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Abstract: Basic formulas exposing intrinsic relations on volumes of fundamental

domains, that of their stable portions and various zetas are obtained for special linear

groups, via theory of Eienstein series and parabolic reductions. Parallel theory for

bundles over curves on finite fields is reviewed as well. Based on all this, conjectures

for general reductive groups are formulated.

1 Number Fields

1.1 Siegel’s Volume Formula

For special linear group $SL_{n}$ defined over $\mathbb{Q}$ , there are 3 naturally asso-
ciated groups, namely, the real Lie group $SL_{n}(\mathbb{R})$ , its maximal compact
subgroup $SO_{n}(\mathbb{R})$ and the full modular group $SL_{n}(\mathbb{Z})$ . It is well known
that the double quotient space $SL_{n}(\mathbb{Z})\backslash SL_{n}(\mathbb{R})/O_{n}(\mathbb{R})$ may be inter-
preted as the space of isometric classes of rank $n$ lattices of volume one
in the Euclidean space $\mathbb{R}^{n}$ . Indeed, the metrics on $\mathbb{R}^{n}$ are parametrized
by matrices $A\cdot A^{t}$ with $A\in GL_{n}(\mathbb{R})$ , and up to $O_{n}(\mathbb{R})$-equivalence, the
metric is uniquely determined by $A$ . As such, then the lattice structures
are finally determined modulo the automorphism group $SL_{n}(\mathbb{Z})$ of $\mathbb{Z}^{n}.$

Denote by $\mathbb{M}_{\mathbb{Q},n}[1]$ the moduli space of all full rank lattices in $\mathbb{R}^{n}$ of
volume one. The above discussion exposes the following

Fact 1. (Arithmetic versus Geometry) There is a natural one-to-
one correspondence

$SL_{n}(\mathbb{Z})\backslash SL_{n}(\mathbb{R})/SO_{n}(\mathbb{R})\simeq \mathbb{M}_{\mathbb{Q},n}[1].$

Associated the natural measure on $SL_{n}(\mathbb{R})$ , we may ask what is the
corresponding volume of the above space. Surprisingly, while the space
$SL_{n}(\mathbb{Z})\backslash SL_{n}(\mathbb{R})/SO_{n}(\mathbb{R})$ , or the same, $\mathbb{M}_{\mathbb{Q},n}[1]$ , is highly non-abelian,
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or the same, non-commutative, according to Siegel, its volume can be
expressed in terms of the special values of Riemann zeta function, which
is abelian in nature.

Fact 2. (Siegel) (Volume of Fundamental Domain)

$m_{\mathbb{Q},n}:=Vol(\mathbb{M}_{\mathbb{Q},n}[1])=\hat{\zeta}_{\mathbb{Q}}(1)\hat{\zeta}_{\mathbb{Q}}(2)\cdots\hat{\zeta}_{\mathbb{Q}}(n)$

where $\hat{\zeta}_{\mathbb{Q}}(s)$ denotes the complete Riemann zeta function and

$\hat{\zeta}_{\mathbb{Q}}(1):={\rm Res}_{s=1}\hat{\zeta}_{\mathbb{Q}}(s)$ .

1.2 Stability

Among all lattices, motivated by Mumford’s fundamental work in al-
gebraic geometry, we independently introduced the semi-stable lattices
in our studies of non-abelian zeta functions. By definition, a lattice $\Lambda$ is
called semi-stable if for all sub-lattices $\Lambda_{1}$ of $\Lambda$

$Vol(\Lambda_{1})^{rank\Lambda}\geq Vol(\Lambda)^{rank\Lambda_{1}}.$

Denote by $\mathbb{M}_{\mathbb{Q},n}^{ss}[1]$ the moduli space of rank $n$ semi-stable lattices of
$vo$lume 1. One checks that $\mathbb{M}_{\mathbb{Q},n}^{ss}[1]$ is a closed compact subset of $\mathbb{M}_{\mathbb{Q},n}[1].$

With the induced metric, define

$m_{\mathbb{Q},n}^{ss}:=Vol(\mathbb{M}_{\mathbb{Q},n}^{ss}[1])$ .

