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1. Introduction
The purpose of this paper is to give a rigorous justification of the penalty method
for the Navier-Stokes equations in $\mathbb{R}^{d}(d\geqq 2)$ .

First of all we shall explain the penalty method which we will discuss and we
shall introduce motivation of the present paper. The motion of viscous incom-
pressible fluid is governed by the Navier-Stokes equations.

$\frac{\partial u}{\partial t}-\Delta u+u\cdot\nabla u+\nabla p=0,$ $x\in\Omega,$ $t>0$ , (l.la)

$divu=0,$ $x\in\Omega,$ $t\geqq 0$ , (l.lb)

where $u=$ $(u^{1}(x, t), \ldots , u^{d}(x, t))$ and $p=p(x, t)$ denote the velocity field and
pressure, respectively; $\Omega\subseteq \mathbb{R}^{d}(d\geqq 2)$ is filled with viscous incompressible fluid.
If $\partial\Omega\not\equiv\emptyset$ , we impose some boundary condition for $u$ and $p$ on the boundary, e.g.,
non-slip, perfect slip, stress free etc,

In (l.la) the pressure term does not have time evolutional structure. This fact
is one of the main points of the Navier-Stokes equations. To overcome difficulty
caused by such a fact, in mathematical analysis of the Navier-Stokes equations by
semigroup approach, we are due to the Helmholtz decomposition and associated
projection. In fact, applying the Helmholtz projection $P$ to (l.la), (1.1) can be
formulated as an abstract evolution equation in some Banach space (e.g., $L_{\sigma}^{2},$ $L_{\sigma}^{p},$

etc) with solenoidal condition (see e.g., Fujita & Kato [2] and Lemari\’e-Rieusset
[6] $)$ .

In numerical computation of the Navier-Stokes equations, we may encounter
similar difficulties caused by presence of the pressure term. As an example, we
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consider semi-discretization of (1.1). Applying forward Euler approximation to
$\partial u/\partial t$ in (l.la), one can obtain the following difference-differential equations con-
ceming $U^{n}$ and $P^{n}$ :

$U^{n+1}=U^{n}+h(\Delta U^{n}-U^{n}\cdot\nabla U^{n}-\nabla P^{n})$ , $x\in\Omega,$ $n\geqq 0$ , (1.2a)

$divU^{n}=0,$ $x\in\Omega,$ $n\geqq 0$ . (1.2b)

Here $(U^{n}, P^{n})$ is semi-discretized approximation of $(u(x, t_{n}), p(x, t_{n}))$ , where
$t_{n}=nh$ and $h>0$ is temporal step size of time-discretization. Since the pressure
does not have time evolutional structure in (1.1), we have no mle to compute $P^{n}$

from the previous steps directly in (1.2). Hence if we use the above formulation,

we need to compute $P^{n}$ by (1.2) with some resources. By (1.2b), we see that $P^{n}$

satisfies the Poisson type equation:

$-\Delta P^{n}=div(U^{n}\cdot\nabla U^{n}) , x\in\Omega$ . (1.3)

Therefore $P^{n}$ is formally given by $P^{n}=(-\Delta_{\Omega})^{-1}div(U^{n} \nabla U^{n})$ . However,

this representation is non-local one and the boundary condition of the pressure is
unclear in general. Thus, such a method requires quite complicate treatment of the
pressure term.

In order to compute numerical solution of the Navier-Stokes equations with-
out using complicate treatment of the pressure, the pressure term must be elimi-
nated from (l.la) as in mathematical analysis. The penalty method introduced by
Temam [8] is one of the standard ways to remove pressure term from (l.la) and is
widely used in numerical computation of viscous incompressible fluid flows.

In the penalty method, the equation of continuity (l.lb) is replaced by the
following one conceming $u$ and $p.$

$divu=-\frac{p}{\eta}, \eta>0$ , (1.4)

where $\eta$ is assumed to be very large. Substituting $p=-\eta divu$ into (l.la), we
have an approximate problem of the Navier-Stokes equations only in terms of the
velocity $u$ . Therefore numerical treatment for such an approximate problem is
much easier than that for original problem, because we are not required to treat the
pressure term directly.

Letting $\etaarrow\infty$ in (1.4), we formally have (l.lb). So we expect that the system
of (l.la) and (1.4) gives a good approximate solution of (1.1). However the above
argument is nothing but formal one, we have to justify the penalty method by
mathematical viewpoints.
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For such a problem, Temam [8] studied stationary flow in bounded domain and
gave a rigorous justification. For nonstationary flow Shen [7] gave ajustification
for $L^{2}$ strong solution in bounded domain with nonslip boundary condition. How-
ever as far as the author knows there are no results for unbounded domain cases.
Our main problem is to justify the penalty method in the case of $\Omega$ is unbounded
domain. As a stating point of this study, we mainly consider the Cauchy problem
of the Navier-Stokes equations.

This paper is organized as follows. In Section 2 we will state our main results
of the present paper. In Section 3 we will consider the Stokes flow with the penalty
method which is linearized problem of penalized Navier-Stokes equations. We will
establish key estimtaes in this paper and show error becomes small when $\eta$ goes to
large for the Stokes flow. In Section 4 we will discuss the Navier-Stokes flow and
show our main theorem with the aid of key estimates will be shown in Section 3.

2. Main results
2.1. Notation and the Helmholtz decomposition
Before stating our main results in the present paper, we shall introduce notation
and the Helmholtz decomposition in $\mathbb{R}^{d}C_{0}^{\infty}(\mathbb{R}^{d})$ denotes the set of all infinitely
differentiable function with compact support in $\mathbb{R}^{d}$ For $1\leqq r\leqq\infty,$ $L^{r}(\mathbb{R}^{d})$

denotes usual Lebesgue space. To denote function spaces for vector field, we use
the following symbols: $C_{0}^{\infty}(\mathbb{R}^{d})^{d},$ $L^{r}(\mathbb{R}^{d})^{d}$ , etc.

To denote various constants, we use the same letters $C$ and $C_{a,b,c},\ldots$ which
means that the constant depends on $a,$ $b,$ $c,$ $\ldots$ . The constants $C$ and $C_{a,b,c},\ldots$ my
change one line to another lines.

