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1. INTRODUCTION

Let $N$ be the exterior of the 3 chain link $C_{3}$ (Figure 1) in the three sphere $S^{3}$ . Gordon
and Wu called $N$ the magic manifold, because they found that $N$ has many interesting
non-hyperbolic fillings and this particular manifold plays a significant role for the study
of non-hyperbolic filhngs for cusped hyperbolic 3-manifolds. The magic manifold $N$ is a
hyperbolic surface bundles over the circle, and $N$ has the smallest known volume among
orientable 3-cusped hyperbolic 3-manifolds. Martelli and Petronio classified all the non-
hyperbolic Dehn fillings of $N$ in [18]. Let $N(r)$ be the manifold obtained from $N$ by
Dehn filling one cusp along the slope $r\in \mathbb{Q}$ . The Whitehead link exterior and the
Whitehead sister link $(i.e, (-2,3,8)$-pretzel link) exterior are homeomorphic to $N(1)$

and $N( \frac{3}{-2})$ respectively. It was proved by Agol [2] that the smallest volume among
orientable 2-cusped hyperbolic 3-manifold is achieved by either $N(1)$ or $N( \frac{3}{-2})$ . In the
recent work of Gabai, Meyerhoff and Milley, the magic manifold $N$ plays a central role
for the minimizing problem on volumes of hyperbohc 3-manifolds. The main characters
in this paper are manifolds $N,$ $N(1),$ $N( \frac{3}{-2})$ and $N( \frac{1}{-2})$ . The last 2-cusped 3-manifold
$N( \frac{1}{-2})$ is homeomorphic to the exterior of the $6_{2}^{2}$ link (Figure 1).

In [11, 12, 13, 14], we investigated the monodromies of fibrations of $N$ extensively for
the study of the minimal dilatations and their asymptotic behaviors. We found that
$N$ provides many interesting families of pseudo-Anosovs with small dilatations. In this
paper, we give an expository account of results of [11, 12, 13, 14]. All the results in
the paper are contained in those papers, and hence this paper has no new results. The
purpose of this paper is to describe “places in $N$” where the pseudo-Anosovs with the
smallest dilatations or with the smallest known dilatations “live” The main tool to do
this is a fibered face of the Thurston norm ball for $N.$

Let $\Sigma_{g,n}$ be an orientable surface of genus $g$ with $n$ punctures, and let $\Sigma_{g}=\Sigma_{g,0}$ be a
closed surface of genus $g$ . We consider the mapping class group Mod $(\Sigma)$ of $\Sigma=\Sigma_{g,n}$ , that

FIGURE 1. (from left to right) 3 chain link $C_{3},$ $(-2,3,8)$-pretzel link, link
$6_{2}^{2}$ , Whitehead hnk.
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is the group of isotopy classes of orientation preserving homeomorphisms on $\Sigma$ . According
to the work of Nielsen and Thurston, elements of Mod $(\Sigma)$ are classified into three types:
periodic, reducible, pseudo-Anosov. The last type, pseudo-Anosovs have many interesting
and rich properties. The hyperbolization theorem by Thurston asserts that $\phi\in$ Mod$(\Sigma)$

is pseudo-Anosov if and only if the mapping torus $\mathbb{T}(\phi)$ of $\phi$ is a hyperbohc 3-manifold
with finite volume.

Each pseudo-Anosov $\phi\in$ Mod$(\Sigma)$ has a representative $\Phi$ : $\Sigmaarrow\Sigma$ , called a pseudo-
Anosov homeomorphism, which satisfies the following: there exists a constant $\lambda>1$ and
there exists a pair of transverse measured foliations $\mathcal{F}^{s}$ and $\mathcal{F}^{u}$ such that

$\Phi(\overline{J^{s}-})=\frac{1}{\lambda}\mathcal{F}^{s}$ and $\Phi(\mathcal{F}^{u})=\lambda P^{l}.$

The constant $\lambda=\lambda(\Phi)$ is called the dilatation of $\Phi$ , and $\overline{J^{-S}},$ $\mathcal{F}^{u}$ are called the stable,
unstable foliation (or invariant foliations) of $\Phi$ . It is known that $\lambda(\Phi)$ does not depend
on the choice of a pseudo-Anosov homeomorphism $\Phi\in\phi$, and hence the dilatation $\lambda(\phi)$

of $\phi$ is defined to be $\lambda(\Phi)$ . We call the quantities

ent $(\phi)=\log\lambda(\phi)$ and Ent $(\phi)=|\chi(\Sigma)|\log\lambda(\phi)$

the entropy and normalized entropy of $\phi$ , where $\chi(\Sigma)$ is the Euler characteristic of $\Sigma.$

We fix $\Sigma$ and consider the set of entropies defined on $\Sigma$ ;

$\{$ent $(\phi)|\phi\in$ Mod$(\Sigma)$ is $pseudo-Anosov\}\subset \mathbb{R}.$

It is proved by Ivanov that this set is closed and discrete. In particular there exists a
minimum. We denote by $\delta(\Sigma)>1$ , the minimal dilatation of pseudo-Anosov elements
defined on $\Sigma.$

Problem 1.1 (Minimal dilatation problem). Determine the explicit value of $\delta(\Sigma)$ . Iden-
tify a pseudo-Anosov element in Mod $(\Sigma)$ which achieves $\delta(\Sigma)$ .

Let us set $\delta_{g,n}=\delta(\Sigma_{g,n})$ and $\delta_{g}=\delta_{g,0}$ . The explicit values of $\delta_{g}$ ’s are known for the only
cases $g=1,2$ . It is known by lPenner [22] that $\log\delta_{g}\wedge\frac{1}{g}$ . After the work of Penner,
several authors examined the asymptotic behaviors of the minimal dilatations on surfaces
varying topology, see [9, 1, 13, 20, 10, 24] and Table l(lst column).

Problem 1.1 has several aspects, and there are many related questions.

Question 1.2 ([21] for (4)).
(1) Is a pseudo-Anosov element $\phi\in$ Mod $(\Sigma)$ which achieves $\delta(\Sigma)$ unique up to con-

jugate 2

(2) Identify the hyperbolic fibered 3-manifold $T(\phi)$ of such a minimizer $\phi.$

(3) What is the minimal polynomial of $\delta(\Sigma)^{i)}$ (Note: The dilatation $\lambda(\phi)$ of a pseudo-
Anosov $\phi$ is known to be an algebmic integer.)

(4) Do $\lim_{garrow\infty}g\log\delta_{g},\lim_{garrow\infty}g\log\delta_{g}^{+},\lim_{narrow\infty}n\log\delta_{0,n}$ and $\lim_{narrow\infty}n\log\delta_{1,n}$ exist2 What are the

values 2

(5) Given $g\geq 2,$ does $\lim_{narrow\infty}\frac{n\log\delta_{g,n}}{\log n}$ estst t) What is its valu$e^{Q}$

The smallest known upper bounds on Question 1.2(4)(5) are shown in Table 1(2nd
column). We shall see that all famihes of pseudo-Anosovs $\phi$ ’s to give the upper bounds
in Table 1(2nd column) ‘come from’ $N$ . More precisely, these pseudo-Anosov mapping

lLet $A_{g}$ and $B_{g}$ be functions on $g$ . We write $A_{g^{\vee}}\wedge B_{g}$ if there exists a constant $c$ , independent of $g,$

such that $\underline{A}_{4}c<B_{g}<cA_{g}.$
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TABLE 1. asymptotic behaviors of minimal dilatations.

