate concentrations are shown in Figure 3. The magnesium stearate spectrum is scaled so that the spectral peaks can be clearly seen. More detailed information about the materials and experimental condition is described in Nakagawa et al. (Nakagawa et al., 2012).

In this case study, no scaling, autoscaling, and the proposed methods were compared. No scaling and autoscaling were applied with two popular statistical wavelength selection methods, i.e. VIP and LASSO. On the other hand, all wavelengths were used when the proposed methods were applied. From Table 1, the data from runs 1-9 was used for model building; 10-15 for parameter tuning; and 16-21 for model validation. To evaluate the influence of the number of samples on estimation accuracy, a different number of the model building and parameter tuning samples were used in cases 1 and 2. In case 1, one sample was randomly selected from each of runs 1-15, and 9 samples from runs 1-9 were for model building and 6 samples from runs 10-15 were used for parameter tuning. To evaluate the influence of sample selection on estimation performance, 100 sets of model building and parameter tuning data were independently generated. In case 2, all samples were used. Table 2 shows the model validation results. For case 1, the median, top 25\(^{th}\) percentile (first quartile) and bottom 25\(^{th}\) percentile (third quartile) of the RMSEs obtained from the 100 sets used for model building and parameter tuning data are shown. Tuning parameters such as the number of the latent variables in PLS models and the thresholds in VIP and LASSO were determined by trial and error so as to minimize the RMSE for the parameter tuning data. In proposed method 1 using VIP score, 5 latent variables were selected, and the iteration number \(i\) was determined as 5. The proposed methods gave 12-63%
smaller RMSE for model validation data than the conventional input variable scaling methods even when wavelength selection was conducted using VIP and LASSO. Figure 4 shows the VIP score for different number of iterations i. The VIP score with $i = 1$ was used for wavelength selection in method 5, and that with $i = 5$ was used as input scaling factor in method 8. By the iterative calculation of the VIP score, important variables around 2800 and 1500 nm are emphasized, and the estimation performance was improved.

The above results clearly demonstrate the effectiveness of the proposed methods; even without variable selection they were able to reduce the estimation error. Proposed method 2 had about 10% smaller RMSE than proposed method 1 in case 1, where the number of samples used for model building and parameter tuning is small. This result confirms that process knowledge is helpful for input variable scaling and can contribute to improve estimation performance.
Table 1: Experimental data for estimation of magnesium stearate concentration.

<table>
<thead>
<tr>
<th>Run number</th>
<th>Magnesium stearate concentration [µg/cm²]</th>
<th>Number of samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.08</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>0.20</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0.40</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>0.80</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1.20</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1.60</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>2.88</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>3.20</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>4.00</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>0.12</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>0.24</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>0.40</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>0.80</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>1.20</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>1.60</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>0.16</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>0.32</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>0.40</td>
<td>5</td>
</tr>
<tr>
<td>19</td>
<td>0.80</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>1.20</td>
<td>5</td>
</tr>
<tr>
<td>21</td>
<td>1.60</td>
<td>5</td>
</tr>
</tbody>
</table>
Methanol solution of magnesium stearate (3.20 μg/cm²)

Methanol solution of magnesium stearate (2.88 μg/cm²)

Methanol solution of magnesium stearate (1.60 μg/cm²)

Figure 3: Spectra of magnesium stearate and methanol solutions at different magnesium stearate concentrations.
Table 2: Results of the case study in the pharmaceutical process.