Next we shall introduce the Helmholtz decomposition. The Helmholtz decom-
position plays an essential role in our arguments. Let $1<r<\infty$ . Then it is well
known that $L^{r}(\mathbb{R}^{d})^{d}$ admits the Helmholtz decomposition:

$L^{r}(\mathbb{R}^{d})^{d}=L_{\sigma}^{r}(\mathbb{R}^{d})\oplus G^{r}(\mathbb{R}^{d})$ $\oplus$ : direct sum.

Here and hereafter

$L_{\sigma}^{r}(\mathbb{R}^{d})=\overline{C_{0,\sigma}^{\infty}(\mathbb{R}^{d})}^{\Vert\cdot\Vert_{L^{\Gamma}(\mathbb{R})}}$

$=$ { $f\in L^{r}(\mathbb{R}^{d})^{d}|divf=0$ (in the sense of distribution)},
$G^{r}(\mathbb{R}^{d})=\{f=\nabla\varphi|\varphi\in\hat{W}^{1,r}(\mathbb{R}^{d})\}.$
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Here $C_{0,\sigma}^{\infty}(\mathbb{R}^{d})=\{f\in C_{0}^{\infty}(\mathbb{R}^{d})^{d}|divf=0\}$ and $\hat{W}^{1,r}(\mathbb{R}^{d})$ is homogeneous
Sobolev space:

$\hat{W}^{1,r}(\mathbb{R}^{d})=\{\varphi\in L_{1oc}^{r}(\mathbb{R}^{d})|\nabla\varphi\in L^{r}(\mathbb{R}^{d})^{d}\}.$

Let $P=P_{r,\mathbb{R}^{d}}$ be a continuous projection from $L^{r}(\mathbb{R}^{d})^{d}$ into $L_{\sigma}^{r}(\mathbb{R}^{d})(1<$

$r<\infty)$ . It is well known that $P_{r}$ is bounded linear operator from $L^{r}(\mathbb{R}^{d})^{d}$ into
$L_{\sigma}^{r}(\mathbb{R}^{d})$ . To give a reformulation of the Stokes and Navier-Stokes equations, we
set $Q=Q_{r,\mathbb{R}^{d}}$ $:=I-P_{r}.$ $Q_{r}$ is also bounded linear operator from $L^{r}(\mathbb{R}^{d})^{d}$ into
$G^{r}(\mathbb{R}^{d})$ .

For the homogeneous Sobolev space $\hat{W}^{1,r}(\mathbb{R}^{d})$ , the following fact is known
(see e.g., Farwig & Sohr [1], Galdi [3]).

Lemma 2.1. $C_{0}^{\infty}(\mathbb{R}^{d})$ is dense in $\hat{W}^{1,r}(\mathbb{R}^{d})$ with respect to the Dimrichlet norm,

that is, for any $\epsilon>0$ , there exists $\varphi_{\epsilon}\in C_{0}^{\infty}(\mathbb{R}^{d})$ such that $\Vert\nabla(\varphi-\varphi_{\epsilon})\Vert_{r}<\epsilon$ for

any $\varphi\in\hat{W}^{1,r}(\mathbb{R}^{d})$ .

The above lemma plays a cmcial role to show decay estimate of the solution to

penalized Stokes flow in terms of $\eta.$

2.2. Results

We are now in a position to state our main result of this paper. The first result is
concerning the Stokes equations.

Theorem2.2. Let $1<r<\infty$ . Let $(u(t), p(t))$ be solution to the Stokes equations
with initial data $u_{0}\in L_{\sigma}^{r}(\mathbb{R}^{d})$ and let $u^{\eta}(t)$ be solution to the penalized Stokes
equations with initial data $u_{0}^{\eta}\in L^{r}(\mathbb{R}^{d})^{d}$ . Then there holds that

$\lim_{\etaarrow\infty}\Vert u^{\eta}(t)-u(t)\Vert_{r}\leqq C\Vert Pu_{0}^{\eta}-u_{0}\Vert_{r}$ , (2.1)

$\lim_{\etaarrow\infty}\Vert\nabla(p^{\eta}(t)-p(t))\Vert_{r}=0$
(2.2)

for any $t>0$ , where $p^{\eta}(t)=-\eta divu^{\eta}(t)$ . In particular, if we take initial data for

the penalized Stokes equations in such a way that $u_{0}^{\eta}=u_{0}\in L_{\sigma}^{r}(\mathbb{R}^{d})$ , we have

$\lim_{\etaarrow\infty}\Vert u^{\eta}(t)-u(t)\Vert_{r}=0$
(2.3)

for any $t>0.$

Next result is our main result conceming the Navier-Stokes initial value prob-
lem of this paper.
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Theorem 2.3. Let $u(t)\in C([0, \infty);L_{\sigma}^{d}(\mathbb{R}^{d}))$ be global-in-time mild solution
of the Navier-Stokes initial value problem with initial velocity $u_{0}\in L_{\sigma}^{d}(\mathbb{R}^{d})$

$(\Vert u_{0}\Vert_{d}\ll 1)$ and let $u^{\eta}(t)\in C([O, \infty);L^{d}(\mathbb{R}^{d})^{d})$ be global-in-time mild so-
lution of the penalized Navier-Stokes initial value problem with initial data $u_{0}^{\eta}\in$

$L^{d}(\mathbb{R}^{d})^{d}(\Vert u_{0}^{\eta}\Vert_{d}\ll 1)$ . Then the following estimate holds.

$\lim_{\etaarrow\infty}\Vert u^{\eta}(t)-u(t)\Vert_{d}\leqq C\Vert Pu_{0}^{\eta}-u_{0}\Vert_{d}$ (2.4)

for any $t>0$ . In particular, if we take $u_{0}^{\eta}=u_{0}\in L_{\sigma}^{d}(\mathbb{R}^{d})$ , we have

$\lim_{\etaarrow\infty}\Vert u^{\eta}(t)-u(t)\Vert_{d}=0$ (2.5)

for any $t>0.$

3. Linearized problem (the Stokes flow)

For ajustification of the penalty method for the Cauchy problem of the Navier-
Stokes equations, we shall justify the penalty method for the linearized problem
(the Stokes equations) and establish some key estimates which will be used later.

