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Abstract 

 

We propose two simple methods that transform a force curve obtained by a surface 

force apparatus (SFA) into a density distribution of a liquid near a surface of the SFA 

probe. The transform methods are derived based on the statistical mechanics of simple 

liquids, where the liquid is an ensemble of small spheres. The solvent species is 

limited to only one component and two-body potential between the solvent spheres is 

arbitrary. However, two-body potential between the SFA probe and the solvent is 

restricted to rigid potential (i.e., the transform methods are derived within the 

restriction of the rigid potential). In addition, Kirkwood and linear superposition 

approximations are applied in order to derive the transform methods. The transform 

methods are simply tested in both hard-sphere fluid and Lennard-Jones (LJ) fluid with 

hard core potential. The tests are computationally practiced using a three-dimensional 

integral equation theory. It is found that the transform method with Krikwood 

superposition approximation (transform method 1) generally reproduces the more 

precise solvation structure than that with linear superposition approximation 

(transform method 2). In the test of the hard sphere solvent, it is found that the 

reproducibility becomes better as the number density of the solvent lower. Furthermore, 

it is found in the test of the LJ fluid that the reproducibility becomes better as the 

two-body potential between the SFA probe and the solvent approaches rigid potential. 

This is because, the transform methods are derived within the model of the rigid 

potential. It is verified that the transform methods are useful for obtaining of a rough 

image of the solvation structure. (However, if evaporation or solidification, a phase 

transition in a local space sandwiched between the two surfaces, occurs while the 

experiment, the transform methods should not be used.) 
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1. Introduction 

 

The surface force apparatus (SFA) has been used to measure the force acting 

between arbitrary two surfaces in solvents [1,2]. The two surfaces are the force probes 

for the experiment of SFA, and they can confine various types of the solvents. The 

force obtained by SFA is usually shown as the force curve whose vertical line is force 

and horizontal line is separation between the two surfaces. In the force curve, there are 

mainly two origins of the force factors. One is two-body interaction between the two 

SFA probes themselves, and the other is the solvation force between them. The 

solvation force is originated from the many-body interaction of the confined solvent 

particles, and it is the origin of the oscillation in the force curve. In order to understand 

why the force curve has such an oscillatory shape, several theoretical studies have been 

performed in the past decades [3-6]. Due to their studies, the mechanism of the 

oscillatory shape has already been elucidated, however, there is not the method for 

transforming the force curve obtained with SFA into the (intrinsic) solvation structure 

on the surface of the SFA probe. In the present study, hence, we propose two transform 

methods based upon a theory of statistical mechanics of simple liquids. To derive the 

two transform methods, we take advantage of Kirkwood [7-9] and linear [3] 

superposition approximations. In this paper, we call the transform method derived by 

using the Kirkwood superposition approximation and that derived by using liner 

superposition approximation transform methods 1 and 2, respectively. To test the 

validity of the both methods, we computationally perform simple tests in both hard 

sphere fluid and Lennard-Jones (LJ) fluid with hard core potential. 

Recently, M. Watkins et al. [10] and Amano et al. [11] proposed a method for 

transforming the force distribution measured by atomic force microscopy (AFM) in a 

solvent [12,13] into the (intrinsic) solvation structure on the solid plate. In the method 

[10,11], the probe is approximated as a solvent sphere (we call it the ideal probe). This 

method works well when a solvent sphere or a very similar particle is located on the 

apex of the probe. Therefore, it has been concluded that a nearly-ideal probe should be 

used in the real experiment in order to obtain the solvation structure. There have been 

proposed the simple transform method for AFM to obtain the solvation structure, 

although the transform method for SFA has not been proposed. This is also the 

motivation for derivation of the transform methods of SFA. (J. P. Cleveland et al. [14] 

has also proposed a similar equation in AFM study. However, the proposed one is 

relation between “the potential the AFM probe experiences” and “the position 

probability of the AFM probe”.) 

In the present theory, SFA measurement is simply modeled as shown in Fig. 1. 

The two cylindrical solids are immersed in the solvent an ensemble of small spheres. 

(In theory, the two solids do not need to be the same, and triangular, rectangular, 
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pentagonal prisms, and so on can be applied instead of the cylindrical 

solids.) The solvent species is limited to only one component and two-body potential 

between solvent spheres is arbitrary. However, two-body potential between the SFA 

probe and the solvent is restricted to rigid potential. A point that should be notified 

before the derivation of the transform methods is that evaporation and solidification 

(phase transitions in a local space sandwiched between the two surfaces) are neglected. 

That is, if the evaporation or solidification occurs in the measurement of the force 

curve, the force curve must not be used for calculation of the solvation structure. 