A natural question is what is the volume $u\mathbb{Q},n.$

1.3 High rank non-abelian zeta functions

Similarly, denote by $\mathbb{M}_{\mathbb{Q},n}^{ss}$ the moduli space of rank $n$ semi-stable
lattices and by $\mathbb{M}_{\mathbb{Q},n}^{ss}[T]$ its volume $T$ part. Then we have a natural
decomposition

$\mathbb{M}_{\mathbb{Q},n}^{ss}=\bigcup_{T\in \mathbb{R}>0}\mathbb{M}_{\mathbb{Q},n}^{ss}[T].$

Easily one checks that there is a natural isomorphism

$\mathbb{M}_{\mathbb{Q},n}^{ss}[T]\simeq \mathbb{M}_{\mathbb{Q},n}^{ss}[T’] \forall T, T’\in \mathbb{R}_{>0}. (*)$

Using the above measure on $\mathbb{M}_{\mathbb{Q},n}^{ss}[T]$ and the invariant Haar measure
$\frac{dT}{T}$ on $\mathbb{R}_{>0}$ , we obtain a natural measure $d\mu$ on $\mathbb{M}_{\mathbb{Q},n}^{ss}.$
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Moreover, there is a genuine cohomology theory $h^{i}(F, \Lambda),$ $i=0,1$ for
lattices $\Lambda$ over number fields $F$ for which the arithmetic analogue of the
duality, the Riemann-Roch theorem, the vanishing theorem holds. For
details, please refer to [W]. In the case of $F=\mathbb{Q},$

$h^{0}( \mathbb{Q}, \Lambda)=\log(\sum_{x\in\Lambda}e^{-\pi\Vert x\Vert^{2}})$

which was introduced earlier in [GS]. Denote by $d(\Lambda)$ the Arakelov degree
of $\Lambda$ , which over $\mathbb{Q}$ is simply $-$ log Vol $(\Lambda)$ . Following [W], define the
associated $mnkn$ non-abelian zeta function $\hat{\zeta}_{\mathbb{Q},n}(s)$ by

$\hat{\zeta}_{\mathbb{Q},n}(s);=\int_{\mathbb{M}_{\mathbb{Q},n}^{ss}}(e^{h^{0}(\mathbb{Q},\Lambda)}-1)\cdot(e^{-s})^{d(\Lambda)}d\mu,$ ${\rm Re}(s)>1.$

Then using the basic property of the above cohomology theory for $h^{i\prime}s,$

namely the duality, the RR and the vanishing theorem, tautologically,
we have the following

Fact 3. (Weng) (0) (Relation with Abelian Zeta)

$\hat{\zeta}_{\mathbb{Q},1}(s)=\hat{\zeta}_{\mathbb{Q}}(s)$ ;

(i) (Meromorphic Extension) $\hat{\zeta}_{\mathbb{Q},n}(s)$ is a well-defined holomorphic
function in ${\rm Re}(s)>1$ , and admits a unique meromorphic extension to
the whole $s$ -plane;
(ii) $\infty$nctional Equation)

$\hat{\zeta}_{\mathbb{Q},n}(1-s)=\hat{\zeta}_{\mathbb{Q},n}(s)$ ;

(iii) (Singularities) $\hat{\zeta}_{\mathbb{Q},n}(s)$ has only two singularities, all simple poles,
at $s=0,1$ . Moreover

${\rm Res}_{s=1}\hat{\zeta}_{\mathbb{Q},n}(s)=m_{\mathbb{Q},n}^{ss}:=Vol(\mathbb{M}_{\mathbb{Q},n}^{ss}[1])$

In particular we see that $m_{\mathbb{Q},n}^{ss}$ is naturally related to the special value
of the non-abelian zeta function $\hat{\zeta}_{\mathbb{Q},n}(s)$ .

