
Dynamics of the fluid balancer:
Perturbation solution of a forced Korteweg-de

Vries-Burgers equation

M. A. Langthjema* T. Nakamurab

aGraduate School of Science and Engineering, Yamagata University,
Jonan 4-chome, Yonezawa, 992-8510 Japan

bDepartment of Mechanical Engineereng, Osaka Sangyo University,
3-1-1 Nakagaito, Daito-shi, Osaka, 574-8530 Japan

Abstract

The work described here is concemed with the dynamics of a so-called fluid balancer; a
hula hoop ring-like structure containing a small amount of liquid which, during rotation, is
spun out to form a thin liquid layer on the outermost inner surface of the ring. The liquid
is able to counteract unbalanced mass in an elastically mounted rotor. The present paper
gives a detailed discussion of an approximate analytical solution which includes a so-called
cnoidal wave; and it is demonstrated numerically how the surface wave can counterbalance
the unbalanced mass.

Keywords: rotor, autobalancer, shallow water wave, cnoidal wave, forced Korteveg-de Vries-
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1 Introduction

A fluid balancer is used in rotating machinery to eliminate the undesirable effects of unbalanced
mass. It has become a standard feature in most household washing machines, but is also used
in heavy industrial rotating machinery. Taking the washing machine fluid balancer as example,
it consists of a hollow ring, like a hula hoop ring but typically with rectangular cross sections,
which contains a small amount of liquid. The ring is typically attached on top of the drum.
When it rotates at a high angular velocity $\Omega$ the liquid will form a thin liquid layer on the inner
surface of the outermost wall, as sketched in Fig. 1.

Consider the situation where an unbalanced mass $m$ is present, for example due to the non-
uniform distribution of clothes in a washing machine. The rotor has a critical angular velocity
$\Omega_{cr}$ where the centrifugal forces are in balance with the forces due to the restoring springs.
Below this velocity $(\Omega<\Omega_{cr})$ the mass center of the fluid will be located ‘on the same side’ as
the unbalanced mass, as shown in the left part of Fig. 1. [Here $M$ indicates the mass of the
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empty rotor and $\mathcal{M}$ the mass of the contained liquid.] At a certain supercritical angular velocity
$\Omega>\Omega_{cr}$ (say, during the spin drying process) the mass center of the liquid will move to the
‘opposite side’ of the unbalanced mass, as shown in the right part of Fig. 1, resulting in ‘mass
balance’ and thus in reduced centrifugal forces and reduced oscillation amplitude of the rotor.

Figure 1: Working principle of the fluid balancer.

This is the working principle of the fluid balancer. The main idea appeared already in
1912, and $US$ patent was granted in 1916 (Leblanc, 1916). The original layout consisted of
one or several very narrow concentric channels (narrow in the radial direction but wide in the
axial direction, i.e., perpendicular to the paper in Fig. 1) partially filled with, “liquid, or
very small steel balls or metal fillings”. Leblanc’s fluid balancer was discussed and criticized by
Thearle (1932); and later also by Den Hartog (1985), in connection with a discussion of Thearle’s
balancing head of 1932. It is argued there that Leblanc’s balancer cannot work with a liquid,

only with steel balls, and thus that the invention was flawed. It appears that this is due to the
very narrow channels which basically prevent the formation of surface waves.

None the less, a complete automatic washing machine equipped with a fluid balancer was
presented in 1940, and patented in 1945 (Dyer, 1945). The layout of the fluid balancer was very
similar to the modern layouts, with a wide concentric channel, wide enough to allow for surface
waves with large amplitudes.

The idea is thus not new; but recently there has been a renewed interest, both in industry

and in academia. [There has also been a renewed interest in the so-called automatic dynamic

balancer, as the balancer that uses steel balls running in a circular channel (or race) is called
(van de Wouw et al., 2005; Green et al., 2006, 2008). $]$

Experimental fluid damper studies have been carried out by Kasahara et al. (2000a) and

Nakamura (2009). As to mathematical models, simple lumped mass models have been considered
by Bae et al. (2002), Jung et al. (2008), Majewski (2010), Chen et al. (2011), and Urbiola-Soto
and Lopez-Parra (2011). The first and the last two of these papers include experimental studies

as well. The paper by Jung et al. (2008) includes a few numerical simulation results based on
computational fluid dynamics.