(d)$\Delta$

(3/-2)

(1) (2)

(1/2,1,1/2)

(3) (4) (5)

FIGURE 2. (left) Thurston norm ball $U_{N}$ for $N$ . (right) intersection of $\triangle$

and hnear section $S_{*}(r)$ . (1) $\Delta\cap S_{\beta}(\frac{1}{-2})$ (see (c) in the figure) and $\triangle\cap S_{\beta}(\frac{3}{-2})$

(see (b) in the figure); (2) $\triangle\cap S_{\gamma}(4)$ (see $(d)$ ) and $\Delta\cap S_{\gamma}(-6)$ (see $(a)$ ) $;(3)$

$\Delta\cap S_{\gamma}(\infty);(4)\triangle\cap S_{\alpha}(1)=\triangle\cap S_{\beta}(1)=\triangle\cap S_{\gamma}(1);(5)\triangle\cap S_{\beta}(-1)$.

classes $\phi$ ’s have the following property: The mapping torus $\mathbb{T}(\phi)$ is homeomorphic to $N,$

or $T(\phi)$ is obtained from $N$ by Dehn filling cusps along the boundary slopes of a fiber of
N. $(i.e, N is a$ parent manifold $of \mathbb{T}(\phi).$ )

Let $\delta_{g}^{+}$ be the minimal dilatation of pseudo-Anosovs with orientable invariant foliations
defined on $\Sigma_{g}$ . (Obviously $\delta_{g}\leq\delta_{g}^{+}.$ ) The exphcit value of $\delta_{g}^{+}$ is known for a112 $\leq g\leq 8$

except for $g=6[1,9,13,16,26]$ . (See Table 5(3rd column).) The minimal dilatation
$\delta(D_{n})$ on an $n$-punctured disk $D_{n}$ is determined for a113 $\leq n\leq 8[7,8,15,17]$ . (See
Table 10(3rd column). $)$ These minimizers come from $N$ in the same sense as above.

The paper is organized as follows. In Section 2, we first review the fibered face theory
which is quite useful to find families of pseudo-Anosovs with small dilatations. Next, we
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describe the properties of fibrations on both $N$ and manifolds $N(r)’ s$ . In Section 3, we
examines the asymptotic behaviors of minimal dilatations given in Table 1. Especially we
explain how the constants in the upper bounds of Table 1(2nd column) appear. These
constants are related to an invariant $\min$ Ent” of hyperbolic surface bundles over the
circle. Figure $2(1eft)$ shows the Thurston norm ball of $N.$ $A$ particular fibered face $\Delta$ is
shaded in the figure. By using Figure 2(right), we shall illustrate places in $N$ where the
pseudo-Anosovs with the smallest dilatations or with the smallest known dilatations live.
(For the definition of the linear sections $S_{\beta}(r)$ etc, see Section 2.2. See also Figure 3.) We
conclude the paper with conjectures and questions.

2. PRELIMINALIES

2.1. Basic facts on fibered face theory. Let $M$ be an oriented, hyperbohc 3-manifold
possibly with boundary $\partial M$ . We recall the Thurston norm $\Vert\cdot\Vert$ : $H_{2}(M, \partial M;\mathbb{R})arrow \mathbb{R}.$

See [23] fore more details. The Thurston norm $\Vert\cdot\Vert$ has the property such that for any
integral class $a\in H_{2}(M, \partial M;\mathbb{R})$ ,

$\Vert a\Vert=\min_{F}\{-\chi(F)\},$

where the minimum is taken over all oriented surfaces $F$ embedded in $M$ , satisfying
$a=[F]$ , with no components of non-negative Euler characteristic. The surface $F$ which
realizes this minimum is called a minimal representative of $a$ , and it is denoted by $F_{a}.$

For a rational number $r$ and an integral class $a\in H_{2}(M, \partial M;\mathbb{R}),$ $\Vert ra\Vert$ is defined to be
$\Vert ra\Vert=|r|\Vert a\Vert$ . The norm $\Vert\cdot\Vert$ defined on rational classes admits a unique continuous
extension to $H_{2}(M, \partial M;\mathbb{R})$ which is linear on the ray though the origin. The unit ball
$U_{M}=\{a\in H_{2}(M, \partial M;\mathbb{R})|\Vert a\Vert\leq 1\}$ is a compact, convex polyhedron.

Suppose that $M$ is a surface bundles over the circle. We now recall Thurston’s descrip-
tion of the relation between $\Vert\cdot\Vert$ and fibrations of $M$ . Let $\Omega$ be a top dimensional face
on $\partial U_{M}$ . We denote the cone over $\Omega$ with the origin by $C_{\Omega}$ , and denote its interior by
int $(C_{\Omega})$ . In [23], Thurston proved that if we let $F$ be a fiber of a fibration of $M$ , then
there exists a top dimensional face $\Omega$ such that $[F]$ is an integral class of int $(C_{\Omega})$ . On the
other hand, for any integral class $a\in int(C_{\Omega})$ , a minimal representative $F_{a}$ becomes a
fiber of the fibration associated to $a$ . For this reason, such a face $\Omega$ is called a fibered face
and an integral class $a\in int(C_{\Omega})$ is called a fibered class. This property tells us that if
$M$ is a hyperbolic 3-manifold which is a surface bundles over the circle having the second
Betti number more than 1, then it admits an infinite family of fibrations.

If a fibered class $a\in int(C_{\Omega})$ is primitive, then the fibration associated to $a$ has a
connected fiber represented by $F_{a}$ . Since $M$ is hyperbolic, the mapping class $\phi_{a}=[\Phi_{a}]$

of the monodromy $\Phi_{a}$ : $F_{a}arrow F_{a}$ is pseudo-Anosov. The dilatation $\lambda(a)$ and entropy
ent $(a)=\log\lambda(a)$ are defined as the dilatation $\lambda(\phi_{a})$ and entropy ent $(\phi_{a})$ of $\phi_{a}$ respectively.

We tum to the work of Fried, Matsumoto and McMullen. The entropy defined on
primitive fibered classes is extended to rational classes as follows: For a rational number $r$

and a primitive fibered class $a$ , the entropy ent $(ra)$ is defined by $\frac{1}{|r|}$ ent $(a)$ . Let int $(C_{\Omega}(\mathbb{Q}))$

(resp. int $(C_{\Omega}(\mathbb{Z}))$ ) be the set of rational classes (resp. integral classes) in int $(C_{\Omega})$ . Fried
proved that $\frac{1}{ent}$ : int $(C_{\Omega}(\mathbb{Q}))arrow \mathbb{R}$ is concave [6], and in particular ent: int $(C_{\Omega}(\mathbb{Q}))arrow \mathbb{R}$

admits a unique continuous extension

ent: int $(C_{\Omega})arrow \mathbb{R}.$
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Moreover, Fried proved the following: The restriction of ent to the open fibered face
int $(\Omega)$ has the property such that ent $(a)$ goes to $\infty$ as $a\in int(\Omega)$ goes to a point on $\partial\Omega.$

Thus we have a continuous function
Ent $=\Vert\cdot\Vert$ ent $(\cdot):int(C_{\Omega})arrow \mathbb{R}.$

We call Ent $(a)$ the $no7$malized entropy of $a\in int(C_{\Omega})$ . By definition of ent, we see that
Ent is constant on each ray in int $(C_{\Omega})$ through the origin. McMullen developed a theory
of the Teichmuller polynomial $P_{\Omega}$ for a fibered face $\Omega$ of hyperbolic surface bundles over
the circle, from which one can compute $\lambda(a)$ of each $a\in int(C_{\Omega})$ , see [21].

By Matsumoto [19] and by McMullen [21], it was proved that $\frac{1}{ent}$ on int $(\Omega)$ is strictly
concave. This implies that ent is strictly convex on int $(\Omega)$ because ent is positive valued.
Since $\Vert\cdot\Vert$ is constant $(=1)$ on a fibered face $\Omega$ , the normalized entropy Ent is strictly
convex on int $(\Omega)$ . Thus Ent $|_{int(\Omega)}$ : int $(\Omega)arrow \mathbb{R}$ has a minimum at a unique point in
int $(\Omega)$ . In other words, Ent : int $(C_{\Omega})arrow \mathbb{R}$ admits a minimum at a unique ray through
the origin. We denote this minimum by $\min$ Ent $(M, \Omega)$ . We also denote by $\min$ Ent $(M)$ ,
$\min_{\Omega}\{\min$ Ent $(M, \Omega)\}$ , where $\Omega$ is taken over all fibered faces for $M.$

2.2. Properties of fibrations on the magic manifold. In this section, we collect
particular properties on $N$ which are needed in the rest of the paper.

