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1. INTRODUCTION

This article is a resume of the author’s recent work [21]. We are concerned
with the Navier-Stokes equations for viscous incompressible flows in the half
plane under the no-slip boundary conditions:

$(NS_{\nu,\{})$

$\partial_{t}u-v\triangle u+u\cdot\nabla u+\nabla p=0, divu=0, t>0, x\in \mathbb{R}_{+}^{2},$

$u=0 t\geq 0, x\in\partial \mathbb{R}_{+}^{2},$

$u|_{t=0}=a x\in \mathbb{R}_{+}^{2}.$

Here $\mathbb{R}_{+}^{2}=\{(x_{1}, x_{2})\in \mathbb{R}^{2}|x_{2}>0\}$ and $v$ is the kinematic viscosity which
is assumed to be a positive constant, and $u=u(t, x)=(u_{1}(t, x), u_{2}(t, x))$ ,
$p=p(t, x)$ denote the velocity field, the pressure field, respectively. We
will use the standard notations for derivatives; $\partial_{t}=\partial/\partial t,$ $\partial_{j}=\partial/\partial x_{j},$

$\triangle=\sum_{j=1}^{2}\partial_{j}^{2},$ $divu=\sum_{j=1}^{2}\partial_{j}u_{j}$ , and $u \cdot\nabla u=\sum_{j=1}^{2}u_{j}\partial_{j}u.$

The behavior of viscous incompressible flows at the inviscid limit is a
classical issue in the fluid dynamics. However, in the presence of nontrivial
boundary one is faced with a serious difficulty in this problem even in the
two-dimensional case if the no-slip boundary condition is imposed on the
velocity field. This is due to the appearance of the boundary layer, whose
formation is formally explained by Prandtl’s theory. But because of its
strong instability mechanism so far the rigorous description of the formation
of the boundary layer and the outer flow was achieved only for some limited
cases. For example, it is proved in [3, 33, 34] that for analytic initial data
the solution of $(NS_{\nu})$ converges to the one of the Euler equations outside
the boundary layer and to the one of the Prandtl equations in the boundary
layer. When the domain and the initial data possess a circular symmetry
the significant cancellation occurs in the nonlinear term, and hence the
convergence is affirmatively justified; see [24, 5, 18, 19, 14, 26]. On the
other hand, the necessary and sufficient condition for the $L^{2}$ convergence
of the Navier-Stokes flows to the Euler flows was given by [12], which was
extended by several authors [36, 38, 13, 14].

Since the appearance of the boundary layer is considered as the forma-
tion of a vortex sheet (or line in the two dimension) along the boundary,
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it is natural to investigate the behavior of vorticity fields at the inviscid
limit. However, under the no-slip boundary condition on the velocity field
the vorticity field has to be subject to a nonlocal and nonlinear boundary
condition, from which it is still not easy to derive useful informations. This
is contrasting with the case of the whole plane (i.e., no nontrivial bound-
ary), where the detailed analysis has been established [22, 8]. In the case of
the half plane the situation is somewhat relaxed, since the solution formula
is available for the linearized problem, which enables us to estimate the be-
havior of vorticity near the boundary in details at least in the linear level;
see [20].

In [21] the inviscid limit of $(NS_{\nu})$ is studied by using the vorticity formu-
lation in [20] when the initial vorticity is located away from the boundary.
This class of initial data includes a dipole-type localized vortex, which is
often used in numerical works to investigate the interaction between the
vorticity created on the boundary and the original vorticity away from the
boundary; cf. [31, 15, 29]. For such a localized initial vorticity [21] proved
the following asymptotic expansion at the inviscid limit for a short time
$T>0$ (but $T$ is independent of the viscosity):

(1.1) $\omega^{(\nu)}(t, x)=\omega_{E}(t, x)+\frac{1}{v^{\frac{1}{2}}}w_{P}(t, x_{1},\frac{x_{2}}{\nu^{\frac{1}{2}}})+\frac{1}{v^{\frac{1}{2}}}w_{IP}^{(\nu)}(t, x_{1}, \frac{x_{2}}{\nu^{\frac{1}{2}}})+w_{II}^{(\nu)}(t, x)$.

Here $\omega^{(\nu)}$ is the vorticity field of the Navier-Stokes flows $(NS_{\nu}),$ $\omega_{E}$ is the
vorticity field of the Euler flows (see (E) below), $w_{P}$ is the vorticity field of
the Prandtl flows (see (P) below), and the remainder parts $w_{IP}^{(\nu)},$ $w_{II}^{(\nu)}$ are
of the order $\mathcal{O}(v^{1/2})$ in suitable norms. It should be noted here that, even
if there is no vorticity near the boundary at the initial time, the vorticity
is immediately created there and forms a vortex line along the boundary in
positive time. From the Biot-Savart law the asymptotic expansion for the
velocity field can be also obtained as follows.

Theorem 1.1 ([21, Theorem 1.1]). Assume that the initial velocity $a=$

$(a_{1}, a_{2})$ belongs to $\dot{W}_{0,\sigma}^{1,p}(\mathbb{R}_{+}^{2})$ for some $1<p<2$ and the initial vorticity
$b=\partial_{1}a_{2}-\partial_{2}a_{1}$ belongs to $W^{4,1}(\mathbb{R}_{+}^{2})\cap W^{4,2}(\mathbb{R}_{+}^{2})$ . Assume also that

(1.2) $d_{0}=$ dist $(\partial \mathbb{R}_{+}^{2}, suppb)>0.$

Then there are positive constants $C$ and $T$ such that the following estimate
holds for $0<\nu\ll 1.$

(1.3) $\sup_{0<t<T}\Vert u_{NS}^{(\nu)}(t)-u_{E}(t)-u_{P}^{(\nu)}(t)\Vert_{L^{\infty}(\mathbb{R}_{+}^{2})}\leq C\nu^{\frac{1}{2}}.$

Here $u_{NS}^{(\nu)}$ is the solution of $(NS_{\nu}),$ $u_{E}$ is the solution of the Euler equations
with the initial velocity $a$ , and $u_{P}^{(\nu)}$ describes the boundarll layer of the form
(1.4) $u_{P}^{(\nu)}(t, x)=(v_{P,1}(t, x_{1}, \frac{x_{2}}{\nu^{\frac{1}{2}}}), \nu^{\frac{1}{2}}v_{P,2}(t, x_{1}, \frac{x_{2}}{v^{\frac{1}{2}}}))$,
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where $v_{P}=(v_{P,1}, v_{P,2})$ is the solution of the (modified) Pmndtl equations.
Moreover, $T$ is estimated from below as $T \geq c\min\{d_{0},1\}$ , where $c$ is a
positive constant depending only on $\Vert b\Vert_{W^{4,1}(\mathbb{R}_{+}^{2})\cap W^{4,2}(\mathbb{R}_{+}^{2})}.$

The space $\dot{W}_{0,\sigma}^{1,p}(\mathbb{R}_{+}^{2})$ is the completion with respect to the norm $\Vert\nabla f\Vert_{Lp(\mathbb{R}_{+}^{2})}$

of the space of all smooth, divergence-free vector fields with compact sup-
port in $\mathbb{R}_{+}^{2}$ , and $W^{k,p}(\mathbb{R}_{+}^{2})$ is a usual Sobolev space.