In order to do so, first we shall give a reformulation of the penalized Stokes
equations.

$\frac{\partial u^{\eta}}{\partial t}-\Delta u^{\eta}-\nabla divu^{\eta}=0, x\in \mathbb{R}^{d}, t>0$, (3.la)

$u^{\eta}(x, 0)=u_{0}^{\eta}, x\in \mathbb{R}^{d}$ (3.lb)

Here and in what follows $u_{0}^{\eta}=u_{0}^{\eta}(x)$ is given imitial velocity.
To give a reformulation of (3.1), we are due to the Helmholtz decomposition of

$L^{r}$ -vector fields. By the Helmholtz decomposition $u^{\eta}\in L^{r}(\mathbb{R}^{d})^{d}(1<r<\infty)$ is
decomposed into $u^{\eta}=v^{\eta}+w^{\eta}$ , where $v^{\eta}=Pu^{\eta}\in L_{\sigma}^{r}(\mathbb{R}^{d})$ and $w^{\eta}=\nabla\varphi^{\eta}\in$

$G^{r}(\mathbb{R}^{d}),$ $\varphi^{\eta}\in\hat{W}^{1,r}(\mathbb{R}^{d})$ .
Applying $P_{r}$ and $Q_{r}$ to (3.la), (3.1) is decoupled into the following two initial

value problems in $L_{\sigma}^{r}(\mathbb{R}^{d})$ and $G^{r}(\mathbb{R}^{d})$ , respectively.

$\frac{\partial v^{\eta}}{\partial t}-\Delta v^{\eta}=0$ , (3.2a)

$\frac{\partial w^{\eta}}{\partial t}-(1+\eta)\Delta w^{\eta}=0$ , (3.2b)

$v^{\eta}(x, 0)=v_{0}^{\eta}:=Pu_{0}^{\eta}, w^{\eta}(x, 0)=w_{0}^{\eta}:=Qu_{0}^{\eta}$ . (3.2c)

Here we have used the facts that $P,$ $Q$ and spatial derivative $\partial_{x_{j}}$ commutes each
other in $\mathbb{R}^{d}$ and $\nabla divw^{\eta}=\nabla div\nabla\varphi^{\eta}=\nabla\Delta\varphi^{\eta}=\triangle\nabla\varphi^{\eta}=\Delta w^{\eta}.$
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Remark 3.1. The above reformulation does not work in general domains, because
we used the fact that $P,$ $Q$ and $\partial_{x_{j}}$ are commutable.

3.1. Estimate of solution
To justify the penalty method, we need a good error estimate between $(u(t), p(t))$

and $(u^{\eta}(t), p^{\eta}(t))$ , where $p^{\eta}(t)=-\eta divu^{\eta}(t)$ .
For such a purpose, we observe $\eta$-dependence of solution to (3.1). Of course

it suffices to get such one for (3.2a) and (3.2b), respectively. In order to get $\eta-$

dependence of solution to (3.2a) and (3.2b), we consider the following initial value
problem of the linear diffusion equation as a model problem.

$\frac{\partial y}{\partial t}-v\Delta y=0 x\in \mathbb{R}^{d}, t>0$ (3.3a)

$y(x, 0)=y_{0}, x\in \mathbb{R}^{d}$ (3.3b)

Here $y=y(x, t;v)$ is unknown and $y_{0}=y_{0}(x)$ is given initial datum. $v>0$
denotes the diffusivity. It is well known that the solution of (3.3) is given by

$y(x, t;v)=e^{vt\Delta}y_{0}(x):= \frac{1}{(4\pi vt)^{d/2}}\int_{\mathbb{R}^{d}}\exp(\frac{|x-\xi|^{2}}{4vt})y_{0}(\xi)d\xi$ (3.4)

(see e.g., Giga, Giga & Saal [4]). $e^{vt\Delta}$ is standard notation of the heat semi-
group. For the heat semigroup $e^{vt\Delta}$ , the following $L^{r}-L^{q}$ estimates follows from
Hausdorff-Young’s inequality.

Lemma 3.2 ( $L^{r}-L^{q}$ estimates). Let $1\leqq r\leqq q\leqq\infty$ . Then the following $L^{r}-L^{q}$

type estimate holds for any $t>0.$

$\Vert\partial_{t}^{j}\partial_{x}^{\alpha}y^{v}(\cdot, t)\Vert_{q}\leqq C_{q,r}t^{-\frac{d}{2}(\frac{i}{r}-\frac{1}{q})-\frac{|\alpha|}{2}-J_{v}-\frac{d}{2}(\frac{1}{r}-\frac{1}{q})-\frac{|\alpha|}{2}\Vert y_{0}\Vert},$

where $\alpha=$ $(\alpha_{1}, \ldots , \alpha_{d})\in \mathbb{N}_{0}^{d}$ is multi-index and $j\in \mathbb{N}_{0}.$

As a consequence of Lemma 3.2, we have the following estimates for $v^{\eta}(t)$

and $w^{\eta}(t)$ .

Lemma 3.3. Let $1<r\leqq q\leqq\infty,$ $r\neq\infty$ . Then there hold the following
estimates.

$\Vert\partial_{t}^{j}\partial_{x}^{\alpha}v^{\eta}(t)\Vert_{q}\leqq C_{r,q,\alpha,j}t^{-\frac{d}{2}(\frac{1}{r}-\frac{1}{q})-\frac{|\alpha|}{2}-j}\Vert v_{0}^{\eta}\Vert_{r}$, (3.5)

$\Vert\partial_{t}^{j}\partial_{X}^{\alpha}w^{\eta}(t)\Vert_{q},$
$\leqq C_{r,q,\alpha,j}(1+\eta)^{-\frac{d}{2}(\frac{1}{r}-\frac{1}{q})-\bigcup_{2}}t^{-\frac{d}{2}(\frac{1}{r}-\frac{1}{q})_{2}-j}-\cup\alpha\Vert w_{0}^{\eta}\Vert_{r}$ (3.6)

for any $t>0$ , where $j\in \mathbb{N}_{0}$ and $\alpha\in \mathbb{N}_{0}^{d}.$
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Remark 3.4. Taking $q=r,$ $j=0,$ $\alpha=\{0\}^{d}$ in (3.6), we have only the bounded-
ness of $w^{\eta}(t):\Vert w^{\eta}(t)\Vert_{r}\leqq C_{r}\Vert w_{0}^{\eta}\Vert_{r}$ . This boundedness is not enough to guaran-
tee the penalty method for the Stokes equations.

