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1 Introduction

It is widely known that the quantum group $U_{q}(\mathfrak{g})$ , the quantum enveloping algebra of
a lie algebra $\mathfrak{g}$ , gives rise to a representation of the braid group $B_{n}$ called a quantum
representation. For an $U_{q}(\mathfrak{g})$-module $V$ , one gets a linear representation $B_{n}arrow GL(V^{\otimes n})$

using a universal $R$ -matrix. Such braid representations, especially for the case $\mathfrak{g}$ is a simple
lie algebra such as $\epsilon \mathfrak{l}_{2}$ , have gathered much attentions since they produce topological
invariants of knots, links and 3-manifolds called quantum invariants.

Although quantum invariants have been actively studied, the quantum representation
themselves are still mysterious. In this paper we illustrate a new point of view in the study
of quantum braid representations. We show that “generic” quantum representations nicely
behaves with respect to the dual Garside structure of the braid groups. This suggests that
quantum representations have various nice properties than we first expected.

The dual Garside structure is a combinatorial structure of braid groups which dates
back to Garside’s solution of words and conjugacy problem for the braid groups [G]. The
dual Garside structure introduces a normal form of braids called $a$ (dual Garside) normal
form, and we have a nice length function called the dual Garside length which can be
computed quite effectively.

A relationship between a linear representation of the braid groups and dual Garside
structure was inspired by author’s previous works [Il, IW], which established a connection
between Homological representations of the braid groups and the dual Garside length.

In this paper, we restrict our attention to the simplest case, $\mathfrak{g}=\epsilon \mathfrak{l}_{2}$ and we omit the
proof of the main theorem. The proof of our main Theorem, Theorem 4.2, consists of
several (tricky) calculations of the action of $B_{n}$ , with a help of dual Garside structures.
Details will be included in [I2]. We will treat the case where $\mathfrak{g}$ is a general lie algebra in
[I3].

2 Dual Garside structure of the braid groups

In this section we summarize basic facts on the dual Garside structure of the braid groups.
For details, see Birman-Ko-Lee [BKL]. [BGG, Section 1] provides a good overview of
Garside structures emphasizing the role of normal forms. See [DDKM] for general and
categorical treatments of Garside theory.
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2.1 Dual Garside structure and normal forms

For $1\leq i<j\leq n$ , let $a_{i,j}$ be the braid

$a_{i,j}=(\sigma_{i+1}\cdots\sigma_{j-2}\sigma_{j-1})^{-1}\sigma_{i}(\sigma_{i+1}\cdots\sigma_{j-2}\sigma_{j-1})$ .

The generating set $\Sigma^{*}=\{a_{i,j}|1\leq i<j\leq n\}$ was introduced in [BKL]. An element of $\Sigma^{*}$

is called the dual Garside generators, or band generators, or Birman-Ko-Lee generators.
The dual braid monoid $B_{n}^{+*}$ is a submonoid of $B_{n}$ generated by $\Sigma^{*}$ . An element of $B_{n}^{+*}$

is called a dual-positive bmid. The braid $\delta=a_{1,2}a_{2,3}\cdots a_{n-1,n}$ is called the dual Garside
element.

Let $\neg\prec$ be the suffix ordering with respect to the dual Garside generators $\Sigma^{*};\beta_{1}\neg\prec\beta_{2}$

if and only if $\beta_{2}\beta_{1}^{-1}\in B_{n}^{+*}$ . This defines a lattice ordering on $B_{n}$ , that is, for $s,$ $t\in B_{n},$

there exists a unique least common multiple $s\vee t$ and a unique greatest common divisor
$\mathcal{S}\wedge t.$ $A$ dual-positive braid $x$ is called a dual-simple if $x\neg\prec\delta$ . The set of dual-simple
element is denoted by $[$ 1, $\delta]$ . Instead of $\Sigma^{*}$ , we will often use $[$ 1, $\delta]$ as a generator of $B_{n}.$

$A$ (right-greedy, dual Garside) normal form of a braid $\beta\in B_{n}$ is a decomposition of $\beta$

as a product of dual simple elements of the form

$\beta=x_{r}\cdots x_{1}\delta^{p}$

that is defined by

1. $p$ is the maximal integer that satisfies $\delta^{p}\neg\prec\beta.$

2. For $i=1,$ $\ldots,$ $r,$ $x_{i}=(x_{r}\cdots x_{i})\wedge\delta.$

We will denote the normal form of $\beta$ by $N(\beta)$ . The normal form has the following
remarkable property.

