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1 Introduction

The volume conjecture [13, 15] indicates an intimate relationship between quantum in-
variants of knots and complex volume of knot complements. Generally quantum invari-
ants of knots are constructed combinatorically based on $R$ -matrix, and it is expected that
complex volume can be formulated based on knot diagram. Indeed in [24, 3, 2, 1] con-
structed was the Neumann-Zagier potential function [20] based on the $R$ -matrices of the
Kashaev invariant and the colored Jones polynomial at root of unity.

Our purpose in this article is to study complex volume of knot complements from
viewpoint of cluster algebra. See our works [9, 10] for detail.

2 Cluster Algebra and 3-Dimensional Hyperbolic Geometry

2.1 Cluster Algebra

We follow a definition of cluster algebras in [6, 7]. Let $(\mathbb{P}, \oplus, \cdot)$ be a semifield endowed an
auxiliary addition $\oplus$ , which is commutative, associative, and distributive with respect to
the group multiplication. in $\mathbb{P}$ . Let $\mathbb{Q}\mathbb{P}$ denote the quotient field of the group ring $\mathbb{Z}\mathbb{P}$ of
$\mathbb{P}$ . Fix $N\in \mathbb{Z}_{>0}.$

Definition 2.1. $A$ seed is a triple $(x,\epsilon,B)$ , where. a cluster $x=(x_{1,\ldots,N}x)$ is an $N$-tuple of $N$ algebraically independent variables with
coefficients in $\mathbb{Q}\mathbb{P},$

a coefficient tuple $\epsilon=(\epsilon_{1}, \ldots,\epsilon_{N})$ is an $N$-tuple of elements in $\mathbb{P},$. an exchange matrix $B=(b_{ij})$ is an $NxN$ skew symmetric integer matrix.

We call $x_{i}$ a cluster variable, and $\epsilon_{i}$ a coefficient.
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Definition 2.2. Let $(x,\epsilon,B)$ be a seed. For each $k=1,$ $\ldots,N$ , we define the mutation of
$(x,\epsilon,B)$ by $\mu_{k}$ as

$\mu_{k}(x,\epsilon,B)=(\tilde{x},\tilde{\epsilon},\tilde{B})$,

where

the cluster $\tilde{x}=(\tilde{x}_{1}, \ldots,x_{N})$ is

$\tilde{x}_{i}=1^{x_{i}}\frac{\epsilon_{k}}{1\oplus\epsilon_{k}}\cdot\frac{1}{x_{k}}\prod_{j:b_{jk}>0}x_{j}^{b_{jk}}+\frac{1}{1\oplus\epsilon_{k}}\cdot\frac{1}{xh}\prod_{j:b_{jk}<0}x;^{b_{jk}}, forifori=h\neq h,$

’

(1)

the coefficient tuple $\tilde{\epsilon}=(\tilde{\epsilon}_{1}, \ldots,\tilde{\epsilon}_{N})$ is

$\tilde{\epsilon}_{i}=1_{\epsilon_{i}(}^{\epsilon_{h}^{-1}}\epsilon_{i}(\frac{\epsilon_{k}}{1\oplus\epsilon_{k})1\oplus\epsilon_{k}})^{b_{ki}}-b_{ki}, fori\neq h,b_{ki}\leq 0fori\neq k,b_{hi}\geq 0fori=h,$

,

(2)

the exchange matrix $\tilde{B}=(\tilde{b}_{ij})$ is

$\tilde{b}_{ij}=\{\begin{array}{ll}-b_{ij}, for i=k or j=k,b_{ij}+\frac{1}{2}(|b_{ik}|b_{kj}+b_{ik}|b_{kj}|) , otherwise.\end{array}$ (3)

Note that the resulted triplet $(\tilde{x},\tilde{\epsilon},\tilde{B})$ is again a seed.

By starting from an initial seed $(x,\epsilon,B)$ , we iterate mutations and collect all obtained
seeds. The cluster algebra $\mathscr{A}(x,\epsilon,B)$ is the $\mathbb{Z}\mathbb{P}$ -subalgebra of the rational function field
$\mathbb{Q}\mathbb{P}(x)$ generated by all the cluster variables. We use the following.