It should be emphasized that the fundamental principle of operation of the fluid balancer
can be understood in terms of the explanation of Thearle’s balancing head, given in Den Hartog

(1985), p. 237. But a more detailed understanding is desirable; in particular, a more detailed
understanding of the fluid dynamics of the balancer.

Good attention to fluid dynamic details has been given in many of the studies dealing with
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the dynamics and stability of rotors partially filled with fluid/liquid; see e.g. Bolotin (1963)
and Crandall (1995) for good overviews. Most of the studies, such as those of Wolf, Jr. (1968),
Hendricks and Morton (1979) and Holm-Christensen and Tr\"ager (1991), are based on linear
theory/linearization. While this is sufficient to determine the stability properties, it may be
insufficient for modeling and understanding the dynamics of the fluid balancer (at any rate if
free (unforced) wave components are included) since the amplitude of the surface waves need to
be known.

Non-linear studies have been carried out by Berman et al. (1985), Colding-Jrgensen (1991),
Kasahara et al. (2000b), and Yoshizumi (2007). Berman et al. (1985) found, both by numerical
analysis and by experiment, that non-linear surface waves can exist on the fluid layer in the
form of hydraulic jumps, undular bores, and (what appears to be”) solitary waves (or solitons).
[An undular bore is a relatively weak hydraulic jump, with undulations behind it (Lighthill,
1978, p. 180). As to a solitary wave, described by the square of a hyperbolic secant function,
sech, it should be noted that such a solution/wave exists only in a doubly infinite (i.e. non-
periodic) domain. In the periodic domain of the rotor vessel, the solution which corresponds to a
solitary wave is described by the square of a Jacobian elliptic cosine function, cn, and is termed
a cnoidal wave.] Colding-Jrgensen (1991) concentrated on a hydraulic jump solution, following
the analytical solution approach given in Berman et al. (1985). Contrary to this approach, the
studies of Kasahara et al. (2000b) and Yoshizumi (2007) are purely numerical.

As by Colding-Jrgensen (1991) the formulation of the basic shallow water wave theory used
in the present paper is based largely on the approach of Berman et al. (1985). The present work
considers a rotor with two degrees of freedom, contrary to the one-degree-of-freedom assumption
in Berman et al. (1985) and Colding-Jrgensen (1991). Also, rather than relying on a numerical
integration approach, we find an (approximate) analytical solution to the fluid equations via a
perturbation approach.

The present paper is to be considered as a continuation of Langthjem and Nakamura (2011)
where the mathematical formulation of the problem is described in detail.

2 The fluid equations and approximate solution of them

The fluid motion in the rotating vessel is described by a shallow water approximation of the
Navier-Stokes equations, and in terms of a coordinate system $(x, y)$ attached to the wall of the
rotor. This coordinate system is related to a polar coordinate system $(r, \theta)$ attached to the rotor
such that $x=R\theta,$ $y=R-r$ , where $R$ is the radius of the vessel. It is noted that $x,$ $y$ are
rectangular (Cartesian) coordinates, indicating that curvature effects will be ignored. This is
permissable when the fluid layer thickness $h(t, x)$ is sufficiently small in comparison with the
vessel radius $R$ , i.e., $|h(t, x)|/R\ll 1$ for all $x,$ $t$ . Under these assumptions the fluid equations of
motion can be written as (Berman et al., 1985; Whitham, 1999)

$\frac{\partial u}{\partial t}+u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y}-2\Omega v = -\frac{1}{\rho}\frac{\partial p}{\partial x}+\nu\frac{\partial^{2}u}{\partial y^{2}}+\mathfrak{F}$, (1)

$\frac{\partial v}{\partial t}+2\Omega u+R\Omega^{2}=-\frac{1}{\rho}\frac{\partial p}{\partial y}$ . (2)
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Here $u$ and $v$ are the fluid velocity components in the $x$ and $y$ directions, $p$ is the fluid pressure,
$\rho$ is the fluid density, $\nu$ is the kinematic viscosity of the fluid, and $\mathfrak{F}$ is a body force due to the
rotating vessel.

