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Abstract

We consider initial-boundary value problems for a nonlinear third order
dispersive equation describing the motion of a vortex filament with axial flow.
We prove new existence theorems for the related linear problems and apply it
to the nonlinear problems.

1 Introduction
In this paper, we prove the unique solvability locally in time of the following initial-
boundary value problems. For $\alpha<0,$

(1.1) $[Matrix]$
For $\alpha>0,$

(1.2) $[Matrix]$
Here, $x(s, t)=(x^{1}(\mathcal{S}, t), x^{2}(s, t), x^{3}(s, t))$ is the position vector of the vortex filament
parameterized by its arc length $s$ at time $t,$ $\cross$ is the exterior product in the three
dimensional Euclidean space, $\alpha$ is a non-zero constant that describes the magnitude
of the effect of axial flow, $e_{3}=(0,0,1)$ , and subscripts denote derivatives with their
respective variables. Later in this paper, we will also use $\partial_{s}$ and $\partial_{t}$ to denote partial
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derivatives as well. We will refer to the equation in (1.1) and (1.2) as the vortex
filament equation. We note here that the number of boundary conditions imposed
changes depending on the $sign$ of $\alpha$ . This is because the number of characteristic
roots with a negative real part of the linearized equation, $x_{t}=\alpha x_{sss}$ , changes
depending on the $sign$ of $\alpha.$

Our motivation for considering (1.1) and (1.2) comes from analyzing the motion
of a tomado. This paper is our humble attempt to model the motion of a tomado.
While it is obvious that a vortex filament is not the same as a tomado and such
modeling is questionable, many aspects of tomadoes are still unknown and we hope

that our research can serve as a small step towards the complete analysis of the
motion of a tomado.

To this end, in an earlier paper [1], the authors considered an initial-boundary
value problem for the vortex filament equation with $\alpha=0$ , which is called the Lo-
calized Induction Equation (LIE). The LIE is a simphfied model equation describing
the motion of a vortex filament without axial flow. Other results considering the
LIE can be found in Nishiyama and Tani [8] and Koiso [7].

Many results are known for the Cauchy problem for the vortex filament equation
with non-zero $\alpha$ , where the filament extends to spacial infinity or the filament is
closed. For example, in Nishiyama and Tani [8], they proved the unique solvability
globally in time in Sobolev spaces. Onodera [9, 10] proved the unique solvability

for a geometrically generalized equation. Segata [12] proved the unique solvability
and showed the asymptotic behavior in time of the solution to the Hirota equation,
given by

(1.3) $iq_{t}=q_{xx}+\frac{1}{2}|q|^{2}q+i\alpha(q_{xxx}+|q|^{2}q_{x})$ ,

which can be obtained by applying the generalized Hasimoto transformation to
the vortex filament equation. Since there are many results regarding the Cauchy
problem for the Hirota equation and other Schr\"odinger type equations, it may feel
more natural to see if the available theories from these results can be utilized to solve
the initial-boundary value problem for (1.3), instead of considering (1.1) and (1.2)
directly. Admittedly, problem (1.1) and (1.2) can be transformed into an initial-
boundary value problem for the Hirota equation. But, in light of the possibility that
a new boundary condition may be considered for the vortex filament equation in the
future, we thought that it would be helpful to develop the analysis of the vortex
filament equation itself because the Hasimoto transformation may not be applicable
depending on the new boundary condition. For example, (1.1) and (1.2) model
a vortex filament moving in the three dimensional half space, but if we consider
a boundary that is not flat, it is non-trivial as to if we can apply the Hasimoto
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transformation or not, so we decided to work with the vortex filament equation
directly.

For convenience, we introduce a new variable $v(s, t)$ $:=x_{s}(s, t)$ and rewrite the
problems in terms of $v$ . Setting $v_{0}(s)$ $:=x_{0s}(s)$ , we have for $\alpha<0,$

(1.4) $\{\begin{array}{ll}v_{t}=v\cross v_{ss}+\alpha\{v_{sss}+\frac{3}{2}v_{ss}\cross v\cross v_{s}+\frac{\zeta}{2}v_{s}\cross/v\cross v_{SS})\}, s>0, t>0,v(s, 0)=v_{0}(s) , s>0,v_{s}(0, t)=0, t>0.\end{array}$

For $\alpha>0,$

(1.5) $\{\begin{array}{ll}v_{t}=v\cross v_{ss}+\alpha\{v_{sss}+\frac{3}{2}v_{SS}\cross v\cross v_{s}+\frac{(i}{2}v_{s}\cross/v\cross v_{SS})\}, s>0, t>0,v(s, 0)=v_{0}(s) , s>0,v(0, t)=e_{3}, t>0,v_{s}(0, t)=0, t>0.\end{array}$

Once we obtain a solution for (1.4) and (1.5), we can reconstruct $x(s, t)$ from the
formula

$x(s, t)=x_{0}(s)+ \int_{0}^{t}\{v\cross v_{S}+\alpha v_{ss}+\frac{3}{2}\alpha v_{s}\cross(v\cross v_{S})\}(s, \tau)d\tau,$

and $x(s, t)$ will satisfy (1.1) and (1.2) respectively, in other words, (1.1) is equivalent
to (1.4) and (1.2) is equivalent to (1.5). Hence, we will concentrate on the solvability
of (1.4) and (1.5) from now on. Our approach for solving (1.4) and (1.5) is to consider
the associated linear problem. Linearizing the equation around a function $w$ and
neglecting lower order terms yield

$v_{t}=w \cross v_{ss}+\alpha\{v_{sss}+\frac{3}{2}v_{ss}\cross(w\cross w_{s})+\frac{3}{2}w_{8}\cross(w\cross v_{ss})\}.$

Directly considering the initial-boundary value problem for the above equation seems
hard. When we try to estimate the solution in Sobolev spaces, the term $w_{S}\cross(w\cross$

$v_{ss})$ causes a loss of regularity because of the form of the coefficient. We were able
to overcome this by using the fact that if the initial datum is parameterized by its
arc length, i.e. $|v_{0}|=1$ , a sufficiently smooth solution of (1.4) and (1.5) satisfies
$|v|=1$ , and this allows us to make the transformation

$v_{s}\cross(v\cross v_{SS})=v_{ss}\cross(v\cross v_{s})-|v_{S}|^{2}v_{S}.$

Linearizing the equation in (1.4) and (1.5) after the above transformation yields