Proposition 2.1. $x_{r}\cdots x_{1}\delta^{p}$ is a normal form if and only if $x_{1}\neq\delta$ and $x_{i+1}x_{i}\wedge\delta=x_{i}$

for each $i$ $(in$ other words, $x_{i+1}x_{i} rs a$ normal $form for each i)$ .

This proposition leads to an effictive way of computing a normal form. Moreover, the
normal forms induces a bi-automatic structure of the braid groups. See [ECHLPT, Deh].

The supremum $\sup(\beta)$ and the infimum $\inf(\beta)$ of $\beta$ are integers defined by

$\{\begin{array}{l}\sup(\beta)=\min\{m\in \mathbb{Z}|\beta\prec\delta^{m}\}\inf(\beta)=\max\{M\in \mathbb{Z}|\delta^{M}\prec\beta\}\end{array}$

These values are closely related to the normal form of $\beta$ . If $N(\beta)=x_{r}\cdots x_{1}\delta^{p}$ then

$\sup(\beta)=p+r$ , and $\inf(\beta)=p.$

The dual Garside length $l=l_{\Sigma^{*}}$ is the length function of $B_{n}$ with respect to the
dual-simple elements $[$ 1, $\delta]$ . It is known that

$l_{\Sigma}*( \beta)=\max\{0, \sup\Sigma^{*}(\beta)\}-\min\{\inf_{\Sigma^{*}}(\beta), 0\}.$

Thus one can efficiently compute the dual Garside length by computing the normal forms.
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2.2 Diagrammatic expression of dual Garside structures

Here we explain a convenient expression of dual simple elements using convex polytopes.
Let $D_{n}=\{z\in \mathbb{C}||z|\leq 1\}$ be the $n$-punctured disc. We put the puncture points

$p_{1},$ $\ldots,p_{n}$ on the circle $|z|= \frac{1}{2}$ , as shown in the right of Figure 1. Then there is a one-
to-one correspondence between the set of disjoint collections of convex polygons in $D_{n}$

whose vertices are puncture points, and the set of dual-simple elements.
This correspondence is given as follows: First assume that a convex polygon $P$ is

connected. Let $p_{m_{1}},$ $\ldots,p_{m_{k}}(1\leq m_{1}<m_{2}<\cdots<m_{k}\leq n)$ be the vertices of $P$ . We
define a braid $x_{P}$

$x_{P}=a_{m_{1},m_{2}}a_{m2,m_{3}}\cdots a_{m_{k-1},m_{k}}.$

For a disjoint collection of convex polygons $\mathbb{P}=\{P_{1}, \ldots, P_{M}\}$ , we define

$x_{P}=x_{P_{1}}x_{P_{2}}\cdots x_{P_{M}}.$

Then it is seen that $x_{P}$ is a dual-simple element. Conversely, every dual-simple element
can be expressed in such a way. For $x\in[1, \delta]$ , we will write the corresponding convex
polygons by $P_{x}.$

This correspondence can be easily understood by using geometric interpretation of the
braid groups. As is well-known, the braid group $B_{n}$ is identified with the mapping class
group of $n$-punctured disc $D_{n}.$

For $1\leq i<j\leq n$ , let $e_{ij}$ be the line segment that connects the i-th and the j-th
punctures. As an element of mapping class group, the band-generator $a_{i,j}$ corresponds to
the left-handed half-Dehn twist along $e_{ij}:a_{i,j}$ interchanges the position of punctures $p_{i}$

and $p_{j}$ by rotating the small disc neighborhood of $e_{ij}$ in a clockwise direction (see Figure
1 $)$ .

