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Abstract

Recently we have proved that the Arcsine Law appears as the
Classical Limit of quantum harmonic oscillators, in the framework of
algebraic probability thoery. In the present paper we discuss how to
generalize the result by means of the notion of interacting Fock spaces,
which associates algebraic probability theory and the theory of orthog-
onal polynomials of probability measures. As an application we show
that the Classical Limit for interacting Fock spaces corresponnding to
$q$-Gaussians and the exponential distribution are the Arcsine Law.

1 Introduction
Let us consider the time-avereged distribution of position $x$ for a 1-dimensional
classical harmonic oscillator. It is easy to see that the distribution (after
standardization) has the form

$\mu_{A_{8}}(dx)=\frac{1}{\pi}\frac{dx}{\sqrt{2-x^{2}}} (-\sqrt{2}<x<\sqrt{2})$ .

The distribution $\mu_{As}$ is called the (normalized) Arcsine Law, which also
plays lots of crucial roles both in pure and applied probability theory. The
n-th moment $M_{n}:= \int_{\mathbb{R}}x^{n}\mu_{As}(dx)$ is given by

$M_{2m+1}=0, M_{2m}= \frac{1}{2^{m}}[Matrix].$

The moment problem for the Arcsine law is determinate, that is, the moment
sequence $\{M_{n}\}$ characterizes $\mu_{As}$ . In [4] we have proved that the Arcsine
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Law appears as the Classical Limit of quantum harmonic oscillator, in the
framework of algebraic probability thoery (also known as “noncommutative
probability theory” or “quantum probability theory”).

The purpose of this paper is to develop the result. and viewpoint in [4].
Section 2 and 3 are devoted to review basic notions in algebraic probabity
and the “Quantum-Classical Correspondence” for quantum harmonic oscil-
lators proved in [4] In section 4 we discuss how to generalize the result
and viewpoint by means of “interacting Fock spaces [1]”, which associates
algebraic probability theory and the theory of orthogonal polynomials. In
the last section we show that the Classical Limit for the interacting Fock
space corresponding to Laguerre polynomials again becomes the Arcsine law
(after standardization).

2 Quantum Harmonic Oscillator
Let $\mathcal{A}$ be $a*$-algebra. We call a linear map $\varphi$ : $\mathcal{A}arrow \mathbb{C}$ a state on $\mathcal{A}$ if it
satisfies

$\varphi(1)=1, \varphi(a^{*}a)\geq 0.$

A pair $(\mathcal{A}, \varphi)$ of $a*$-algebra and a state on it is called an algebraic probability
space. Here we adopt a notation for a state $\varphi$ : $\mathcal{A}arrow \mathbb{C}$ , an element $X\in \mathcal{A}$

and a probability distribution $\mu$ on $\mathbb{R}.$

Notation 2.1. We use the notation $X\sim_{\varphi}\mu$ when $\varphi(X^{m})=\int_{\mathbb{R}}x^{m}\mu(dx)$ for
all $m\in \mathbb{N}.$

Remark 2.2. Existence of $\mu$ for $X$ which satisfies $X\sim_{\varphi}\mu$ always holds.

Definition 2.3 (Quantum harmonic oscillator). $A$ quantum harmonic oscil-
lator is a triple $(\Gamma(\mathbb{C}), a, a^{*})$ where $\Gamma(\mathbb{C})$ is a Hilbert space $\Gamma(\mathbb{C})$ $:=\oplus_{n=0}^{\infty}\mathbb{C}\Phi_{n}$

with inner product given by $\langle\Phi_{n},$ $\Phi_{m}\rangle=\delta_{n,m}$ , and $a,$ $a^{*}$ are operators defined
as follows:

$a\Phi_{0}=0, a\Phi_{n}=\sqrt{n}\Phi_{n-1}(n\geq 1)$

$a^{*}\Phi_{n}=\sqrt{n+1}\Phi_{n+1}.$

Let $\mathcal{A}$ be the $*$-algebra generated by $a$ , and $\varphi_{n}$ be the state defined as
$\varphi_{n}(\cdot)$ $:=\langle\Phi_{n},$ $(\cdot)\Phi_{n}\rangle$ . Then $(\mathcal{A}, \varphi_{n})$ is an algebraic probability space. It is
well known that

$a+a^{*}$

represents the “position” and that

$a+a^{*} \sim_{\varphi 0}\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^{2}}dx.$
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That is, in $n=0$ case, the distribution of position is Gaussian.
On the other hand, the asymptotic behavior of the distributions of posi-

tion as $n$ tends to infinity is quite nontrivial.