Let $K_{\alpha},$ $K_{\beta}$ and $K_{\gamma}$ be the components of the 3 chain link $C_{3}$ . They bound the oriented
disks $F_{\alpha},$ $F_{\beta}$ and $F_{\gamma}$ with 2 holes. Let us set $\alpha=[F_{\alpha}],$ $\beta=[F_{\beta}],$ $\gamma=[F_{\gamma}]\in H_{2}(N, \partial N;\mathbb{Z})$ .
The Thurston (unit) ball $U_{N}$ is the the parallelepiped with vertices $\pm\alpha,$ $\pm\beta,$ $\pm\gamma,$ $\pm(\alpha+$

$\beta+\gamma)$ , see Figure 2(left). Every top dimensional face on $\partial U_{N}$ is a fibered face by the
symmetries of $H_{2}(N, \partial N)$ . The set $\{\alpha, \beta, \gamma\}$ is a basis of $H_{2}(N, \partial N;\mathbb{Z})$ , and $x\alpha+y\beta+z\gamma\in$

$H_{2}(N, \partial N)$ is denoted by $(x, y, z)$ .
We denote by $T_{\alpha}$ , the torus which is the boundary of a regular neighborhood of $K_{\alpha}.$

We define the tori $T_{\beta}$ and $T_{\gamma}$ in the same manner. For a primitive integral class $a=$
$(x, y, z)\in H_{2}(N, \partial N)$ , let us set $\partial_{\alpha}F_{a}=\partial F_{a}\cap T_{\alpha}$ which consists of the parallel simple
closed curves on $T_{\alpha}$ . We define $\partial_{\beta}F_{a}$ and $\partial_{\gamma}F_{a}$ in the same manner.

Pick a fibered face $\triangle$ on $\partial U_{N}$ as in Figure 2(left) with vertices $(1, 0,0),$ $(1,1,1),$ $(0,1,0)$

and $(0,0, -1)$ . The open face int $(\triangle)$ is written by

int$(\triangle)=\{(x, y, z)|x+y-z=1, x>0, y>0, x>z, y>z\}.$

The Thurston norm of $(x, y, z)\in int(C_{\triangle})$ is given by $x+y-z.$
Proposition 2.1 ([11]). Let $a=(x, y, z)$ be a $pr\eta$mitive fibered class in int $(C_{\Delta})$ .

(1) The number of the boundary components $\#(\partial F_{a})$ of $F_{a}$ is given by
$\#(\partial F_{a})=gcd(x, y+z)+gcd(y, z+x)+gcd(z, x+y)$ ,

where $gcd(O, w)$ is defined by $|w|$ . More precisely
$\#(\partial_{\alpha}F_{a})=gcd(x, y+z), \#(\partial_{\beta}F_{a})=gcd(y, z+x), \#(\partial_{\gamma}F_{a})=gcd(z, x+y)$ .

(2) $\lambda(a)=\lambda_{(x,y,z)}$ equals the largest real root of
$f_{(x,y,z)}(t)=t^{x+y-z}-t^{x}-t^{y}-t^{x-z}-t^{y-z}+1,$

where $f_{(x,y,z)}(t)$ is the specialization of the Teichm\"uler polynomial $P_{\Delta}$ at $(x, y, z)$ .
(3) The inverse $\Phi_{(x,y,z)}^{-1}$ of $\Phi_{(x,y,z)}:F_{(x,y,z)}arrow F_{(x,y,z)}$ is conjugate to the monodromy

$\Phi_{(y,x,z)}$ : $F_{(y,x,z)}arrow F_{(y,x,z)}$ of the fibration on $N$ associated to $(y, x, z)\in int(C_{\Delta})$ .
In particular $\lambda_{(x,y,z)}=\lambda_{(y,x,z)}.$
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(4) $\min$ Ent$(N)= \min$ Ent$(N, \Delta)=$ Ent $(( \frac{1}{2}, \frac{1}{2},0))=2\log(2+\sqrt{3})\approx 2.6339.$

(5) The stable foliation $\overline{J^{-}}_{a}$ of $\Phi_{a}:F_{a}arrow F_{a}$ has the property such that each component
of $\partial_{\alpha}F_{a},$ $\partial_{\beta}F_{a}$ and $\partial_{\gamma}F_{a}$ has $\frac{x}{gcd(x,y+z)}$ prongs, $\ovalbox{\tt\small REJECT} gcd(y,x+z)$ prongs and $\frac{x+y-2z}{gcd(z,x+y)}$ prongs
respectively. Moreover $\overline{J_{a}\prime}$ does not have singularities in the interior of $F_{a}.$

(6) $\mathcal{F}_{a}$ is orientable if and only if $x$ and $y$ are even and $z$ is odd.

We see that the slope of $\partial_{\alpha}F_{a}$ $(resp. \partial_{\beta}F_{a}, \partial_{\gamma}F_{a})$ is given by $b_{\alpha}(a)=y_{\frac{+z}{-x}}$ (resp. $b_{\beta}(a)=$

$\frac{z+x}{-y},$ $b_{\gamma}(a)=\underline{x}+1-z)$ . We call each of $b_{\alpha}(a),$ $b_{\beta}(a),$ $b_{\gamma}(a)$ the boundary slope of $a.$

By using the formula in Proposition 2.1, we recover the similar formula for any prim-
itive fibered classes $a\in H_{2}(N, \partial N)$ . This is because there is a homeomorphism $h$ :
$(S^{3},C_{3})arrow(S^{3},C_{3})$ which sends $K_{\alpha},$ $K_{\beta},$ $K_{\gamma}$ to $K_{\beta},$ $K_{\gamma},$ $K_{\alpha}$ respectively, and $H_{2}(N, \partial N)$

has symmetries by the isomorphism $h_{*}:H_{2}(N, \partial N)arrow H_{2}(N, \partial N)$ of order 3 induced
from $h.$

It is known by [18] that $N(r)$ is hyperbohc if and only if $r\in \mathcal{H}yp=\mathbb{Q}\backslash \{-3, -2, -1,0\}.$

We now recall the description of fibered classes of the hyperbolic Dehn filling $N(r)’ s$ . Let
$N(r)$ be the manifold obtained from $N$ by Dehn filling the cusp specified by, say $T_{\beta}$ , along
the slope $r\in \mathbb{Q}$ or $r= \frac{1}{0}(=\infty)$ . Then, there exists a natural injection

(1) $\iota_{\beta}$ : $H_{2}(N(r), \partial N(r))arrow H_{2}(N, \partial N)$

whose image equals the linear section $S_{\beta}(r)$ , where

$S_{\beta}(r)=\{(x,y, z)\in H_{2}(N, \partial N)|-ry=z+x\},$

see [11, Proposition 2.11]. Choose $r\in \mathcal{H}yp$, and assume that $a\in S_{\beta}(r)={\rm Im}\iota_{\beta}$ is a
fibered class in $H_{2}(N, \partial N)$ . Then, $\overline{a}=\iota_{\beta}^{-1}(a)\in H_{2}(N(r), \partial N(r))$ is also a fibered class of
$N(r)$ . We sometimes denote $N(r)$ by $N_{\beta}(r)$ when we need to specify the cusp which is
filled.

Similarly, when $N(r)$ is the manifold obtained from $N$ by Dehn filhng the cusp specified
by $T_{\alpha}$ or $T_{\gamma}$ along the slope $r$ , one has natural injections,

$\iota_{\alpha}$ : $H_{2}(N(r), \partial N(r))arrow H_{2}(N, \partial N)$ ,
$\iota_{\gamma}$ : $H_{2}(N(r), \partial N(r))arrow H_{2}(N, \partial N)$

such that their images are

$S_{\alpha}(r)=\{(x, y, z)\in H_{2}(N, \partial N)|-rx=y+z\},$

$S_{\gamma}(r)=\{(x, y, z)\in H_{2}(N, \partial N)|-rz=x+y\}.$

We may denote by $N_{\alpha}(r)$ or $N_{\gamma}(r)$ , the manifold $N(r)$ in this case. This description
enables us to compute the Thurston norm of $N(r)$ , especially the Thurston unit ball and
fibered faces. For more detailed computation, see [11]. Figure 3 illustrates the intersection
of the Thurston norm ball $U_{N}$ and the hnear section $S_{*}(r),$ $*\in\{\alpha, \beta, \gamma\}.$

Remark 2.2 (Lemmas 3.28 and 5.2 in [11]). Take $r\in \mathcal{H}yp$, and let $\overline{a}\in H_{2}(N(r), \partial N(r))$

be a primitive integral class. If $r\neq 1$ , then $\#(\partial F_{\overline{a}})$ is bounded by a constant from above
which depends on $r$ . On the other hand, in the case $r=1$ , the genus of $F_{\overline{a}}$ is always equal
to 1, and hence there exists no upper bound of $\#(\partial F_{\overline{a}})$ .
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FIGURE 3. lst row (i) $U_{N}\cap S_{\beta}(r)$ , 2nd row (ii) $U_{N}\cap S_{\gamma}(r)$ and 3rd row
(iii) $U_{N}\cap S_{\alpha}(r)$ . $[(a)r\in(-\infty, -2),$ $(b)r\in(-2, -1),$ $(c)r\in(-1,0),$ $(d)$

$r\in(O, \infty).]$ [the fibered face $\triangle$ is shaded in the figure.]