Proposition 2.3 ([7]). Let $y$ be an $N$-tuple $y=(y_{1}, \ldots,y_{N})$, defined by use of cluster $x$ and
coefficient $\epsilon$ as

$y_{j}= \epsilon_{j}\prod_{k}x_{k}^{b_{kj}}$ . (4)

Then we have a mutation,
$\mu_{k}ty,B)=(\tilde{y},\tilde{B})$ , (5)

where
$\tilde{y}=(\tilde{y}_{1}, \ldots,\tilde{y}_{N})$ is analogous to (2),

$\tilde{y}_{i}=\{\begin{array}{ll}y_{h^{-1}}, for i=h,\mathcal{Y}i(\frac{\mathcal{Y}k}{1+y_{k}}1^{b_{ki}} [or i\neq k, b_{ki}\geq 0,y_{i}(1+y_{k})^{-b_{ki}}, for i\neq h, b_{ki}\leq 0,\end{array}$ (6)
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$.\tilde{B}=(\tilde{b}_{ij})$ is (3).

For the later use, we introduce the permutation acting on seeds.

Definition 2.4. For $i,j\in\{1, \ldots,N\}$ and $i\neq j$ , let $s_{i,j}$ be a permutation of subscripts $i$ and
$j$ in seeds. For example permutated cluster $s_{i,j}(x)$ is defined by

$s_{i,j}(\cdots,x_{i},\cdots,x_{j},\cdots)=(\cdots,x_{j},\cdots,x_{i},\cdots)$.

Actions on $\epsilon$ and $B$ are defined in the same manner. They induce an action on $y$ , and
$s_{i,j}(y)$ has a same form.

2.2 Hyperbolic Geometry

A fundamental object in three-dimensional hyperbolic geometry is an ideal hyperbolic
tetrahedron $\triangle$ in Fig. 1 [23]. The tetrahedron is parameterized by a modulus $z\in \mathbb{C}$ , and
each dihedral angle is given as in the figure. We mean $z’$ and $z”$ for given modulus $z$ by

$z’=1- \frac{1}{z}, z"=\frac{1}{1-z}$ . (7)

The cross section by the horosphere at each vertex is similar to the triangle in $\mathbb{C}$ with
vertices $0,1$ , and $z$ . We have assigned a vertex ordering following [27], which is crucial
in computing the complex volume of tetrahedra modulo $\pi^{2}$ . See Fig. 1.

Figure 1: An ideal hyperbolic tetrahedron $\triangle$ with modulus $z$ . Dihedral angles are given by $z,$ $z’=1$ -llz,
and $z”=1/(1-z)$ . Each $v_{a}$ denotes a vertex ordering. We give an orientation to an edge from $v_{a}$ to $v_{b}(a<b)$ .

The hyperbolic volume of an ideal tetrahedron $\triangle$ with modulus $z$ is given by the Bloch–
Wigner function

$D(z)=\Im Li_{2}(z)+\arg(1-z)\log|z|$ , (8)

where $Li_{2}(z)$ is the dilogarithm function,

$Li_{2}(z)=-\int_{0}^{z}\log(1-s)\frac{ds}{s}.$

See, e.g., [26].
A set of ideal tetrahedra $t\triangle_{v}$ } is glued together to construct a cusped hyperbolic man-

ifold $M.$ $A$ modulus $z_{v}$ of each ideal tetrahedron $\triangle_{v}$ is determined from both gluing con-
ditions around each edge and a completeness condition [23, 20, 18]. Then the hyperbolic
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volume of $M$ is given by
$Vol(M)=\sum_{v}D(z_{v})$ . (9)

The complex volume, $Vol(M)+iCS(M)$, is given in terms of an extended Rogers dilog-
arithm function

$L([z;p,q])=Li_{2}(z)+\frac{1}{2}\log z\log(1-z)+\frac{\pi i}{2}(q\log z+p\log(1-z))-\frac{\pi^{2}}{6}$ , (10)

where $p,q\in \mathbb{Z}$ . To compute the complex volume, we need an additional structure to the
moduli of ideal tetrahedra:

Definition 2.5 ([19]). $A$ flattening of an ideal tetrahedron $\triangle$ is

$(w0,w_{1},w_{2})=(\log z+p\pi i,-\log(1-z)+q\pi i,\log(1-z)-\log z-(p+q)\pi i)$ , (11)

where $z$ is the modulus of $\triangle$ and $p,q\in \mathbb{Z}$ . We use $[z;p,q]$ to denote the flattening of $\triangle.$

In [19], the extended pre-Bloch group is defined as the free abelian group on flatten-
ings subject to a five-term relation, and shown is that the flattening gives the complex
volume.