In order to guarantee the penalty method for the Stokes equations, we need
to refine the above estimate. To refine the estimate, we are due to the density
argument. For any $\epsilon>0$ , there exists $\varphi_{0,\epsilon}\in C_{0}^{\infty}(\mathbb{R}^{d})$ such that

$\Vert w_{0}^{\eta}-\nabla\varphi_{0,\epsilon}\Vert_{r}=\Vert\nabla(\varphi_{0}^{\eta}-\varphi_{0,\epsilon})\Vert_{r}<\epsilon$ (3.7)

for any $r\in(1, \infty)$ . Such a fact follows from Lemma 2.1.
By triangle inequality with (3.7), Lemma 3.3 and analytic semigroup property

of the heat semigroup $e^{t(1+\eta)\Delta}$ , we have

$\Vert w^{\eta}(t)\Vert_{r}=\Vert e^{t(1+\eta)\Delta}w_{0}^{\eta}\Vert_{r}$

$\leqq\Vert e^{t(1+\eta)\Delta}(\nabla\varphi_{0}^{\eta}-\varphi_{0,\epsilon})\Vert_{r}+\Vert e^{t(1+\eta)\Delta}\nabla\varphi_{0,\epsilon}\Vert_{r}$

$\leqq C\epsilon+\Vert\nabla e^{t(1+\eta)\Delta}\varphi_{0,\epsilon}\Vert_{r}$

$\leqq C\epsilon+C(1+\eta)^{-\frac{d}{2}(\frac{1}{s}-\frac{1}{r})-\frac{1}{2}}t^{-\frac{d}{2}(\frac{1}{s}-\frac{1}{r})-\frac{1}{2}}\Vert\varphi_{0,\epsilon}\Vert_{s}$

for $t>0$ , where $s\in(1, r]. Here we have used the fact that \varphi_{0,\epsilon}\in C_{0}^{\infty}(\mathbb{R}^{d})\subset$

$L^{s}(\mathbb{R}^{d})$ . Let us fix $t_{0}>0$ . Then we have lim $sup\Vert w^{\eta}(t)\Vert_{r}\leqq C\epsilon$ for any $t\geqq t_{0}>$

$\etaarrow\infty$

0. Since $\epsilon>0$ can be chosen arbitrary, we have desired result.

$\lim_{\etaarrow\infty}\Vert w^{\eta}(t)\Vert_{r}=0$ (3.8)

for any $t\geqq t_{0}>0$ and $r\in(1, \infty)$ , provided that $u_{0}^{\eta}\in L^{r}(\mathbb{R}^{d})^{d}$

3.2. Error estimate (proof of Theorem 2.2)

We are now in a position to show error estimate for the Stokes equations. Let
$(u, p)$ be solution to the Stokes equations with initial datum $u_{0}\in L_{\sigma}^{r}(\mathbb{R}^{d})$ and $u^{\eta}$

be solution to the penalized Stokes equations with initial datum $u_{0}^{\eta}\in L^{r}(\mathbb{R}^{d})^{d},$

where $r\in(1, \infty)$ .
Set $U^{\eta}$ $:=u^{\eta}-u$ and $\Pi^{\eta}$ $:=p^{\eta}-p$ . Then $(U^{\eta}, \Pi^{\eta})$ satisfies

$\frac{\partial U^{\eta}}{\partial t}-\Delta U^{\eta}+\nabla\Pi^{\eta}=0, x\in \mathbb{R}^{d}, t>0$ , (3.9a)

$divU^{\eta}=divu^{\eta}=-\frac{p^{\eta}}{\eta}, x\in \mathbb{R}^{d}, t>0$ , (3.9b)

$U^{\eta}(x, O)=U_{0}^{\eta}:=u_{0}^{\eta}-u_{0}, x\in \mathbb{R}^{d}$ (3.9c)
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Applying $P_{r}$ and $Q_{r},$ $(3.9)$ is decoupled into two initial value problems:

$\frac{\partial\epsilon^{\eta}}{\partial t}-\Delta\epsilon^{\eta}=0, di_{V}\epsilon^{\eta}=0$ , (3.10a)

$\epsilon^{\eta}(x, 0)=\epsilon_{0}^{\eta}:=v_{0}^{\eta}-u_{0}\in L_{\sigma}^{r}(\mathbb{R}^{d})$ (3.10b)

and (3.2b), because $\nabla p=0$ in $G^{r}(\mathbb{R}^{d})$ . By the triangle inequality and the bound-
edness of heat semigroup, $\Vert U^{\eta}(t)\Vert_{r}$ is estimated by

$\Vert U^{\eta}(t)\Vert_{r}\leqq\Vert\epsilon^{\eta}(t)\Vert_{r}+\Vert w^{\eta}(t)\Vert_{r}\leqq C\Vert\epsilon_{0}^{\eta}\Vert_{r}+\Vert w^{\eta}(t)\Vert_{r}.$

Hence by (3.8), we obtain

$\lim_{\etaarrow\infty}\Vert U^{\eta}(t)\Vert_{r}\leqq C\Vert\epsilon_{0}^{\eta}\Vert_{r}$
(3.11)

for any $t\geqq t_{0}>0.$

Next we shall estimate $L^{r}$ -norm of the pressure gradient $\nabla\Pi^{\eta}$ . Since $divu^{\eta}=$

$divw^{\eta}$ and $\nabla p=0$ in $G^{r}(\mathbb{R}^{d}),$ $\nabla\Pi^{\eta}=\nabla p^{\eta}=-\eta\nabla divw^{\eta}$ . Hence, by virtue
of (3.6) and semigroup property of $e^{t(1+\eta)\Delta}$ , we have

$\Vert\nabla\Pi^{\eta}(t)\Vert_{r}\leqq\eta\Vert\nabla^{2}w^{\eta}(t)\Vert_{r}=\eta\Vert\nabla eew_{0}^{\eta}\Vert_{r}$

$\leqq C\frac{\eta}{1+\eta}t^{-1}\Vert w^{\eta}(\frac{t}{2})\Vert_{r}$

Combining the above estimate and (3.8), we have

$\lim_{\etaarrow\infty}\Vert\nabla\Pi^{\eta}(t)\Vert_{r}=0$
(3.12)

for any $t\geqq t_{0}>0.$

(3.11) implies that if $\Vert v_{0}^{\eta}-u_{0}\Vert_{r}$ is small enough, then error between $u^{\eta}(t)$

and $u(t)$ is also small enough. Therefore (3.11) and (3.12) give us a mathematical
justification of the penalty method for the Stokes equations.