Figure 1: $n$-punctured disc $D_{n}$ and action of $a_{ij}$

By generalizing this move of punctures, for a collection of convex polygons we associate
a dance of the puncture points. Each puncture which belongs to some polygon $P$ moves
to the position of the adjacent vertex, in the clockwise direction along the boundary of $P,$

see Figure 2. In particular, the dual Garside element $\delta$ acts on $D_{n}$ as rotation of disc by
$(2\pi/n)$ .
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Figure 2: Polygon expression of dual-simple elements: an action on $D_{n}$

3 Generic quantum $\epsilon \mathfrak{l}_{2}$ representation

In this section, we review a construction of generic quantum $\epsilon \mathfrak{l}_{2}$ -representation following
Jackson-Kerler [JK]. For basics of $U_{q}(\mathfrak{s}\mathfrak{l}_{2})$ we refer [Kas]. (Here we remark that to make
correspondence between the dual Garside structure and quantum representations simple,
we slightly modified the $sign$ convention: the variable $s$ in this paper corresponds to $s^{-1}$

in [JK, Il]. $)$

We define the $q$-numbers, $q$-fractionals, and $q$-binomial coefficients as

$[n]_{q}!=[n]_{q}[n-1]_{q}\cdots[2]_{q}[1]_{q},$

$[n]_{q}= \frac{q^{n}-q^{-n}}{q-q^{-1}}, \{\begin{array}{l}nj\end{array}\}=\frac{[n]_{q}}{[n-j]_{q}[j]_{q}!}!.$

Let $\mathbb{C}[[\hslash]]$ be the algebra of the complex formal power series in one variable $\hslash.$ $A$

quantum enveloping algebra $U_{\hslash}(\epsilon \mathfrak{l}_{2})$ is a topological Hopf algebra over $\mathbb{C}[[\hslash]]$ generated by
$H,$ $E,$ $F$ , with relations

$\{\begin{array}{l}[H, E]=2E, [H, F]=-2F,{[}E, F]=\frac{e^{\hslash H}-e^{-\hslash H}}{e^{\hslash}-e^{-\hslash}}\end{array}$ (3.1)

The coproduct $\triangle$ : $U_{\hslash}(\mathfrak{s}\mathfrak{l}_{2})arrow U_{\hslash}(\mathfrak{s}\mathfrak{l}_{2})\otimes U_{\hslash}(\mathfrak{s}\mathfrak{l}_{2})\sim$ (here $\otimes\sim$ denotes the topological tensor
product, the $\hslash$-adic completion of $U_{h}(\mathfrak{s}\mathfrak{l}_{2})\otimes U_{\hslash}(\epsilon \mathfrak{l}_{2}))$ , and the antipode $S$ are given by

$\{\begin{array}{l}\triangle(E)=E\otimes e^{\hslash H}+1\otimes E,\triangle(F)=F\otimes 1+e^{-\hslash H}\otimes F,\triangle(H)=H\otimes 1+1\otimes H,S(E)=-Ee^{-\hslash H}, S(F)=-e^{\hslash H}F_{i}, S(H)=-H.\end{array}$ (3.2)

$U_{\hslash}(\mathfrak{s}\mathfrak{l}_{2})$ is a quasi-triangular topological Hopf algebra. Namely, there exists an element
$\mathcal{R}\in U_{\hslash}(\mathfrak{s}\mathfrak{l}_{m})\otimes U_{\hslash}(\mathfrak{s}\mathfrak{l}_{n})\sim$ called a universal $R$-matrix that satisfies the properties

$\{\begin{array}{l}\mathcal{R}\triangle(x)=\triangle^{op}(x)\mathcal{R},(\triangle\otimes id)\mathcal{R}=\mathcal{R}_{12}\mathcal{R}_{23},(id\otimes\triangle)\mathcal{R}=\mathcal{R}_{13}\mathcal{R}_{12}.\end{array}$
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where $\Delta^{op}$ denotes the opposite of $\triangle$ . These properties show that $\mathcal{R}$ satisfies the Yang-
Baxter equation

$\mathcal{R}_{12}\mathcal{R}_{13}\mathcal{R}_{23}=\mathcal{R}_{23}\mathcal{R}_{13}\mathcal{R}_{12}.$

The universal $R$-matrix $\mathcal{R}$ for $U_{\hslash}(\epsilon \mathfrak{l}_{2})$ is given by