(1.6) $v_{t}=w\cross v_{SS}+\alpha\{v_{SSS}+3v_{ss}\cross(w\cross w_{s})\}.$
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The term that was causing the loss of regularity is gone, but still, the existence of
a solution to the initial-boundary value problem of the above third order dispersive

equation is not trivial.
One may wonder if we could treat the second order derivative terms as a perturba-

tion of the linear $KdV$ or the $KdV$-Burgers equation to avoid the above difficulties all

together. This seems impossible, because as far as the authors know, the estimates
obtained for the linear $KdV$ and $KdV$-Burgers equation is insufficient to consider a
second order term as a regular perturbation. See, for example, Hayashi and Kaikina
[5], Hayashi, Kaikina, and Ruiz Paredes [6], or Bona and Zhang [4] for known results
on the initial-boundary value problems for the $KdV$ and $KdV$-Burgers equations.
To this end, we consider initial-boundary value problems for a more general linear
equation of the form

(1.7) $u_{t}=\alpha u_{xxx}+A(w, \partial_{x})u+f,$

where $u(x, t)=(u^{1}(x, t), u^{2}(x, t), \ldots, u^{m}(x, t))$ is the unknown vector valued func-
tion, $w(x, t)=(w^{1}(x, t), w^{2}(x,t), \ldots, w^{k}(x, t))$ and $f(x,t)=(f^{1}(x,t),$ $f^{2}(x, t),$

$\ldots,$

$f^{m}(x,t))$ are known vector valued functions, and $A(w, \partial_{x})$ is a second order differen-
tial operator of the form $A(w, \partial_{x})=A_{0}(w)\partial_{x}^{2}+A_{1}(w)\partial_{x}+A_{2}(w)$ . $A_{0},$ $A_{1},$ $A_{2}$ are
smooth matrices and $A(w, \partial_{x})$ is strongly elliptic in the sense that for any bounded
domain $E$ in $R^{k}$ , there is a positive constant $\delta$ such that for any $w\in E$

$A_{0}(w)+A_{0}(w)^{*}\geq\delta I,$

where I is the unit matrix $and*denotes$ the adjoint of a matrix. We prove the unique

solvability of initial-boundary value problems of the above equation in Sobolev
spaces, and the precise statement we prove will be addressed later. This result
can be applied to (1.6) after we regularize it with a second order viscosity term $\delta v_{8S}$

with $\delta>0.$

The contents of this paper are as follows. In section 2, we introduce function
spaces and the associated notations. In section 3, we consider a hnear third order
dispersive equation which includes the linearized equation of the vortex filament
equation and state the main theorems for the linear problems. In section 4, we
consider the compatibility conditions for the linear problems and the required cor-
rections of the given data. Since the new parabolic regularization causes the com-
patibility conditions to become non-standard, we give a detailed analysis of this
issue. In section 5, we briefly explain the construction of the solution and the rest
of the $pro$of of the existence theorem. In section 6, we state and prove the existence

theorems for (1.1) and (1.2) by applying the results for the hnear problems. This

section will focus on how to obtain the estimate of the solution in the case $\alpha>0,$
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where the known approach for estimating the solution in the initial value problem
is insufficient.

2 Function Spaces and Notations
We define some function spaces that will be used throughout this paper, and nota-
tions associated with the spaces.

For an open interval $\Omega$ , a non-negative integer $m$ , and $1\leq p\leq\infty,$ $W^{m,p}(\Omega)$ is
the Sobolev space containing all real-valued functions that have derivatives in the
sense of distribution up to order $m$ belonging to $L^{p}(\Omega)$ . We set $H^{m}(\Omega)$ $:=W^{m,2}(\Omega)$

as the Sobolev space equipped with the usual inner product. We will particularly
use the cases $\Omega=R$ and $\Omega=R_{+}$ , where $R+=\{x\in R;x>0\}$ . When $\Omega=R+$ , the
norm in $H^{m}(\Omega)$ is denoted by $\Vert\cdot\Vert_{m}$ and we simply write $\Vert\cdot\Vert$ for $\Vert\cdot\Vert_{0}$ . Otherwise,
for a Banach space $X$ , the norm in $X$ is written as $\Vert$ $\Vert_{X}$ . The inner product in
$L^{2}(R_{+})$ is denoted by $(\cdot, \cdot)$ .

For $0<T<\infty$ and a Banach space $X,$ $C^{m}([0, T];X)$ denotes the space of
functions that are $m$ times continuously differentiable in $t$ with respect to the norm
of $X.$

For any function space described above, we say that a vector valued function
belongs to the function space if each of its components does.

Finally, we define some auxiliary function spaces used for the linear problems.
Let $l$ be a non-negative integer. $X^{l}$ is the function space that we are constructing
the solution in, specifically,

$X^{l}:= \bigcap_{j=0}^{l}(C^{j}([0, T];H^{2+3(larrow)}(R_{+}))\cap H^{j}(0, T;H^{3+3(l-j)}(R_{+})))$ .

As a consequence, $u_{0}$ will be required to belong in $H^{2+3l}(R_{+})$ . $Y^{l}$ is the function
space that $f$ will be required to belong in, and is defined by

$Y^{l}:= \{f;f\in\bigcap_{j=0}^{l-1}C^{j}([0, T];H^{2+3(l-1-j)}(R_{+})),$ $\partial_{t}^{l}f\in L^{2}(0, T;H^{1}(R_{+}))\}.$

$Z^{l}$ is the function space that $w$ will belong in and is defined as

$Z^{l}:= \{w;w\in\bigcap_{j=0}^{l-1}C^{j}([0, T];H^{2+3(l-1-j)}(R_{+})),$ $\partial_{t}^{l}w\in L^{\infty}(0, T;H^{1}(R_{+}))\}.$
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3 Associated Linear Problems

We prove the solvability of the following problems. For $\alpha<0,$

(3.1) $(u_{x}(0,t)=0u(x,0)=u_{0}(x)u_{t}=\alpha u_{xxx}+A,(w, \partial_{x})u+f, t>0x>0x>0.’ t>0,$

For $\alpha>0,$

(3.2) $\{\begin{array}{ll}u_{t}=\alpha u_{xxx}+A(w, \partial_{x})u+f, x>0, t>0,u(x, O)=u_{0}(x) , x>0,u(O, t)=e, t>0,u_{x}(0, t)=0, t>0.\end{array}$

For (3.1) and (3.2), we prove the following.