3 Quantum-Classical Correspondence
Then a question arises: Is it possible to see whether and in what meaning the.
“Quantum-Classical Correspondence” holds for harmonic oscillators? This
question, which is related to fundamental problems in Quantum theory and
asymptotic analysis [2], was analyzed in [4] from the viewpoint of noncom-
mutative algebraic probability with quite a simple combinatorial argument.

The folloing is the main result in [4]:

Theorem 3.1. Let $\mu_{N}$ be a probability distribution on $\mathbb{R}$ such that

$\frac{a+a^{*}}{\sqrt{2N}}\sim_{\varphi_{N}}\mu_{N}.$

Then $\mu_{N}$ weakly converges to $\mu_{As}.$

Proof. We only have to prove moment convergence because it is known that
moment convergence implies weak convergence when the moment problem
for the limit distribution is determinate.

First we can easily prove that

$\varphi_{N}((\frac{a+a^{*}}{\sqrt{2N}})^{2m+1})=\langle\Phi_{N}, (\frac{a+a^{*}}{\sqrt{2N}})^{2m+1}\Phi_{N}\rangle=0$

since $\langle\Phi_{N},$ $\Phi_{M}\rangle=0$ when $N\neq M.$

To consider the moments of even degrees, we introduce the following
notations:

$\bullet$
$\Lambda^{2m}$

$:=$ {maps from {1, 2,
$\ldots,$

$2m\}$ to $\{1,$ $*\}$ },

$\bullet\Lambda_{m}^{2m}:=\{\lambda\in\Lambda^{2m};|\lambda^{-1}(1)|=|\lambda^{-1}(*)|=m\}.$

Note that the cardinality $|\Lambda_{m}^{2m}|$ equals to $(\begin{array}{l}2mm\end{array})$ because the choice of $\lambda$ is
equivalent to the choice of $m$ elements which consist the subset $\lambda^{-1}(1)$ from
$2m$ elements in $\{$ 1, 2,

$\ldots,$
$2m\}.$

It is clear that for any $\lambda\not\in\Lambda_{m}^{2m}$

$\langle\Phi_{N}, a^{\lambda_{1}}a^{\lambda_{2}}\cdots a^{\lambda_{2m}}\Phi_{N}\rangle=0$

since $\langle\Phi_{N},$ $\Phi_{M}\rangle=0$ when $N\neq M.$
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On the other hand, for any $\lambda\in\Lambda_{m}^{2m}$ the inequality

$N\cdots(N-m+1)\leq\langle\Phi_{N},$ $a^{\lambda_{1}}a^{\lambda_{2}}\cdots a^{\lambda_{2m}}\Phi_{N}\rangle\leq(N+1)\cdots(N+m)$

holds when $N$ is sufficiently large, because the minimum is achieved when

$\lambda_{i}=\{$ $*1,$

$(1\leq i\leq m)$

$(m+1\leq i\leq 2m)$

and the maximum is achieved when

$\lambda_{i}=\{$

$*,$ $(1\leq i\leq m)$

1, $(m+1\leq i\leq 2m)$

by the definition of $a,$
$a^{*}$

Using the inequality above we have

$\frac{1}{N^{m}}\langle\Phi_{N}, a^{\lambda_{1}}a^{\lambda_{2}}\cdots a^{\lambda_{2m}}\Phi_{N}\ranglearrow 1 (Narrow\infty)$ .

and then
$\varphi_{N}((\frac{a+a^{*}}{\sqrt{2N}})^{2m})=\langle\Phi_{N}, (\frac{a+a^{*}}{\sqrt{2N}})^{2m}\Phi_{N}\rangle$

$= \frac{1}{2^{m}}\sum_{\lambda\in\Lambda^{2\mathfrak{m}}}\frac{1}{N^{m}}\langle\Phi_{N}, a^{\lambda_{1}}a^{\lambda_{2}}\cdots a^{\lambda_{2m}}\Phi_{N}\rangle$

$= \frac{1}{2^{m}}\sum_{\lambda\in\Lambda_{m}^{2m}}\frac{1}{N^{m}}\langle\Phi_{N}, a^{\lambda_{1}}a^{\lambda_{2}}\cdots a^{\lambda_{2m}}\Phi_{N}\rangle$

$arrow\frac{1}{2^{m}}|\Lambda_{m}^{2m}|=\frac{1}{2^{m}}(\begin{array}{l}2mm\end{array}) (Narrow\infty)$ .