$\mathcal{R}=e^{\frac{\hslash}{2}(H\otimes H)}(\sum_{n=0}^{\infty}q^{\frac{n(n-1)}{2}}\frac{(q-q^{-1})^{n}}{[n]_{q}!}E^{n}\otimes F^{n})$ , (3.3)

where we put $q=e^{\hslash}.$

For $\lambda\in \mathbb{C}^{*}$ , let $V_{\lambda}$ be the Verma module with highest weight $\lambda$ , which is a topologically
free $U_{\hslash}(\epsilon \mathfrak{l}_{2})$ -module generated by a highest weight vector $v_{0}$ that satisfies

$Hv_{0}=\lambda v_{0}$ , and $Ev_{0}=0.$

If $\lambda$ is not an integer (“generic”), then as a $\mathbb{C}[[\hslash]]$ -module, the Verma module $V_{\lambda}$ is freely
generated by $\{v_{i}\}_{i=0,1},.$ . and the action of $U_{\hslash}(\epsilon \mathfrak{l}_{2})$ is given by

$\{\begin{array}{l}Hv_{i}=(\lambda-2i)v_{i}Ev_{i}=v_{i-1}Fv_{i}=[i+1]_{q}\frac{e^{\hslash(\lambda-l)}-e^{-\hslash(\lambda-l)}}{e^{\hslash}-e^{-\hslash}}v_{i+1}.\end{array}$ (3.4)

Now we treat all generic Verma modules at one time by regarding a weight $\lambda$ as a
variable instead of treating as a complex parameter. To this end, we regard $U_{\hslash}(\mathfrak{s}\mathfrak{l}_{2})$ as
a topological Hopf algebra over the coefficient ring $\mathbb{C}[\lambda][[\hslash]]$ , the polynomial ring with
coefficients in $\mathbb{C}[[\hslash]]$ . We regard the formula (3.4) as a definition of a $U_{\hslash}(\mathfrak{s}\mathfrak{l}_{2})$-module
$V_{\hslash}$ : namely, as a topological $\mathbb{C}[\lambda][[\hslash]]$-module, $V_{\hslash}$ is a $\mathbb{C}[\lambda][[\hslash]]$-module freely generated
by $\{v_{0}, v_{1}, \ldots, \}$ and $U_{\hslash}(\epsilon \mathfrak{l}_{2})$ acts on $V_{\hslash}$ by the formula (3.4). We call $V_{\hslash}$ generic Verma
module.

Let $\mathbb{L}=\mathbb{C}[q^{\pm 1}, s^{\pm 1}]$ be the ring of two-variable Laurent polynomial, and we regard $\mathbb{L}$

as a subring of $\mathbb{C}[\lambda][[\hslash]]$ via the injective homomorphism $i_{\hslash}$ : $\mathbb{L}arrow \mathbb{C}[\lambda][[\hslash]]$ defined by
$i_{\hslash}(q)=e^{\hslash},$ $i_{\hslash}(s)=e^{\hslash\lambda}.$

Let $V_{\mathbb{L}}\subset V_{\hslash}$ be the free $L$-module generated by basis vectors $\{v_{0}, v_{1}, \ldots, \}$ of $V_{\hslash}$ , and
let $R=e^{-\frac{\hslash}{2}0\lambda^{2}}o\mathcal{R}oT:V_{L}^{\otimes 2}arrow V_{\mathbb{L}}^{\otimes 2}.$

Then by (3.3), the action of $R$ is written as

$R(v_{i} \otimes v_{j})=s^{(i+j)}\sum_{n=0}^{i}F_{i,j,n}(q)\prod_{k=0}^{n-1}(s^{-1}q^{-k-j}-sq^{k+j})v_{j+n}\otimes v_{i-n}$ , (3.5)

where $F_{i,j,n}(q)=q^{2(i-n)(j+n)\frac{n(n-1)}{2}}q\{\begin{array}{l}n+jj\end{array}\}$

Similarly, the action of $R^{-1}$ is written as

$R^{-1}(v_{i} \otimes v_{j})=s^{-(i+j)}\sum_{n=0}^{j}(-1)^{n}F_{i,j,n}’(q)\prod_{k=0}^{n-1}(sq^{k+i}-s^{-1}q^{-k-i})v_{j-n}\otimes v_{i+n},$
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where $F_{i,j,n}’(q)=q^{-2ij}q\overline{2}$$-n(n-1)\{\begin{array}{ll}n +i i\end{array}\}$