The velocity field $u_{E}=(u_{E,1}, u_{E,2})$ of the ideal incompressible flows is
subject to the Euler equations

(E) $\{\begin{array}{l}\partial_{t}u_{E}+u_{E}\cdot\nabla u_{E}+\nabla p_{E}=0 t>0, x\in \mathbb{R}_{+}^{2},divu_{E}=0 t\geq 0, x\in \mathbb{R}_{+}^{2},u_{E,2}=0 t\geq 0, x\in\partial \mathbb{R}_{+}^{2},u_{E}|_{t=0}=a x\in \mathbb{R}_{+}^{2}.\end{array}$

Since the initial velocity $a$ in Theorem 1.1 possesses an enough regularity
the existence and the uniqueness of the classical solution of (E) are verified
by the known approach [39, 41, 11, 4].

The Prandtl equations for the boundary layer profile $\tilde{v}_{P}=(\tilde{v}_{P,1},\tilde{v}_{P,2})$ are
written as follows.

$(P)\{$

$(\partial_{t}-\partial_{X_{2}}^{2})\tilde{v}_{P,1}+\tilde{v}_{P,1}\partial_{1}\tilde{v}_{P,1}+\tilde{v}_{P,2}\partial_{X_{2}}\tilde{v}_{P,1}+\partial_{1}\tilde{\pi}_{P}=0t>0,$ $(x_{1}, X_{2})\in \mathbb{R}_{+}^{2}$

$\partial_{1}\tilde{v}_{P,1}+\partial_{X_{2}}\tilde{v}_{P,2}=0,$ $\partial_{X_{2}}\tilde{\pi}_{P}=0$ $t\geq 0,$ $(x_{1}, X_{2})\in \mathbb{R}_{+}^{2}$

$\tilde{v}_{P}(t, x_{1},0)=0$ $t\geq 0,$ $x_{1}\in \mathbb{R},$

$\lim_{X_{2}arrow\infty}\tilde{v}_{P,1}(t, x_{1}, X_{2})=u_{E,1}(t, x_{1},0)$ $t\geq 0,$ $x_{1}\in \mathbb{R},$

$\lim_{X_{2}arrow\infty}\tilde{\pi}_{P}(t, x_{1}, X_{2})=p_{E}(t, x_{1},0)$ $t\geq 0,$ $x_{1}\in \mathbb{R},$

$\tilde{v}_{P}|_{t=0}=0$ $(x_{1}, X_{2})\in \mathbb{R}_{+}^{2}.$

The velocity field $v_{P}=(v_{P,1}, v_{P,2})$ for the modified Prandtl equations is
defined by $v_{P,1}(t, x_{1}, X_{2})=\tilde{v}_{P,1}(t, x_{1}, X_{2})-u_{E,1}(t, x_{1},0),$ $v_{P,2}(t, x_{1}, X_{2})=$

$\int_{X_{2}}^{\infty}\partial_{1}v_{P,1}(t, x_{1}, Y_{2})dY_{2}$ ; cf. [34]. Under the assumptions on the mono-
tonicity of the data the solvability of the Prandtl equations is proved by
[30, 25, 40] using the Crocco transformation, and recently also by [1, 23]
whose proofs are based on a direct energy method. Without the monotonic-
ity conditions so far we need the analyticity of the initial data to get the
local-in-time solvability of the Prandtl equations [3, 33], and this analyticity
is in fact required only in the tangential direction [17, 16]. The solvability
of the Prandtl equations for general initial data in a Sobolev class is still an
open issue, although the ill-posedness is strongly suggested. Indeed, for the
linearized Prandtl equations the ill-posedness in the Sobolev framework is
shown in [7].
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The lower bound of $T$ in Theorem 1.1 is of the order $\mathcal{O}(d_{0})$ when $d_{0}$ is
small. This order seems to be natural and optimal to ensure (1.3) in our
setting, for the vorticity of the Euler flows keeps the distance $\mathcal{O}(d_{0})$ from
the boundary among the time period $0\leq t\leq \mathcal{O}(d_{0})$ . After the time period
ensured by Theorem 1.1 the separation of the boundary layer is expected to
occur in general and the vorticity will exhibit rather complicated behaviors;
[15, 29]. The mathematical description of these phenomena is a challenging
problem.

The idea to establish the asymptotic expansion (1.3) is explained as fol-
lows. The proof is based on two key observations. Firstly we observe that
the solution should be analytic at least near the boundary because so is at
the initial time. Thus in our setting the solvability of the Prandtl equa-
tions is already ensured by the previous works. But we note here that the
solvability of the Prandtl equations itself does not necessarily imply the
desired asymptotic expansion, as in the counter example by [9]. Moreover,
our solution should lose the analyticity as it leaves the boundary, and it is
important to estimate how to lose it precisely. We overcome this difficulty
by introducing a suitable weighted function space which represents this loss
of analyticity. Secondly we use the fact that the vorticity field of the Euler
flows satisfies the transport equations and hence its support is away from
the boundary even in positive time. Then the vorticity of the Navier-Stokes
flows is expected to be small exponentially in $\nu^{-1}$ in the region between the
boundary layer and the support of the vorticity of the Euler flows. This
implies that the strong and uncontrollable interaction does not occur be-
tween the vorticity produced in the boundary layer and the outer vorticity
originated from the initial one, resulting the classical thickness $\mathcal{O}(\nu^{1/2})$ of
the boundary layer at least for a short time. These two mechanisms, the an-
alyticity near the boundary and the weak interaction between the boundary
vorticity and the outer vorticity, exclude the possibility of the instability of
the boundary layer observed by [9]. The approach based on the vorticity
formulation is a key to reveal these mechanisms.