Theorem 3.1 For any $T>0$ and an arbitmry non-negative integer $l$ , if $u_{0}\in$

$H^{2+3l}(R_{+}),$ $f\in Y^{\iota}$ , and $w\in Z^{\iota}$ satisfy the compatibility conditions up to order
$l$ , a unique solution $u$ of (3.1) exists such that $u\in X^{l}$ . Furthermore, the solution
satisfies

$\Vert u\Vert_{X^{l}}\leq C(\Vert u_{0}\Vert_{2+3l}+\Vert f\Vert_{Y^{l}})$ ,

where the constant $C$ depends on $T,$ $\Vert w\Vert_{Z^{l}}$ , and $\delta.$

Theorem 3.2 For any $T>0$ and an arbitmry non-negative integer $l$ , if $u_{0}\in$

$H^{2+3l}(R_{+}),$ $f\in Y^{l}$ , and $w\in Z^{l}$ satisfy the compatibility conditions up to order
$l$ , a unique solution $u$ of (3.2) exists such that $u\in X^{l}$ . Furthermore, the solution
satisfies

$\Vert u\Vert_{X^{l}}\leq C(\Vert u_{0}\Vert_{2+3l}+\Vert f\Vert_{Y^{l}})$ ,

where the constant $C$ depends on $T_{f}\Vert w\Vert_{Z^{l}}$ , and $\delta.$

Since the proof for the case $\alpha>0$ is relatively standard, we focus on the case $\alpha<0.$

Our method for constructing the solution is parabolic regularization. When $\alpha<0,$

a standard regularization using $-\partial_{x}^{4}u$ is inapplicable because we can impose only
one boundary condition to our original problem, where as the regularized problem
requires two boundary conditions to be well-posed. Thus, we will construct the
solution of (3.1) by taking the hmit $\epsilonarrow 0$ in the following new regularized system.

(3.3) $\{\begin{array}{ll}u_{t}=\alpha(u_{xx}-\epsilon u_{t})_{x}+A(w, \partial_{x})u+g, x>0, t>0,u(x, O)=u_{0}(x) , x>0,u_{x}(0, t)=0, t>0,\end{array}$
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where $\epsilon>0$ . To construct the solution of the above system, we first consider the
following problem.

(3.4)
$u_{t}=\alpha(u_{xx}-\epsilon u_{t})_{x}+g, x>0, t>0,$

$u(x, 0)=u_{0}(x) , x>0,$
$u_{x}(0, t)=0, t>0.$

(3.3) is a parabolic regularization of (3.1) and the principal terms are the terms
in parenthesis. In fact if we substitute $u(x, t)=e^{\tau t+i\xi x}C$ into $u_{t}=\alpha(u_{xx}-\epsilon u_{t})_{x},$

we obtain the dispersion relation $\tau=-\alpha(\xi^{2}+\epsilon\tau)i\xi$ , so that for a non-trivial solution
to exist, we need

$\Re\tau=-\frac{\alpha^{2}\epsilon\xi^{4}}{1+\alpha^{2}\epsilon^{2}\xi^{2}},$

which indicates that the equation is parabolic in nature. This allows us to regu-
larize the problem without changing the number of boundary conditions needed for
the problem to be well-posed. The main difficulty caused by this regularization is
deriving the compatibility conditions and making the necessary corrections to the
given data.

4 Compatibility Conditions for $t$he Case $\alpha<0$

As stated before, we will construct the solution of (3.1) by taking the limit $\epsilonarrow 0$

in the following regularized system.

(4.1) $\{\begin{array}{ll}u_{t}=-\alpha\epsilon u_{tx}+\alpha u_{xxx}+A(w, \partial_{x})u+g, x>0, t>0,u(x, 0)=u_{0}(x) , x>0,u_{x}(0, t)=0, t>0.\end{array}$

Since the derivation of the compatibility conditions for the regularized system is
complicated and the required corrections for the given data is not standard, we
devote this section to clarify these matters.

4.1 Compatibility Conditions for (3.1)

We first define the compatibihty condition for the original system (3.1). We denote
the right-hand side of the equation in (3.1) as

(4.2) $Q_{1}(u, f, w)=\alpha u_{xxx}+A(w, \partial_{x})u+f,$

and we als$o$ use the notation $Q_{1}(x, t);=Q_{1}(u, f, w)$ and sometimes omit the $(x, t)$

for simplicity. We successively define

(4.3) $Q_{n}:= \alpha\partial_{x}^{3}Q_{n-1}+\sum_{j=0}^{n-1}(\begin{array}{ll}n -1 j\end{array}) B_{j}Q_{n-1-j}+\partial_{t}^{n-1}f,$
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where $B_{j}=(\dot{\theta}_{t}A_{0}(w))\partial_{x}^{2}+(\dot{\theta}_{t}A_{1}(w))\partial_{x}+\theta\dot{i}A_{2}(w)$ . The above definition gives

the formula for the expression of $\partial_{t}^{n}u$ which only contains $x$ derivatives of $u$ and

mixed derivatives of $w$ and $f$ . From the boundary condition in (3.1), we arrive at
the following definition for the compatibihty conditions.

Definition 4.1 (Compatibility conditions for (3.1)). For $n\in N\cup\{0\}$ , we say that
$u_{0},$ $f$ , and $w$ satisfy the n-th order compatibility condition for (3.1) if

$u_{0x}(0,0)=0$

when $n=0$, and

$(\partial_{x}Q_{n})(0,0)=0$

when $n\geq 1$ . We also say that the data satisfy the compatibility conditions for (3.1)

up to order $n$ if they satisfy the k-th order compatibility condition for all $k$ with
$0\leq k\leq n.$

Now that we have defined the compatibihty conditions, we discuss an approxi-

mation of the data via smooth functions which keep the compatibility conditions.

Recall that $X^{l},$ $Y^{l}$ , and $Z^{\iota}$ are function spaces defined in section 2 that we consider
the solution and given data in. Data belonging to these function spaces with index
$l$ are smooth enough for the l-th order compatibility condition to have meaning in

a point-wise sense, but the $(l+1)$-th order compatibility condition does not. By

utihzing the method in [11] used by Rauch and Massey, we can get the following.

Lemma 4.2 Fix non-negative integers $l$ and $N$ with $N>l$ . For any $u_{0}\in H^{2+3l}(R_{+})$ ,
$f\in Y^{l}$ , and $w\in Z^{\iota}$ satisfying the compatibility conditions for (3.1) up to order $l,$

there exist sequences $\{u_{0n}\}_{n\geq 1}\subset H^{2+3N}(R_{+}),$ $\{f_{n}\}_{n\geq 1}\subset Y^{N}$ , and $\{w_{n}\}_{n\geq 1}\subset Z^{N}$

such that for any $n\geq 1,$ $u_{\theta n},$ $f_{n}$ , and $w_{n}$ satisfy the compatibility conditions for
(3.1) up to order $N$ and

$u_{\theta n}arrow u_{0}$ in $H^{2+3l}(R_{+})$ , $f_{n}arrow f$ in $Y^{l}$ , and $w_{n}arrow w$ in $Z^{l}.$

From Lemma 4.2, we can assume that the given data are arbitrarily smooth and

satisfy the necessary compatibihty conditions in the proceeding arguments.