Proposition 2.6 ([19]). The complex volume $ofM$ is

$i(Vol(M)+iCS(M))=\sum_{v}$ sign(v) $L([z_{v};p_{v},q_{v}])$ , (12)

where $[z_{v};p_{v},q_{v}]$ and $sign(v)=\pm 1$ respectively denote a flattening and a vertex ordering
ofa tetrahedron $\triangle_{v}.$

For a tetrahedron $\triangle$ in Fig. 1, let $c_{ab}$ be a complex number assigned to an edge con-
necting vertices $v_{a}$ and $vb$ . Zickert clarified that the flattening $(z;p,q)$ of $\triangle$ is given by
$c_{ab}$ as follows.

Proposition 2.7 ([27]). When we have

$\frac{c_{03}c_{12}}{c_{02}c_{13}}=\pm z, \frac{c01^{\mathcal{C}}23}{c_{03}c_{12}}=\pm(1-\frac{1}{z}) , \frac{c_{02}c_{13}}{c_{01}c_{23}}o=\pm\frac{1}{1-z}$, (13)

the flattening $(z;p,q)$ is given by

$lz+\pi i=lc_{03+lc_{12}-l-\log_{C}13},$
(14)

$-\log(1-z)+q\pi i=\log c_{02}+\log c_{13}-\log c_{01}-\log_{\mathcal{C}}23.$

Remark 2.8. In gluing tetrahedra to construct $M$ , identical edges have the same complex
numbers.

2.3 Interrelationship

Correspondence between the cluster algebra and the hyperbolic geometry can be seen in
a simple example (see also [17]). We study a triangulation of surface and its flip as in
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Fig. 2. Triangulation is related to quiver where the number of edges in a triangulation
is the same as the fixed number $N$ in the cluster algebra, and flip can be regarded as
mutation, as depicted in the figure. Note that the exchange matrix $B=(b_{ij})$ of quiver is

$b_{ij}=\#\{$arrows from $i$ to $j\}-\#\{$arrows from $j$ to $i\}.$

By definition (4), the mutation $\mu_{3}(y,B)=(\tilde{y},\tilde{B})$ , is explicitly written as
$\tilde{y}_{1}=y_{1}(1+y_{3})$ ,
$\tilde{y}_{2}=y_{2}(1+y_{3^{-1}})^{-1},$

$\tilde{y}_{3}=y_{3^{-1}}$ , (15)

$\tilde{y}_{4}=y_{4}(1+y_{3^{-1}})^{-1},$

$\tilde{y}_{5}=y_{5}(1+y_{3})$ .

$arrow$

Figure 2: [Left] Triangulation ofa punctured surface. Associated quiver is depicted in red. [Right] Flip and
attachment of pleated tetrahedron.

On the other hand, we may regard a flip in Fig. 2 as an attachment ofideal tetrahedron
$\triangle$ with modulus $z$ whose faces are pleated. When we denote $zk$ as a dihedral angle on
edge $k$ , dihedral angle $\tilde{z}k$ after attaching $\triangle$ is given by

$\tilde{z}_{1}=z_{1}z’,$

$\tilde{z}=z,$

$\tilde{z}3=z$ , (16)

$\tilde{z}_{4}=z_{4^{Z"}},$

$\tilde{z}_{5}=z_{5^{Z’}},$

with a hyperbolic gluing condition
$z_{3}z=1.$
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Comparing (15) with (16), we observe that the cluster $y$-variable is related to dihedral
angle by

$y=-z,$
and especially a modulus of ideal tetrahedron $\triangle$ is given by

$z=-\underline{1}$ , (17)
$\mathcal{Y}3$

where a subscript“3” is a direction of mutation.

3 Braid Relation

3.1 $R\cdot operator$

We set the exchange matrix $B$ as

$B=\ovalbox{\tt\small REJECT} 001000 -1000001 -1000001 -1-100101 -1000001 -1001000 -1001000]$ . (18)

By regarding the matrix element as

$b_{ij}=\#t$arrows from $i$ to $jI-\#$ {arrows from $j$ to $i$ }, (19)

exchange matrix $B$ corresponds to quiver, which is dual to triangulated surface (see,
e.g., [5] $)$ . In our case (18), we have the quiver and the triangulated surface depicted
in Fig. 3.