4. Proof of main results

This section is devoted to the proof of Theorem 2.3. We consider the penalized
Navier-Stokes initial value problem.

$\frac{\partial u^{\eta}}{\partial t}-\Delta u^{\eta}-\eta\nabla divu^{\eta}+u^{\eta}\cdot\nabla u^{\eta}=0,$
$x\in \mathbb{R}^{d},$ $t>0$ , (4.la)

$u^{\eta}(x, 0)=u_{0}^{\eta}, x\in \mathbb{R}^{d}$ (4.lb)
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Let $\mathscr{L}_{\eta}u$ $:=-\Delta u-\eta\nabla divu$ for $u\in D(\mathscr{L}_{\eta})=W^{2,r}(\mathbb{R}^{d})^{d}(1<r<\infty)$ . $\mathscr{L}_{\eta}$

is called Lame operator. It is well known $that-\mathscr{L}_{\eta}$ generates an analytic semi-
group $(e^{-t\mathscr{L}_{\eta}})_{t\geqq 0}$ on $L^{r}(\mathbb{R}^{d})^{d}$ and $e^{-t\mathscr{L}_{\eta}}$ enjoys usual $L^{r}-L^{q}$ estimates like the
heat semigroup $e^{t\Delta}$ Furthermore (4.1) has the same scaling property as original
Navier-Stokes equations. Therefore one can construct global-in-time mild solution
for the penalized Navier-Stokes equations, provided that the initial velocity $u_{0}^{\eta}$ sat-
isfies suitable smallness condition: $\Vert u_{0}\Vert_{d}\ll 1$ (By similar argument, one can
show that local in time existence for large initial data if we choose existence time
$T>0$ small enough. In what follows, we only consider global mild solution).

By using $e^{-t\mathscr{L}_{\eta}},$
$\eta$-dependence of $u^{\eta}(t)$ may be hidden. In order to show that

the penalty method works well for the Navier-Stokes initial value problem, careful
analysis on the $\eta$-dependence of solution $u^{\eta}$ is important.

4.1. Construction of mild solutions
To know $\eta$ -dependence of solution, we shall constmct mild solution of the penal-
ized Navier-Stokes equations without using $\mathscr{L}_{\eta}$ . In what follows, we consider the
following system of abstract evolution equations.

$\frac{dv^{\eta}}{dt}=\Delta v^{\eta}-P(u^{\eta}\cdot\nabla u^{\eta})$ , (4.2a)

$\frac{dw^{\eta}}{dt}=(1+\eta)\triangle w^{\eta}-Q(u^{\eta}\cdot\nabla u^{\eta})$ , (4.2b)

where $u^{\eta}(t)=Pu^{\eta}(t)+(I-P)u^{\eta}(t)=v^{\eta}(t)+w^{\eta}(t)$.
By Duhamel’s principle, (4.2) is converted into the following system of integral

equations.

$v^{\eta}(t)=e^{t\Delta}v_{0}^{\eta}- \int_{0}^{t}e^{(t-s)\Delta}P(u^{\eta}(s)\cdot\nabla u^{\eta}(s))ds$

$=:v^{0}(t)+N_{1}(u)(t)$ , (4.3a)

$w^{\eta}(t)=e^{t(1+\eta)\Delta}w_{0}^{\eta}- \int_{0}^{t}e^{(t-s)(1+\eta)\Delta}Q(u^{\eta}(s)\cdot\nabla u^{\eta}(s))ds$

$=:w^{0}(t)+N_{2}(u)(t)$ . (4.3b)

For (4.3), we have a result on small data global existence.

Lemma 4.1. Let $u_{0}^{\eta}\in L^{d}(\mathbb{R}^{d})^{d}$ , that is, $(v_{0}^{\eta}, w_{0}^{\eta})\in L_{\sigma}^{r}(\mathbb{R}^{d})\cross G^{r}(\mathbb{R}^{d})$. Then
there exists a $\delta>0$ such that if $\Vert u_{0}^{\eta}\Vert_{d}<\delta$ then there exists a unique mild solution
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of (4.3) $(v^{\eta}(t), w^{\eta}(t))\in C([O, \infty);L_{\sigma}^{d}(\mathbb{R}^{d})\cross G^{d}(\mathbb{R}^{d}))$ which enjoys

$\lim_{tarrow+0}\Vert(v^{\eta}(t), w^{\eta}(t))-(v_{0}^{\eta}, w_{0}^{\eta})\Vert_{d}=0,$

$\Vert(v^{\eta}(t), w^{\eta}(t))\Vert_{r}=O(t^{-\frac{1}{2}+\frac{d}{2r}}) , d\leqq r<\infty,$

$\Vert\nabla(v^{\eta}(t), w^{\eta}(t))\Vert_{d}=O(t^{-\frac{1}{2}})$

as $tarrow+\infty$ for any fixed $\eta>0$ . Furthermore, the above mild solution satisfies

$\Vert w^{\eta}(t)\Vert_{r}=O(\eta^{-\frac{1}{2}+\frac{d}{2r}}) , d\leqq r<\infty$ (4.4)

as $\etaarrow\infty$ for any fixed $t\geqq 0.$

To show Lemma 4.1, we are due to Banach’s fixed point theorem with the aid
of $L^{r}-L^{q}$ estimates for linearized problem (such an argument is essentially the
same as Kato’s iteration scheme [5] $)$ .