<table>
<thead>
<tr>
<th>Method</th>
<th>Scaling</th>
<th>Wavelength selection</th>
<th>Model</th>
<th>RMSE Case 1</th>
<th>RMSE Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>None</td>
<td>PLS</td>
<td>0.362 / 0.386 / 0.418</td>
<td>0.346</td>
</tr>
<tr>
<td>2</td>
<td>None</td>
<td>VIP</td>
<td>PLS</td>
<td>0.363 / 0.386 / 0.419</td>
<td>0.346</td>
</tr>
<tr>
<td>3</td>
<td>None</td>
<td>LASSO</td>
<td>LASSO</td>
<td>0.338 / 0.338 / 0.348</td>
<td>0.329</td>
</tr>
<tr>
<td>4</td>
<td>Autoscaling</td>
<td>None</td>
<td>PLS</td>
<td>0.277 / 0.285 / 0.295</td>
<td>0.200</td>
</tr>
<tr>
<td>5</td>
<td>Autoscaling</td>
<td>VIP</td>
<td>PLS</td>
<td>0.265 / 0.278 / 0.285</td>
<td>0.178</td>
</tr>
<tr>
<td>6</td>
<td>Autoscaling</td>
<td>LASSO</td>
<td>LASSO</td>
<td>0.239 / 0.273 / 0.301</td>
<td>0.156</td>
</tr>
<tr>
<td>7</td>
<td>Proposed method 1</td>
<td>None</td>
<td>PLS</td>
<td>0.207 / 0.239 / 0.266</td>
<td>0.160</td>
</tr>
<tr>
<td>(reg. coef.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Proposed method 1 (VIP)</td>
<td>None</td>
<td>PLS</td>
<td>0.207 / 0.234 / 0.256</td>
<td>0.130</td>
</tr>
<tr>
<td>9</td>
<td>Proposed method 2</td>
<td>None</td>
<td>PLS</td>
<td>0.199 / 0.215 / 0.231</td>
<td>0.132</td>
</tr>
</tbody>
</table>

*reg. coef.: regression coefficient
4.2. Distillation process

In distillation processes, soft sensors are often used to estimate product quality such as the concentration of impurities. Soft sensors were developed to estimate the 95% distillation temperature, which is an important quality of cracked gasoline. In the target process, the 95% distillation temperature is usually measured once a day, and a soft sensor is needed to implement inferential control of the 95% distillation temperature and to reduce the energy consumption.

Forty-nine input variables, including 24 temperatures, 17 flow rates, 3 densities, 2 pressures, and 3 liquid levels, were used for model building. Three hundred samples were used for model building. Data for parameter tuning and model validation both consisted of 100 samples. Tuning parameters such as the number of the latent variables in the PLS model and the thresholds for input variable selection were selected by trial and error so as to minimize the RMSE for the parameter tuning data.

Figure 5 shows the model validation results. In this example, autoscaling and proposed method 1 were compared. Proposed method 2 was not used since the spectrum of the product was not available. The values of the 95% distillation temperature were scaled so that the RMSE for model validation data of the conventional method using autoscaling without input variable selection was 1. As shown in Figure 5, proposed method 1 reduced the RMSE for model validation data by about 30% compared to the method using autoscaling without variable selection. As well, proposed method 1 using VIP scores reduced the RMSE by about 10% compared to methods using autoscaling with VIP and LASSO. This result confirmed the usefulness of proposed method 1.
Autoscaling without variable selection (RMSE = 1.00)

Autoscaling with VIP (RMSE = 0.74)

Autoscaling with LASSO (RMSE = 0.76)

Proposed method 1 using regression coefficients (RMSE = 0.72)

Proposed method 1 using VIP scores (RMSE = 0.68)

Figure 5: Model validation result in the distillation process.
5. Conclusions

This paper on input variable scaling methods for soft-sensor design showed that the input variable scaling factors should be determined on the basis of the importance of input variables for output estimation. Two new input variable scaling methods, which can evaluate the importance of input variables, were proposed. One method statistically derives the input variable scaling factors. The other one uses the spectroscopic data of a material whose content is an estimation target. The effectiveness of the proposed methods was confirmed through their application to a numerical example and industrial applications in a pharmaceutical and a distillation processes. The proposed methods were able to develop up to 63% more accurate soft sensors compared to the conventional methods such as autoscaling with variable selection methods.

References