A perturbation approach applied to (1) and (2) gives the following equation for the non-
dimensional fluid layer perturbation $\kappa_{0}=h’/R$ (with $h’$ being the change in the fluid layer
thickness $h$ ):

$A_{1} \frac{\partial\kappa_{0}}{\partial\xi}-B_{1}\kappa_{0}\frac{\partial\kappa_{0}}{\partial\xi}-C_{1}\frac{\partial^{3}\kappa_{0}}{\partial\xi^{3}}-D_{1}\frac{\partial^{2}\kappa_{0}}{\partial\xi^{2}}+E_{1}\kappa_{0}^{2}=x_{*}\sin\xi-y_{*}\cos\xi$ , (3)

where $A_{1},$ $B_{1},$ $D_{1}$ , and $E_{1}$ are parameters; see Langthjem and Nakamura (2011). The variable
$x_{*}$ and $y_{*}$ represent the vessel deflections, and $\xi$ is a ‘traveling wave’ variable, defined by $\xi=$

$\frac{x}{R}-(\omega-\Omega)t$ . Here $\omega$ is the angular whirling velocity of the vessel, which is assumed to be close,

but not equal, to the imposed angular velocity $\Omega.$

Equation (3) is a forced Korteweg-de Vries-Burgers equation. Without damping $(D_{1}=E_{1}=$

$0)$ and external forcing $(x_{*}=y_{*}=0)$ it reduces to the classical Korteweg-de Vries equation.

The Burgers equation is obtained with $C_{1}=E_{1}=0$ (and again $x_{*}=y_{*}=0$ too). $A_{1}$ is an
unknown parameter which can be determined from the condition that the fluid volume must
remain constant,

$\Delta V_{f}=\int_{0}^{2\pi}\kappa_{0}(\xi)d\xi=0$ . (4)

2.1 Perturbation solution of the forced Korteweg-de Vries-Burgers equation
(3)

Viscous wall friction is ignored in the following; that is, in (3) it will be assumed that $E_{1}=0$ . The
effect of this term is not uninteresting; but we are here mainly interested just in the qualitative

aspects of the fluid balancer dynamics and wall friction is not considered to be essential in that
respect.

When dividing through by $C_{1}$ (which is always $\neq 0$), (3) takes the form

$a_{1} \frac{\partial\kappa_{0}}{\partial\xi}-b_{1}\kappa_{0}\frac{\partial\kappa_{0}}{\partial\xi}-\frac{\partial^{3}\kappa_{0}}{\partial\xi^{3}}+\epsilon d_{1}\frac{\partial^{2}\kappa_{0}}{\partial\xi^{2}}=\epsilon(\hat{x}\sin\xi-\hat{y}\cos\xi)$ , (5)

where
$a_{1}= \frac{A_{1}}{C_{1}}, b_{1}=\frac{B_{1}}{C_{1}}, d_{1}=\frac{D_{1}}{C_{1}}$ , (6)

and
$\hat{x}=\frac{x}{C_{1}}*, \hat{y}=\frac{y_{*}}{C_{1}}$ . (7)

Here $\epsilon$ is a bookkeeping parameter’ (order symbol) which is introduced to indicate the smallness
of the rotor deflections $\hat{x},\hat{y}$ . The damping parameter $d_{1}$ is assumed to be of the same order of
magnitude/smallness.

We seek an expansion on the form

$\kappa_{0}(\xi)=v_{0}(\xi)+\epsilon v_{1}(\xi)+\cdots$ (8)

At the end of the analysis $\epsilon$ is set equal to one. It will be seen that any term contained in $v_{1}(\xi)$

will be proportional to either $\hat{x},\hat{y}$ , or $d_{1}$ , which justifies this approach.
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Inserting (8) int$o(5)$ we get

$\epsilon^{0}$ order: $a_{1} \frac{\partial v_{0}}{\partial\xi}-b_{1}v_{0}\frac{\partial v_{0}}{\partial\xi}-\frac{\partial^{3}v_{0}}{\partial\xi^{3}}=0$ , (9)

$\epsilon^{1}$ order: $a_{1} \frac{\partial v_{1}}{\partial\xi}-b_{1}(v_{1}\frac{\partial v_{0}}{\partial\xi}+v_{0}\frac{\partial v_{1}}{\partial\xi})-\frac{\partial^{3}v_{1}}{\partial\xi^{3}}-d_{1}\frac{\partial^{2}v_{0}}{\partial\xi^{2}}=\hat{x}\sin\xi-\hat{y}\cos\xi$. (10)

2.2 Cnoidal wave solution of (9)

Equation (9) is a Korteweg-de Vries equation which can be solved in exact, closed form. The
solution is

$v_{0}(\xi)=\alpha cn^{2}[\Xi\xi, k]$ . (11)

Here cn is the Jacobian elliptic cosine function (Whittaker and Watson, 1927; Abramomitz and
Stegun, 1965), with the parameters

$\Xi=\{\frac{1}{12}b_{1}(2\alpha-3\frac{a_{1}}{b_{1}})\}^{\frac{1}{2}} k=\{\frac{\alpha}{2\alpha-3a_{1}/b_{1}}\}^{\frac{1}{2}}$ (12)

The solution (11) is called a cnoidal wave (due to the cn-function), and $\alpha$ is the amplitude of
the wave. The parameter $k$ is called the modulus (of the elliptic function).