Thus $R(V_{\mathbb{L}}^{\otimes 2})=V_{\mathbb{L}}^{\otimes 2}$ , so we get $a$ (infinite dimensional) linear representation

$\rho$ : $B_{n}arrow GL(V_{\mathbb{L}}^{\otimes n})$ , $\rho(\sigma_{i})=$ id $\otimes(i-1)\otimes R\otimes id^{\otimes(n-i-1)}$

which we call a generic quantum $\mathfrak{s}\mathfrak{l}_{2}$ -representation.
To deduce finite dimensional reprsentation, we take a weight decomposition of $\rho$ . For

$m\geq 0$ , let $V_{n,m}=\{v\in V_{\mathbb{L}}^{\otimes n}|e^{\hslash H}v=s^{-n}q^{-2m}v\}$ be the weight space corresponding to the
weight $s^{-n}q^{-2m}$ . ( $e^{\Gamma\iota H}$ is often denoted by $K$ in a literature). It is directly checked that
$V_{\mathbb{L}}^{\otimes n}$ , as a $\mathbb{C}B_{n}$-module, decomposes as $V_{\mathbb{L}}^{\otimes n}=\oplus_{m=0}^{\infty}V_{n,m}.$

The set $\{v_{k_{1}}\otimes\cdots\otimes v_{k_{n}}|k_{i}\geq 0, k_{1}+\cdots+k_{n}=m\}$ forms a basis of $V_{n,m}$ . To relate the
representation $V_{n,m}$ and the dual Garside structure, we use the following slightly modified
basis of $V_{n,m}$ , obtained by shifting the degree of the variable $s$ . For $k=(k_{1}, k_{2}, \ldots, k_{n})\in$

$\mathbb{Z}_{\geq 0}^{n}$ we define

$| k|=\sum_{i=1}^{n}k_{i}$ , and $w_{k}=s^{-\Sigma_{i=1}^{n}ik_{i}}v_{k_{1}}\otimes v_{k_{2}}\otimes\cdots\otimesv_{k_{n}}\in V^{\otimes n}.$

Then the set
$\mathcal{B}=\mathcal{B}(m)=\{w_{k}||k|=m\}$

form a basis of $V_{n,m}$ . The cardinal of $\mathcal{B}(m)$ is $(^{n+m-1})$ . By using this basis $\mathcal{B}(m)$ , we
express the braid group representation $V_{n,m}$ as an $e^{m}$xplicit matrix

$\rho_{m,n}:B_{n}arrow GL((\begin{array}{ll}n+m -1m \end{array});\mathbb{L})$ .

We call this representation a generic quantum $\epsilon \mathfrak{l}_{2}$ representation.

4 Main Theorem

From now on, we fix $m>1$ , and we put $V=V_{n,m}$ and $\mathcal{B}=\mathcal{B}(m)$ . By abuse of notation,
we may often identify the basis vector $w_{k}\in \mathcal{B}$ and its corresponding sequence of integers
$k=(k_{1}, \ldots, k_{n})$ . To make notation simple, for $\beta\in B_{n}$ and $w\in V$ , we will write $\beta(w)$ to
imply $\rho_{m,n}(\beta)(w)$ .

4.1 Statement of Main theorem

For monomials $s^{i}q^{j}$ and $s^{i’}q^{j’}$ of $\mathbb{L}=\mathbb{Z}[s^{\pm 1}, q^{\pm 1}]$ , we define the lexicographical ordering
$\leq_{s,q}$ by

$s^{i}q^{j}\leq_{s,q}s^{i’}q^{j’}$ if $i<i’$ , or if $i=i’$ and $j\leq j’.$

For $a\in \mathbb{L}$ , we will concentrate our attention to the $<_{s,q}$-maximal monomial. We
denote the maximal and the minimum degree of the variable $s$ in $a$ by $M_{s}(a)$ and $m_{s}(a)$ ,
respectively, and we write the $<_{s,q}$-maximal monomial in $a$ by $s^{M_{s}(a)}q^{N_{q}(a)}=s^{M}q^{N}$ . The
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sign $\epsilon(a)\in\{\pm 1\}$ is defined as the $sign$ of the coefficient of the $<_{s,q}$-maximal monomial
$s^{M}q^{N}$ in $a.$