$\square$

As we have stated, the Arcsine law as the time-averaged distribution
for classical harmonic oscillators emerges from the distributions for quan-
tum harmonic oscillators. This is nothing but a noncommutative algebraic
realization of Quantum-Classical Correspondence for harmonic oscillators.

In other words, the Arcsine Law appears as the classical limit of
quantum harmonic oscillators. The “time averaged” nature is deeply re-
lated to the notion of Bohr’s “complementarity”for energy and time. Starting
from energy eigenstates, one cannot obtain the classical harmonic oscillator
itself but time averaged distribution of it.
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4Generalization: Interacting Fock space
In this section we discuss a generalization of Theorem 3.1.

Definition 4.1 (Jacobi sequence). $A$ sequence $\{\omega_{n}\}$ is called a Jacobi se-
quence if it satisfies one of the conditions below:

$\bullet$ (finite type) There exist a number $m$ such that $\omega_{n}>0$ for $n<m$ and
$\omega_{n}=0$ for $n\geq m$ ;

$\bullet$ .(infinite type) $\omega_{n}>0$ for all $n.$

Definition 4.2 (Interacting, Fock space). Let $\{\omega_{n}\}$ be a Jacobi sequence. An
interacting Fock space $\Gamma_{\{\omega_{n}\}}$ is a triple $(\Gamma(\mathbb{C}), a, a^{*})$ where $\Gamma(\mathbb{C})$ is a Hilbert
space $\Gamma(\mathbb{C})$ $:=\oplus_{n=0}^{\infty}\mathbb{C}\Phi_{n}$ with inner product given by $\langle\Phi_{n},$ $\Phi_{m}\rangle=\delta_{n,m}$ , and
$a,$ $a^{*}$ are operators defined as follows:

$a\Phi_{0}=0, a\Phi_{n}=\sqrt{\omega_{n}}\Phi_{n-1}(n\geq 1)$

$a^{*}\Phi_{n}=\sqrt{\omega_{n+1}}\Phi_{n+1}.$

As before, let $\mathcal{A}$ be the $*$-algebra generated by $a$ , and $\varphi_{n}$ be the state
defined as $\varphi_{n}(\cdot);=\langle\Phi_{n},$ $(\cdot)\Phi_{n}\rangle$ . Then $(\mathcal{A}, \varphi_{n})$ is an algebraic probability
space.

The following result proved in [5] is a generalization of Theorem 3.1:

Theorem 4.3. Let $\Gamma_{\{\omega_{n}\}}:=(\Gamma(\mathbb{C}), a, a^{*})$ be an interacting Fock space satis-
fying the condition

$\lim_{narrow\infty}\frac{\omega_{n+1}}{\omega_{n}}=1$

and $\mu_{N}$ be a probability distribution on $\mathbb{R}$ such that

$\frac{a+a^{*}}{\sqrt{2\omega_{N}}}\sim_{\varphi_{N}}\mu_{N}.$

.Then $\mu_{N}$ weakly converges to $\mu_{As}.$

The theorem above has an interpretation in terms of orthogonal polyno-
mials. To see this we explain the relation between interacting Fock spaces,
probability measures and orthogonal polynomials.

Let $\mu$ be a probability measure on $\mathbb{R}$ having finite moments. (For the
rest of the present paper, we always assume that all the moments are finite.)
Then the space of polynomial functions is contained in the Hilbert space
$L^{2}(\mathbb{R}, \mu)$ . A Gram-Schmidt procedure provides orthogonal polynomials which
only depend on the moment sequence.
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Let $\{p_{n}(x)\}_{n=0,1},\cdots$ be the monic orthogonal polynomials of $\mu$ such that
the degree of $p_{n}$ equals to $n$ . Then there exist sequences $\{\alpha_{n}\}_{n=0,1},\cdots$ and
Jacobi sequence $\{\omega_{n}\}_{n=1,2},\cdots$ such that

$xp_{n}(x)=p_{n+1}(x)+\alpha_{n+1}p_{n}(x)+\omega_{n}p_{n-1}(x) (p_{-1}(x)\equiv0)$ .