1.4 Parabolic Reduction: Analytic Theory

The high rank zeta functions are closely related with Eisenstein series.
In fact, we have
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Fact 4. (Weng) (i) (High Rank Zeta and Eisenstein Series)

$\hat{\zeta}_{\mathbb{Q},n}(s)=\int_{\mathbb{M}_{\mathbb{Q},n}^{SS}[1]}\hat{E}(\Lambda, s)d\mu=\int_{(SL_{n}(\mathbb{Z})\backslash SL_{n}(\mathbb{R})/O_{n}(\mathbb{R}))^{ss}}\hat{E}^{SL_{n}/P_{n-1,1}}(1, g;s)$
.

Here $\hat{E}(\Lambda, s)$ denotes the complete Eisenstein series associated to the
lattice $\Lambda,\hat{E}^{SL_{n}/P}(1, g;*)$ denote the relative (complete) Eisenstein series
on $SL_{n}(\mathbb{R})$ induced from the $con\mathcal{S}tant$ function 1 on the Levi factor of the
maximal parabolic subgroup $P$ and $P_{n-1,1}$ denotes the standard pambolic
subgroup of $SL_{n}$ corresponding to the partition $n=(n-1)+1$ , and
$(SL_{n}(\mathbb{Z})\backslash SL_{n}(\mathbb{R})/O_{n}(\mathbb{R}))^{ss}$ the part corresponding to the semi-stable
lattices via Fact 1, which for our convenience will also be viewed as a
subset of $SL_{n}(\mathbb{R})$ ;
(ii) (Analytic Truncation versus Arithmetic Truncation)

$\Lambda^{0}1=\chi(SL_{n}(\mathbb{Z})\backslash SL_{n}(\mathbb{R})/O_{n}(\mathbb{R}))^{ss}$

Namely, Arthur’s truncation of the constant function 1 is $simg_{s}^{\iota_{y}}$ the
characteristic function of the subset $(SL_{n}(\mathbb{Z})\backslash SL_{n}(\mathbb{R})/O_{n}(\mathbb{R}))$ con-
sisting of semi-stable points.

This is a number theoretic analogue of a result of Laffourge on the rela-
tion between analytic truncation and arithmetic truncation for function
fields.

Consequently,

$\hat{\zeta}_{\mathbb{Q},n}(s)=\int_{SL_{n}(\mathbb{Z})\backslash SL_{n}(\mathbb{R})/O_{n}(\mathbb{R})}\Lambda^{0}\hat{E}^{SL_{n}/P_{n-1,1}}(1, g;s)$ .

Here $\Lambda^{0}\hat{E}^{SL_{n}/P_{n-1,1}}(1, g;s)$ denotes the Arthur’s truncation of the Eisen-
stein series $\hat{E}^{SL_{n}/P_{n-1,1}}(1, g;s)$ . On the other hand, by Langlands’ the-
ory of Eisenstein series, we know that

$\hat{E}^{SL_{n}/P_{n-1,1}}(1, g;s)={\rm Res}_{\langle\lambda-\rho,\alpha_{i}^{\vee}\rangle=0,i=1,2,\ldots,n-2}\hat{E}^{SL_{n}/P_{1,\ldots,1}}(1, g;\lambda)$

where $\alpha_{i}=\alpha_{i}-\alpha_{i+1}$ denotes the simple roots of the root system $A_{n-1}$

associated to $SL_{n}$ , and $\rho=\frac{1}{2}\sum_{\alpha>0}\alpha$ the Weyl vector.
With this, now notice that the moduli space $\mathbb{M}_{\mathbb{Q},n}[1]$ is compact, and

that on the Levi of the Borel subgroup, 1 is cuspidal. So we can evaluate
the Eisenstein period

$\int_{SL_{n}(\mathbb{Z})\backslash SL_{n}(\mathbb{R})/O_{n}(\mathbb{R})}\Lambda^{0}\hat{E}^{SL_{n}/P_{1,\ldots,1}}(1, g;\lambda)$.