2.3. Entropy equivalence on the manifolds $N(r)’ s$ . The notation “entropy equiva-
lence” on fibered 3-manifolds was introduced in [11]. By using this equivalence relation,
we will see in Theorem 2.3 that there are infinitely many entropy equivalent pairs among
$N(r)’ s$ . The particular pair is $N( \frac{3}{-2})$ and $N( \frac{1}{-2})$ . They are not homeomorphic to each
other, but they have common properties on the normalized entropy.

We say that 3-manifolds $M$ and $M’$ are Thurston norm equivalent, denoted by $M\sim TM’,$

if there exists an isomorphism $f$ : $H_{2}(M, \partial M;\mathbb{Z})arrow H_{2}(M’, \partial M’;\mathbb{Z})$ which preserves the
Thurston norm, i.e, $\Vert a\Vert=\Vert f(a)\Vert$ for any $a\in H_{2}(M, \partial M;\mathbb{Z})$ . We call such $f$ the Thurston
norm preserving isomorphism.

Let $(M, \Omega)$ and $(M’, \Omega’)$ be pairs of 3-manifolds $M,$ $M’$ and their fibered faces $\Omega,$

$\Omega’$ respectively. Possibly $M\simeq M’$ . Then $(M, \Omega)$ and $(M’, \Omega’)$ are entropy equivalent,
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denoted by $(M, \Omega)\sim(M’, \Omega’)$ , if there exists a Thurston norm preserving isomorphism
$ent$

$f$ : $H_{2}(M, \partial M;\mathbb{Z})arrow H_{2}(M’, \partial M’;\mathbb{Z})$ satisfying the following.
$\bullet$ $a\in int(C_{\Omega}(\mathbb{Z}))$ if and only if $f(a)\in int(C_{\Omega’}(\mathbb{Z}))$ .
$\bullet$ ent$(a)=$ ent$(f(a))$ for any $a\in int(C_{\Omega}(\mathbb{Z}))$ .

The second bullet implies that ent $(a)=$ ent$(f(a))$ for any $a\in int(C_{\Omega})$ since ent :
int $(C_{\Omega}(\mathbb{Q}))arrow \mathbb{R}$ admits a unique continuous extension. Thus if $(M, \Omega)ent\sim(M’, \Omega’)$ ,
then $\min$ Ent $(M, \Omega)=\min$ Ent $(M’, \Omega’)$ .

Fibered 3-manifolds $M$ and $M’$ are entropy equivalent, denoted by $M\sim M’$ , if there
exists a Thurston norm preserving isomorphism $f$ : $H_{2}(M, \partial M;\mathbb{Z})arrow H_{2}(M’, \partial M’;\mathbb{Z})ent$

satisfying the following.
$\bullet$ $a\in H_{2}(M, \partial M;\mathbb{Z})$ is a fibered class if and only if $f(a)\in H_{2}(M’, \partial M’;\mathbb{Z})$ is a

fibered class.
$\bullet$ Given a fibered face $\Omega$ of $M$ , we have ent$(a)=$ ent$(f(a))$ for any $a\in int(C_{\Omega}(\mathbb{Z}))$ .

If $M\sim M’$ , then $\min$ Ent$(M)= \min$ Ent$(M’)$ .
ent

We turn to the manifolds $N(r)’ s$ . Let $p\in \mathbb{N}$ and $q\in \mathbb{Z}$ be coprime such that $r=Rq\in$

$\mathcal{H}yp$ . Then $N(r)$ has two kinds of fibered faces, $A$ -face and $S$-face, see [11, Section 2.5].
When $r\in(-2,0)$ , the Thurston norm ball of $N(r)$ is a parallelogram and every fibered
face is an $A$-face. When $r\in(-\infty, -2)\cup(0, \infty)$ such that $|q|\neq 1$ $($ resp. $|q|=1)$ , the
Thurston norm ball for $N(r)$ is a hexagon (resp. rectangle) having two $S$-faces and four A-
faces (resp. having two $S$-faces and two $A$-faces). cf. Figure 3. One can show that any two
$S$-faces of $N(r)$ are entropy equivalent, and any two $A$-faces of $N(r)$ are entropy equivalent
[11, Lemma 2.22]. In the case $r=1$ , by the symmetry of the Whitehead link exterior $N(1)$

itself, one can see that an $S$-face of $N(1)$ and an $A$-face of $N(1)$ are entropy equivalent
[11, Proposition 3.26]. Moreover the fibered class $(1, 1, -2)\in H_{2}(N_{\gamma}(1), \partial N_{\gamma}(1))$ achieves
$\min$ Ent$(N(1))$ [ $11$ , Corollary 3.27];

$\min$ Ent$(N(1))=$ Ent $(\overline{(1,1,-2)})=2\log\delta(D_{4})\approx 1.6628.$

An $S$-face of $N(r)$ may not be entropy equivalent to an $A$-face of $N(r)$ for other $r.$

Theorem 2.3 (Theorem 2.26 in [11]). Let $p\in \mathbb{N}$ and $q\in \mathbb{Z}$ be as above.
(1) Suppose that $Rq\in(-\infty, -2)$ and $p+2q\neq 1$ . Then $(N(_{q}^{2}), \Omega_{S})_{ent}\sim(N(^{\underline{2}_{L}+l}-q), \Omega_{S})$.
(2) Suppose that $Rq\in(-\infty, -1)$ and $|q|\neq 1$ . Then $(N(_{q}^{e}), \Omega_{A})_{ent}\sim(N(-), \Omega_{A})q.$

(3) Suppose that $\epsilon q\in(-\infty, -1),$ $p+2q\neq 1$ and $|q|\neq 1$ . Then $N(_{q_{ent}q}^{e)\sim N(^{-2-})}-LR.$

In Proposition 2.4, we will see that the entropy function on $N$ has symmetries. This
property is a key for the proof of Theorem 2.3. By Theorem 2.3,

$(N(-6)),$ $\Omega_{S})_{ent}\sim(N(4), \Omega_{S})$ and $N( \frac{3}{-2})_{ent}\sim N(\frac{1}{-2})$ .

Table 2 exhibits the computation of $\min$ Ent for these manifolds. Readers may notice
that we encountered these numbers $\min$ Ent in the upper bounds of Table 1 (2nd column).
It tums out that the both $\min$ Ent $(N(r), \Omega_{A})$ for $r= \frac{3}{-2},$ $\frac{1}{-2}$ and $\min$ Ent $(N(r), \Omega_{S})$ for
$r=-6,4$ are achieved by fibered classes for $N(r)$ , see Table 2. The topological types of
the fibers are also shown in the table. $(e.g. \overline{a}=(3,3,1)\in H_{2}(N_{\gamma}(-6), \partial N_{\gamma}(-6))$ achieves
$\min$ Ent $(N(-6), \Omega_{S})$ , and $F_{\overline{a}}\simeq\Sigma_{2,2}.$)
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TABLE 2. $\min$ Ent for some $N(r)’ s$ . [note: the technique in [11] does not
work for the computation of $\min$ Ent $(N(r), \Omega_{A})$ in the case $r=-6,4.$ ]

2.4. Mysterious symmetries of entropy function on the magic manifold. The
entropy function on $N$ has mysterious symmetries not coming from the symmetries of $N$

itself, which we will recall below.
We take $(x, y, z)\in\triangle.$ $($ Hence $x+y-z=1.)$ Let us denote $(x, y, z)$ by $[x, y]$ . Then

the open face int $(\triangle)$ is written by

int$(\triangle)=\{[x, y]|0<x<1,0<y<1\}.$

On the other hand if $(x, y, z)\in int(C_{\Delta})$ , then

$(y-z, y, y-x), (y-z, x-z, -z), (x, x-z, x-y)\in int(C_{\Delta})$ .
These four classes have the same Thurston norm. Intriguingly, they have the same di-
latation!