4.2 Compatibility Conditions for (4.1)

Now, we define the compatibility conditions for (4.1). We write the equation in (4.1)

as

(4.4) $u_{t}=-\alpha\epsilon u_{tx}+P_{1}(u,g, w)$ ,
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in other words, $P_{1}(u, g, w)=\alpha u_{xxx}+A(w, \partial_{x})u+g$ . We use the notations $P_{1}(x, t)$

and $P_{1}$ as we did with $Q_{1}$ in the last subsection. Setting $\phi_{1}(x)$ $:=u_{t}(x, 0)$ and
taking the trace $t=0$ of the equation we have

(4.5) $\alpha\epsilon\phi_{1}’+\phi_{1}=P_{1}(\cdot, 0)$ .

A prime denotes a derivative with respect to $x$ . Note that $P_{1}(x, 0)$ is expressed
using given data only. Solving the above ordinary differential equation for $\phi_{1}$ we
have

$\phi_{1}(x)=e^{-\frac{x}{\alpha\epsilon}}\{\phi_{1}(0)+\frac{1}{\alpha\epsilon}\int_{0}^{x}e^{\frac{y}{\alpha e}}P_{1}(y, 0)dy\}.$

Since we are looking for solutions that are square integrable, we impose that $\lim_{xarrow\infty}$

$\phi_{1}(x)=0$ , so we have

$\phi_{1}(0)=-\frac{1}{\alpha\epsilon}\int_{0}^{\infty}e$詣 $P_{1}(y, 0)dy,$

which gives

$\phi_{1}(x)=-\frac{1}{\alpha\epsilon}\int_{x}^{\infty}e^{-\frac{1}{\alpha\epsilon}(x-y)}P_{1}(y, 0)dy.$

By direct calculation, we see that

$\phi_{1}’(x)=-\frac{1}{\alpha\epsilon}\int_{x}^{\infty}e^{-\frac{1}{\alpha\epsilon}(x-y)}P_{1}’(y, 0)dy,$

where we have used integration by parts. We also note here that $\phi_{1}$ is expressed
with given data only. From the boundary condition in (4.1), we see that the first
order compatibility condition is

$\int_{0}^{\infty}e^{A}\alpha\epsilon P_{1}’(y, 0)dy=0.$

In the same manner, we will derive the n-th order compatibility condition for $n\geq 2.$

Taking the $t$ derivative of the equation in (4.1) $(n-1)$ times, taking the trace $t=0,$
and setting $\phi_{n}(x)$ $:=\partial_{t}^{n}u(x, 0)$ , we have

$\alpha\epsilon\phi_{n}’+\phi_{n}=\partial_{t}^{n-1}P_{1}.$

We denote

$P_{n}:=\partial_{t}^{n-1}P_{1}.$
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We will prove by induction that $\phi_{n}$ and $P_{n}(x, 0)$ are expressed using given data
only. Since $P_{n}=\partial_{t}^{n-1}P_{n-1}=\partial_{t}^{n-1}(\alpha u_{xxx}+A(w)u+g)$, it holds that

(4.6) $P_{n}( \cdot, 0)=\alpha\phi_{n-1}"’+\sum_{j=0}^{n-1}(\begin{array}{ll}n -1 j\end{array}) B_{j}\phi_{n-1-j}+\partial_{t}^{n-1}g(\cdot, 0)$ .

For a $n\geq 2$ , assume that $\phi_{k}$ and $P_{k}(x, 0)$ are expressed with given data for $1\leq$

$k\leq n-1$ . Formula (4.6) implies that $P_{n}(\cdot, 0)$ is expressed with given data. Solving

for $\phi_{n}$ yields

$\phi_{n}(x)=-\frac{1}{\alpha\epsilon}\int_{x}^{\infty}e^{-\frac{1}{\alpha\epsilon}(x-y)}P_{n}(y, 0)dy.$

This proves that $\phi_{n}$ is also expressed using given data only.
Again by direct calculation, we have

$\phi_{n}’(x)=-\frac{1}{\alpha\epsilon}\int_{x}^{\infty}e^{-\frac{1}{\alpha e}(x-y)}P_{n}’(y, 0)dy,$

and arrive at the n-th order compatibility condition

$\int_{0}^{\infty}e^{L}\alpha eP_{n}’(y, 0)dy=0.$

Now we can define the following.

Definition 4.3 (Compatibility conditions for (4.1)). For $n\in N\cup\{0\}$ , we say that
$u_{0},$ $g$ , and $w$ satisfy the n-th order compatibility condition for (4.1) if

$u_{0x}(0)=0$

when $n=0$ , and

$\int_{0}^{\infty}e^{L}\overline{\alpha}\epsilon P_{n}’(y, 0)dy=0$

when $n\geq 1$ . We also say that the data satisfy the compatibility conditions for (4.1)

up to order $n$ if the data satisfy the k-th order compatibility condition for all $k$ with
$0\leq k\leq n$ . For the definition of $P_{n}$ , see (4.4) and (4.6).

We note that for $u_{0}\in H^{2+3l}(R_{+}),$ $f\in Y^{l}$ , and $w\in Z^{l}$ , the compatibihty condi-
tions up to order $l$ have meaning in the point-wise sense, but the $(l+1)$-th order
compatibility condition does not.
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4.3 Corrections to the Data

Since we regularized the equation, we must make corrections to the data to assure
that the compatibility conditions continue to hold. Fix a large integer $N$ and suppose
that $u_{0}\in H^{2+3N}(R_{+}),$ $f\in Y^{N}$ , and $w\in Z^{N}$ satisfy the compatibility conditions
for (3.1) up to order $N$ . We will make corrections to the forcing term so that the
data satisfy the compatibility conditions for (4.1) up to order $N$ . More specifically,
we prove the following

Proposition 4.4 Fix a positive integer N. For $u_{0}\in H^{2+3N}(R_{+}),$ $f\in Y^{N}$ , and
$w\in Z^{N}$ satisfying the compatibility conditions for (3.1) up to order $N$ , we can define
$g\in Y^{N}$ in the form $g=f+h_{\epsilon}$ such that $u_{0},$ $g$ , and $w$ satisfy the compatibility
conditions for (4.1) up to order $N$ and $h_{\epsilon}arrow 0$ in $Y^{N}$ as $\epsilonarrow 0.$

Proof. We write the equation in (4.1) as

$u_{t}=-\alpha\epsilon u_{tx}+P(x,t, \partial_{x})u+g.$

Setting $\phi_{1}(x)$ $:=u_{t}(x, 0)$ and taking the trace $t=0$ of the equation we have

(4.7) $\alpha\epsilon\phi_{1}’+\phi_{1}=P(x, 0, \partial_{x})u_{0}+f(x, 0)+h_{\epsilon}(x, 0)$ .