171



This then gives a very precise expression of non-abelian zeta function
$\hat{\zeta}_{\mathbb{Q},n}(s)$ as a combination of terms consisting of products of rational func-
tions coming from the symmetry depending only on the root system,
and abelian zeta functions. For details, please see [W]. As a direct con-
sequence, we have the following

Fact 5. (Weng) (Parabolic Reduction, Stability & the Volumes)

$m_{\mathbb{Q},n}^{ss}= \sum_{k\geq 1}(-1)^{k-1}\sum_{n_{1}+\cdots+n_{k}=n,n_{i}>0}\frac{1}{\prod_{j=1}^{k-1}(n_{j}+n_{j+1})}\cdot\prod_{j=1}^{k}m_{\mathbb{Q},n_{j}}.$

Geometrically, this means that the semi-stable part can be obtained
from the fundamental domain associated to $SL_{n}$ by deleting the tubu-
lar neighborhoods of cusps corresponding to parabolic subgroups which
parametrize the same type of canonical flags of unstable lattices, and
whose volumes, up to the lattice extensions, are completely determined
by that associated to the simple factors of related Levi factors. Un-
doubtedly, this parabolic reduction is also the ‘heart’ of the theory of
the truncations, both, analytic and arithmetic.

1.5 Parabolic Reduction: Geometric Theory

During our Sept, $2012$ ’s stay at IHES, Kontsevich introduced us their
beautiful formula relating $m_{\mathbb{Q},n}$ ’s and $m_{\mathbb{Q},n}^{ss\prime}s$ . This basic relation is ob-
tained within their lecture notes on the wall-crossing.

Fact 6. (Kontsevich-Soibelman) (Parabolic Reduction, Stability &
the Volume)

$\frac{1}{n}$ . $m \mathbb{Q},n=\sum_{k\geq 1}\sum_{n_{1}+\cdots+n_{k}=n,n_{i}>0}c_{n_{1},n_{2},\ldots,n_{k}}\cdot\prod_{j=1}^{k}m_{\mathbb{Q},n_{j}}^{ss}.$

Here $c_{n_{1},n_{2},\ldots,n_{k}}$ $:= \frac{1}{n_{1}(n_{1}+n_{2})\cdots(n_{1}+n_{2}+\cdots+n_{k})\cdots(n_{k-1}+n_{k})n_{k}}.$

Indeed, the essence of this is the existence of the so-called canonical
filtration, namely, the Harder-Narasimhan filtration of a lattice: For a
rank $n$ lattice $\Lambda$ , there exists a unique filtmtion of sub-lattices

$0=\Lambda_{0}\subset\Lambda_{1}\subset\Lambda_{2}\subset\cdots\subset\Lambda_{k}=\lambda$

such that
(i) $G_{i}(\Lambda);=\Lambda_{i}/\Lambda_{i+1}$ is semi-stable; and

(ii) $Vol(G_{i}(\Lambda))^{rank(G_{i+1}(\Lambda))}\geq Vol(G_{i+1}(\Lambda))^{rank(G_{i}(\Lambda))}$
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2 Function $Fields/\mathbb{F}_{q}$

The interactions between studies of number fields and that of function
fields (over finite fields) have been proven to be very fruitful, based on
formal analogues between these two types of fields, despite the fact that
many working mathematicians, not without their own reasons, believe
otherwise. The works presented here are yet another group of beautiful
examples.

2.1 Weil’s Formula: Tamagawa Numbers

Motivated by Siegel’s volume formula above, which originally was done
in the theory of quadratic forms, Weil reinterpreted it in terms his famous
Tamagawa number one conjecture. For $SL_{n}$ , this goes as follows.