In the present article we recall the vorticity formulation in the next sec-
tion and state three key lemmas used in [21] to prove Theorem 1.1; com-
patibility of weighted function spaces (Lemma 3.1), pointwise estimate of
fundamental solutions to the heat-transport equations (Lemma 3.2), ACK
theorem (Lemma 3.3). The ACK theorem, which itself is an interesting
object of research, used in [21] is a slightly extended version of [28, 10]; see
also [27, 32]. For convenience to the reader we give a proof of this ACK
theorem in Section 3.3.

2. RESULTS FROM VORTICITY FORMULATION
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2.1. Vorticity equations. Let $\omega=$ Rot $u=\partial_{1}u_{2}-\partial_{2}u_{1}$ be the vorticity
field. Then the Biot-Savart law in $\mathbb{R}_{+}^{2}$ is expressed as

(2.1) $u=J(\omega)=(J_{1}(\omega), J_{2}(\omega));=\nabla^{\perp}(-\triangle_{D})^{-1}\omega,$

where $\nabla^{\perp}=(\partial_{2}, -\partial_{1})$ and $h=(-\triangle_{D})^{-1}f$ denotes the solution of the Pois-
son equation $-\triangle h=f$ in $\mathbb{R}_{+}^{2}$ subject to the Dirichlet boundary condition
$h=0$ on $\partial \mathbb{R}_{+}^{2}$ . We introduce the bilinear forms

(2.2) $B(f, h)=J(f)\cdot\nabla h, N(f, h)=J_{1}(B(f, h))|_{x_{2}=0}.$

Then the vorticity equations for the Navier-Stokes flows are described as
follows.

$(V_{\nu})$ $\{\begin{array}{l}\partial_{t}\omega-\nu\triangle\omega+B(\omega, \omega)=0 t>0, x\in \mathbb{R}_{+}^{2},\nu(\partial_{2}\omega+(-\partial_{1}^{2})^{\frac{1}{2}}\omega)=-N(\omega, \omega) t>0, x\in\partial \mathbb{R}_{+}^{2},\omega|_{t=0}=b:= Rot a. x\in \mathbb{R}_{+}^{2}.\end{array}$

The first equation of $(V_{\nu})$ is obtained by taking the Rot in the first equation
of $(NS_{\nu})$ . The boundary condition in $(V_{\nu})$ is imposed so as to keep the
no-slip boundary condition on $u=J(\omega)$ under the time-evolution of the
vorticity field; cf. [2, 20].

The vorticity field of the Euler flows, denoted by $\omega_{E}$ , satisfies the equa-
tions

$(V_{E})$ $\{\begin{array}{ll}\partial_{t}\omega_{E}+B(\omega_{E}, \omega_{E})=0 t>0, x\in \mathbb{R}_{+}^{2},\omega_{E}|_{t=0}=b x\in \mathbb{R}_{+}^{2}. \end{array}$

When $b\in W^{4,1}(\mathbb{R}_{+}^{2})\cap W^{4,2}(\mathbb{R}_{+}^{2})$ the global solvability of $(V_{E})$ is classical and
in particular we have $\omega_{E}\in C^{1}([0, T]\cross\overline{\mathbb{R}_{+}^{2}})\cap L^{\infty}(0, T;W^{4,1}(\mathbb{R}_{+}^{2})\cap W^{4,2}(\mathbb{R}_{+}^{2}))$

for any $T>0$ . Moreover, the support condition (1.2) implies that

(2.3) $\bigcup_{0\leq t\leq T_{0}}supp\omega_{E}(t)\subset\{x\in \mathbb{R}_{+}^{2}|x_{2}\geq 2^{5}d_{E}\},$ $d_{E}= \min\{2^{-6}d_{0},2^{-1}\}$

for some $T_{0}\geq Cd_{E}$ with $C>0$ depending only on $\Vert b\Vert_{W^{4,1}\cap W^{4,2}}.$

By taking into account the asymptotic expansion at $varrow 0$ it is natural
to define the vorticity field $w_{P}$ of the Prandtl flows $\tilde{v}_{P}$ by the relation
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$w_{P}=-\partial_{2}\tilde{v}_{P,1}$ . Thus the Biot-Savart law in this case is

(2.4)

$\tilde{v}_{P,1}(t, x_{1}, X_{2})=v_{E,1}(t,x_{1}, X_{2})+v_{P,1}(t, x_{1}, X_{2})$

$:=u_{E,1}(t, x_{1},0)+ \int_{X_{2}}^{\infty}w_{P}(t, x_{1}, Y_{2})dY_{2},$

(2.5)
$\tilde{v}_{P,2}(t, x_{1}, X_{2})=v_{E,2}(t, x_{1}, X_{2})+v_{P,2}(t, x_{1}, X_{2})$

$:=X_{2}\partial_{2}u_{E,2}(t, x_{1},0)$

$- \partial_{1}(\int_{0}^{X_{2}}Y_{2}w_{P}(t, x_{1}, Y_{2})dY_{2}+X_{2}\int_{X_{2}}^{\infty}w_{P}(t, x_{1}, Y_{2})dY_{2})$ .

Set $\nabla_{X}=(\partial_{1}, \partial_{X_{2}})$ . Then the equation for $w_{P}=w_{P}(t, x_{1}, X_{2})$ is given by

$(V_{p})\{$

$\partial_{t}w_{P}-\partial_{X_{2}}^{2}w_{P}=-\tilde{v}_{P}\cdot\nabla_{X}w_{P}$ $t>0,$ $(x_{1}, X_{2})\in \mathbb{R}_{+}^{2},$

$\partial_{X_{2}}w_{P}=-\int_{0}^{\infty}\tilde{v}_{P}\cdot\nabla_{X}w_{P}dY_{2}-N(\omega_{E}, \omega_{E})$ $t>0,$ $(x_{1}, X_{2})\in\partial \mathbb{R}_{+}^{2},$

$w_{P}|_{t=0}=0$ $(x_{1}, X_{2})\in \mathbb{R}_{+}^{2}.$

The boundary condition of $w_{P}$ in $(V_{p})$ is observed in [2], or one can directly
derive it from $(V_{\nu})$ by performing the formal expansion $\omega(t, x)=\omega_{E}(t, x)+$

$\nu^{-1/2}w_{P}(t, x_{1}, x_{2}/\nu^{1/2})+$ remainder. This boundary condition is actually
replaced by $\partial_{X_{2}}w_{P}=-\partial_{1}p_{E}$ in view of (P).