Using the notations in (4.2) we have $P(x, 0, \partial_{x})u_{0}+f(x, 0)=Q_{1}(x, 0)$ . As be-
fore, solving the above ordinary differential equation for $\phi_{1}$ under the constraint
$\lim_{xarrow\infty}\phi_{1}(x)=0$ we have

$\phi_{1}(x)=-\frac{1}{\alpha\epsilon}\int_{x}^{\infty}e^{-\frac{1}{\alpha\epsilon}(x-y)}\{Q_{1}(y, 0)+h_{\epsilon}(y, 0)\}dy.$

We give an ansatz for the form of $h_{\epsilon}$ , namely

$h_{\epsilon}(x, t)=( \sum_{j=0}^{N}C_{j,\epsilon}\frac{t^{j}}{j!})e^{-x},$

where $C_{j,\epsilon},$ $j=0,1,$ $\ldots,$
$N$ , are constant vectors depending on $\epsilon$ to be determined

later. From Definition 4.3 the first order compatibility condition is

$\int_{0}^{\infty}e$島 $\{Q_{1}’(y, 0)+h_{\epsilon}’(y, 0)\}dy=0.$

Substituting the ansatz for $h_{\epsilon}(x, t)$ , we have

$C_{0,\epsilon}(1- \frac{1}{\alpha\epsilon})^{-1}=\int_{0}^{\infty}e^{A}\alpha\epsilon Q_{1}’(y, 0)dy.$
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Since $Q_{1}’(0,0)=0$ from the compatibility condition for (3.1), we have by integration
by parts

$C_{0,\epsilon}=( \alpha\epsilon-1)\int_{0}^{\infty}e^{L}\alpha eQ_{1}"(y, 0)dy.$

So if we limit ourselves to $0< \epsilon<\min\{1,1/|\alpha|\}$ , from

$e^{-L}\alpha e|Q_{1}"(y, 0)|\leq e^{-y}|Q_{1}"(y, 0)|,$

and for $y>0$

$e^{L}\overline{\alpha}e|Q_{1}"(y, 0)|arrow\cdot 0$ as $\epsilonarrow 0,$

we see that $C_{0,\epsilon}arrow 0$ as $\epsilonarrow 0$ . We will show by induction that $C_{j,\epsilon}$ can be chosen
so that $C_{j,\epsilon}arrow 0$ for $1\leq j\leq N$ and $g=f+h_{\epsilon}$ with $u_{0}$ and $w$ satisfies the
compatibility conditions for (4.1) up to order $N$ . Suppose that the above statement
holds for $0\leq j\leq n-2$ for some $n$ with $2\leq n\leq N.$

We define $P_{n}(x, 0)$ and $\phi_{n}(x)$ as before and we have

(4.8) $\phi_{n}(x)=-\frac{1}{\alpha\epsilon}\int_{x}^{\infty}e^{-\frac{1}{\alpha e}(x-y)}P_{n}(y, 0)dy,$

and the n-th order compatibility condition for (4.1) is

$\int_{0}^{\infty}e^{\Delta}\alpha eP_{n}’(y, 0)dy=0.$

We rewrite this condition as

(4.9) $-P_{n}’(0,0)+ \int_{0}^{\infty}e^{L}\alpha eP_{n}"(y, 0)dy=0$

by integration by parts. We recall that $P_{n}(x, 0)$ was successively defined by

$P_{n}( \cdot, 0)=\alpha\phi_{n-1}"’+\sum_{j=0}^{n-1}(\begin{array}{l}n-1j\end{array})B_{j}\phi_{n-1-j}+\partial_{t}^{n-1}g(\cdot, 0)$,

with $P_{1}(x, 0)=\alpha u_{0xxx}+A(w(x, 0), \partial_{x})u_{0}+g(x, 0)$ . Substituting (4.8) with $n=j$

for $\phi_{j}$ and using integration by parts, we have

$P_{n}( \cdot, 0)=\alpha P_{n-1}"’+\sum_{j=0}^{n-1}(\begin{array}{ll}n -1 j\end{array}) B_{j}P_{n-1-j}+\partial_{t}^{n-1}g(\cdot, 0)$

$- \alpha\epsilon\{\alpha\phi_{n-1}^{\prime\prime\prime\prime}+\sum_{j=0}^{n-1}(\begin{array}{ll}n -1 j\end{array}) B_{j}\phi_{n-1arrow}’\}.$
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Als$0$ recall that

$Q_{n}= \alpha\partial_{x}^{3}Q_{n-1}+\sum_{j=0}^{n-1}(\begin{array}{ll}n -1 j\end{array}) B_{j}Q_{n-1-j}+\partial_{t}^{n-1}f,$

with $Q_{1}(x, 0)=\alpha u_{0xxx}+A(w(x, 0), \partial_{x})u_{0}+f(x, 0)$ . Thus, setting $R_{\eta}$ $:=P_{n}-Q_{n},$

we have

$R_{m}(x, 0)= \alpha R_{n-1}"’+\sum_{j=0}^{n-1}(\begin{array}{ll}n -1 j\end{array}) B_{j}R_{n-1-j}+\partial_{t}^{n-1}h_{\epsilon}(\cdot, 0)$

$- \alpha\epsilon\{\alpha\phi_{n-1}^{\prime\prime\prime\prime}+\sum_{j=0}^{n-1}(\begin{array}{ll}n -1 j\end{array}) B_{j}\phi_{n-1-j}’\},$

with $R_{1}(x, 0)=h_{\epsilon}(x, 0)$ . We prove by induction that $R_{m}(x, 0)=\partial_{t}^{n-1}h_{\epsilon}(x, 0)+o(1)$ ,
where $o(1)$ are terms that tend to zero as $\epsilonarrow 0$ . The case $n=1$ is obvious from
the definition of $R_{1}(x, 0)$ . Suppose that it holds for $R_{k}(x, 0)$ for $1\leq k\leq n-1.$

From the above expression for $R_{m}(x, 0)$ , the assumption of induction on $R_{\eta}$ , and
the assumption of induction that $C_{j,\epsilon}arrow 0$ for $0\leq j\leq n-2$ , we see that