Let $X$ be an irreducible, reduced, regular projective curve defined over
V. Denotes its function field by $F$ and its ring of adeles by $\mathbb{A}$ . Fix a
vector bundle $E_{0}$ of rank $n$ on $X$ with determinant, $\lambda.$

Consider the group $SL_{n}(\mathbb{A})$ with $\mathbb{K}(E_{0})$ the maximal compact sub-
group associated to $E$ . Then there is a natural morphism $\pi$ from the
quotient space $SL_{n}(F)\backslash SL_{n}(\mathbb{A})/\mathbb{K}(E_{0})$ to the stack $\mathbb{M}_{X,n}(\lambda)$ of rank $n$

bundles with fixed determinant $\lambda.$

Fact 7. The natural morphism

$\pi$ : $SL_{n}(F)\backslash SL_{n}(\mathbb{A})/\mathbb{K}(E_{0})arrow \mathbb{M}_{X,n}(\lambda)$

is surjective with the fiber $\pi^{-1}(E_{0}^{g})$ at the vector bundle $E_{0}^{g}$ associated
to $g\in SL_{n}(\mathbb{A})$ consisting of $\#(\mathbb{F}_{q}^{*}/\det$ Aut $(E_{0}^{g}))$ . Here $\det$ Aut $(E_{0}^{g})$

denotes the image of $\det$ Aut $(E_{0}^{g})$ in $\mathbb{F}_{q}^{*}$ under the determinant mapping.

Denote by $\mathbb{M}_{X,n}(d)$ the moduli stack of rank $n$ bundle of degree $d$ on
$X$ , and introduce the total mass for rank $n$ and degree $d$ bundles on $X$

by

$m_{X,n}(d):= \sum \frac{1}{\#Aut(E)}.$

$E\in \mathbb{M}_{X,r\iota}(d)$

Denote by
$\hat{\zeta}_{X}(s):=\zeta_{X}(s)\cdot(q^{s})^{g-1}$

the complete Artin zeta function associated to $X$ , and

$\hat{\zeta}_{X}(1):={\rm Res}_{s=1}\hat{\zeta}_{X}(s)\cdot\frac{l}{\log q}.$
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Then Weil’s result that the Tamagara number of the quotient space
$SL_{n}(F)\backslash SL_{n}(A)$ equals one is equivalent to the following

Fact 8. (Weil) (Tamagawa Number)

$mx_{n}(d)=mx_{n}:=\hat{\zeta}_{X}(1)\hat{\zeta}_{X}(2)\cdots\hat{\zeta}_{X}(n)$.

2.2 Non-Abelian Zeta Functions for $X$

Denote by $\mathbb{M}_{X,n}^{ss}(d)$ the moduli stack of rank $n$ semi-stable bundle of
degree $d$ on $X$ . Then define the pure non-abelian zeta function of rank
$n$ for $X$ by

$\hat{\zeta}_{X,n}(s):=\sum \sum \frac{q^{h^{0}(X,E)}-1}{\#Aut(E)}\cdot(q^{-s})^{\chi(X,E)}.$

$k\in \mathbb{Z}E\in \mathbb{M}_{X,n}^{ss}(kd)$

Write

$\hat{\zeta}_{X,n}(s)=\zeta_{X,n}(s)\cdot(q^{s})^{n(g-1)},$ $Z_{X,n}(t):=\zeta_{X,n}(s)$ with $t=q^{-s}$

Introduce the partial mass of semi-stable bundles by

$\alpha_{X,n}(d):=$ $\sum$ $\frac{q^{h^{0}(X,E)}-1}{\#Aut(E)},$ $\beta_{X,n}(d):=$ $\sum$ $\frac{1}{\#Aut(E)}.$

$E\in \mathbb{M}_{X,n}^{ss}(d) E\in \mathbb{M}_{X,n}^{ss}(d)$

Then tautologically,

$Z_{X,n}(t)= \sum_{m=0}^{(g-1)-1}\alpha_{X,n}(mn)\cdot(T^{m}+Q^{(g-1)-m}\cdot T^{2(g-1)-m})$