7
Figure 3: Quiver and triangulated surface

Definition 3.1 ([10]). We define the $R$-operator by

$R=s_{3,5}s_{2,5}s_{3,6}\mu_{4}\mu_{2}\mu_{6}\mu_{4}$ . (20)
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Note that the inverse of the $R$ -operator is given by

$R^{-1}=s_{3,6}s_{2,5}s_{3,5}\mu_{4}\mu_{5}\mu_{3}\mu_{4}$ . (21)

The permutations are included in the $R$-operator so that the exchange matrix $B(18)$

is invariant under R. We use a trivial semi-field [7], and we set all cluster coefficients to
be 1. Exphcitly we have

$R^{\pm 1}(x,B)=(R^{\pm 1}(x),B)$, (22)

where

$R(x)=[\frac{X_{1^{X_{3}x_{4}x_{5}+x_{3^{X}5^{X}7+x_{1}x_{2}x_{6}x_{7}}}}\frac{xxx+xxx+xxxx_{5}x_{1}}{4^{2_{x_{5}+x_{1}x_{3}x_{6}x_{7}+x_{3}x_{4}x}}x_{2}x_{4}}}{\frac{xxx_{\’{o}}+x_{3}xx_{7}+xxxxx_{5}x_{6}}{x_{4}x_{6}},xx_{7}^{3}}1^{T}$

$R^{-1}(x)=[x_{7}\frac{x_{1}x_{2}x_{4}x_{6+x_{2x_{4}^{2}x_{6}+x_{1}x_{3}x_{5}x_{7}+x_{1}x_{2}xx_{7}+xx_{4}x67}^{\frac{x_{135126246}xx+xxx+xxxx_{1}}{x_{3}x_{4}}}}x_{6}62x}{}\frac{xxx_{6}+x3x_{5}x7+x2xxx_{3}x_{4}x_{5}x_{2}}{x4x_{5}}]^{T}$ (23)

Correspondingly, actions of the $R$-operator, (20) and (21), on the $y$-variable are respec-
tively given as follows:

$R(y)=[\frac{\frac{}{}\frac{y1(1_{\mathcal{Y}2y_{4\mathcal{Y}5\mathcal{Y}6}}+\mathcal{Y}2+\mathcal{Y}2\mathcal{Y}4)}{1^{+y_{2}+\mathcal{Y}6+y_{2}y_{6}+y_{2}y_{4\mathcal{Y}6}}1_{+2++y_{6}+y^{2}y_{4\mathcal{Y}6}}y_{y_{4}}2\mathcal{Y}4}}{t_{\frac{}{}}),\frac{1+y2+y_{2}y_{4})(1+\mathcal{Y}6+y_{4\mathcal{Y}6}1+y_{2}+y_{6}+y_{2}y6+y_{2\mathcal{Y}4\mathcal{Y}6}y2\mathcal{Y}3\mathcal{Y}4y_{6}y_{4\mathcal{Y}6}}{1+y2+y6+y_{2}y6+\mathcal{Y}2\mathcal{Y}4y_{6}(1+y_{6}+y_{4}y_{6})y_{7}}}T$ $R^{-1}(y)=y(2(1+3\mathcal{Y}4\mathcal{Y}5)]^{T}$ (24)

During the workshop, R. Kashaev kindly informed us that an essentially same action
with (24) was studied in [4].
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It should be noted that the $R$-operator (20) can be written as
$R=s_{2,5}s_{3,6}\mu_{2}\mu_{6}\mu_{4}\mu_{2}\mu_{6}$ . (25)

3.2 Braid Relation

We generalize the quiver in Fig. 3 to that in Fig. 4. Therein also given is the triangulated
surface, and an exchange matrix $B$ is given by the rule (19) as a generalization of (18).

$2 5 3i-1 3n-1$

Figure 4: Quiver and triangulated surface.