$R_{\eta}(x, 0)= \partial_{t}^{n-1}h_{\epsilon}+o(1)-\alpha\epsilon\{\alpha\phi_{n-1}^{\prime\prime\prime\prime}+\sum_{j=0}^{n-1}(\begin{array}{ll}n -1 j\end{array}) B_{j}\phi_{n-1-j}’\}.$

Again, from (4.8) and Lebesgue’s dominated convergence theorem, we see that the
last two terms are $o(1)$ , which proves $R_{\eta}(x, 0)=P_{n}(x, 0)-Q_{n}(x, 0)=\partial_{t}^{n-1}h_{\epsilon}(x, 0)+$

0(1). Here, we have used the fact that $P_{k}(x, 0)$ for $1\leq k\leq n-1$ are uniformly
bounded with respect to $\epsilon$ . We note that from the expressions of $R_{\eta}(x, 0)$ and $h_{\epsilon},$

the terms in $o(1)$ are composed of terms such that their $x$ derivative are also $o(1)$ .
Substituting for $P_{n}(x, 0)$ and the ansatz for $h_{\epsilon}$ in (4.9) yields,

$C_{n-1,\epsilon}=Q_{n}’(0,0)+ \int_{0}^{\infty}e^{\frac{y}{\alpha g}}Q_{n}"(y, 0)dy+o(1)$

$= \int_{0}^{\infty}e^{L}\alpha\epsilon Q_{n}"(y, 0)dy+o(1)$ ,

where we have used the assumption of induction that $u_{0},$ $f$ , and $w$ satisfy the n-
th order compatibility condition for (3.1), i.e. $Q_{n}’(0,0)=0$ . By using the above
expression to define $C_{n-1,\epsilon}$ , we see that $C_{n-1,\epsilon}arrow 0$ as $\epsilonarrow 0$ and $u_{0},$ $g$ , and $w$

satisfy the compatibility conditions for (4.1) up to order $n$ . Furthermore, from the
explicit form we see that $h_{\epsilon}arrow 0$ in $Y^{N}$ . This finishes the proof of the proposition.
口

The corrections to the data associated with (3.4) can be treated the same way.
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5 Construction of the Solution

5.1 The Case $\alpha<0$

We first construct the solution to (3.4) as a sum of two functions $u_{1}$ and $u_{2}$ which
are defined as the solutions of the following systems. $u_{1}$ is defined as the solution
to the initial value problem

$\{\begin{array}{ll}u_{1t}=\alpha(u_{1xx}-\epsilon u_{1t})_{x}+G, x\in R, t>0,u_{1}(x, 0)=U_{0}, x\in R,\end{array}$

and $u_{2}$ is defined as the solution to the initial-boundary value problem

$\{\begin{array}{ll}u_{2t}=\alpha(u_{2xx}-\epsilon u_{2t})_{x}, x>0, t>0,u_{2}(x, 0)=0, x>0,u_{2x}(0, t)=-u_{1x}(0, t)=:\Phi(t) , t>0.\end{array}$

Here, $G$ and $U_{0}$ are smooth extensions of $g$ and $u_{0}$ to $x<0$ , respectively. We can
construct $u_{1}$ by Fourier transform with respect to $x$ , and $u_{2}$ by Laplace transform
with respect to $t$ . When solving the $ODE$ in $x$ for $u_{2}$ , we make use of the following
lemma conceming the characteristic roots.

Lemma 5.1 For $h>0$ and $\epsilon>0$ , the chamcteristic equation, $\lambda^{3}-\epsilon\tau\lambda-\frac{\tau}{\alpha}=0$, has
exactly one root $\lambda$ satisfying $\Re\lambda<0$ . We will denote this root as $\mu$ . Furthermore,

there are positive constants $\eta_{0}$ and $C$ such that for $|\eta|\geq\eta_{0}$ the following holds.

$|\mu+\sqrt{\frac{\epsilon}{2}}(1+i)|\eta|^{1/2}|\leq C.$

We note here that the leading order term of $\mu$ tells us that the solution of our
new regularized equation is parabolic in nature. In case of the heat equation, the
corresponding characteristic $ro$ot would be equal $to-\sqrt{\frac{\epsilon}{2}}(1+i)|\eta|^{1/2}$ so the solution
to our regularized problem behaves asymptotically the same as the solution to the
heat equation. Also, the fact that there is exactly one root with a negative real part

insures that only one boundary condition is needed for the problem to be well-posed.
Through these arguments, for any fixed non-negative integer $l$ , we can construct

the solution to (3.4) such that

$u \in\bigcap_{j=0}^{l}C^{j}([0, T];H^{2(l-j)}(R_{+}))$ .

We can also construct the solution to (4.1) by a standard iteration scheme in the
same function space. Finally we must obtain estimates uniform in $\epsilon$ to take the
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limit $\epsilonarrow+0$ . We use a standard energy method combined with interpolation
inequalities. We use energies of the form

$\Vert\partial_{x}^{j}u\Vert^{2}+\alpha^{2}\epsilon^{2}\Vert f\dot{fl}_{x}^{+1}u\Vert^{2}$

with $j=0,1,2$ for our basic estimate, and obtain

$\sup_{0\leq t\leq T}\Vert u(t)\Vert_{2}^{2}+\int_{0}^{T}(\Vert u_{xxx}(t)\Vert^{2}+\epsilon\Vert u_{tx}(t)\Vert^{2}+|u_{xx}(0, t)|^{2}+|u_{xxx}(0, t)|^{2})dt$

$\leq C(\Vert u_{0}\Vert_{2}^{2}+\int_{0}^{T}\Vert g(t)\Vert_{1}^{2}dt)$

for sufficiently small $\epsilon$ . Here, $C$ is a positive constant independent of $\epsilon$ . Using the
above estimate as a starting point, the higher order estimates can be obtained by
estimating the $t$ derivatives of $u$ in the same way, yielding uniform estimates in $X^{l}.$

Finally, we can take the limit $\epsilonarrow+0$ and this proves Theorem 3.1.

5.2 Remark on the Case $\alpha>0$

The case $\alpha>0$ can be treated by a standard argument. We start by considering
the following regularized problem for $\epsilon>0.$

$\{\begin{array}{ll}u_{t}=-\epsilon u_{xxxx}+g, x>0, t>0,u(x, O)=u_{0}(x) , x>0,u(0, t)=e, t>0,u_{x}(0, t)=0, t>0.\end{array}$

The construction of the solution can be done explicitly via Fourier and Laplace
transforms. After an iteration argument, we can construct the solution to

$\{\begin{array}{ll}u_{t}=\alpha u_{xxx}-\epsilon u_{xxxx}+A(w, \partial_{x})u+f, x>0, t>0,u(x, 0)=u_{0}(x) , x>0,u(0, t)=e, t>0,u_{x}(0, t)=0, t>0.\end{array}$

The uniform estimate can be obtained by using the standard Sobolev norm as the
energy. This allows us to take the limit $\epsilonarrow+0$ , proving Theorem 3.2.