The key structure of the outer part $w_{II}$ in (1.1) is that it satisfies the heat-
transport equations with the homogeneous Neumann boundary condition

$(V_{II_{\nu}})$ $\{\begin{array}{l}\partial_{t}w_{II}-\nu\triangle w_{II}+B(\omega, w_{II})=-B(\omega-\omega_{E},\omega_{E})+v\Delta\omega_{E},\partial_{2}w_{II}|_{x_{2}=0}=0,w_{II}|_{t=0}=0.\end{array}$

It should be emphasized that each term in the right-hand side of $(V_{II_{\nu}})$ is
supported away from the boundary.

2.2. Representation formula for solutions of the linearized prob-
lem. In this section we recall the solution formula to the linear problem

(LV) $\{\begin{array}{ll}\partial_{t}\omega-\nu\triangle\omega=f t>0, x\in \mathbb{R}_{+}^{2},\omega|_{t=0}=b x\in \mathbb{R}_{+}^{2},\end{array}$

subject to the boundary condition

(LBC) $\nu(\partial_{2}+(-\partial_{1}^{2})^{\frac{1}{2}})\omega=g$ $t>0,$ $x\in\partial \mathbb{R}_{+}^{2}.$

Here $f,$ $g,$
$b$ are assumed to be smooth and decay fast enough at spatial

infinity. We denote by $G$ and $E$ the two-dimensional Gaussian and Newton
potential, respectively, i.e., $G(t, x)=(4\pi t)^{-1}\exp(-|x|^{2}/(4t))$ and $E(x)=$
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$-(2\pi)^{-1}\log|x|$ . Let $*$ be the standard convolution in $\mathbb{R}^{2}$ . Following [20],
we set

(2.6) $\Gamma(t, x)=(\Xi E*G(t))(x), \Xi=2(\partial_{1}^{2}+(-\partial_{1}^{2})^{\frac{1}{2}}\partial_{2})$ .

We also use the notation $(h_{1} \star h_{2})(x)=\int_{\mathbb{R}_{+}^{2}}h_{1}(x-y^{*})h_{2}(y)dy$ , where $y^{*}=$

$(y_{1}, -y_{2})$ .

Lemma 2.1 ([20]). The integml equation for $(LV)-(LBC)i\mathcal{S}$ given by
(2.7)

$\omega(t)=e^{\nu t\triangle_{N}}b+\Gamma(\nu t)\star b-\Gamma(0)\star b+\int_{0}^{t}e^{\nu(t-s)\triangle_{N}}(f(s)-g(s)\mathcal{H}_{\{x_{2}=0\}}^{1})ds$

$+ \int_{0}^{t}\Gamma(v(t-s))\star(f(s)-g(s)\mathcal{H}_{\{2}^{1_{x=0\}}})ds$

$- \int_{0}^{t}\Gamma(0)\star(f(s)-g(s)\mathcal{H}_{\{x_{2}=0\}}^{1})ds.$

Here $e^{t\Delta_{N}}$ is the semigroup for the heat equation (with the unit viscosity)
in $\mathbb{R}_{+}^{2}$ subject to the homogeneous Neumann boundary condition, $\Gamma(0)\star$ $:=$

$\lim_{t\downarrow 0}\Gamma(t)\star$, and $g\mathcal{H}_{\{x_{2}=0\}}^{1}$ is $a$ one-dimensional Hausdorff measure with den-

sity $g$ defined by $\langle h,$ $g \mathcal{H}_{\{x_{2}=0\}}^{1}\rangle=\int_{\mathbb{R}}h(x_{1},0)g(x_{1})dx_{1}$ for $h\in C_{0}(\overline{\mathbb{R}_{+}^{2}})$ .

The formula (2.7) is a basic tool to define the solution mapping for the non-
linear problem $(V_{\nu})$ and to establish various estimates of it. The reader is
referred to [35, 37] for the solution formula of the (Navier-)Stokes equations.
We note that $\Gamma(0)\star h=\Xi E\star h$ in $\mathbb{R}_{+}^{2}.$

2.3. Function spaces. One of the key ingredient in [21] is to set up a
suitable family of Banach spaces. Recalling the definition of $d_{E}\in(0,1/2)$

in (2.3), we set

(2.8) $\varphi_{P}^{(\mu,\rho)}(\xi_{1}, X_{2})=\exp(\frac{\mu|\xi_{1}|}{4}+\rho X_{2}^{2})$ ,

(2.9) $\varphi_{IP,\nu}^{(\mu,\rho)}(\xi_{1}, X_{2})=\exp(\frac{(\mu-\nu^{\frac{1}{2}}X_{2})_{+}|\xi_{1}|}{4}+\rho X_{2}^{2})$ ,

(2.10) $\varphi_{E,\nu}^{(\mu,\theta)}(\xi_{1}, x_{2})=\exp(\frac{(\mu-x_{2})_{+}|\xi_{1}|}{4}+\frac{\theta}{v}(6d_{E}-x_{2})_{+}^{2})$ ,

where $\mu,$ $\rho,$
$\theta\geq 0$ and $( \alpha)_{+}=\max\{\alpha, 0\}$ for $\alpha\in \mathbb{R}$ . Let

(2.11)
$\langle\xi_{1}\rangle=(1+\xi_{1}^{2})^{\frac{1}{2}},$

$f( \xi_{1}, x_{2})=\mathcal{F}(f)(\xi_{1}, x_{2})=\frac{1}{(2\pi)^{\frac{1}{2}}}\int_{\mathbb{R}}f(x_{1}, x_{2})e^{-ix_{1}\xi_{1}}dx_{1}.$
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We denote by $\Vert f\Vert_{L_{\xi_{1}}^{p}L_{x}^{q}}2$ the norm $( \int_{\mathbb{R}}(\int_{0}^{\infty}|f(\xi_{1}, x_{2})|^{q}dx_{2})^{p/q}d\xi_{1})^{1/p}$ We

set
(2.12)