Definition 3.2. By use of (20), we define the $R$ -operator $Ri$

for $i=1,$ $\ldots,n-1$ associated
with the quiver in Fig. 4 by

$R\mu_{3i+1}\mu_{3i-1}\mu_{3i+3}\mu_{3i+1}i_{=s_{3i,3i+2^{S}3i-1,3i+2^{S}3i,3i+3}}$. (26)

Note that
$R^{-1}=s_{3i,3i+3}s_{3i-1,3i+2}s_{3i,3i+2}\mu_{3i+1}\mu_{3i+2}\mu_{3i}\mu_{3i+1}i$ . (27)

The exchange matrix associated to Fig. 4 is invariant under the action ofthe $R$-operators
$R^{i_{\pm 1}}.$

The explicit forms of the actions on the cluster variable $x=(x_{1},x_{2,\ldots,3n+1}x)$ and the y-
variable $y=(y_{1},y_{2}, \ldots,y_{3n+1})$ are as follows.

$R^{\pm 1}(x)=(x_{1},\ldots,x_{3i-3}, R^{\pm 1}(x_{3i-2},\ldots,x_{3i+4}),x_{3i+5},\ldots,x_{3n+1})i$ , (28)

$R^{\pm 1}(y)=(y_{1}, \ldots,y_{3i-3}, R^{\pm 1}(y_{3i-2}, \ldots,y_{3i+4}),y_{3i+5,\ldots,\mathcal{Y}3n+1)}i$ , (29)

where $R^{\pm 1}(x_{1}, \ldots,x_{7})$ and $R^{\pm 1}(y_{1}, \ldots,y_{7})$ are defined in (23) and (24) respectively
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Theorem 3.3 ([10]). The $R$ -operator satisfies the braid relation, namely we have

$RRRii+1i=RRRi+1ii+1$ , for $i=1,2,$ $\ldots,n-2_{J}$ (30)

$RRi=RRji$ , for $|i-j|>1$ . (31)

3.3 Octahedron

Based on 3-dimensional interpretation of the cluster mutation given in Section 2.3, we
can see that the $R$-operator (20) is realized as an octahedron in Fig. 5, which is composed
of four tetrahedra $t\triangle_{N},\triangle s,\triangle_{W},\triangle_{E}$}. The four tetrahedra originate from four mutations
in the $R$ -operator, (20) and (21). In octahedra, the cluster variables $Xk$ and $\tilde{x}k$ defined by

$\tilde{x}=R^{\pm 1}(x)$ ,

are assigned to edges, and we have used

$x_{c}= \frac{x_{2}x_{6}+x_{3}x_{5}}{x_{4}}$ . (32)

Note that we have fixed vertex ordering for our convention, and that edges with the same
complex parameters $(e.g., two$ pairs $of$ edges $v_{0}-v_{2}, v_{1}-v_{3})$ are identical.

Figure 5: Octahedron for $R$ (left) and $R^{-1}$ (right)

As the $R$ -operator satisfies the braid relation (Theorem 3.3), we can interpret that
each octahedron is assigned to every crossing of knot diagram as in Fig. 6. This re-
minds a fact [22] that octahedron was assigned to the Kashaev $R$-matrix [12] (see also,
[8, 1, 3, 24] $)$ . Note that another expression (25) of the same $R$ -operator corresponds to a
decomposition of octahedron into five tetrahedra, which was used in studies of the colored
Jones $R$ -matrix at root of unity [22, 2].
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$\triangle_{N}$ $\triangle_{N}$

$\triangle s \triangle s$
Figure 6: Dihedral angle at crossings, $R$ (left) and $R^{-1}$ (right).

Taking into account of the vertex ordering of tetrahedra, we can determine moduli
of each tetrahedron from (13) as in Table 1. From these results, we define dilogarithm
functions for every crossing by

$L([R^{\pm 1}])=\sum_{t\in\{N,S,W,E\}}sign(\triangle_{t})L([z_{\triangle_{t}};p\triangle_{t},q_{\triangle_{t}}])$
. (33)

Here integers $p\triangle_{t}$ and $q\triangle_{t}$ are given from (14) by use of Table 1. For instance, $p\triangle_{E}$ and
$q\triangle_{E}$ in the operator $R$ are given as

$p_{\triangle_{E}} \pi i=-\log(\frac{\tilde{x}_{5}x_{6}}{x_{3}x_{5}})+\log(\tilde{x}_{5})+l(X6)(X3,$

$q_{\triangle_{E}} \pi i=-\log(-\frac{xx}{x_{c}x_{7}})+\log(x3)+\log(x_{5})-\log(x_{c})-\log(x_{7})$ .