Proposition 2.4 (Lemma 2.5 in [11]). The four classes
$(x, y, z), (y-z, y, y-x), (y-z, x-z, -z), (x, x-z, x-y)\in int(C_{\triangle})$

have the same dilatation. In particular,
$[ \frac{x}{x+y-z}, \frac{y}{x+y-z}], [\frac{y-z}{x+y-z}, \frac{y}{x+y-z}], [\frac{y-z}{x+y-z}, \frac{x-z}{x+y-z}], [\frac{x}{x+y-z}, \frac{x-z}{x+y-z}]\in int(\triangle)$

have the same dilatation. (See Figure 4(lefl).)

We note that the topological types of $F_{(x,y},{}_{z)}F_{(y-z,y},{}_{y-x)}F_{(y-z,x-z},{}_{-z)}F_{(x,x-z,x-y)}$ may be
different. $(e.g. F_{(6,5,4)}\simeq\Sigma_{0},{}_{9}F_{(1,5,-1)}\simeq\Sigma_{1},{}_{7,(1,2,-4)}F\simeq\Sigma_{3,3} and F_{(6,2,1)}\simeq\Sigma_{2,5}.)$ On the
other hand by Proposition 2.1 (3), any two classes $a=[x, y],\tilde{a}\in[y, x]\in int(\Delta)\sim$ have the
same dilatation. This together with Proposition 2.4 says that 8 classes $b_{0},$ $b_{0},$

$\cdots,$
$b_{3},\tilde{b_{3}}\in$

$int(\triangle)$ as in Figure 4(right) have the same dilatation.

3. ASYMPTOTIC BEHAVIORS OF MINIMAL DILATATIONS

3.1. Sequence $\{\delta_{g}\}_{g\geq 2}$ . Let $\Phi$ : $Farrow F$ be the monodromy of a fibration on $N$ , and
let $\phi=[\Phi]$ . Then the fibration extends naturally to a fibration on the closed manifold
obtained from $N$ by Dehn filling three cusps along boundary slopes of $F$ . Also, $\Phi$ extends
to the monodromy $\hat{\Phi}$ : $\hat{F}arrow\hat{F}$ of the extended fibration, where the extended flber $\hat{F}$ is
obtained from $F$ by filing holes. Suppose that the stable foliation $\mathcal{F}$ of $\Phi$ has the property
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FIGURE 4. $b_{0}=[ \frac{x}{x+y-z}, \frac{y}{x+y-z}],$ $b_{1}=[ \frac{y-z}{x+y-z}, \frac{y}{x+y-z}],$ $b_{2}=[ \frac{y-z}{x+y-z}, \frac{x-z}{x+y-z}],$

$b_{3}=[ \frac{x}{x+y-z}, \frac{x-z}{x+y-z}]\in int(\triangle)$ and $\tilde{b_{1}}\in int(\triangle)$ .

such that any boundary component of $F$ has no 1 prong. Then $\mathcal{F}$ extends canonically to
the stable foliation $\hat{\mathcal{F}}$ of $\hat{\Phi}$ , and $\hat{\phi}=[\hat{\Phi}]$ becomes pseudo-Anosov (including Anosov) with
the same dilatation as that of $\phi$ . We consider the set $\mathcal{M}$ of (pseudo-Anosov) mapping
classes coming from fibrations of $N$ with this condition.

Now, let us denote by $\hat{\mathcal{M}}$ , the set of extensions $\hat{\phi}$ of $\phi\in \mathcal{M}$ defined on the closed
surfaces. Let $\hat{\delta}_{g}$ be the minimum among dilatations of elements in $\hat{\mathcal{M}}\cap$ Mod$(\Sigma_{g})$ . Clearly
$\delta_{g}\leq\hat{\delta}_{g}$ . The equahty holds when $g=2$ . (In fact $\delta_{2}$ is achieved by $\hat{\phi}_{a}\in\hat{\mathcal{M}}\cap$ Mod$(\Sigma_{2})$

when $a=(2,2, -1)$ or (2, 6, 1). $)$

The set $\mathcal{M}$ is large in the following sense. For any $r\in \mathcal{H}yp\backslash \{1\}$ , there exist infinitely
many primitive fibered classes $a_{n}=a_{n}(r)\in S_{\beta}(r)$ such that $\phi_{a_{n}}\in \mathcal{M}$ and the genus of $F_{a_{n}}$

goes to $\infty$ as $n$ goes to $\infty$ . In [11], we addressed Question 1.2(4) (about the asymptotic
behavior of $g\log\delta_{g}$ ) in $\hat{\mathcal{M}}.$

Theorem 3.1 (Theorem 1.4 in [11]).
(1) We have $\lim_{garrow\infty}g\log\hat{\delta}_{g}=\log(\frac{3+\sqrt{5}}{2})$ .

(2) For large $g,$
$\hat{\delta}_{g}$ is achieved by the monodromy of some $\Sigma_{g}$ -bundle over the circle

obtained from either $N( \frac{3}{-2})$ or $N( \frac{1}{-2})$ by Dehn filling both cusps.

More precisely, one can show the following: For large $g$ such that $g\equiv 0,1,5,6,7,9$

$(mod 10)$ $(resp. such that g\equiv 3,8(mod 10)$ ), $\hat{\delta}_{g}$ is achieved by the monodromy of
some $\Sigma_{g}$-bundle over the circle obtained from $N( \frac{3}{-2})$ (resp. $N( \frac{1}{-2})$ ) by Dehn filling both
cusps, see [11, Remark 3.18].

Table 3 shows the fibered class $(x, y, z)\in H_{2}(N, \partial N)$ which achieves $\hat{\delta}_{g}$ for large $g$ and
the polynomial $f_{(x,y,z)}(t)$ . Notice that such a fibered class $(x, y, z)$ is in either int $(C_{\Delta})\cap$

$S_{\beta}( \frac{3}{-2})$ or int $(C_{\Delta}) \cap S_{\beta}(\frac{1}{-2})$ , see (1) in Section 2.2. Its projective class $(x’, y’, z’)\in int(\Delta)$

goes to the projective class of either (2, 2, 1) or $(1, 2, 0)$ as the Thurston norm $\Vert(x, y, z)\Vert$

goes to $\infty$ , see Figure 2(1).
For small $g$ , our upper bound of $\delta_{g}$ is given by the brute computation, see Table 4. We

note that in the case $g=8,13,$ $\hat{\delta}_{g}$ is not achieved by the monodromy of any $\Sigma_{g}$-bundle
over the circle obtained from either $N( \frac{3}{-2})$ or $N( \frac{1}{-2})$ by Dehn filling [13, Proposition 4.37].

We describe the outline of the proof of Theorem 3.1(1). It is known that $N(-4)\simeq$

$N( \frac{3}{-2})$ , see [18]. We recall:

54



Claim 3.2 (Theorem 1.5 in [13]). Let $r \in\{\frac{3}{-2}, \frac{1}{-2},2\}$ . For each $g\geq 3$ , there exist
$\Sigma_{g}$ -bundles over the circle obtained from $N(r)$ by Dehn filling both cusps along boundary
slopes of fibers of $N(r)$ . Among them, there exist monodromies $\Phi_{g}(r)$ : $\Sigma_{g}arrow\Sigma_{g}$ of the
fibmtions such that

$\lim_{garrow\infty}g\log\lambda(\Phi_{g}(r))=\log(\frac{3+\sqrt{5}}{2})$ .

Let $a_{g}$ be a primitive fibered class of $H_{2}(N, \partial N)$ such that $\phi_{a_{g}}\in \mathcal{M}$ and $\hat{\delta}_{g}$ is achieved
by $\hat{\phi}_{a_{g}}\in\hat{\mathcal{M}}\cap$ Mod $(\Sigma_{g})$ . Since $N(1)$ has no fiber of genus greater than 1, $a_{g}$ does
not have a boundary slope 1 for $g\geq 2$ . By the analysis of minEnt $(N(r), \Omega)$ (see [11,
Theorem 1.11] $)$ , one can show that the set of normalized entropies of monodromies of
the fibrations on the closed manifolds, obtained from $N$ by Dehn filling all cusps along
the slopes not in $\{-4, \frac{3}{-2}, \frac{1}{-2},2\}$ , have no accumulation values $\leq 2\log(\frac{3+\sqrt{5}}{2})$ . By using
Claim 3.2, one can see that $a_{g}$ has to have a boundary slope in $\{-4, \frac{3}{-2}, \frac{1}{-2},2\}$ eventually.
Moreover the set of normalized entropies of the monodromies of the fibrations on the
closed manifolds obtained from $N$ by Dehn filling all cusps along the slopes, one of which
is in $\{-4, \frac{3}{-2}, \frac{1}{-2},2\}$ , have no accumulation values $<2 \log(\frac{3+\sqrt{5}}{2})$ . Then Claim 3.2 leads
to Theorem 3.1(1).