$+ \alpha_{X,n}(n(g-1))\cdot T^{g-1}+(Q-1)\beta_{X,n}(0)\cdot\frac{T^{g}}{(1-T)(1-QT)}.$

where $T:=t^{n}$ and $Q:=q^{n}$ . This exposes the following

Fact 9. (Weng) (i) (Relation with Artin Zetas) $\zeta_{X,1}(s)=\zeta_{X}(s)$ ,
the Artin zeta function for $X/\mathbb{F}_{q}$ ;
(ii) (Rationality) There exists a degree $2g$ polynomial $P_{X,r}(T)\in \mathbb{Q}[T]$

of $T$ such that

$Z_{X,r}(t)= \frac{P_{X,r}(T)}{(1-T)(1-QT)}$ with $T=t^{r},$ $Q=q^{r}$ ;

(iii) $\beta$unctional Equation)

$\hat{\zeta}_{X,n}(1-s)=\hat{\zeta}_{X,n}(s)$ ;

(iv) (Residues)

$\hat{\zeta}_{X,n}(1):={\rm Res}_{s=1}\hat{\zeta}_{X,n}(s)\cdot\frac{1}{\log Q}=\beta_{X,n}(0)(=m_{X,n}^{ss}(0))$ .
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2.3 Parabolic Reduction, Stability and the Mass: Geo-
metric Theory

To go further, make a normalization by introducing

$\tilde{m}_{X,n}^{ss}(d)=\frac{1}{q^{\frac{n(n-1)}{2}(g-1)}}$
. $m_{X,n}^{ss}(d)$ .

Then the parabolic reduction via the Harder-Narasimhan filtration leads
to the following relation involving infinite sums:

Fact 10. (Harder-Namsimhan, Desale-Ramanan) (Parabolic Reduc-
tion)

$m_{X,n}(d)= \sum_{k\geq 1}\sum_{n_{1}+\cdots+n_{k}=n,n_{i}>0\lrcorner^{d}}\sum_{+d_{1+}^{n_{1}}\cdot\cdot d_{k}d}q^{-\Sigma_{i<j}(d_{i}n_{j}-d_{j}n_{i})}\prod_{j>,.\cdots>\frac{d_{k}}{n_{k=}}=1}^{k}\tilde{m}_{X,n_{j}}^{ss}(d_{j})$

.

2.4 Parabolic Reduction, Stability and the Mass: Com-
binatorial Aspect

With the above result, Zagier proved the following fundamental result,
hidden in his paper on Verlinder formula:

Fact 11. (Zagier) (Parabolic Reduction, Stability & the Mass)

$\tilde{m}_{X,n}^{ss}(d)=\sum_{k\geq 1}(-1)^{k-1}\sum_{n_{1}+\cdots+n_{k}.=nn_{i}>0,i=1,k}..,\prod_{j=1}^{k-1}\frac{q^{(n_{j}+n_{j+1})\cdot\{(n_{1}+\cdots+n_{j})\cdot\frac{d}{n}\}}}{q^{(n_{j}+n_{j}+1)}-1}\cdot\prod_{j=1}^{k}m_{X,n_{j}}.$

This formula should be compared with with our Fact 5 for number
fields. The structure are very much similar: in fact if we let $qarrow 1$ , then
we would get the number theoretic identity there. Indeed, the original
formula of Zagier is a bit different: original coefficients depends on $g.$

Motivated by our number fields analogue, we reorganize it with $\tilde{m}$ for $m$

and $\hat{\zeta}_{X}$ for $\zeta_{X}$ . Consequently, our coefficients are environmentally free.
That is, independent of the curve $X$ and the genus.

2.5 Parabolic Reduction, Stability and the Mass: New
Formula

The above relation of Harder-Narasimhan, Ramanan-Desale and Za-
gier for function fields correspond to our own formula listed as Fact 5.
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So naturally, what should be the one appeared in the theory of parabolic
reduction, stability and the volumes obtained by Kontsevich-Soibelman.
This was recently obtained by Zagier during his visit to Fukuoka in May,
2012.

Fact 12. (Zagier) For an ordered partition $n=n_{1}+n_{2}+\cdots+n_{k}$ , fix
$\delta_{i}\in\{0, , \ldots, n_{1}-1\}$ , then fix $v_{i}\in[0,1)\cap \mathbb{Q}$ satisfying

$v_{i} \equiv\frac{\delta_{i}}{n_{i}}-\frac{\delta_{i+1}}{n_{i+1}}(mod 1)$ .