The period of the function cn $[\xi, k]$ is $4K$ , where

$K=K(k)= \int_{0}^{\frac{\pi}{2}}(1-k^{2}\sin^{2}\theta)^{-\frac{1}{2}}d\theta$ (13)

is the complete elliptic integral of the first kind (Abramomitz and Stegun, 1965). Thus the
period of $cn^{2}[\xi, k]$ is $2K$ , and the period $(T_{0}, say)$ of the solution (11) is

$T_{0}= \underline{2K(k)}---=4K(k)\{\frac{3}{b_{1}(2\alpha-3a_{1}/b_{1})}\}^{\frac{1}{2}}$ (14)

We seek a $2\pi$-periodic solution, such that $\kappa_{0}(0)=\kappa_{0}(2\pi)$ . Thus, one condition for determination
of the two unknown parameters $\tilde{\omega}_{1}$ (which is hidden in $a_{1}$ ) and $\alpha$ is that

$T_{0}(\tilde{\omega}_{1}, \alpha)=2\pi$ , or $\triangle T_{0}=T_{0}(\tilde{\omega}_{1}, \alpha)-2\pi=0$ . (15)

Another condition is that of conservation of fluid volume, as expressed by (4).
It is noted, finally, that the Jacobian elliptic cosine function cn degenerates into the hyper-

bolic secant function sech when $karrow 1$ and into the normal cosine function $\cos$ when $karrow 0.$

Regarding the first case, it will be seen from (13) that $karrow 1$ implies that the $Karrow\infty$ , that is,
the period goes towards infinity. The solution in this case $(\alpha sech^{2}[\Xi\xi])$ is known as a solitary
wave, or a soliton.

2.3 Multiple scales solution of (10)

For the determination of $v_{1}(\xi)$ , the second term in the expansion of $\kappa_{0}(\xi)$ , we will make
the assumption that the modulus $k$ of $v_{0}(\xi)$ is small. The following expansion is then valid
(Abramomitz and Stegun, 1965):

cn $[u, k]= \cos u+\frac{1}{4}k^{2}(u-\sin u\cos u)\sin u+O(k^{4})=\cos u+O(k^{2})$ . (16)
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Assuming here, for simplicity, that $|k|\ll 1$ , we drop the $O(k^{2})$ terms. That is, for the determi-
nation of $v_{1}(\xi)$ , we assume that

$v_{0}( \xi)\approx\alpha\cos^{2}\Xi\xi=\frac{1}{2}\alpha\{1+\cos 2\Xi\xi\}$ . (17)

[It is noted here that in connection with the numerical examples to follow, it has been verified
that $k$ actually is small.]

Now, integration of (10) with respect to $\xi$ gives

$a_{1}v_{1}-b_{1}v_{0}v_{1}- \frac{\partial^{2}v_{1}}{\partial\xi^{2}}-d_{1}\frac{\partial v_{0}}{\partial\xi}=-\hat{x}\cos\xi-\hat{y}\sin\xi+C_{1}$ , (18)

where $C_{1}$ is an integration constant. We choose to set $C_{1}=0$ in order to get a periodic solution.
Inserting (17) into (18) gives, after reordering the terms,

$\frac{d^{2}v_{1}}{d\xi^{2}}+\{\mathfrak{a}^{2}+\frac{1}{2}\alpha b_{1}(1+\cos 2\Xi\xi)\}v_{1}=\hat{x}\cos\xi+\hat{y}\sin\xi+\alpha d_{1}\Xi\sin 2_{-}^{-}-\xi$ , (19)

where $\mathfrak{a}^{2}$ is written in place $of-a_{1}$ . [It is noted also that we write $dv_{1}/d\xi$ in place of $\partial v_{1}/\partial\xi$

from now on.]
Equation (19) is a forced Mathieu equation. It is noted here that if we had used (11) directly

in (18) instead of the approximation (17), the homogeneous version of (19) would be a Lam\’e

equation. Exact solutions exist; these are termed Lam\’e functions and a considerable literature
about them exist $($Whittaker $and$ Watson, $1927; Ince, 1940a,b, 1956)$ . Still, to solve the non-
homogenous Lam\’e equation, approximations (i.e., series expansions of Lam\’e functions) would
be necessary. It seems simpler, and in place, to introduce simplifications at an earlier stage-
already in the differential equation-as done above.