3.2. Sequence $\{\delta_{g}^{+}\}_{g\geq 2}$ . Let $\hat{\mathcal{M}}^{+}$ be the set of pseudo-Anosov elements of $\hat{\mathcal{M}}$ with ori-
entable invariant foliations. (One can use Proposition 2.1(6) to know whether $\hat{\phi}_{a}\in\hat{M}$

has orientable invariant fohations or not.) Let $\hat{\delta}_{g}^{+}$ be the minimum among dilatations of
elements in $\hat{\mathcal{M}}^{+}\cap$ Mod $(\Sigma_{g})$ . (Since $\hat{\mathcal{M}}^{+}\cap$ Mod $(\Sigma_{g})\neq\emptyset$ for $g\geq 2,$ $\hat{\delta}_{g}^{+}$ is well-defined.)
Clearly $\delta_{g}\leq\delta_{g}^{+}\leq\hat{\delta}_{g}^{+}$ . The equality $\delta_{g}^{+}=\hat{\delta}_{g}^{+}$ holds for a112 $\leq g\leq 8$ except for $g=6$, see
Table 5.

Theorem 3.3 (Theorem 1.5 in [11]).

(1) We have
$g \not\equiv 0(mod 6)\lim_{garrow\infty}g\log\hat{\delta}_{g}^{+}=\log(\frac{3+\sqrt{5}}{2})$

.

(2) For large $g$ such that $g\equiv 2,4(mod 6)$ or $g\equiv 3(mod 10)$ (resp. such that $g\equiv$

$1,5,7,9(mod 10)),$ $\hat{\delta}_{g}^{+}\dot{w}$ achieved by the monodromy of some $\Sigma_{g}$ -bundle over the
circle obtained from $N( \frac{1}{-2})$ (resp. $N( \frac{3}{-2})$ ) by Dehn filling both cusps.

Table 6 shows the fibered class $(x, y, z)\in H_{2}(N, \partial N)$ which achieves $\hat{\delta}_{g}^{+}$ for large $g\not\equiv O$

$(mod 6)$ and the polynomial $f_{(x,y,z)}(t)$ .
The proof of Theorem 3.3(1) is similar to that of Theorem 3.1(1). The difference is

that in the case $g\equiv 0(mod 6)$ , there exist no examples of elements in $\hat{\mathcal{M}}^{+}$ defined on $\Sigma_{g}$

which $0$ccur as monodromies of fibrations on manifolds obtained from $N( \frac{1}{-2})$ or $N( \frac{3}{-2})$

by Dehn filhng both cusps. This is the reason why we need the condition $g\not\equiv O(mod 6)$ .
If we fix any $\epsilon>0$ so that $1.97475- \epsilon>2\log(\frac{3+\sqrt{5}}{2})$ , then for large $g$ such that $g\equiv 0$

$(mod 6)$ , we have
$| \chi(\Sigma_{g})|\log\hat{\delta}_{g}^{+}>1.97475-\epsilon>2\log(\frac{3+\sqrt{5}}{2})$ ,

see [11, Theorem 1. 10].
The emphasis is that in the case $g\equiv 6(mod 12)$ , elements of $\hat{\mathcal{M}}^{+}$ provide a new family

of pseudo-Anosovs defined on $\Sigma_{g}$ with orientable invariant foliations obtained from $N(-6)$
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or $N(4)$ by Dehn filling both cusps. By using the examples, we obtained the following
bounds in [11, Theorem 1.7].

Theorem 3.4 (Upper bound on $\delta_{g}^{+}$ for $g\equiv 6(mod 12)$).
(1) $\delta_{g}^{+}\leq\lambda_{(_{222}^{\underline{3}3g}}s_{+1,-}s_{-1,)}$ if $g\equiv 6,30,42,54,78(mod 84)$ . The specialization of the

Teichmuler polynomial $P_{\Delta}$ at $(_{2}^{3}s+1,32-1,2)\in S_{\gamma}(-6)$ is

$f_{(_{222}^{33g}}s_{+1},s_{-1,)}(t)=(t(_{2}^{s})+1)(t^{2g}-t(_{2}^{3}s)_{-t^{g+1}}+t^{g}-t^{g-1}-t(_{2}^{s})+1)$ .

(2) $\delta_{g}^{+}\leq\lambda_{(g+2,g-2_{2}-}g_{)}$ if $g\equiv 18,66(mod 84)$ . The specialization of the Teichmuler
polynomial $P_{\Delta}$ at $(g+2,g-2, -2g)\in S_{\gamma}(4)$ is

$f_{(,-g}(t)=g+2,g-2_{2})(t(_{2}^{a})+1)(t^{2g}-t(_{2}^{3}s)_{-t^{g+2}}+t^{g}-t^{g-2}-t(_{2}^{a})+1)$ .

The upper bound
$g \equiv 6(mod 12)\lim_{garrow}\sup_{\infty}g\log\delta_{g}^{+}\leq 2\log\delta(D_{5})$

holds, since the ray of

$\overline{(_{222}^{\underline{3}g}+1,-3s_{-1},s)}\in H_{2}(N_{\gamma}(-6), \partial N_{\gamma}(-6))$ $($ resp. $\overline{(g+2,g-2,-q2)}\in H_{2}(N_{\gamma}(4),$ $\partial N_{\gamma}(4)))$

converges to the ray of $\overline{(3,3,1)}$ (resp. $\overline{(2,2,-1)}$) as $g$ goes to $\infty$ which achieves
min Ent $(N(-6), \Omega_{S})$ (resp. min Ent $(N(4),$ $\Omega_{S})$ ).

In particular the projective class of $(_{2}^{3}s+1,32-1,2)$ $(resp. (g+2, g-2_{2}-g))$ lies on
int $(\Delta)\cap S_{\beta}(-6)$ (resp. int $(\triangle)\cap S_{\beta}(4)$ ) and it converges to the projective class of (3, 3, 1)
(resp. (2, 2, 1)) as $g$ goes to $\infty$ , see Figure 2(2).

Table 1 in [11] exhibits upper bounds of $\delta_{g}^{+}$ for small $g$ such that $g\equiv 0(mod 6)$ which
improves the bound given in [20, 10].

3.3. Sequences $\{\delta_{0,n}\}_{n\geq 4}$ and $\{\delta(D_{n})\}_{n\geq 3}$ . The mapping class group Mod $(D_{n})$ on an
$n$-punctured disk $D_{n}$ is isomorphic to the subgroup of Mod $(\Sigma_{0,n+1})$ consisting of the
elements which fix a puncture of $\Sigma_{0,n+1}$ . (Hence $\delta(D_{n})\geq\delta_{0,n+1}.$ ) By using the usual
isomorphism $\Gamma$ : $B_{n}arrow$ Mod$(D_{n})$ from the $n$-braid group $B_{n}$ to Mod$(D_{n})$ , one represents
each element of Mod$(D_{n})$ by an $n$-braid.

Let $\mathcal{N}_{n}$ be the set of primitive fibered classes $a\in H_{2}(N, \partial N)$ such that $F_{a}\simeq\Sigma_{0,n}$ . In
[12], we ask about which fibered class in $\mathcal{N}_{n}$ achieves the minimal dilatation. To give a
statement more precisely, let us define an $m$-braid $T_{m,p}$ for $p\geq 1$ as follows.