Also set $N_{i}=n_{1}+n_{2}+\cdots+n_{i}$ and $N_{i}’=n-N_{i}$ for $i=1,2,$ $\ldots n.$

(i) (On Average)

$n \cdot m_{X,n}=\sum_{1}\sum_{n_{i}>0,i=12,..,k},\sum_{j=1,2,\ldots,k},\prod_{ik\geq n_{1}+n_{2}+\cdots+n_{k},.=n\delta_{i}\in\{0,1,\ldots n_{i}-1\}=1}^{k-1}\frac{q^{v_{i}N_{i}N_{i}’}}{q^{N_{i}N_{i}’}-1}\cdot\prod_{j=1}^{k}\tilde{m}_{X,n_{j}}^{ss}(\delta_{j})$
.

(ii) ([ndividuality) For all $d=0,1,$ $\ldots,$ $n-1,$

$m_{X,n}= \sum_{k\geq 1}\sum_{n_{1}+n_{2}+\cdots+n_{k}.=nn_{i}>0,i=12,..,k},\frac{1}{n}$

$\cross\sum_{j=1,2,\ldots,k}\delta_{i}\in\{0,1,\ldots,n_{i}-1\}(\sum_{\zeta_{n}\cdot\zeta_{n}^{n}=1}\zeta_{n}^{n-d}\cdot\prod_{h=1}^{k-1}\frac{\zeta_{n^{h}}^{vN_{h}}q^{v_{h}N_{h}N_{h}’}}{\zeta_{n}^{N_{h}}q^{N_{h}N_{h}’}-1})\prod_{j=1}^{k}\tilde{m}_{X,n}^{ss}j(\delta_{j})$
.

The first is obtained by taking average on $d$ from the relation of Fact
11, while the second is obtained directly from that of Fact 11. With
geometric picture in mind, formula (ii) should be further polished, so as
to get everything done according to the real world structure. This may
prove to be a bit complicated due to the fact that usually

$\mathbb{M}_{X,n}(d)\not\simeq \mathbb{M}_{X,n}(d’) , \forall d, d’\in\{0,1, \ldots, n-1\}, d\neq d’.$

This is very different from the cases for number fields, where we always
have the isomorphism $(*)$ between different levels.

We remind the reader that while all relations in function field case are
obtained using geometric methods, our basic relation for number fields
are obtained analytically using Eisenstein series.

176



3 Parabolic Reduction, Stability and the Mass:
General Reductive Groups

Motivated by the above discussion, more generally, for a split reductive
group $G$ defined over a number field $F,$ $B$ a $fi\grave{x}ed$ Borel, $\cdots$ , denote by
$G(\mathbb{A})^{ss}$ the adelic elements of $G$ corresponding to semi-stable principle G-
lattices ([G]). Write $\mathbb{K}_{G}$ for the associated maximal compact subgroup.
Also for a standard parabolic subgroup $P$ , write its Levi decomposition
as $P=UM$ with $U$ the unipotent radical and $M$ its Levi factor. Denote
the corresponding simple decomposition of $M$ as $\prod_{i}M_{i}$ with $M_{i}$ ’s the
simple factors of $M$ . Introduce invariants

$m_{F;P}:= \prod_{i}Vol(\mathbb{K}_{M_{i}}\backslash M_{i}^{1}(\mathbb{A})/M_{i}(F)Z_{M_{i}^{1}(\mathbb{A})})$

and
$m_{F;P}^{ss}:= \prod_{i}Vol(\mathbb{K}_{M_{i}}\backslash M_{i}^{1}(\mathbb{A})^{ss}/M_{i}(F)Z_{M_{i}^{1}(A)})$ .