For $i=1,$ $\ldots,$
$n$ , let $k_{i}\in \mathcal{B}$ be a basis vector

$k(i)=(O, \ldots, 0,\check{m}, 0, \ldots, 0)i.$

and define $w\in V$ by

$w= \sum_{i=1}^{n}w_{k(i)}.$

$w$ and $w_{k(i)}$ plays an important role in computations in quantum representations.
For $v= \sum_{w_{k}\in \mathcal{B}}a_{k}(s, q)w_{k}\in V$ , we define

$M_{s}(v)= \max\{M_{S}(a_{k})|k\in \mathcal{B}\}.$

By looking at the $<_{s,q}$-maximal monomials of $a_{k}$ , we assign a graph $\Gamma(v)$ in $D_{n}$ in the
following manner:

The vertices of $\Gamma(v)$ is a subset of the puncture points of $D_{n}$ . The i-th puncture $p_{t}$ is
a vertex of $\Gamma(v)$ if and only if
(V) $M_{s}(a_{k(i)})=M_{s}(v)$

holds.
Now assume that for $1\leq i<j\leq n$ , both $p_{i}$ and $p_{j}$ are vertices of $\Gamma(v)$ . For $e=$

$0,$
$\ldots,$

$m$ , let us put

$k(e;i,j)=(o, \ldots, o_{\check{e}}^{i}, o, \ldots, o_{m^{\vee}-e,0,\ldots,0)}^{j}\in \mathcal{B}.$

We connect two vertices $p_{i}$ and $p_{j}$ by an edge if and only if
(E) The $<_{s,q}$-maximal monomial part of $a_{k(e,i,j)}$ is

$(-1)^{e}\epsilon(a_{k(0)})\cdot c\cdot s^{M_{s}(v)}q^{N_{q}(a_{k(0)})}q^{2em-e^{2}-e}.$

where $c>0$ is the absolute value of the coefficient of the $<_{s,q}$-maximal monomial.
holds.

Finally we assign a graph $\Gamma(x)$ for each dual simple element $x.$

Definition 4.1. For a dual simple element $x\in[1, \delta]$ we define the graph $\Gamma(x)$ by $\Gamma(x)=$

$\Gamma(x(w))$ .
At first glance, the definition of the graph $\Gamma$ seems to be artificial. Here we explain

the background motivation of the definition of $\Gamma.$

Let us rewrite a formula of the $R$-action on $V\otimes V$ in terms of our modified $(s$-degree
shifted) basis $\{w_{i,j}=s^{i+2j}v_{i}\otimes v_{j}\}$ of $V\otimes V$ , and concentrate our attention to the $<_{s,q^{-}}$

maximal monomials. Then the $<_{s,q}$-maximal monomial is given by

$R(w_{i,j})= \sum_{n=0}^{i}sqq2i-n2(i-n)(j+n)\frac{n(n-1)}{2}\{\begin{array}{l}n+ii\end{array}\}\prod_{k=0}^{n-1}(sq^{-k-j}-s^{-1}q^{k+j})w_{j+n,i-n}$

$= \sum_{n=0}^{i}((-1)^{n}s^{2i}q^{2ij+2ni-n^{2}-n}+\cdots)w_{j+n,i-n}$
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This formula says that $M_{s}(R(w_{i,j}))=2i\leq 2m$ . Since we are interested in the case
$s$-degree maximal part, let us consider the case $i=m$ and $j=0$ . Then we get

$R(w_{m,0}) = \sum_{n=0}^{m}((-1)^{m}s^{2m}q^{2nm-n^{2}-n}+\cdots)w_{n,m-n}$

This shows that the graph $\Gamma(a_{i,i+1}(w_{k(i)}))$ coincides with the convex polygon $e_{i,i+1}$ (an
edge connecting $p_{i}$ and $p_{i+1}$ ).

More generally by using the above formula of $R$ , one can check that for $i\leq k<j,$
$\Gamma(a_{i,j}(w_{k(k)}))$ coincides with the convex polygon $e_{i,j}$ (an edge connecting $p_{i}$ and $p_{j}$ ). Thus,
the graph $\Gamma$ was defined so that it captures the behaviour of the $<_{s,q}$-maximal part of
$a_{i,j}(w)$ or $a_{i,j}(w_{k(k)})$ .