$R R^{-1}$
$\triangle$ Volume sign(A) $z_{\triangle}$

$\frac{1}{1-z_{\triangle}}$ sign(A) $z_{\triangle}$
$\frac{1}{1-z_{\triangle}}$

$\Delta_{N} D(-\frac{1}{y_{4}}) - -\frac{x_{2}x_{6}}{x_{3^{X}6}} \frac{x_{3^{X}6}}{X4^{\chi_{C}}} + -\frac{x_{3}x_{5}}{x_{2}x_{6}} \frac{x_{2}x_{6}}{x4^{X}c}$

$\triangle s D(-\tilde{y}_{4}) - -\frac{\tilde{x}\tilde{x}}{x3^{X}5} \frac{xx}{\tilde{x}_{4}x_{c}} + -\frac{\tilde{x}_{2}\tilde{x}_{6}}{x_{2}x_{6}} \frac{xx}{x_{c}\tilde{x}_{4}}$

$\triangle w D(\frac{\tilde{y}_{1}}{y_{1}}) + \frac{x_{2^{\tilde{\chi}}3}}{xsx_{5}} -\frac{x_{3^{X}5}}{x_{1}x_{c}}=_{--} -- \frac{\tilde{x}_{2}\alpha_{3}}{x_{2}x_{6}} -\frac{X2^{X}6}{x_{1}x_{c}}$

$\triangle_{E} D(\frac{\tilde{y}_{7}}{y_{7}}1 + \frac{\tilde{x}_{5}x_{6}}{xx} -\frac{x_{3}x_{5}}{x_{c}x_{7}} - \frac{x_{5}\tilde{x}_{6}}{x_{2}x_{6}} -\frac{xx}{x_{c}x_{7}}$

Table 1: Moduli of four tetrahedra assigned to operators $R$ and $R^{-1}.$ $Sgn+$” (resp. “-,,) means that vertex
ordering of tetrahedron is same (resp. inverse) with Fig. 1.

It should be remarked that, to identify the $R$-operator with a hyperbolic octahedron, we
need a consistency condition around a central edge labeled by $x_{c}$ in Fig. 5. This condition
is automatically satisfied by

$y_{1}y_{4}y_{7}=\tilde{y}_{1}\tilde{y}_{4}\tilde{y}_{7},$
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where $\tilde{y}=R^{\pm 1}(y)(24)$. In Fig. 6 denoted are dihedral angles around central axis assigned
to each crossing.

3.4 Gluing Octahedra

Theorem 3.4. Let knot $K$ have a braid group presentation $\sigma_{k_{1}}^{\epsilon_{1}}\sigma_{k_{2}}^{\epsilon_{2}}\cdots\sigma_{k_{m}}^{\epsilon_{m}}$, where $\epsilon_{j}=\pm 1$

and
$\mathscr{R}_{n}=\langle\sigma_{1},\sigma_{2},\ldots,\sigma_{n-1}|\sigma_{i}\sigma_{i+1}\sigma_{i^{\sigma_{i}\sigma_{j}=\sigma_{j}\sigma_{i}fo}}=\sigma_{i+1}\sigma_{i}\sigma_{i+1}7_{ori=1,2,\ldots,n-2}^{|i-j|>1}\rangle.$

We define a cluster pattern for $x[.i]=(x[i]_{1}, \ldots,x[j]_{3n+1})$ by

$x[1]arrow x[2]R^{\epsilon_{1}}k_{1}arrow\cdots x[m+1]R^{E}2\underline{R^{\epsilon_{m}}}k_{2k_{m}}$

, (34)

with the exchange matrix associated to Fig. 4. We assume that the initial cluster variable
$x[1]$ satisfies

$x[1]=x[m+1]$ . (35)

Then there exist an algebraic solution of(35) such that the complex volume $ofK$ is given
$by$

$i(Vol(S^{3}\backslash K)+iCS(S^{3}\backslash K))=\sum_{j=1}^{m}L([R^{\epsilon_{j}}])k_{j}$. (36)

We study a case of trefoil $3_{1}$ . The braid group presentation is $\sigma_{1}^{3}$ , and its cluster
pattern is

$x[1]arrow R1x[2]arrow R1x[3]arrow R1x[4].$

We solve $x[1]=x[4]$ by choosing an initial cluster variable as

$x[1]=(1,x, -x, 1, -x^{2},1,1)$ ,

and get $x= \frac{1\pm i\sqrt{15}}{4}$ . We check numerically that (36) gives - $8.22467 \cdots\simeq-\frac{5}{6}\pi^{2}$ . It agrees
with the Chern-Simons invariant of $3_{1}$ , which is also given from asymptotic limit of the
Kashaev invariant [14, 25, 11].