Now $\alpha$ , which appears in (11), is used in the role of a small parameter. Employing the
method of multiple scales (Nayfeh, 2004), $v_{1}(\xi)$ is expanded as

$v_{1}( \xi)=\sum_{m=0}^{M-1}\alpha^{m}\nu_{m}(\xi_{0}, \xi_{1}, \cdots, \xi_{M})$ , (20)

where
$\xi_{0}=\xi, \xi_{1}=\alpha\xi, \xi_{2}=\alpha^{2}\xi, \cdots$ (21)

It is noted that, while the final solution (20) will contain terms up to order $M-1$ , the expansion

must be carried out up to order $M$ . We choose $M=2$; thus

$\frac{d\nu_{m}}{d\xi}=\frac{\partial\nu_{m}}{\partial\xi_{0}}+\alpha\frac{\partial\nu_{m}}{\partial\xi_{1}}+\alpha^{2}\frac{\partial\nu_{m}}{\partial\xi_{2}}=D_{0}\nu_{m}+\alpha D_{1}\nu_{m}+\alpha^{2}D_{2}\nu_{m}$ . (22)

Inserting (20) (running up to $M=2$) and (22) into (19) gives

$\epsilon^{0}$ order: $D_{0}^{2}\nu_{0}+\mathfrak{a}^{2}\nu_{0}=\hat{x}\cos\xi_{0}+\hat{y}\sin\xi_{0}$ , (23)

$\epsilon^{1}$ order: $D_{0}^{2} \nu_{1}+\mathfrak{a}^{2}\nu_{1}=-2D_{0}D_{1}\nu_{0}-\frac{b_{1}}{2}(1+\cos 2_{-}^{-}-\xi_{0})\nu_{0}+d_{1}\Xi\sin 2\Xi\xi_{0}$ , (24)

$\epsilon^{2}$ order: $D_{0}^{2} \nu_{2}+\mathfrak{a}^{2}\nu_{2}=-D_{1}^{2}\nu_{0}-2D_{0}D_{2}\nu_{0}-2D_{0}D_{1}\nu_{1}-\frac{b_{1}}{2}(1+\cos 2\Xi\xi_{0})\nu_{1}$ . (25)
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The complete solution to (23) is

$\nu_{0}(\xi_{0}, \xi_{1}, \xi_{2})=A(\xi_{1}, \xi_{2})e^{i\mathfrak{a}\xi_{0}}+\frac{1}{2}\frac{\hat{x}-i\hat{y}}{\mathfrak{a}^{2}-1}e^{i\xi_{0}}+c.c.$ , (26)

where $A(\xi_{1}, \xi_{2})$ is a complex function and c.c. denotes the complex conjugates of the preceeding
terms. Inserting (26) into (24) gives

$D_{0}^{2} \nu_{1}+\mathfrak{a}^{2}v_{1}=-e^{i\mathfrak{a}\xi_{0}}[2i\mathfrak{a}D_{1}A+\frac{b_{1}}{2}(1+\cos 2\Xi\xi_{0})A]-\frac{i}{2}d_{1}\Xi e^{i2\Xi\xi_{0}}$ (27)

$- \frac{b_{1}}{4}\frac{\hat{x}-i\hat{y}}{\mathfrak{a}^{2}-1}[e^{i\xi 0}+\frac{1}{2}e^{i(1+2\Xi)\xi_{0}}+\frac{1}{2}e^{i(1-2\Xi)\xi_{0}}]+c.c.$

Secular terms will not appear in the solution to (27) if

$2 i\mathfrak{a}D_{1}A+\frac{b_{1}}{2}(1+\cos 2\Xi\xi_{0})A=0$ . (28)

Writing $A= \frac{1}{2}ae^{i\phi}$ and separating real and imaginary parts gives

$\frac{da}{d\xi_{1}}=0, \frac{d\phi}{d\xi_{1}}=\frac{b_{1}}{4\mathfrak{a}}(1+\cos 2\Xi\xi_{0})$ . (29)