For a general dual simple element $x$ , like $x=a_{i,j}$ case, its graph $\Gamma(x)$ is closely related
to the corresponding convex polygon $P_{x}$ although the relations are more complicated
(especially when $P_{x}$ is not connected): Figure 3 shows several examples of the graph
$\Gamma(x)$ . As $\Gamma(a_{1,4}a_{2,3})$ suggests, not all edges of $\Gamma(x)$ is contained in the corresponding
convex polygon $P_{x}$ . It is checked that $\Gamma(x)$ does not depend on $m$ , and for $x,$ $y\in[1, \delta],$

$\Gamma(x)\neq\Gamma(y)$ if $x\neq y.$

Figure 3: (1) $\Gamma(a_{1,2}a_{2,3}a_{3,4}),$ $P_{a_{1,2}a_{2,3}a_{3,4}}$ and (2) $\Gamma(a_{1,4}a_{2,3}),$ $P_{a_{1,4}a_{2,3}}$

Now we are ready to state the main theorem.

Theorem 4.2 (Dual Garside normal form and generic quantum $\epsilon \mathfrak{l}_{2}$ -representation). Let
$N(\beta)=x_{r}\cdots x_{1}\delta^{p}$ be the normal form of $\beta\in B_{n}$ . Then

1. $M_{s}( \beta w)=2m\sup(\beta)$ .

2. $m_{S}( \beta w)=2m\inf(\beta)$ .
3. $\Gamma(\beta w)=\Gamma(x_{r})$ .
This theorem shows that, the maximal $<_{s,q}$-maximal part of a generic quantum $\mathfrak{s}\mathfrak{l}_{2}$ rep-

resentation nicely reflects the dual Garside normal form. In particular, one can compute
the normal from of the braid $\beta$ by looking at the single vector $\beta(w)$ .

Recall that the variable $s$ in a generic quantum representation $\rho_{m,n}$ comes from the
weight of the Verma module. Thus we may view the maximal $s$-degree part of $\beta(w)$

as “highest weight” parts. Thus or main theorem suggests that there is an unexpected
relationship between representation theory of lie algebras and quantum groups (highest
weight vectors), and the dual Garside structures.
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4.2 Several consequences of main theorem

We close the paper by presenting several consequences of our main theorem.
First we observe that as a corollary of our main theorem, we provide an alternative,

algebraic proof of the main results in [Il]. For an $N\cross N$-matrix of $\mathbb{L}$ coefficient $A=(a_{ij})$ ,
we denote the maximal and the minimal degree of $s$ in $A,$ $\max_{i,j}M_{s}(a_{ij})$ and $\min_{i,j}m_{s}(a_{ij})$ ,
by $M_{s}(A)$ and $m_{s}(A)$ , respectively.

Corollary 4.3 (Dual Garside length formula [Il]). Let $\beta\in B_{n}.$

1. $M_{S}( \rho_{m,n}(\beta))=2m\sup(\beta)$ .

2. $m_{s}( \rho_{m,n}(\beta))=-2m\inf(\beta)$ .
3. $l( \beta)=2m(\max\{0, M_{s}(\rho_{m,n}(\beta))\}-\min\{O, m_{s}(\rho_{m,n}(\beta))\})$ .

Our argument provides a remarkable restriction for an image of generic quantum rep-
resentation $\rho_{n,m}.$

Theorem 4.4 (Image of quantum representation). Let $A\in GL((\begin{array}{l}n+m-1m\end{array});\mathbb{L})$ .
1. If A lies in the image of the genenc quantum representation $\rho_{n,m}$ , then for $1\leq i\leq n,$

$\Gamma(A_{i})=\Gamma(x)$ for some $x\in[1, \delta]$ . Here $A_{i}$ denotes the low of $A$ that corresponds to
the basis vector $k(i)$ .

2. There is an effective algo$r\cdot\iota thm$ to determine whether A lies in the image of the generic
quantum representation $\rho_{n,m}$ or not.