Let $\Phi$ be defined by

$\Phi(u^{\eta}):=\{\begin{array}{l}v^{0}(t)w^{0}(t)\end{array}\}+\{\begin{array}{l}N_{l}(u^{\eta})(t)N_{2}(u^{\eta})(t)\end{array}\}$ (4.5)

and let us set

$|u^{\eta}|_{\ell,q,t}:= \sup_{0<s\leqq t}s^{\ell}(\Vert v^{\eta}(s)\Vert_{q}+(1+\eta)^{\ell}\Vert w^{\eta}(s)\Vert_{q})$
,

$[u^{\eta}]_{t}:=|u^{\eta}|_{\frac{1}{2}-\frac{d}{2r},r,t}+|\nabla u^{\eta}|_{\frac{1}{2},d,t},$

$|||u^{\eta}|||_{t}:=|u^{\eta}|_{0,d,t}+[u^{\eta}]_{t}.$

Our first task is to show unique existence of the fixed point of mapping $\Phi$ . As an
underlying space, let us introduce $X_{R}$ as follows.

$X_{R}:=\{(v^{\eta}(t), w^{\eta}(t))\in C([0, \infty);L_{\sigma}^{d}(\mathbb{R}^{d})\cross G^{d}(\mathbb{R}^{d}))|$

$\lim_{tarrow+0}\Vert v^{\eta}(t)-v_{0}^{\eta}\Vert_{d}=0, \lim_{tarrow+0}\Vertw^{\eta}(t)-w_{0}^{\eta}\Vert_{d}=0$ , (4.6)

$\lim_{tarrow+0}|u^{\eta}|_{\frac{1}{2}-\frac{d}{2r},r,t}=0, \lim_{tarrow+0}|\nabla u^{\eta}|_{\frac{1}{2},d,t}=0$ , (4.7)

$\sup_{t>0}|||\Phi(v^{\eta}, w^{\eta})|||_{t}\leqq 2R\Vert u_{0}^{\eta}\Vert_{d}\}$
, (4.8)

where $r\in(d, \infty)$ and $R>0$ will be determined later.
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In order to find a fixed point of $\Phi$ on $X_{R}$ , we first consider initial flows $v^{0}(t)$

and $w^{0}(t)$ . Since $C_{0,\sigma}^{\infty}(\mathbb{R}^{d})$ is dense in $L_{\sigma}^{d}(\mathbb{R}^{d})$ , for any $\epsilon>0$ there exists $v_{0,\epsilon}\in$

$C_{0,\sigma}^{\infty}(\mathbb{R}^{d})$ such that $\Vert v_{0}^{\eta}-v_{0,\epsilon}\Vert_{d}<\epsilon$. Hence by $L^{d}$ -boundedness of the heat
semigroup $e^{t\Delta}$ and triangle inequality, we obtain

$\Vert v^{\eta}(t)-v_{0}^{\eta}\Vert_{d}\leqq\Vert e^{t\Delta}(v_{0}^{\eta}-v_{0,\epsilon})\Vert_{d}+\Vert e^{t\Delta}v_{0,\epsilon}-v_{0,\epsilon}\Vert_{d}+\Vert v_{0,\epsilon}-v_{0}^{\eta}\Vert_{d}$

$\leqq C_{d}\epsilon+\int_{0}^{t}\Vert\frac{d}{ds}e^{s\Delta}v_{0,\epsilon}\Vert_{d}ds$

$\leqq C_{d}\epsilon+Ct\Vert v_{0,\epsilon}\Vert_{W^{2,d}(\mathbb{R}^{d})}.$

This implies that $\lim_{tarrow+0}\sup_{0<s<t}\Vert v^{\eta}(t)-v_{0}^{\eta}\Vert_{d}\leqq C\epsilon$. Since $\epsilon>0$ can be chosen

arbitrary, we can conclude that $\lim_{tarrow+0}\Vert v^{\eta}(t)-v_{0}^{\eta}\Vert_{d}=0$. By similar manners,
(4.6) and (4.7) can be verified.

Next we shall estimate the Duhamel terms $N_{1}(u)(t)$ and $N_{2}(u)(t)$ . Let $r>d$
and $q$ satisfy $1/q=1/r+1/d$ . Then by using $L^{r}-L^{q}$ estimate (Lemma 3.3) and
the H\"older inequality, we have the following estimate for $N_{1}(u)(t)$ .

$\Vert N_{1}(u^{\eta})(t)\Vert_{r}\leqq\int_{0}^{t}\Vert e^{(t-s)\Delta}P(u^{\eta}(s)\cdot\nabla u^{\eta}(s))\Vert_{r}ds$

$\leqq C_{r,d}\int_{0}^{t}(t-s)^{-\frac{1}{2}}\Vert u^{\eta}(s)\Vert_{r}\Vert\nabla u^{\eta}(s)\Vert_{d}ds$

$\leqq C_{r,d}\int_{0}^{t}(t-s)^{-\frac{1}{2}}s^{-1+\frac{d}{2r}}ds[u^{\eta}]_{t}^{2}$

$\leqq C_{r,d}B(\frac{1}{2}, \frac{d}{2r})t^{-\frac{1}{2}+\frac{d}{2r}}[u^{\eta}]_{t}^{2}.$

Here and hereafter $B(\alpha, \beta)$ denotes Euler’s beta function. By similar manners, we
obtain

$\Vert N_{I}(u^{\eta})(t)\Vert_{d}\leqq C[u^{\eta}]_{t}^{2}, \Vert\nabla N_{1}(u^{\eta})(t)\Vert_{d}\leqq Ct^{-\frac{1}{2}}[u^{\eta}]_{t}^{2}.$

Estimates for $N_{2}(u^{\eta})(t)$ are also follows from similar arguments. In fact, by using
Lemma 3.3, we obtain

$\Vert N_{2}(u)(t)\Vert_{r}\leqq\int_{0}^{t}\Vert e^{(1+\eta)(t-s)\Delta}P(u^{\eta}(s)\cdot\nabla u^{\eta}(s))\Vert_{r}ds$

$\leqq C_{r,d}(1+\eta)^{-\frac{1}{2}}\int_{0}^{t}(t-s)^{-\frac{1}{2}}s^{-1+\frac{d}{2r}}ds[u^{\eta}]_{t}^{2}$

$\leqq C_{r,d}(1+\eta)^{-\frac{1}{2}+\frac{d}{2r}}[u^{\eta}]_{t}^{2}.$
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Here we have used the fact that $1+\eta>1$ . By similar arguments, the following
estimates are also guaranteed.