These equations have the solutions

$a= \hat{a}(\xi_{2}) , \phi=\frac{b_{1}}{4\mathfrak{a}}(1+\cos 2_{-}^{-}-\xi_{0})\xi_{1}+\hat{\phi}(\xi_{2})$ (30)

With (28) being satisfied, a particular solution of (27) is

$v_{1}=- \frac{b_{1}}{4}\frac{\hat{x}-i\hat{y}}{\mathfrak{a}^{2}-1}[\frac{e^{i\xi_{0}}}{\mathfrak{a}^{2}-1}+\frac{e^{i(1+2_{-}^{--})\xi_{0}}}{2\{\mathfrak{a}^{2}-(1+2_{-}^{-}-)\}}+\frac{e^{i(-)\xi_{0}}1-2_{-}^{-}}{2\{\mathfrak{a}^{2}-(1-2_{-}^{-}-)\}}]$ (31)

$- \frac{i}{2}\frac{d_{1^{--}}^{-}-e^{i2-\xi_{0}}-}{\mathfrak{a}^{2}-4_{-}^{-2}-}+c.c.$

Next (26) and (31) are inserted into (25). This gives

$D_{0}^{2}v_{2}+ \mathfrak{a}^{2}v_{2}=[\frac{1}{2}\hat{a}(\xi_{2})(^{b}\lrcorner)^{2}(1+\cos 2\Xi\xi)^{2}-\mathfrak{a}\{i\frac{da}{d\xi_{2}}-\hat{a}\frac{d\phi}{d\xi_{2}}\}]\cross$ (32)

$\cross\exp(i\mathfrak{a}\xi_{0})\exp(i(_{4\mathfrak{a}}^{b}\lrcorner)(1+\cos 2\Xi\xi_{0})\xi_{1}+\hat{\phi}(\xi_{2}))$

$+n.s.t. +c. c.,$

where n.s.t. stands for non-secular terms, that is, terms that are not proportional to $\exp(i\mathfrak{a}\xi_{0})$ .
Secular terms will not appear in the solution to (32) if the terms in the square brackets on the

right-hand side are equal to zero. This condition gives, upon separation of real and imaginary
parts,

$\hat{a}(\xi_{2})=\overline{a}, \overline{\phi}(\xi_{2})=\frac{1}{2\mathfrak{a}}(\frac{b_{1}}{4\mathfrak{a}})^{2}(1+\cos 2\Xi\xi)^{2}\xi_{2}+\overline{\phi}$ , (33)

where aand $\overline{\phi}$ are constants. For the final solution we will choose $\overline{a}=0$ which will leave (11) as
the only free (unforced) wave oscillation component in the final solution. Inserting these results
into (26) and (31) and returning to the original variables we thus get

$v_{1}(\xi)=v_{0}(\xi)+\alpha v_{1}(\xi)+O(\alpha^{2})$ (34)
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with
$\nu_{0}(\xi)=-\frac{1}{\mathfrak{a}^{2}-1}\{\hat{x}\cos\xi+\hat{y}\sin\xi\}$ (35)

and

$\nu_{1}(\xi)=-\frac{b_{1}}{2}\frac{1}{(\mathfrak{a}^{2}-1)^{2}}\{\hat{x}\cos\xi+\hat{y}\sin\xi\}-\frac{b_{1}}{4}\frac{\hat{x}\cos\{(1+2_{-}^{-}-)\xi\}+\hat{y}\sin\{(1+2_{-}^{-}-)\xi\}}{(\mathfrak{a}^{2}-1)\{\mathfrak{a}^{2}-(1+2_{-}^{-}-)^{2}\}}$ (36)

$- \frac{b_{1}}{4}\frac{\hat{x}\cos\{(1-2_{-}^{-}-)\xi\}+\hat{y}\sin\{(1-2_{-}^{-}-)\xi\}}{(\mathfrak{a}^{2}-1)\{\mathfrak{a}^{2}-(1-2_{-}^{-}-)^{2}\}}+\frac{d_{1-}^{-}-}{\mathfrak{a}^{2}-4_{-}^{-2}-}\sin 2\Xi\xi.$

The results given above are valid only when internal resonance does not take place, that is,

when $\mathfrak{a}^{2}$ is away from 1. If $\mathfrak{a}^{2}$ is close to 1 then there are several special cases that need to
be analyzed, such as $\Xi$ close to 1, close to -, and $\Xi$ away from these values. In the numerical
work (to be described in the following) we have not experienced problems with proximity to an
internal resonance. Accordingly those special cases will not be analyzed here.