$T_{m,p}=(\sigma_{1}^{2}\sigma_{2}\sigma_{3}\cdots\sigma_{m-1})^{p}\sigma_{m-1}^{-2}=(\sigma_{1}^{2}\sigma_{2}\sigma_{3}\cdots\sigma_{m-1})^{p-1}\sigma_{1}^{2}\sigma_{2}\sigma_{3}\cdots\sigma_{m-2}\sigma_{m-2}^{-1}.$

If one forgets the lst strand of $T_{m,p}$ , one obtains the $(m-1)$-braid, call it $T_{m,p}’$ . Observe
that $\lambda(T_{m,p}’)\leq\lambda(T_{m,p})$ if $T_{m,p}’$ is pseudo-Anosov. It was shown that the mapping torus
$\mathbb{T}(\Gamma(T_{m,p}))$ is homeomorphic to $N$ if $gcd(m-1,p)=1$ [$12$ , Corollary 3.2]. Otherwise
$\mathbb{T}(\Gamma(T_{m,p}))$ is toroidal, i.e, $\Gamma(T_{m,p})$ is reducible [12, Lemma 3.11]. Table 7 describes our
result in [12, Theorem 1.1] which answers the above question. For $n\geq 9$ , the fibered class
$s_{n}=(x, y, z)$ which achieves the minimal dilatation in $\mathcal{N}_{n}$ and its mapping class $\phi_{s_{n}}$ are
given in the table. (The statement in the case $4\leq n\leq 8$ can be found in [12, Theorem
1.1]. $)$ Here, we have a remark on the same table(4th column). By Proposition 2.1(1),
$\#(\partial_{\alpha}F_{s_{n}})=1$ holds. $($Also $\#(\partial_{\beta}F_{s_{n}})=1.)$ Hence the monodromy $\Phi_{s_{n}}$ : $F_{s_{n}}(\simeq\Sigma_{0,n})arrow F_{s_{n}}$

of the fibration associated to $s_{n}$ on $N$ is described by an element in Mod$(D_{n-1})$ , and
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hence by an $(n-1)$-braid. (In this case it tums out that the braid is given by $T_{n-1,p}$ for
some $p.$ )

We denote by $T_{(n-1)}$ , the braid $T_{n-1,*}$ in Table 7(4th column) which represents $\phi_{s_{n}}$ for
the fibered class $s_{n}$ . For example, when $n=2k+1,$ $T_{(2k)}=T_{2k,2}$ . The stable foliation
$\mathcal{F}_{s_{n}}$ has the property such that the boundary component of $F_{s_{n}}$ which lies on the torus
$T_{\alpha}$ has $x(\neq 1)$ prong, see Proposition 2.1(5). This implies that $T_{(n-1)}’\in B_{n-2}$ is pseudo-
Anosov and $\lambda(T_{(n-1)}’)=\lambda(T_{(n-1)})$ . One can use both $(n-2)$-braids $T_{(n-2)}$ and $T_{(n-1)}’$

for upper bounds of $\delta(D_{n-2})$ , see Table 8(5th column). We would like to point out that
$T_{(2k)}’=T_{2k,2}’\in B_{2k-1}$ is conjugate to the braid called $\sigma_{k-2,k}$ in [10]. For small $n$ , our upper
bound of $\delta(D_{n-2})$ is given in Table 9.

The minimal dilatation $\delta(D_{n})$ is determined for a113 $\leq n\leq 8[7,8,15,17]$ . In these
cases, the minimizers “come from” $N$ . More precisely, the minimal representative $F_{(x,y,z)}$

of the fibered class $(x, y, z)\in H_{2}(N, \partial N)$ in Table 10 is homeomorphic to $\Sigma_{0,n+2}$ . It tums
out that the mapping class $\phi_{(x,y,z)}$ is of the form $T_{n+1,p}$ for some $p$ . Except for $n=6$ , the
braid $T_{n+1,p}’\in B_{n}$ in Table 10(6th column) achieves the minimal dilatation $\delta(D_{n})$ . In the
case $n=6$ , the braid $T_{6,2}$ achieves the minimal dilatation $\delta(D_{6})$ .

Observe that $s_{n}\in int(C_{\triangle})\cap S_{\gamma}(\infty)$ and the ray of $s_{n}$ converges to the ray of $[ \frac{1}{2}, \frac{1}{2}]=$

$( \frac{1}{2}, \frac{1}{2},0)\in int(\Delta)$ as $n$ goes to $\infty$ , see Figure 2(3). By Proposition 2.1(4), we obtain

$\lim_{narrow}\sup_{\infty}n\log\delta(D_{n})$ , li$m\sup_{narrow\infty}n\log\delta_{0,n}\leq\min$ Ent $(N)=2\log(2+\sqrt{3})$ .

3.4. Sequence $\{\delta_{1,n}\}_{n\geq 1}$ . Let $\mathcal{W}_{n}\subset H_{2}(N(1), \partial N(1))$ be the set of primitive fibered
classes whose minimal representatives are homeomorphic to $\Sigma_{1,n}$ , see Remark 2.2. In Ta-
ble 11, one can find the fibered class $\overline{w_{n}}=\overline{(x,y,z)}\in H_{2}(N_{\gamma}(1), \partial N_{\gamma}(1))$ which achieves the
minimal dilatation in $\mathcal{W}_{n}$ , see [11, Proposition 3.30]. The dilatation of $w_{n}\in H_{2}(N, \partial N)$

is equal to the dilatation of $\overline{w_{n}}$ , since $\mathcal{F}_{w_{n}}$ has the property such that the boundary
components of $F_{w_{n}}$ which he on $T_{\gamma}$ has 3 prong, see Proposition 2.1(5). Thus we have

$\delta_{1,n}\leq\lambda(\overline{w_{n}})=\lambda(w_{n})=\lambda_{(x,y,z)}.$

For the polynomial $f_{(x,y,z)}(t)$ in this case, see Table 11(3rd column).
The ray of $\overline{w_{n}}\in H_{2}(N_{\gamma}(1), \partial N_{\gamma}(1))$ converges to the ray of $\overline{(1,1,-2)}$ as $n$ goes to $\infty$

which achieves $\min$ Ent$(N(1))$ , see Figure 2(4). Thus

$\lim_{narrow}\sup_{\infty}n\log\delta_{1,n}\leq\min$ Ent $(N(1))=2\log\delta(D_{4})$ .

Table 12 shows our upper bound of $\delta_{1,n}$ for small $n$ due to the brute computation. It
turns out that this coincides with the upper bound given by Table 11.

3.5. $g>1$ , Sequence $\{\delta_{g,n}\}_{n\geq 1}$ . So far, for the upper bounds of normalized entropies
of pseudo-Anosovs, we used the following property of hyperbolic surface bundles over the
circle $M$ : Let $\Omega$ be a fibered face of $M$ and let $\mathcal{D}\subset int(\Omega)$ be any compact set. Then
there exists a constant $c=c_{\mathcal{D}}>0$ such that for any fibered class $a\in int(C_{\Omega})$ , we have
Ent $(a)=$ Ent $(\Phi_{a})\leq c$ whenever the projective class $a’$ of $a$ is in the compact set $\mathcal{D}.$

However for any fixed $g\geq 2$ , the same technique doesn’t work in order to give an upper
bound of $\delta_{g,n}$ varying $n$ because of Tsai’s result $\log\delta_{g,n_{n}^{\vee}}^{\underline{10}g\underline{n}}\wedge\cdot$ Her result implies that if
there exists a sequence of primitive fibered class classes $\{a_{i}\}$ with $a_{i}=a_{g,i}\in int(C_{\Omega})$ such
that the fiber of the fibration associated to $a_{i}$ is a surface of genus $g$ and $n_{i}$ boundary
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components with $n_{i}arrow\infty$ , then accumulation points of the sequence of projective classes
$\{a_{i}’\}$ must lie on the boundary of $\Omega.$

In [14], we found such a sequence $\{a_{i}\}=\{a_{g,i}\}$ of the primitive fibered class $a_{i}\in$

$int(C_{\Delta})\cap S_{\beta}(-1)$ of $N$ for each $g\geq 2$ with the best possible asymptotic behavior, i.e,
$\log\lambda(a_{\dot{*}})=\log\lambda(\Phi_{a_{i}})_{\wedge}^{\vee}\frac{\log||a:\Vert}{\Vert a.\Vert}$ . These examples have the property such that the projec-
tive class $a_{\dot{\iota}}’$ goes to a particular point $( \frac{1}{2},1, \frac{1}{2})\in\partial\Delta$ as $i$ goes to $\infty$ , see Figure 2(5). By
using the sequence $\{a_{i}\}$ , we proved the following.