In parallel, we have similar constructions for function fields $F=\mathbb{F}_{q}(X)$ .
Denote by

$n_{i}:=\#\{\alpha>0:\langle\rho, \alpha^{\vee}\rangle=i\}-\#\{\alpha>0:\langle\rho, \alpha^{\vee}\rangle=i+1\}$

and by $v_{G}$ the volume of $\{\sum_{\alpha\in\triangle} : a_{\alpha}\alpha^{\vee}:a_{\alpha}\in[0,1)\}.$

Fact 13. (Langlands) (Volume of Fundamental Domain) For the

field of mtionals,

$Vo1(\mathbb{K}_{G}\backslash G^{1}(\mathbb{A})/G(\mathbb{Q})Z_{G^{1}(\mathbb{A})})=vG^{\cdot}\prod_{i\geq 1}\hat{\zeta}(i)^{-n}i.$

Based on all this, then we have the following

Conjecture 1. (Weng) (Parabolic Reduction) Let $G/F$ be a split re-
ductive group with $B/F$ a fixed Borel. Then, for each standard parabolic
subgroup $P$ of $G$ , there exist constants $c_{P}\in \mathbb{Q},$ $e_{P}\in \mathbb{Q}_{>0}$ , independent

of $F$ , such that

$m_{F;}c= \sum_{P}C_{P}\cdot m_{F;P}^{SS},$ $m_{F;G}^{ss}= \sum_{P}$
sgn $(P)\cdot e_{P}\cdot m_{F;P},$

where $P$ runs over all standard pambolic subgroups of $G$ , and sgn $(P)$

denotes the sign of $P.$
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The exact values of $e_{P}$ ’s can be written out in terms of the associated
root system. Indeed, if

$W_{0}:=\{w\in W:\{\alpha\in\triangle:w\alpha\in\triangle\cup\Phi^{-}\}=\triangle\},$

then there is a natural one-to-one correspondence between $W_{0}$ and the
set of subsets of $\triangle$ , and hence to the set of standard parabolic subgroups
of $G$ . Thus we will write

$W_{0}:=\{wp;P$ standard parabolic subgroup $\},$

and, for $w=Wp\in W_{0}$ , write $J_{P}\subset\Delta$ the corresponding subset.

Conjecture 2. (Weng) Let $G$ be a split type reductive group with $P$ its
maximal pambolic subgroup.
(1) For a number field $F,$

(i) (Relation to Zetas with Symmetries)

$m_{F;G}^{ss}={\rm Res}_{s=-c_{P}}\hat{\zeta}_{F}^{\langle G,P)}(s)={\rm Res}_{\lambda=\rho}\omega_{F}^{G}(\lambda)$;

(ii) (Parabolic Reduction, Stability & the Mass)

$m_{F;G}^{ss}= \sum_{P}\frac{(-1)^{rank(P)}}{\prod_{\alpha\in\Delta\backslash w_{J}J_{P}}(1-\langle wJ\rho,\alpha^{\vee}\rangle)}$ . $mF;P$ ;

(2) For an irreducible reduced regular projective curve $X,$

(i) (Relation to Zetas with Symmetries)

$\log q\cdot m_{F;G}^{ss}={\rm Res}_{s=-c_{P}}\hat{\zeta}_{X}^{(G,P)}(s)={\rm Res}_{\lambda=\rho}\omega_{X}^{G}(\lambda)$;

(ii) (Parabolic Reduction, Stability & the Mass)

$m_{F;G}^{ss}= \sum_{P}\frac{(-1)^{rank(P)}}{\prod_{\alpha\in\triangle\backslashw_{J}J_{P}}(1-q^{\langle w_{J}\rho,\alpha^{\vee}\rangle-1})}\cdot mF;P.$

Remark. Calculations in [Ad] for lower rank groups indicate that, for
number fields, $\frac{1}{c_{P}}\in \mathbb{Z}_{>0}$ . It would be very interesting to find a close
formula for them.

Lin WENG, Institute for Fundamental Research, The $L$ Academy and
Graduate School of Mathematics, Kyushu University, Fukuoka, 819-
0395, JAPAN
$E$-Mail: weng@math.kyushu-u.ac.jp
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