3 Numerical evaluation approach

There are four unknown parameters in our problem, namely a frequency parameter $\tilde{\omega}_{1}$ included
in the coefficient $A_{1}$ , the amplitude parameter $\alpha$ defined by (11), and the rotor deflection com-
ponents $x_{*}$ and $y_{*}$ . The four equations needed for determining these four parameters are $(i, ii)$

the two coupled rotor equations of motion, (iii) the volume constraint specified by (4), and (iv)

the periodicity constraint specified by (15). The unknown parameters are now determined as
follows.

First guesses are made on the values of $\tilde{\omega}_{1}$ and $\alpha$ , in order to evaluate the fluid forces. [See
Langthjem and Nakamura (2011) for the specific equations.] Then the rotor equation system is
solved with respect to $x_{*}$ and $y_{*}$ . Following this, improved values of $\tilde{\omega}_{1}$ and $\alpha$ are obtained by
taking one step with the Newton algorithm

$\{\begin{array}{l}\tilde{\omega}_{l}\alpha\end{array}\}=\{\begin{array}{l}\tilde{\omega}_{1}\alpha\end{array}\}-$ $( \frac{1}{D}[-\frac{\partial\Delta V_{f}\Delta V_{f}\partial\alpha}{\partial\overline{\omega}_{1}}\frac{\partial}{}$ $- \frac{\partial\Delta To}{\partial\overline{\omega}_{1}\Delta T_{0}\partial\alpha}\frac{\partial}{}]\{\begin{array}{l}\tilde{\omega}_{1}\alpha\end{array}\})_{n}$ $D=| \frac{}{\partial\overline{\omega}_{1}}\frac{\partial\Delta T_{0}}{\partial\Delta\partial\overline{\omega}_{\star_{f}}}$ $\frac{}{\partial\alpha}\frac{\partial\Delta T_{0}}{\partial\Delta V_{f}\partial\alpha}|\cdot$ (37)

Then the fluid forces are again evaluated and the rotor equation system is again solved with
respect to $x_{*}$ and $y_{*}$ . This loop is continued until the absolute values of $\Delta V_{f}$ and $\Delta T_{0}$ , which
should ideally be zero, are deemed sufficiently small, say smaller than $10^{-5}.$

4 Numerical example

Vessel deflection components $x_{*},$ $y_{*}$ and fluid force components $F_{x},$ $F_{y}$ are shown in Fig. 2,
parts (a) and (c). Here $\Omega_{*}$ is a non-dimensional vessel rotational speed, defined by $\Omega_{*}=\Omega/\omega_{S},$

with $\omega_{s}$ being the critical rotational speed for the empty rotor.
Part (b) and (d) show the phase angle of the vessel deflection $(\varphi_{d}, say)$ and of the resultant

fluid force $(\varphi_{f}, say)$ , respectively. The phase angle of the deflection starts, by small rotational
speeds, at $\varphi_{d}\approx 0$ ; that is, the deflection is in the direction of the unbalanced mass. Upon passing
through resonance the phase angle shifts approximately $180^{o}$ . (By zooming in on the graph the
precise value $\varphi_{d}=-177^{0}$ is found.) The phase angle of the resultant fluid force (shown by a full
line) has a similar course and ends, upon passing through resonance, at the value $\varphi_{d}=-190^{o}.$
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$|z_{*}|=|x_{*}+iy_{*}|$ $\arg(z_{*})$

(a) (b)

$\Omega_{*} \Omega_{*}$
$|F_{z}|=|F_{x}+iF_{y}|$ $\arg(F_{z})$

(c) (d)

$\Omega_{*} \Omega_{*}$
Figure 2: Vessel deflection and fluid force amplitudes $(a, c)$ and phase angles $(b, d; in$ degrees)
as functions of the angular velocity $\Omega_{*}.$

Thus, after the passage through resonance, the resultant fluid force starts to work against the
unbalanced mass, tending to generate a deflection which is opposed to the deflection generated
by the unbalanced mass. This explains the basic dynamics of the fluid balancer.