$\Vert f\Vert_{X_{P}^{(\mu,\rho)}}$

$= \sum_{k=0,1}(\Vert\varphi_{P}^{(\mu,\rho)}X^{\frac{k}{22}}\langle\xi_{1}\rangle^{2}f(\xi_{1}, X_{2})\Vert_{L_{\xi_{1}}^{2}L_{X_{2}}^{1+k}}+\Vert\varphi_{P}^{(\mu,\rho)}X_{2}^{1+\frac{k}{2}}\langle\xi_{1}\rangle\partial_{X_{2}}\hat{f}(\xi_{1}, X_{2})\Vert_{L_{\xi_{1}}^{2}L_{X_{2}}^{1+k}})$ ,

(2.13)
$\Vert f\Vert_{X_{IP_{\nu}}^{(\mu,\rho)}}$

$= \sum_{k=0,1}(\Vert\varphi_{IP,\nu}^{(\mu,\rho)}X^{\frac{k}{22}}\langle\xi_{1}\rangle f(\xi_{1}, X_{2})\Vert_{L_{\xi_{1}}^{2}L_{X_{2}}^{1+k}}+\Vert\varphi_{IP,\nu}^{(\mu,\rho)}X_{2}^{1+\frac{k}{2}}\partial_{X_{2}}\hat{f}(\xi_{1}, X_{2})\Vert_{L_{\xi_{1}}^{2}L_{X_{2}}^{1+k}})$,

(2.14)
$\Vert f\Vert_{X_{E,\nu}^{(\mu,\theta)}}=\Vert\varphi_{E,\nu}^{(\mu,\theta)}\langle\xi_{1}\rangle f(\xi_{1}, x_{2})\Vert_{L_{\xi_{1}}^{2}L_{x}^{2}}2+\Vert\varphi_{E,\nu}^{(\mu,\theta)}\partial_{2}f(\xi_{1}, x_{2})\Vert_{L^{2}L_{x}^{2}}+\Vert\varphi_{E,\nu}^{(0,\theta)}f\Vert_{L_{x}^{1}}\epsilon_{1}2^{\cdot}$

The spaces $X_{P}^{(\mu,\rho)},$ $X_{IP,\nu}^{(\mu,\rho)},$ $X_{E,\nu}^{(\mu,\theta)}$ , are then naturally defined as the subspaces
of $L^{2}(\mathbb{R}_{+}^{2})$ equipped with the norms $\Vert\cdot\Vert_{X_{P}^{(\mu,\rho)}},$ $\Vert\cdot\Vert_{X_{IP,\nu}^{(\mu,\rho)}},$ $\Vert\cdot\Vert_{X_{E,\nu}^{(\mu,\theta)}}$ , respectively.

The space $X_{P}^{(\mu,\rho)}$ is applied for $w_{P}$ , and $X_{IP,\nu}^{(\mu,\rho)}$ and $X_{E,\nu}^{(\mu,\theta)}$ used for $w_{IP}$ and
$w_{II}.$

By the definition of the weights (2.9) - (2.10) the functions in $X_{IP,\nu}^{(\mu,\rho)}$ or
$X_{E,\nu}^{(\mu,\theta)}$ with $\mu>0$ are analytic in the tangential direction near the bound-
ary. The form $(\mu-x_{2})_{+}|\xi_{1}|$ represents how the analyticity is lost as the
function leaves the boundary, and $\nu^{-1}(6d_{E}-x_{2})_{+}^{2}$ expresses the smallness
exponentially in $\nu^{-1}$ near the boundary. The weight $X_{2}^{k/2}$ for the space $L_{X_{2}}^{1+k}$

in (2.12)- (2.13) reflects the relation with the scaling

(2.15) $(R_{S}f)(x)=s^{\frac{1}{2}}f(x_{1}, s^{\frac{1}{2}}x_{2}) s>0,$

which seems to be important to make the estimates sharp and to derive
the lower bound of $T$ in Theorem 1.1. These weights are compatible with
the heat equations and essential in our arguments; see Lemma 3.1. The
counterpart of Theorem 1.1 in terms of the vorticity formulation is described
as follows.

Theorem 2.1 ([21]). There are $C,$ $T,$ $\mu,$ $\rho,$
$\theta>0$ such that the solution

$\omega_{NS}^{(\nu)}$ to $(V_{\nu})$ is constructed in the form (1.1), where

$\sup_{0<t<T}\Vert w_{P}(t)\Vert_{X_{P}^{(\mu,\rho/t)}}\leq 1$

$\sup_{0<t<T}\Vert w_{IP}^{(\nu)}(t)\Vert_{X_{IP,\nu}^{(\mu,\rho/t)}}+\sup_{0<t<T}\Vert w_{II}^{(\nu)}(t)\Vert_{X_{E,\nu}^{(\mu,\theta/t)}}\leq Cv^{\frac{1}{2}}.$
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3. KEY LEMMAS

3.1. Invariant property of function spaces under the action of the
heat semigroup. In view of the solution formula (2.7) it is essential to
establish the estimates for the heat semigroup $\{e^{\nu t\Delta_{N}}\}_{t\geq 0}$ in our functional
setting.

Lemma 3.1 ([21, Proposition 3.1]). Let $t>s\geq 0,$ $\mu\geq 0,0\leq\rho\leq$

$2^{-4}$ , and $0\leq\theta\leq 2^{-4}$ . Then it follows that

(3.1) $\Vert\varphi_{P}^{(\mu_{t}^{R})}\mathcal{F}(R_{\nu}e^{\nu(t-s)\Delta_{N}}R_{\frac{1}{\nu}}f)\Vert_{L_{\xi_{1}}^{2}L_{X_{2}}^{1}} \leq C\Vert\varphi_{P}^{(\mu_{s})}\mathcal{F}(f)\Vert_{L_{\xi_{1}}^{2}L_{X_{2}}^{1}}e,$

(3.2) $\Vert\varphi_{IP,\nu}^{(\mu_{t})}\mathcal{F}(R_{\nu}e^{\nu(t-s)\triangle_{N}}R_{\frac{1}{\nu}}f)e\Vert_{L_{\xi_{1}}^{2}L_{X_{2}}^{1}}\leq C\Vert\varphi_{IP,\nu}^{(\mu_{S}^{E})}\mathcal{F}(f)\Vert_{L_{\xi_{1}}^{2}L_{X_{2}}^{1}},$