Theorem 3.5 ([14]). Given $g\geq 2$ , there erists a sequence $\{n_{i}\}_{i=0}^{\infty}$ with $n_{i}arrow\infty$ such that
$\lim_{iarrow}\sup_{\infty}\frac{n.\log\delta_{g,n}}{\log n_{1}}\leq 2$ . Furthermore, if $g\geq 2$ enjoys

$(*)$ $gcd(2g+1, s)=1$ or $gcd(2g+1, s+1)=1$ for each $0\leq s\leq g,$

then
(2) $\lim_{narrow}\sup_{\infty}\frac{n10}{1}A\leq 2.$

For example, $(*)$ holds for $g=4$ since 9 is relatively prime to 1, 2, 4 and 5, but $(*)$ does
not hold for $g=7$ because $gcd(15,5)=5$ and $gcd(15,6)=3$. Observe that $g$ enjoys $(*)$

if $2g+1$ is prime. (Hence infinitely many $g$ ’s satisfy $(*).$ )
The inequality (2) in Theorem 3.5 improves the upper bound $\lim\sup\frac{n\log\delta_{g,n}}{\log n}\leq 2(2g+1)$

(see [14]) obtained from Tsai’s examples. Note that this upper $bo\vec{u}ndn\infty$ holds for any $g\geq 2.$

4. QUESTIONS AND CONJECTURES

We close with some questions and conjectures about pseudo-Anosovs with the minimal
dilatations and their mapping tori.

Conjecture 4.1 ([11]).

(1) We have $\lim_{garrow\infty}g\log\delta_{g}=\log(\frac{3+\sqrt{5}}{2})$ . For large $g,$ $\delta_{g}$ is achieved by the monodromy

of some $\Sigma_{g}$ -bundle over the circle obtained from either $N( \frac{3}{-2})$ or $N( \frac{1}{-2})$ by Dehn
filling both cusps.

(2) We have
$g \not\equiv 0(mod 6)\lim_{garrow\infty}g\log\delta_{g}^{+}=\log(\frac{3+\sqrt{5}}{2})$

. For large $g$ such that $g\not\equiv 0(mod 6)$ ,

$\delta_{g}^{+}$ is achieved by the monodromy of some $\Sigma_{g}$ -bundle over the circle obtained from
$N( \frac{3}{-2})$ or $N( \frac{1}{-2})$ by Dehn filling both cusps.

Conjecture 4.2 ([12]).
(1) $\delta(D_{2k-1})=\lambda(T_{2k,2}’)$ for $k\geq 5.$

(2) $\delta(D_{4k})=\lambda(T_{4k+1,2k-1}’)$ for $k\geq 3.$

(3) $\delta(D_{10})=\lambda(T_{10,2})$ , and $\delta(D_{8k+2})=\lambda(T_{8k+3,2k+1}’)$ for $k\geq 2.$

(4) $\delta(D_{8k+6})=\lambda(T_{8k+7,2k+1}’)$ for $k\geq 1.$

Conjecture 4.3 ([11]). We have $\lim_{narrow\infty}n\log\delta_{1,n}=2\log\delta(D_{4})$ . For large $n,$ $\delta_{1,n}$ is achieved
by the monodromy of a fibration on $N(1)$ .
Question 4.4 ([14]). Can one eliminate the condition $(*)$ in Theorem $3.5^{g}i.e$ , given
$g\geq 2$ , does $\lim_{narrow}\sup_{\infty}\frac{n\log\delta_{g.n}}{\log n}\leq 2$ hold2
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Finally, we ask about questions related to the finiteness theorem for small dilatation
pseudo-Anosov homeomorphisms [5, 3]. Given a pseudo-Anosov $\Phi$ : $\Sigmaarrow\Sigma$ , let $\Sigma^{o}\subset\Sigma$

be the surface obtained by removing all the singularities of the stable foliation for $\Phi$ , and
$\Phi|_{\Sigma^{o}}:\Sigma^{o}arrow\Sigma^{o}$ denotes the restriction of $\Phi$ to $\Sigma^{o}$ . Observe that $\lambda(\Phi)=\lambda(\Phi|_{\Sigma^{o}})$ . The
finiteness theorem implies that the following sets are finite.

$\mathcal{U}=$ { $\mathbb{T}(\Phi|_{\Sigma^{\circ}})|\Phi$ is pseudo-Anosov on $\Sigma=\Sigma_{g}$ such that $\lambda(\Phi)=\delta_{g},$ $g\geq 2$},
$\mathcal{U}_{braid}=$ { $\mathbb{T}(\Phi|_{\Sigma\circ})|\Phi$ is pseudo-Anosov on $\Sigma=D_{n}$ such that $\lambda(\Phi)=\delta(D_{n}),$ $n\geq 3$ },

$\mathcal{U}_{g=1}=$ { $\mathbb{T}(\Phi|_{\Sigma\circ})|\Phi$ is pseudo-Anosov on $\Sigma=\Sigma_{1,n}$ such that $\lambda(\Phi)=\delta_{1,n},$ $n\geq 1$ }.
We know that $N\in \mathcal{U}\cap u_{braid}\cap \mathcal{U}_{g=1}$ . Since pseudo-Anosov mapping classes with the
smallest known dilatations defined on either $\Sigma_{g},$ $D_{n}$ or $\Sigma_{1,n}$ come from $N$ , we ask:

Question 4.5. It is true that $\mathcal{U}=\mathcal{U}_{braid}=\mathcal{U}_{g=1}=\{N\}^{2}$
’

On the other hand, by the fact that given $g\geq 2,$ $\log\delta_{9^{n\wedge}n}^{\underline{l}og\underline{n}}\vee$ , one can not appeal to
the finiteness theorem for the following set $u_{g}$ for $g\geq 2.$

$\mathcal{U}_{g}=$ { $\mathbb{T}(\Phi|_{\Sigma^{\circ}})|\Phi$ is pseudo-Anosov on $\Sigma=\Sigma_{g,n}$ such that $\lambda(\Phi)=\delta_{g,n},$ $n\geq 1$ }.
The examples which provide the upper bound in Theorem 3.5 are monodromies of fibra-
tions on manifolds obtained from the single manifold $N$ by Dehn fillings. For this reason,
we would hke to ask:

Question 4.6. Is there any $g\geq 2$ such that $\mathcal{U}_{g}$ is a finite set?

5. TABLES

TABLE 3. fibered class $(x, y, z)\in H_{2}(N, \partial N)$ which achieves $\hat{\delta}_{g}$ for large $g,$

see [11, Theorem 1.4, Remark 3.18]. [notice that $(x, y, z)$ is in either $S_{\beta}( \frac{3}{-2})$

or $S_{\beta}( \frac{1}{-2}).]$
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TABLE 4. upper bounds of $\delta_{g}$ for small $g$ . [see also [9, 1, 13].]

TABLE 5. fibered class $(x, y, z)\in H_{2}(N, \partial N)$ which achieves $\delta_{g}^{+}$ for small $g.$

TABLE 6. fibered class $(x,y, z)\in H_{2}(N, \partial N)$ which achieves $\hat{\delta}_{g}^{+}$ for large
$g\not\equiv 0(mod 6)$ , see [11, Theorem 1.5]. [notice that $(x, y, z)$ is in either
$S_{\beta}( \frac{3}{-2})$ or $S_{\beta}( \frac{1}{-2}).]$
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TABLE 7. for $n\geq 9$ , fibered class $s_{n}$ which achieves the minimal dilatation
in $\mathcal{N}_{n}$ and its mapping class $\phi_{s_{n}}$ , see [12, Theorem 1.1]. [notice that $\mathcal{S}_{n}\in$

$S_{\gamma}(\infty).]$

TABLE 8. upper bounds of $\delta(D_{n-2})$ , see [12, Corollary 4.1]. [see also [10, 25].]
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TABLE 9. upper bounds of $\delta(D_{n-2})$ for small $n$ . [see also [10, 25].]

TABLE 10. fibered class $(x, y, z)\in H_{2}(N, \partial N)$ which achieves $\delta(D_{n})$ for
small $n$ , see [12, Section 4.1]. [for the minimal polynomial of $\delta(D_{n})$ , see the
4th column.]
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