6 Vortex Filament with Axial Flow

We utilize Theorems 3.1 and 3.2 to prove the following.

Theorem 6.1 (The case $\alpha>0$ ) For a natuml number $k$ , if $x_{0ss}\in H^{2+3k}(R_{+})$ ,
$|x_{0s}|=1$ , and $x_{0s}$ satisfies the compatibility conditions for (1.5) up to order $k$ , then
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there exists $T>0$ such that (1.2) has a unique solution $x$ satisfying

$x_{SS} \in\bigcap_{j=0}^{k}W^{j,\infty}([0, T];H^{2+3j}(R_{+}))$

and $|x_{S}|=1$ . Here, $T$ depends on $\Vert x_{0\epsilon s}\Vert_{2}.$

Theorem 6.2 (The case $\alpha<0$ ) For a natuml number $k$ , if $x_{0ss}\in H^{1+3k}(R_{+})$ ,
$|x_{0s}|=1$ , and $x_{0e}$ satisfies the compatibility conditions for (1.4) up to order $k$ , then

there exists $T>0$ such that (1.1) has a unique solution $x$ satisfying

$x_{SS} \in\bigcap_{j=0}^{k}W^{j,\infty}([0, T];H^{1+3j}(R_{+}))$

and $|x_{s}|=1$ . Here, $T$ depends on $\Vert x_{0ss}\Vert_{3}.$

6.1 Compatibility Conditions

We derive the compatibility conditions for (1.4) and (1.5). We set $Q_{(0)}(v)=v$ and
we denote the right-hand side of the equation in (1.4) and (1.5) as

$Q_{(1)}(v)=v \cross v_{ss}+\alpha\{v_{sss}+\frac{3}{2}v_{ss}\cross(V\cross V_{8})+\frac{3}{2}V_{8}\cross(v\cross v_{ss})\}.$

We will also use the notation $Q_{(1)}(s,t)$ and $Q_{(1)}$ instead of $Q_{(1)}(v)$ for convenience.
For $n\geq 2$ , we successively define $Q_{(n)}$ by

$Q_{(n)}= \sum_{j=0}^{n-1}(\begin{array}{ll}n -1 j\end{array})Q_{(j)} \cross Q_{(n-1arrow)ss}+\alpha Q_{(n-1)sss}$

$+ \frac{3}{2}\alpha\{\sum_{j=0}^{n-1n}\sum_{k=0}^{-1-j}(\begin{array}{ll}n -1 j\end{array}) (\begin{array}{lll}n -1- j k \end{array})Q_{(j)ss}\cross(Q_{(k)}\cross Q_{(n-1-j-k)s})\}$

$+ \frac{3}{2}\alpha\{\sum_{j=0}^{n-1}\sum_{k=0}^{n-1-j}(\begin{array}{ll}n -1 j\end{array}) (\begin{array}{l}n-1-jk\end{array})Q_{(j)s}\cross(Q_{(k)}\cross Q_{(n-1-j-k)ss})\}.$

The above definition of $Q_{(n)}(v)$ corresponds to giving an expression for $\partial_{t}^{n}v$ in terms
of $v$ and its $s$ derivatives only. It is obvious from the definition that the term with

the highest order derivative in $Q_{(n)}$ is $\alpha^{n}\partial_{S}^{3n}v$ . From the boundary conditions of
(1.4) and (1.5), we arrive at the following compatibility conditions.

Definition 6.3 (Compatibility conditions for (1.4)) For $n\in N\cup\{0\}$ , we say that
$v_{0}$ satisfies the n-th comaptibility condition for (1.4) if $v_{0s}\in H^{1+3n}(R_{+})$ and

$(\partial_{s}Q_{(n)}(v_{0}))(0)=0.$

We also say that $v_{0}$ satisfies the compatibility conditions for (1.4) up to order $n$ if
it satisfies the k-th compatibility condition for all $k$ with $0\leq k\leq n.$
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Definition 6.4 (Compatibility conditions for (1.5)) For $n\in N\cup\{0\}$ , we say that
$v_{0}$ satisfies the n-th comaptibility condition for (1.5) if $v_{0s}\in H^{2+3n}(R_{+})$ and

$v_{0}(0)=e_{3}, v_{0s}(0)=0,$

when $n=0$, and

$(Q_{(n)}(v_{0}))(0)=0, (\partial_{s}Q_{(n)}(v_{0}))(0)=0,$

when $n\geq 1$ . We also say that $v_{0}$ satisfies the compatibility conditions for (1.5) up
to order $n$ if it satisfies the k-th compatibility condition for all $k$ with $0\leq k\leq n.$

Note that the regularity imposed on $v_{0s}$ in Definition 6.4 is not the minimal regu-
larity required for the trace at $s=0$ to have meaning, but we defined it as above so
that it corresponds to the regularity assumption in the existence theorem that we
obtain later. Also note that the regularity assumption is made on $v_{0s}$ instead of $v_{0}$

because $|v_{0}|=1$ and so $v_{0}$ is not square integrable.

6.2 Construction of Solutions
By setting

(6.1) $A(w, \partial_{x})v=\delta v_{x}$
。$+w\cross v_{xx}+3\alpha v_{xx}\cross(w\cross w_{x})$ ,

we can apply the two existence theorems for the linear problems to construct the
solutions to

$\{\begin{array}{l}v_{t}=v\cross v 。 s+\alpha\{v_{8SS}+\frac{3}{2}v_{SS}\cross(v\cross v_{s})+\frac{3}{2}v_{S}\cross(v\cross v_{ss})\}+\delta(v_{ss}+|v_{S}|^{2}v) , s>0, t>0,v(s, 0)=v_{0}^{\delta}(s) , s>0,v_{S}(0, t)=0, t>0,\end{array}$

and

$\{\begin{array}{l}v_{t}=v\cross v_{SS}+\alpha\{v_{8SS}+\frac{3}{2}v_{SS}\cross(v\cross v_{s})+\frac{3}{2}v_{s}\cross(v\cross v_{SS})\}+\delta(v_{ss}+|v_{s}|^{2}v) , s>0, t>0,v(s, 0)=v_{0}^{\delta}, s>0,v(0, t)=e_{3}, t>0,v_{s}(0, t)=0, オ >0,\end{array}$

through iteration. Here, we have used $|v|\equiv 1$ to rewrite the nonlinear term.
The final task is to obtain estimates uniform in $\delta$ , which is also equivalent to

obtaining estimates for the solution of the hmit systems. When $\alpha<0$ , we make
use of conserved quantities. These quantities are conserved for the initial value
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problem with $\delta=0$ . Although they are not conserved for our initial-boundary value
problems, we can still take advantage of these quantities. In fact we see that