(3.3) $\Vert\varphi_{E,\nu}^{(\mu,\frac{\theta}{t})}\mathcal{F}(e^{\nu(t-s)\Delta_{N}}f)\Vert_{L_{\xi_{1}}^{2}L_{x}^{2}}2\leq C\Vert\varphi_{E,\nu}^{(\mu,\frac{\theta}{s})}\mathcal{F}(f)\Vert_{L_{\xi_{1}}^{2}L_{x}^{2}}2^{\cdot}$

Remark 3.1. The proof of Lemma 3.1 implies that

$\sup_{0<t<T}\Vert R_{\nu}e^{\nu(t-s)\Delta_{N}}R_{\frac{1}{\nu}}f\Vert_{X_{P}^{(\mu,\rho/t)}}\leq C\sup_{0<t<T}\Vert f\Vert_{x_{P}^{(\mu,\rho/t)}},$

$\sup_{0<t<T}\Vert R_{\nu}e^{\nu(t-s)\triangle_{N}}R_{\frac{1}{\nu}}f\Vert_{X_{IP,\nu}^{(\mu,\rho/t)}}\leq C\sup_{0<t<T}\Vert f\Vert_{x_{IP,\nu}^{(\mu,\rho/t)}’}$

$\sup_{0<t<T}\Vert e^{\nu(t-s)\Delta_{N}}f\Vert_{X_{E,\nu}^{(\mu,\theta/t)}}\leq C\sup_{0<t<T}\Vert f\Vert_{X_{E,\nu}^{(\mu,\theta/t)}}.$

That is, the function spaces described in Theorem 2.1 are invariant under
the action of the heat semigroup.

Sketch of the proof of Lemma 3.1. Here we give a sketch of the proof only
for (3.2). The other estimates are obtained in the similar manner. Set
$g(t, X_{2})=(4\pi t)^{-1/2}\exp(-X_{2}^{2}/(4t))$ . Then

$| \mathcal{F}(R_{\nu}e^{\nu(t-s)\Delta_{N}}R_{\frac{1}{\nu}}f)(\xi_{1}, X_{2})|_{\sim}<e^{-\nu(t-s)\xi_{1}^{2}}\int_{0}^{\infty}g(t-s, X_{2}-Y_{2})|f(\xi_{1},Y_{2})|dY_{2}.$

From the inequalities

$(\mu-\nu^{\frac{1}{2}}X_{2})_{+}|\xi_{1}|\leq(\mu-v^{\frac{1}{2}}Y_{2})_{+}|\xi_{1}|+v^{\frac{1}{2}}|X_{2}-Y_{2}||\xi_{1}|,$

$\nu^{\frac{1}{2}}|X_{2}-Y_{2}||\xi_{1}|\leq\nu(t-s)\xi_{1}^{2}+\frac{|X_{2}-Y_{2}|^{2}}{4(t-s)},$

we have

$|\mathcal{F}(R_{\nu}e^{\nu(t-s)\Delta}R_{\frac{1}{\nu}}f)<zx_{2})_{+}|\xi_{1}|$

. $\int_{0}^{\infty}s^{Y_{2}^{2}\prime}.$
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Thus the desired estimate follows by applying the inequality ([21, Lemma
7.1] $)$

$\Vert e^{E_{X_{2}^{2}}}tg(t-s)*h(X_{2})\Vert_{L_{X_{2}}^{1}}\leq\Vert e^{g_{X_{2}^{2}}}sh(X_{2})\Vert_{L_{X_{2}}^{1}}, 0<\beta<\frac{1}{4},$

and then by taking the $L^{2}$ norm with respect to $\xi_{1}$ . The proof is complete.

3.2. Fundamental solution to the heat-transport equations. To es-
tablish Theorem 2.1 the estimate of the influence on the boundary vor-
ticity by the outer vorticity is the most important issue and requires the
mathematical technicality. In particular, it is important to obtain a sharp
pointwise estimate for solutions to $(V_{II_{\nu}})$ near the boundary. For this pur-
pose the following lemma on the fundamental solution to the heat-transport
equations is used in [21]. Set

$H^{(\nu)}(t)=-B(\omega-\omega_{E}, \omega_{E})+\nu\Delta\omega_{E}.$

Lemma 3.2 ([21, Lemma 7.2]). We denote by $P_{u}^{(\nu)}(t, s)$ the evolution op-
emtor for $\partial_{t}-\nu\triangle+u\cdot\nabla$ in $\mathbb{R}_{+}^{2}$ with the homogeneous Neumann boundary
condition. Then the solution $w_{II}^{(\nu)}$ to $(V_{II_{\nu}})$ is represented as

$w_{II}^{(\nu)}(t)= \int_{0}^{t}P_{u_{NS}}^{(\nu)}(t, s)H^{(\nu)}(s)ds,$

and the kemel of $P_{u_{NS}}^{(\nu)}(t, s)$ satisfies

$0<P_{u_{NS}}^{(\nu)}(t, x;s, y) \leq\frac{1}{2\pi\nu(t-s)}\exp(-\frac{(|x-y|-\int_{s}^{t}\Vert u_{NS}(\tau)\Vert_{L}\infty d\tau)_{+}^{2}}{4v(t-s)})$ .

Remark 3.2. We note that the support of $H^{(\nu)}(t)$ is away from the bound-
ary when the initial vorticity is located away from the boundary. The above
pointwise estimate then yields the exponential smallness of $w_{II}^{(\nu)}$ in $v^{-1}$ near
the boundary.

3.3. Abstract Cauchy-Kowalewski theorem. Let $\mu_{0}\in(0,1)$ . We as-
sume that there are two-parameter families of Banach spaces $\{X_{\mu}^{t}\}_{0<\mu,t\leq\mu 0}$

and $\{Y_{\mu}^{t}\}_{0<\mu,t\leq\mu 0}$ such that

$X_{\mu}^{t}\hookrightarrow Y_{\mu}^{t}$ for all $0<\mu\leq\mu_{0},$

$X_{\mu_{2}}^{t}\hookrightarrow X_{\mu_{1}}^{t}$ and $Y_{\mu_{2}}^{t}\hookrightarrow Y_{\mu_{1}}^{t}$ if $\mu_{1}\leq\mu_{2}.$

Here $\hookrightarrow$ represents the continuous embedding. We consider the integral
equation of the form

(3.4) $w(t)= \int_{0}^{t}\Lambda(t, s, w)ds+F(t)$ ,
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where $F$ is a given function satisfying
(3.5)

$\sup_{0<t\leq\mu 0}(\frac{\mu_{0}}{t})^{m}\sup_{0<s<t}\Vert F(s)\Vert_{X_{\mu_{0}}^{s}}\leq R<\infty$ for some $R>0$ and $m\in(0,1)$ .