$\Vert N_{2}(u^{\eta})(t)\Vert_{d}\leqq C(1+\eta)^{-\frac{d}{2r}}[u^{\eta}]_{t}^{2}\leqq C[u^{\eta}]_{t}^{2},$

$\Vert\nabla N_{2}(u^{\eta})(t)\Vert_{d}\leqq C(1+\eta)^{-\frac{1}{2}-\frac{d}{2r}}t^{-\frac{1}{2}}[u]_{t}^{2}\leqq C(1+\eta)^{-\frac{1}{2}}t^{-\frac{1}{2}}[u^{\eta}]_{t}^{2}.$

Summing up the above estimates, if $(v^{\eta}, w^{\eta})\in X_{R}$ then there holds

$|||\Phi(u^{\eta})|||_{t}\leqq R\Vert u_{0}^{\eta}\Vert_{d}+C[u]_{t}^{2}$

$\leqq R\Vert u_{0}^{\eta}\Vert_{d}+4CR^{2}\Vert u_{0}^{\eta}\Vert_{d}^{2}$

for any $t>0$ and $\eta>0$ . Therefore if we choose $\delta>0$ in such a way that
$4CR\delta<1$ , then we have

$|||\Phi(u^{\eta})|||_{t}\leqq 2R\Vert u_{0}^{\eta}\Vert_{d}$

for any $t>0$ and $\eta>0$ . This implies that $\Phi(u^{\eta})\in X_{R}$ , provided that $u^{\eta}=$

$(v^{\eta}, w^{\eta})\in X_{R}.$

Since a similar argument works well for the difference $\Phi(u^{\eta})-\Phi(\tilde{u}^{\eta})$ , we can
conclude that $\Phi$ becomes contraction mapping on $X_{R}$ into itself. Therefore exis-
tence of fixed point of mapping $\Phi$ is follows from Banach’s fixed point theorem.
Such a fixed point gives global mild solution of (4.3). Uniqueness of solution also
follows from property of fixed point.

Let $t_{0}>0$ be fixed arbitrary. Then by the above constmction of mild solution,
we see that $w^{\eta}(t)$ satisfies $\lim_{\etaarrow\infty}\Vert w^{\eta}(t)\Vert_{r}=0$ for $r\in(d, \infty)$ and any $t\geqq t_{0}>0.$

However it is not enough to guarantee the penalty method for the Navier-Stokes
equations. As in the case for Stokes equations, we have to show that $w^{\eta}(t)$ satisfies

$\lim_{\etaarrow\infty}\Vert w^{\eta}(t)\Vert_{d}=0$ (4.9)

for any $t\geqq t_{0}>0$ . To show (4.9), we first show such a result for $(v_{0}^{\eta}, w_{0}^{\eta})\in$

$C_{0,\sigma}^{\infty}(\mathbb{R}^{d})\cross C_{0}^{\infty}(\mathbb{R}^{d})^{d}$ Taking $q\in(d/2, d)$ and set $\sigma=d/2q-1/2$ (i.e., $\sigma$

satisfies $0<\sigma<1/2$), by Lemma 4.1, $L^{q}-L^{d}$ estimate and $L^{\frac{d}{2}}-L^{d}$ estimate, we
have

$\Vert v^{\eta}(t)\Vert_{d}\leqq Ct^{-\sigma}\Vert v_{0}^{\eta}\Vert_{q}+C\int_{0}^{t}(t-s)^{-\frac{1}{2}}\Vert u^{\eta}(s)\Vert_{d}\Vert\nabla u^{\eta}(s)\Vert_{d}ds$

$\leqq Ct^{-\sigma}\Vert v_{0}^{\eta}\Vert_{d}+C|u^{\eta}|_{\sigma,d,t}\Vert u_{0}^{\eta}\Vert_{d}\int_{0}^{t}(t-s)^{-\frac{1}{2}}s^{-\gamma-\frac{1}{2}}ds$

$\leqq Ct^{-\sigma}(\Vert v_{0}^{\eta}\Vert_{d}+\tilde{C}\Vert u_{0}^{\eta}\Vert_{d}|u^{\eta}|_{\sigma,d,t})$ . (4.10)
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By similar computation, we have

$\Vert w^{\eta}(t)\Vert_{d}$

$\leqq Ct^{-\sigma}(1+\eta)^{-\sigma}\Vert w_{0}\Vert_{q}+C(1+\eta)^{-\frac{1}{2}}\int_{0}^{t}(t-s)^{-\frac{1}{2}}\Vert u(s)\Vert_{d}\Vert\nabla u(s)\Vert_{d}ds$

$\leqq Ct^{-\sigma}(1+\eta)^{-\sigma}(\Vert w_{0}\Vert_{q}+\tilde{C}\Vert u_{0}\Vert_{d}|u^{\eta}|_{\sigma,d,t})$ . (4.11)

Taking initial data so small that $\tilde{C}\Vert u_{0}^{\eta}\Vert_{d}<1/2$ , we have by (4.10) and (4.11)

$\sup_{0<s\leqq t}s^{\sigma}(\Vert v^{\eta}(s)\Vert_{d}+\sup_{\eta>0}(1+\eta)^{\sigma}\Vert w^{\eta}(s)\Vert_{d})\leqq 2C\Vert u_{0}^{\eta}\Vert_{d}$ . (4.12)

This implies that (4.9) holds for any $t\geqq t_{0}>0$ . For general initial data $(v_{0}^{\eta}, w_{0}^{\eta})\in$

$L_{\sigma}^{d}(\mathbb{R}^{d})\cross G^{d}(\mathbb{R}^{d}),$ $(4.9)$ follows from the density argument. We omit the details.

4.2. Error estimate (proof of Theorem 2.3)

In this subsection we shall prove error estimate.
The following integral equation is mild formulation of the Navier-Stokes initial

value problem.