We also remark that Theorem 4.2 gives a new, quantum-group theoretical proof of the
faithfulness of the Lawrence-Krammer-Bigelow representation and its natural generaliza-
tions called Lawrence’s representation $L_{n,m},$

$L_{n,m}:B_{n}arrow GL((\begin{array}{ll}n+m -2m \end{array});\mathbb{Z}[q^{\pm 1}, t^{\pm 1}])$ .

Lawrence’s representations are obtained by considering the action of the braid groups on
the homology group (of local system coefficients) of the configuration space of $m$-points
in $n$-punctured disc $D_{n}$ . For details, see [Il, Law]. $L_{n,1}$ is identical with the reduced
Burau representation, and $L_{n,2}$ is called the Lawrence-Krammer-Bigelow representation.
It is known that generic quantum representation decomposes as $\rho_{n,m}=\oplus_{i=0}^{m}L_{n,i}.$

Theorem 4.5 (Dual Garside length formula [Il]). For $\beta\in B_{n},$

1. $M_{s}(L_{n,m}( \beta))=m\sup(\beta)$ .
2. $m_{s}(L_{n,m}( \beta))=-m\inf(\beta)$ .

3. $l( \beta)=m(\max\{0, M_{S}(L_{n,m}(\beta))\}-\min\{O, m_{s}(L_{n,m}(\beta))\})$ .

In particular, $L_{n,m}$ is faithful.
It is already known that $L_{n,m}$ is faithful ([I2] for details). However, the known proof of

the faithfulness for $m>2$ is based on a topological argument due to Bigelow [Big]. Our
quantum-representation proof gives a purely algebraic proof.

90



References

[Big] S. Bigelow, Bmid groups are linear, J. Amer. Math. Soc. 14, (2000), 471-486.

[BGG] J. Birman, V. Gebhardt, and J. Gonz\’alez-Meneses Conjugacy in Garside groups.
I. Cyclings, powers and rigidity, Groups Geom. Dyn. 1 (2007), 221-279.

[BKL] J. Birman, K.H. Ko, and S.J. Lee, A new approach to the word problem in the
bmid groups, Adv. Math. 139 (1998), 322-353.

[Deh] P. Dehornoy, Groupes de Garside, Ann. Sci. Ec. Norm. Sup., 35 (2002) 267-306.

[DDKM] F. Digne, P. Dehornoy, E. Godelle, D. Krammer, and J. Michel Garside Theory,
Draft of book, available at http: $//www$ . math. unicaen. fr$/\sim garside/$Garside. html

[ECHLPT] D. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson, and W. Thurston Word
processing in groups, Jones and Bartlett Publisher, Boston, MA, 1992

[G] F. Garside, The braid group and other groups, Quart. J. Math 20 (1969) 235-254
[Il] T. Ito, Reading the dual Garside length of bmids from homological and quantum

representations, arXiv: 1205.5245

[I2] T. Ito, Quantum representation of braid groups and dual Garside structure I: $\mathfrak{s}\mathfrak{l}_{2}$ case,
In preparation.

[I3] T. Ito, Quantum representation of bmid groups and dual Garside structure $\Pi$: Generic
$U_{q}(\mathfrak{g})$ representations, In preparation.

[IW] T. Ito and B. Wiest, Lawrence-Krammer-Bigelow representation and dual Garside
length of bmids, arXiv:1201.0957vl

[JK] C. Jackson and T. Kerler, The Lawrence-Kmmmer-Bigelow representations of the
bmid groups via $U_{q}(\mathfrak{s}\mathfrak{l}2,$ Adv. Math, 228, (2011), 1689-1717.

[Kas] C. Kassel, Quantum groups, Graduate Texts in Mathematics 155. Springer-Verlag,
New York, 1995.

[Law] R. Lawrence, Homological representations of the Hecke algebra, Comm. Math. Phys.
135, (1990), 141-191.

Research Institute for Mathematical Sciences
Kyoto University
Kyoto 606-8502
JAPAN
$E$-mail address: tet itoh@kurims. kyoto-u. ac. jp

$f\overline{f_{\backslash }}\mathfrak{B}\star^{\mapsto\backslash }\mp \mathscr{X}\Phi ffl7F\varpi F_{\lambda_{\lrcorner}}^{fl2}\overline{p}f (\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT} Effi$

91