For a time dependent function $f=f(t)$ we set

$\Vert f\Vert_{X_{\mu}(t)}=\sup_{0<s<t}\Vert f(s)\Vert_{X_{\mu}^{s}}, \Vert f\Vert_{Y_{\mu}(t)}=\sup_{0<s<t}\Vert f(s)\Vert_{Y_{\mu}^{s}}.$

In order to construct the remainder terms $w_{IP}^{(\nu)},$ $w_{II}^{(\nu)}$ in (1.1) the abstract
Cauchy-Kowalewski theorem of the following type is used. The new ingre-
dient is that the topology for the convergence of the iteration sequence has
to be weaker than the one for the uniform bound, in order to handle the
hyperbolic nature of the equations at the inviscid limit and the lack of the
analyticity away from the boundary.

Lemma 3.3. Let $R>0$ and $m\in(0,1)$ be the numbers in (3.5). Assume
that there are positive constants $C_{1},$ $C_{2},$ $\sigma_{1}$ , and $\sigma_{2}$ such that $m<\sigma_{i}\leq 1,$

$i=1,2$ , and that the following statement holds: if

$- \mu\Delta 2\sup_{\leq\mu<\mu 0}\sup_{\mu_{0}}0<s<c(1-\Delta)\Vert v\Vert_{X_{\mu}(s)}(\frac{c(1_{\mu 0}--A)}{s}-1)^{m}+\sup_{0<s<\frac{c}{2}}\Vert v\Vert_{x_{\#}(s)}\leq 8R,$

$- \mu p2\sup_{\leq\mu<\mu 0}\sup_{-A}0<s<c(1_{\mu_{0}})\Vert w\Vert_{X_{\mu}(s)}(\frac{c(1_{\mu 0}-A)}{\mathcal{S}}-1)^{m}+\sup_{0<s<\frac{c}{2}}\Vert w\Vert_{x_{\oplus^{(s)}}}\leq 8R$

hold for a fixed $c\in(O, \mu_{0})$ then
(3.6)

$\Vert\Lambda(t, s, w)\Vert_{X_{\mu}^{t}},$ $\leq C_{1}(\frac{1}{\mu-\mu’}+\frac{1}{(\mu-\mu’)^{\sigma_{1}}(t-s)^{1-\sigma}1})\Vert w\Vert_{X_{\mu}(s)}+h(t, s)$ ,

(3.7)
$\Vert\Lambda(t, s, v)-\Lambda(t, s, w)\Vert_{Y_{\mu}^{t}},$

$\leq C_{2}(\frac{1}{\mu-\mu’}+\frac{1}{(\mu-\mu’)^{\sigma_{2}}(t-s)^{1-\sigma}2})\Vert v-w\Vert_{Y_{\mu}(s)},$

for $\mu_{0}/4\leq\mu’<\mu<\mu_{0}$ and $0<t<c(1-\mu/\mu_{0})$ . Here $h(t, s)$ is assumed
to be a nonnegative function satisfying

(3.8) $\int_{0}^{t}h(t_{\mathcal{S}})ds\leq(\frac{t}{\mu_{0}})^{m}R.$

Under the above assumptions there is $T_{0}\in(0, \mu_{0})$ such that there exists
a unique $\mathcal{S}$olutionw to (3.4) satisfying

$1/^{\sup_{2\leq\kappa<1}} \sup_{0<t<T_{0}(1-\kappa)}\Vert w\Vert_{X_{\kappa\mu_{0}}(t)}(\frac{T_{0}(1-\kappa)}{t}-1)^{m}+\sup_{0<t<T_{0}/2}\Vert w\Vert_{X(t)}+^{\mu}\leq 8R.$
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Proof. As usual, we consider the iteration sequence $\{w^{(k)}\}$ defined by

$w^{(0)}(t)=F(t) , w^{(k+1)}(t)= \int_{0}^{t}\Lambda(t, s, w^{(k)})ds+w^{(0)}(t)$ .

Then for a fixed $\gamma_{0}\in(0, \mu_{0})$ we set $\gamma_{k+1}=\gamma_{k}(1-(k+2)^{-2})$ and $\gamma=$

$\lim_{karrow\infty}\gamma_{k}=\gamma_{0}\Pi_{k=0}^{\infty}(1-(k+2)^{-2})>0$ . We also set

$\lambda_{k}=\sup$$\frac{1}{2}\leq\kappa<1\sup_{0<t<\gamma_{k}(1-\kappa)}\Vert w^{(k)}\Vert_{X_{\kappa\mu_{0}}(t)}(\frac{\gamma_{k}(1-\kappa)}{t}-1)^{m},$

$\eta_{k}=\sup_{0<t<\gamma k/2}\Vert w^{(k)}\Vert_{x_{\#^{\mu(t)}}},$

$\zeta_{k}=\sup$$\frac{1}{2}\leq\kappa<1\sup_{0<t<\gamma_{k}(1-\kappa)}\Vert w^{(k+1)}-w^{(k)}\Vert_{Y_{\kappa\mu_{0}}(t)}(\frac{\gamma_{k}(1-\kappa)}{t}-1)^{m}$

We will show that if $\gamma_{0}$ is sufficiently small then $\lambda_{k}\leq 4R,$ $\eta_{k}\leq 4R$ , and
$\zeta_{k}\leq\delta_{0}^{k}\zeta_{0}$ for all $k$ and for some $\delta_{0}\in(0,1)$ . First we consider $\lambda_{k}$ and $\eta_{k}$ . The
case $k=0$ is clear from the assumption on $F$ . Assume that the estimates
hold for $k$ . Then we see from $\gamma_{k+1}<\gamma_{k}$ that

$\sup$ $\sup$
$\Vert w^{(k)}\Vert_{X_{\mu}(s)}(\frac{\gamma_{k+1}(1_{\mu 0}-A)}{s}-1)^{m}+$