$\alpha_{n}\equiv 0$ if $\mu$ is symmetric, i.e., $\mu(-dx)=\mu(dx)$ .
It is known that there exist an isometry $U$ : $\Gamma_{\{\omega_{n}\}}arrow L^{2}(\mathbb{R}, \mu)$ through

which we obtain
$a+a^{*}+a^{o}\sim_{\varphi_{N}}|P_{N}(x)|^{2}\mu(dx)$

where $a^{o}$ is an operator defined by $a^{o}\Phi_{n};=\alpha_{n+1}\Phi_{n}$ and $P_{n}$ denotes the
normalized orthogonal polynomial \’of degree $n[3]$ . Then Theorem 4.3 implies
the following:

Theorem 4.4. Let $\mu$ be a symmmetric measure such that the corresponting
Jacobi sequence $\{\omega_{n}\}$ satisfies

$\lim_{narrow\infty}\frac{\omega_{n+1}}{\omega_{n}}=1$

Then the measure $\mu_{n}$ defined as $\mu_{n}(dx);=|P_{n}(\sqrt{2\omega_{n}}x)|^{2}\mu(\sqrt{2\omega_{n}}dx)$ weakly
converge to $\mu_{As}.$

Since $q$-Gaussians” $(0\leq q\leq 1,$ $q=1$ is Gaussian and $q=0$ is Wigner
Semicircle Law) $\cdot$, corresponding to $\omega_{n}=[n]_{q}$ $:=1+q+q^{2}+\cdots+q^{n-1}$ , satisfy
the condition above, $\mu_{As}$ is turned out to be the Classical Limit of these
measures.

In the next section we discuss the Classical Limit for the case of expo-
nential distribution as an example of asymmetric measure.

5 Example: Exponential-Laguerre case
Let $\mu$ be the exponential distribution, i.e., $\mu(dx):=e^{-x}dx(x>0)$ .Then

$xl_{n}(x)=l_{n+1}(x)+(2n+1)l_{n}(x)+n^{2}l_{n-1}(x) (l_{-1}(x)\equiv 0)$ ,

holds, where $l_{n}$ denotes the Laguerre polynomial of n-th degree modified to
be monic. Let us consider the interacting Fock space $\Gamma_{\{\omega_{n}\}}$ for $\omega_{n}=n^{2}$ . As
we have discussed,

$a+a^{*}+a^{o}\sim_{\varphi_{N}}|L_{N}(x)|^{2}e^{-x}dx(x>0)$ .

where $L_{n}$ denotes the usual (normalized) Laguerre polipomial of n-th order.
Then we can calculate the “Limit moment” of $\mu_{n}(dx)$ $:=|L_{n}(nx)|^{2}ne^{-nx}dx$

$(x>0)$ in the spirit of the proof of Theorem 3.1 and Theorem 4.3 [5].

6



Proposition 5.1.

$\lim_{Narrow\infty}\varphi_{N}((\frac{a+a^{*}+a^{o}}{N})^{m})=\sum_{\iota}2^{m-2l}(\begin{array}{ll} mm -2l\end{array}) (\begin{array}{l}2ll\end{array}).$

The right hand side of the proposition above is simplified as follows.

Lemma 5.2.
$\sum_{l}2^{m-2l}(\begin{array}{ll} mm -2l\end{array}) (\begin{array}{l}2ll\end{array})=(\begin{array}{l}2mm\end{array}).$

Proof. Consider two sets of maps

$L:=\{f:marrow 4;|f^{-1}(0)|=|f^{-1}(1)|\}$

$R :=\{\tilde{f}:2\cross marrow 2;|\tilde{f}^{-1}(0)|=|\tilde{f}^{-1}(1)|\},$

where $m$ $:=\{0,1,2, \ldots, m-1\}$ . Since we can construct an isomorphism
between $L$ and $R,$ $|L|=|R|$ . This is what to be proved. (This proof is
obtained in discussion with Hiroki Sako). $\square$

It is easy to show that

$(\begin{array}{l}2mm\end{array})=\int_{0}^{4}x^{m}\frac{1}{\pi}\frac{dx}{\sqrt{4-(x-2)^{2}}},$

and hence we obtain the following theorem[5].

Theorem 5.3. Let $L_{n}$ be the normalized Laguerre polynomial of n-th degree.
Then $\mu_{n}(dx);=|L_{n}(nx)|^{2}ne^{-nx}dx(x>0)$ weakly converge to

$\frac{1}{\pi}\frac{dx}{\sqrt{4-(x-2)^{2}}}(0<x<4)$ .

That is, the Classical Limit of “Laguerre oscillator” is also the
Arcsine Law (just translated and dilated).
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