Fig. 3 shows the liquid surface, described by the non-dimensional parameters $\delta+\kappa_{0}$ , for a
sub-critical value of $\Omega_{*}(\Omega_{*}=0.6)$ in parts (a) and (c); and for a super-critical value $(\Omega_{*}=1.6)$ in
parts (b) and (d). [Parts (a) and (b) give an ‘outfolded’ representation in rectangular coordinates,
while parts (c) and (d) give a more physical representation in polar coordinates.]

It is noted that ‘unphysical’ solutions can be generated around $\Omega_{*}\approx 1$ , in the sense that
$\delta+\kappa_{0}(\xi)$ (which should be $>0$ for all $\xi$ ) can become $<0$ at certain values of $\xi$ . The problem
has been reported and discussed also by Jung et al. (2008) and Urbiola-Soto and Lopez-Parra
(2011). In order to avoid it, constraints on the form $\delta+\kappa_{0}(\xi)>0$ should be imposed at a
relatively large number of values of $\xi$ around the circumference. This will imply that there will
be (many) more equations than unknowns and will in turn require that the Newton method (37)
is replaced by, for example, a least squares methodology. We prefer, however, to avoid this at
the present stage. The issue does not cause any ‘singular’ behavior in the equation system and
does not seem to cause qualitative changes in the frequency response diagrams either.
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Retuming to Fig. 3, initially $(at time t_{*}=0, say)$ the unbalanced mass is located at $\xi=0,$

in a coordinate system moving with the whirl (i.e., with the angular velocity $\omega-\Omega$ , or $\tilde{\omega}-1$

in terms of non-dimensional parameters). Thus, a wave top is located at the position of the

unbalanced mass by the sub-critical rotational speed, and opposite of the unbalanced mass by

the super-critical rotational speed, just as illustrated in Fig. 1. There is however a slow drift’
with angular velocity $1-\tilde{\omega}$ . This undesirable phenomenon has been verified in experiments, and

various remedies have been considered in order to prevent it, e.g. a hexagon-shaped channel
and separator plates (Nakamura, 2009).

$\delta+\kappa_{0}$ $\delta+\kappa_{0}$

$-180$ 90 $0$ 90 180
(a) (b)

$\xi\cross 180/2\pi \xi\cross 180/2\pi$

$\Omega_{*}=0.6 \Omega_{*}=1.6$

$270 270$(c) (d)

Figure 3: The fluid layer in the vessel, described by $\delta+\kappa_{0}$ , in terms of‘rectangular’ plots (a, b)

and polar plots (c, d). The unbalanced mass is initially $(at time t_{*}=0, say)$ located at $\xi=0.$

Parts (a) and (c) show the fluid layer before resonance $(\Omega_{*}=0.6)$ and parts (b) and (d) the
fluid layer after resonance $(\Omega_{*}=1.6)$ .
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5 Conclusion

The dynamics of the fluid balancer has been investigated based on a model of a two degrees-of-
freedom rotor containing a small amount of liquid. The thin internal fluid layer, which forms due
to the rotation, is described in terms of shallow water wave theory. $A$ perturbation approach gives
that the fluid layer thickness perturbation is described by a forced Korteweg-de Vries-Burgers
equation. This equation is solved- approximately-also by a perturbation approach. The first
approximation involves $a$ (single) cnoidal wave solution of the (homogeneous) Korteweg-de Vries
equation. The next term in the approximation is govemed by a forced Mathieu equation.

The fluid and rotor equations are coupled by integrating the fluid pressure over the inner
vessel surface. The phase angle function of the resultant fluid force has a behavior that resembles
the experimentally obtained function (Nakamura, 2009). In particular, it is confirmed that, when
the unbalanced mass initially is placed at the angular position $\varphi=0$ (in a coordinate system
moving with the whirl), the phase angle of the resultant fluid force moves from $\varphi=0^{o}$ at
subcritical rotational speeds to $\varphi=180^{0}$ at supercritical speeds; that is, after passage through
resonance. As observed in experiments, there is however a drift of the resultant fluid force.

Finally, it must be mentioned that it is not difficult to find parameter values where the present
numerical approach does not convergence. This suggests that a stable one-wave solution does
not exist (at those parameter values). Numerical simulations $($Kasahara $et al., 2000b)$ suggest
the existence of multi-wave solutions, still of solitary (or rather, cnoidal) wave type. It is known
(Miura, 1976) that the Korteweg de-Vries equation (9) admits multiple-soliton solutions (in a
doubly infinite domain). It would be interesting to pursue such analytical multi-wave solutions
to the fluid balancer problem in future research.
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