$\sup$ $\Vert w^{(k)}\Vert_{x_{\oplus^{(s)}}}$

$\mu\Delta 2\leq\mu\mu_{0}--\mu_{0^{-)}}$ $0<s< \frac{\gamma_{k+1}}{2}$

$\leq 8R.$

Hence we have for $1/4\leq\kappa<1$ and $0<t<\gamma_{k+1}(1-\kappa)$ ,

(3.9)

$\Vert w^{(k+1)}(t)\Vert_{X_{\kappa\mu_{0}}^{l}}$

$\leq\frac{C_{1}}{\mu_{0}}\int_{0}^{t}(\frac{1}{\kappa(s)-\kappa}+\frac{\mu}{(\kappa(s)-\kappa)-s)^{1-\sigma 1}})\Vert w^{(k)}\Vert_{X_{\kappa(s)\mu_{0}}(s)}ds+(\frac{t}{\mu_{0}})^{m}R.$

Here $\kappa(s)$ has to be chosen so that $\kappa<\kappa(s)<1$ and $s<\gamma_{k}(1-\kappa(s))$ . First
let us take $1/2\leq\kappa<1$ and $\kappa(s)=2^{-1}(1-s/\gamma_{k+1}+\kappa)$ . Then we have
from $\Vert w^{(k)}\Vert_{X_{\kappa(\epsilon)\mu_{0}}(s)}\leq(\gamma_{k}(1-\kappa(s))/s-1)^{-m}\lambda_{k}$ and $\gamma_{k+1}<\gamma_{k},$

$\int_{0}^{t}(\frac{1}{\kappa(s)-\kappa}+\frac{\mu_{0}^{1-\sigma_{1}}}{(\kappa(\mathcal{S})-\kappa)^{\sigma_{1}}(t-s)^{1-\sigma}1})\Vert w^{(k)}\Vert_{X_{\kappa(s)\mu_{0}}(s)}ds$

$\leq C\lambda_{k}(\frac{t}{\gamma_{k+1}(1-\kappa)-t})^{m}(\gamma_{k+1}+\mu_{0}^{1-\sigma_{1}}\gamma_{k+1}^{\sigma_{1}})$ .

Thus by taking $\gamma_{0}=\epsilon_{0}\mu_{0}$ with sufficiently small $\epsilon_{0}\in(0,1)$ , we get $\lambda_{k+1}\leq$

$4R$ . Next we take $\kappa=1/4$ and $\kappa(s)=2^{-1}(3/2-s/\gamma_{k+1})$ in (3.9). Then
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$\kappa(\mathcal{S})-\kappa\geq 1/4$ for $s<\gamma_{k+1}/2$ , and thus, when $0<t<\gamma_{k+1}/2$ we have

$\int_{0}^{t}(\frac{1}{\kappa(s)-\kappa}+\frac{\mu_{0}^{1-\sigma}1}{(\kappa(s)-\kappa)^{\sigma}1(t-\mathcal{S})^{1-\sigma}1})\Vert w^{(k)}\Vert_{X_{\kappa(s)\mu_{0}}(s)}ds$

$\leq C\lambda_{k}\int_{0}^{t}(1+\frac{\mu_{0}^{1-\sigma_{1}}}{(t-s)^{1-\sigma_{1}}})(\frac{s}{\gamma_{k}(1-\kappa(s))-s})^{m}ds$

$\leq C\lambda_{k}t^{m}\int_{0}^{t}(1+\frac{\mu_{0}^{1-\sigma 1}}{(t-s)^{1-\sigma_{1}}})(t-s)^{-m}ds\leq C\lambda_{k}t^{m}(t+\mu_{0}^{1-\sigma_{1}}t^{\sigma_{1}-m})$ ,

for $0<m<\sigma_{1}$ . Thus $\eta_{k+1}\leq 4R$ holds by taking $\gamma_{0}=\epsilon_{0}\mu_{0}$ with sufficiently
small $\epsilon_{0}\in(0,1)$ . By the induction on $k$ we have now achieved the desired
estimates of $\lambda_{k}$ and $\eta_{k}$ . Next we estimate $\zeta_{k}$ . Let $1/2\leq\kappa<1,0<t<$
$\gamma_{k+1}(1-\kappa)$ . By the assumption we have

$\Vert w^{(k+2)}(t)-w^{(k+1)}(t)\Vert_{Y_{\kappa\mu_{0}}^{t}}$

$\leq\frac{C_{2}}{\mu_{0}}\int_{0}^{t}(\frac{1}{\kappa(s)-\kappa}+\frac{\mu_{0}^{1-\sigma_{2}}}{(\kappa(s)-\kappa)^{\sigma}2(t-s)^{1-\sigma}2})\Vert w^{(k+1)}-w^{(k)}\Vert_{Y_{\kappa(s)\mu_{0}}(s)}ds.$

Let us take $\kappa(s)=2^{-1}(1-s/\gamma_{k+1}+\kappa)$ , which is larger than $\kappa$ and less than
1. Then the similar calculation as in the case of $\lambda_{k}$ implies that $\zeta_{k+1}\leq\delta\zeta_{k}$

for some $\delta\in(0,1)$ if $\gamma=\epsilon_{0}\mu_{0}$ with small $\epsilon_{0}$ . Collecting these, we see
that $\{w^{(k)}\}$ is a Cauchy sequence in the space endowed with the norm
$\Vert f\Vert=\sup_{1/2\leq\kappa<1}\sup_{0<t<\gamma(1-\kappa)}\Vert f\Vert_{Y_{\kappa\mu_{0}}(t)}(\gamma(1-\kappa)/t-1)^{m}$ Thus there is
a limit $w$ of $\{w^{(k)}\}$ with $\Vert w\Vert<\infty$ . Moreover, from the uniform bound of
$\lambda_{k}$ and $\eta_{k}$ we also have

$1/^{\sup_{2\leq\kappa<1}} \sup_{0<t<\gamma(1-\kappa)}\Vert w\Vert_{X_{\kappa\mu_{0}}(t)}(\frac{\gamma(1-\kappa)}{t}-1)^{m}+\sup_{0<t<\gamma/2}\Vert w\Vert_{x_{*}(t)}\leq 8R.$

It is not difficult to see that $w$ satisfies (3.4) for each $0<t<\gamma/2$ . The
uniqueness of solutions satisfying the above estimate is proved by using the
topology of $Y_{\mu}^{t}$ and the details are omitted here. The proof is complete.
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