$\frac{d}{dt}\Vert v_{s}\Vert^{2}=\frac{\alpha}{2}|v_{ss}(0)|^{2}-\delta\Vert v_{ss}\Vert^{2}+\delta\Vert v_{s}\Vert_{L^{4}(R+}^{4})$

$\leq\frac{\alpha}{2}|v_{SS}(0)|^{2}-\frac{\delta}{2}\Vert v_{SS}\Vert^{2}+C\delta\Vert v_{S}\Vert^{6}.$

$\frac{d}{dt}\{\Vert v_{S8}\Vert^{2}-\frac{5}{4}|||v_{8}|^{2}\Vert^{2}\}\leq\alpha|v_{sss}(0)|^{2}-\frac{\delta}{4}\Vert v_{SSS}\Vert^{2}+C_{1}.$

Here, $C_{1}$ is a positive constant depending on $\Vert v_{8}\Vert$ . Thus, when $\alpha<0$ , the above
give a closed estimate for $\Vert v_{S}\Vert_{1}$ and using this as the basic estimate, a standard
energy method yields the necessary higher order estimate.

When $\alpha>0$ , the boundary value appearing in the above estimates have a bad
$sign$, and thus, we need something extra to close the estimate. To do this, we first
define some notations. We set $P_{(0)}(v)=v$ and define $P_{(1)}(v)$ by

$P_{(1)}(v)=v \cross v_{SS}+\alpha\{v_{SS8}+\frac{3}{2}v_{8s}\cross(v\cross v_{8})+\frac{3}{2}v_{S}\cross(v\cross v_{ss})\}+\delta(v_{\epsilon s}+|v_{8}|^{2}v)$ .

We successively define $P_{(n)}$ for $n\geq 2$ by

$P_{(n)}= \sum_{j=0}^{n-1}(\begin{array}{ll}n -1 j\end{array})P_{(j)} \cross P_{(n-1-j)ss}+\alpha P_{(n-1)sss}$

$+ \frac{3}{2}\alpha\{\sum_{j=0}^{n-1}\sum_{k=0}^{n-1-j}(\begin{array}{ll}n -1 j\end{array}) (\begin{array}{ll}n -1-j k\end{array})P_{(j)ss\cross}(P_{(k)}\cross P_{(n-1-j-k)\epsilon})\}$

$+ \frac{3}{2}\alpha\{\sum_{j=0}^{n-1}\sum_{k=0}^{n-1-j}(\begin{array}{ll}n -1 j\end{array}) (\begin{array}{ll}n -1-j k\end{array})P_{(j)s}\cross(P_{(k)}\cross P_{(n-1-j-k)ss})\}$

$+ \delta\{P_{(n-1)ss}+\sum_{j=0}^{n-1}\sum_{k=0}^{n-1-j}(\begin{array}{ll}n -1 j\end{array}) (\begin{array}{ll}n -1-j k\end{array})(P_{(j)s}\cdot P_{(k)s})P_{(n-1-j-k)}\}.$

The above definition of $P_{(n)}$ corresponds to giving an expression for $\theta_{t}^{n}v$ in terms
of $v$ and its $s$ derivatives for the regularized nonhnear system.

To close the estimate, we use $\Vert v_{sss}\Vert^{2}+\frac{2}{\alpha}(v\cross v_{ss}, v_{sss})$ instead of $\Vert v_{sss}\Vert^{2}$ as our
next energy, yielding

$\frac{1}{2}\frac{d}{dt}\{\Vert v_{sss}\Vert^{2}+\frac{2}{\alpha}(v\cross v_{SS}, v_{8SS})\}\leq C\Vert v_{S}\Vert_{2}^{2}(1+\Vert v_{s}\Vert_{2}^{2})$ ,

which combined with the conserved quantity closes the estimate for $\Vert v_{8}\Vert_{2}^{2}$ . This
modification is done to take care of boundary terms that give us trouble. If we

160



directly estimate $\Vert v_{SSS}\Vert^{2}$ , boundary term of the form $v_{sss}(0)\cdot\partial_{s}^{5}v(0)$ comes out and
the order of derivative is too high to estimate. By adding a lower order modffication
term in the energy, we can cancel out this term. This kind of modification is needed
every three derivatives. We use the first modification as an example to demonstrate
the idea behind finding the correct modifying term. Taking the trace $s=0$ in the
equation yields

$\alpha v_{SS8}(0, t)+(v\cross v_{ss})(0, t)=0$

for any $t>0$ . Thus, replacing $\Vert v_{SSS}\Vert^{2}$ with $1v_{S8S} \Vert^{2}+\frac{2}{\alpha}(v\cross v_{SS}, v_{SSS})$ changes the
boundary term from $v_{S8S}(0)\cdot\partial_{s}^{5}v(0)$ to $(v_{S\mathcal{S}S}(0)+ \frac{1}{\alpha}v\cross v_{ss}(0))\cdot\partial_{s}^{5}v(0)$ , which is
zero.

We continue the estimate in this pattem. Suppose that we have a uniform
estimate $\sup_{0\leq t\leq T}\Vert v_{S}(t)\Vert_{2+3(i-1)}\leq M$ for some $i\geq 1$ . For $j=1,2$ , we have

$\frac{1}{2}\frac{d}{dt}\Vert\partial_{8}^{3i+j}v\Vert^{2}\leq C(1+\Vert v_{S}\Vert_{2+3i}^{2})$,

where we have used $|\partial_{s}^{3(i+1)}v(0)|^{2}\leq C\Vert v_{S}\Vert_{2+3i}^{2}$ . Here, $C$ depends on $M$ , but not on
$\delta$ . Set $W_{(m)}(v);=P_{(m)}(v)-\alpha^{m}\partial_{s}^{3m}v$ , which is $P_{(m)}(v)$ without the highest order
derivative term. Then, the final estimate is

$\frac{1}{2}\frac{d}{dt}\{\Vert\partial_{S}^{3(i+1)}v\Vert^{2}+\frac{2}{\alpha^{i+1}}(W_{(i+1)}(v), \partial_{s}^{3(i+1)}v)\}\leq C\Vert v_{s}\Vert_{2+3i}^{2}+C,$

where $C$ is independent of $\delta$ . This allows us to take the hmit $\deltaarrow+0$ , which finishes
the proof of Theorem 6.1 and 6.2.
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