$u(t)=e^{t\Delta}u_{0}- \int_{0}^{t}e^{(t-s)\Delta}P(u(s)\cdot\nabla u(s))ds$ . (4.13)

If $\Vert u_{0}\Vert_{d}$ is small enough, unique existence of global-in-time mild solution holds
(see Kato [5]). In what follows, we will denote by $u(t)$ the mild solution of (4.13)
with initial velocity $u_{0}$ . Let $u^{\eta}(t)=v^{\eta}(t)+w^{\eta}(t)$ be global mild solution of (4.3)
with initial data $\Vert u_{0}^{\eta}\Vert_{d}\ll 1.$

Our main purpose of this subsection is to show that

$\lim_{\etaarrow\infty}\Vert U^{\eta}(t)\Vert_{d}:=\lim_{\etaarrow\infty}\Vert u^{\eta}(t)-u(t)\Vert_{d}\leqq C\Vert u_{0}^{\eta}-u_{0}\Vert_{d}$ (4.14)

for any $t\geqq t_{0}>0$ . We have by triangle inequality, $\Vert U^{\eta}(t)\Vert_{d}\leqq\Vert\epsilon^{\eta}(t)\Vert_{d}+$

$\Vert w^{\eta}(t)\Vert_{d}$ , where we have set $\epsilon^{\eta}(t)$ $:=v^{\eta}(t)-u(t)$ . For $w^{\eta}(t)$ , we already have
the estimate (4.9). Therefore it suffices to show that $\epsilon^{\eta}(t)$ enjoys

$\lim_{\etaarrow\infty}\Vert\epsilon^{\eta}(t)\Vert_{d}\leqq c\Vert\epsilon_{0}^{\eta}\Vert_{d}$ (4.15)

for any $t\geqq t_{0}>0.$
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From (4.3) and (4.13), $\epsilon^{\eta}(t)$ satisfies the following integral equations.

$\epsilon(t)=e^{t\Delta}\epsilon_{0}^{\eta}-\int_{0}^{t}e^{(t-s)\Delta}P(\epsilon^{\eta}\cdot\nabla v^{\eta}+u\cdot\nabla\epsilon^{\eta})(s)ds$

$- \int_{0}^{t}e^{(t-s)\Delta}P(w^{\eta}\cdot\nabla v^{\eta}+v^{\eta}\cdot\nablaw^{\eta}+w^{\eta}\cdot\nabla w^{\eta})(s)ds$

(4.16)

$=:I_{0}(t)+I_{1}(t)+I_{2}(t)$ .

where $\epsilon_{0}^{\eta}$ $:=v_{0}^{\eta}-u_{0}.$

We shall estimate $I_{0}(t),$ $I_{1}(t)$ and $I_{2}(t)$ , separately. By $L^{d}$ -boundedness of
$e^{t\Delta},$ $I_{0}(t)$ satisfies $\Vert\epsilon^{\eta}(t)\Vert_{d}\leqq C\Vert\epsilon_{0}\Vert_{d}.$

Next we shall observe $I_{1}(t)$ . Since $u(t)$ and $v^{\eta}(t)$ are solenoidal, $\epsilon^{\eta}(t)$ also
satisfies solenoidal condition. Hence by the fact that $P(u \nabla v)=Pdiv(u\otimes$

v $)$ $=divP(u\otimes v)$ for solenoidal vector fields $u$ and $v,$ $L^{q}$ -boundedness of the
Helmholtz projection $P=P_{q}(q\in(1, \infty))$ , properties of the mild solutions $u(t)$

and $u^{\eta}(t)$ and Lemma 3.2, we have

$\Vert I_{1}(t)\Vert_{d}\leqq\int_{0}^{t}\Vert e^{(t-s)\Delta}P(div(\epsilon\otimes u)+div(v^{\eta}\otimes\epsilon))(s)\Vert_{d}ds$

$= \int_{0}^{t}\Vert dive^{(t-s)\Delta}P(\epsilon^{\eta}\otimes u+v^{\eta}\otimes\epsilon^{\eta})(s)\Vert_{d}ds$

$\leqq C\int_{0}^{t}(t-s)^{-\frac{d}{2r}-\frac{1}{2}}(\Vert v^{\eta}(s)\Vert_{r}+\Vert u(s)\Vert_{r})\Vert\epsilon^{\eta}(s)\Vert_{d}ds$

$\leqq C(\Vert u_{0}\Vert_{d}+\Vert u_{0}^{\eta}\Vert_{d})\sup_{0<s\leqq t}\Vert\epsilon^{\eta}(s)\Vert_{d}.$

By $L^{q}$ -boundedness of $P_{q}$ , Lemma 3.2 and estimates for $w^{\eta}(t)$ and properties of
mild solution, we have

$\Vert I_{2}(t)\Vert_{d}\leqq C\int_{0}^{t}(t-s)^{-\frac{d}{2r}}(\Vert w^{\eta}(s)\Vert_{r}\Vert\nabla v^{\eta}(s)\Vert_{d}$

$+\Vert v^{\eta}(s)\Vert_{r}\Vert\nabla w^{\eta}(s)\Vert_{d}+\Vert w^{\eta}(s)\Vert_{r}\Vert\nabla w^{\eta}(s)\Vert_{d})ds$

$\leqq C\Vert u_{0}^{\eta}\Vert_{d}^{2}(1+\eta)^{-\frac{1}{2}+\frac{d}{2r}}.$

If we choose $\Vert u_{0}\Vert_{d}$ and $\Vert v_{0}^{\eta}\Vert_{d}$ are small enough if necessary, we have by the
above estimates for $I_{0}(t),$ $I_{1}(t)$ and $I_{2}(t)$ ,

$\sup_{0<s\leqq t}\Vert\epsilon^{\eta}(s)\Vert_{d}\leqq C\Vert\epsilon_{0}\Vert_{d}+C(1+\eta)^{-\frac{1}{2}+\frac{d}{2r}},$
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which proves desired estimate:

lim $sup\sup\Vert\epsilon^{\eta}(t)\Vert_{d}\leqq C\Vert\epsilon_{0}\Vert_{d}$ (4.17)
$\etaarrow+\infty 0<s\leqq t$

for any $t\geqq t_{0}>0.$

In particular, if we take $u_{0}\equiv u_{0}^{\eta}\in L_{\sigma}^{d}(\mathbb{R}^{d})$ , we can conclude that solution
of penalized Navier-Stokes initial value problem converges to solution of original
Navier-Stokes one as $\eta$ goes to infinity. This result is a rigorous justification of the
penalty method.
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