4 2-Bridge Knots

Computation from the cluster pattem based on the $R$ -operator (20) is much involved, and
it can be much simplified when we know a simple triangulation of hyperbolic manifolds,
such as once-punctured torus bundle and 2-bridge knot complements. In this section, we
employ a canonical triangulation of 2-bridge knot complements studied in [21].

Let $K_{q/p}$ be a hyperbolic 2-bridge knot or link (see e.g. [16]). Here we assume that $p$

and $q$ are coprime integers such that $2\leq q<p/2$ . When $p$ is even, $K_{q/p}$ is link. We use a
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continued fraction expression of $q/p,$

$q/p= \frac{1}{\alpha 1+\frac{1}{a2+\frac{1}{1}}}$

, (37)

$+-a_{n}$

where $n\geq 1,$ $aJ\in \mathbb{Z}_{>0}$ , and $a_{n}\geq 2$ . We set

$c= \sum_{i=1}^{n}a_{i}$ . (38)

We then set a sequence of symbols to denote flips as

$F_{1}F_{2}\cdots F_{c-3}=\{\begin{array}{l}R^{a_{1}-1}L^{a}R^{a}\cdots R^{a_{n-1}}L^{a_{n}-2}, when n is even,R^{a_{1}-1}L^{a_{2}}R^{a_{3}}\cdots L^{a_{n-1}}R^{a_{n}-2}, when n is odd.\end{array}$ (39)

where $F_{k}$ denotes a symbol, $F_{h}=R$ or $L.$

Figure 7: $A$ quiver associated to triangulation of four-punctured sphere $\Sigma_{0,4}.$

A setup for cluster algebra is as follows. We use an exchange matrix

$B= (_{-}010_{1}1 -1-10011 -1-10011 -1-10011 -1-10011 -1-00111)$ , (40)

whose quiver is in Fig. 7. We introduce the flips $R$ and $L$ in (39) as cluster mutations
defined by

$R=s_{5,6^{S}1,5^{S}2,6\mu_{1}\mu_{2}}, L=s_{5,6^{S}3,5^{S}4,6\mu_{3}\mu_{4}}$. (41)
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Permutations $St,j$ are used so that the exchange matrix $B(40)$ is invariant under these
flips. The actions on $y$-variables are explicitly given by

$R(y)=[1^{-1}2^{-1}y_{2}^{-1}T$ $L(y)=(^{y_{1}(1+y)^{-1}(1+y)^{-1}}\mathcal{Y}2(1yy_{5}+6((y_{3^{-1}}11+y_{3})(1+y_{4}^{4})$

Theorem 4.1 ([9]). We set $y[k]$ recursively by

$y[k]arrow y[h+1]F_{k}$ (43)

where $F_{k}$ is $R$ or $L$ in (39), and an initial $y$-variable is given by

$y[1]=(y,y,- \frac{1}{y},-\frac{1}{y},-1,-1)$ . (44)

Here $y$ is a geometric solution of

$\{\begin{array}{l}y[c-2]_{3}=y[c-2]_{4}=-1, ifn is even,y[c-2]_{1}=y[c-2]_{2}=-1, ifn is odd,\end{array}$ (45)

such that each modulus $z\iota[h]$ for $i=1,2$ and $k=1,2,\ldots,c-3$ defined by

$z_{i}[k]=\{$

$-\perp$
$ifF_{k}=R,$

$y[k]_{j}$
’

$- \frac{1}{y[h]_{2+i}},$ $ifF_{h}=L,$

(46)

is in the upper halfplane $\mathbb{H}.$

Then $z_{i}[k]$ denotes a modulus of tetrahedron $\triangle_{i}(F_{k})_{J}$ and the hyperbolic volume of the
knot complement $S^{3}\backslash K_{q/p}$ is given by

$v_{o1(S^{3}\backslash K_{q/p})=\sum_{k=1}^{c-3}\sum_{i=1,2}D(z\iota[h])}$ . (47)

We can compute the complex volume of 2-bridge knot complement by use ofthe cluster
variables. In this case, we need a specific semi-field to fulfill a“folding condition” at the
end, and it is tedious to fix an orientation of tetrahedra. See [9].
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