    In the present paper, we particularly explain the derivation process of the 

transform method 1 (in which Kirkwood superposition approximation is applied) and 

briefly explain that of the transform method 2 (in which a linear superposition 

approximation is applied). We obtain the two transform methods starting from a basic 

equation connecting the solvation force and the solvation structure. (The derivation 

process of the basic equation is written in Appendix A.) In order to verify the 

transform methods, simple tests are performed in computer. The tests are conducted in 

both hard sphere fluid and LJ fluid with hard core potential. In the hard sphere fluid 

the number density is varied as a parameter, while in the LJ fluid the two-body 

potential between the SFA probe and the solvent is varied (solvation affinity of the 

cylindrical solid is varied). As a result, it is found that the transform methods can 

calculate the rough image of the solvation structure from the solvation force. The 

accuracies of the transformations are not so high, the reasons of which are originated 

from introductions of the Kirkwood and linear superposition approximations. However, 

it is found that the transform method 1 generally reproduces better results in 

comparison with the transform method 2 (the detailed results of the tests are shown in 

Chapter 3). In our opinion, the transform method 1 has a potential to become a 

fundamental method for SFA to obtain the solvation structure. (Recently, some liquid 

theories [15-18] can calculate the solvation structure very accurately. Thus, one might 

think that the transform methods here are not valuable methods compared to the liquid  

theories [15-18]. However, it is not appropriate picture. A different point of the liquid 

theories and the present transform methods is that the latter can calculate the solvation 

structure from the solvation force obtained by the SFA experiment. That is, the latter is 

the measurement theory for SFA. Therefore, the former and latter should not be 

compared directly.) 

 

 

 

2. Theory 

2.1. Derivations of the transform methods 

 

    In this chapter, derivation processes of the transform methods are written. To start 
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the explanation, we introduce following conditions. 

 

(I) The solvent considered here is a simple liquid, an ensemble of the small spheres.  

Two-body potential between the solvent spheres is arbitrary. 

(II) Cylindrical solids 1 and 2 are immersed in the simple liquid (see Fig. 1). The 

cylindrical solids have the same shapes and they are rigid bodies. (The cylindrical 

solid can be alternated with a solid with a plane surface. The examples are triangular, 

rectangular, pentagonal prisms. Furthermore, the shapes of the solid pair are not 

required to be the same. For example, the surface areas of the cylindrical solids 1 

(sample) and 2 (probe) are not required to be the same. In this study, however, we use 

the same cylindrical solids in order to simplify the explanation and demonstration of 

the transform methods.) 

(III) The circular surfaces of the cylindrical solids are facing each other, and the 

circular surfaces are vertical to the z-axis. 

(IV) The origin of the whole system is set at the center of the facing surface of 

cylindrical solid 1 (see the black point in Fig. 1). Cylindrical solid 1 is fixed, whereas 

cylindrical solid 2 can change its position along the z-axis. 

(V) Areas of the circular surfaces are sufficiently large compared to the solvent sphere. 

(This enables us to ignore complexity of the solvated spheres on the edges of the 

circular surfaces.) 

(VI) The lateral surfaces of the cylindrical solids are horizontal to the z-axis, and hence 

the solvation force along the z-axis is never generated from the solvated particles on 

the lateral surfaces. 

(VII) The heights of the cylindrical solids are sufficiently tall, so that the solvation 

structures on the backward surfaces (the non-facing surfaces) are never destroyed 

during the positional change of the cylindrical solid 2. 

(VIII) The evaporation and solidification, phase transitions in a local space 

sandwiched between the facing surfaces, are ignored in the theory. 

 

From here, we give a description of the derivation process of the transform 

method 1. (That of the transform method 2 will be simply written afterward.) In the 

SFA experiment, the force between the two surfaces is measured, and the solvation 

force can be picked out from the crude force by subtracting the two-body force 

between the solid surfaces. Its two-body force can be theoretically calculated from the 

two-body potential or measured by SFA experiment in the air (vacuum). The solvation 

force along the z-axis being fsol (solvation force acting on the cylindrical solid 2) has a 

relationship with the number density distribution of the solvated spheres, which is 

expressed as [3] 
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𝑓sol(𝑠) = 𝐴 ∫ 𝜌(𝑧; 𝑠)
𝜕𝑢2(𝑧; 𝑠)

𝜕𝑧

∞

−∞

𝑑𝑧,                                                                                                 (1) 

 

where A represents the facing surface area of the cylindrical solid 2. ρ(z;s) is the 

number density of the solvent at z, and s is the separation between the facing surfaces. 

u2 is the two-body potential between cylindrical solid 2 and the solvent sphere. If the 

wall surface area A is infinite, Eq. (1) is exact. In SFA experiment, the sample and 

probe surfaces are sufficiently large compared with the section area of a solvent 

molecule. Therefore, Eq. (1) is a reasonable approximation. Eq. (1) is derived by 

considering an infinitesimal change of the separation between two solids within 

statistical mechanics of a simple liquid (see Appendix A). Eq. (1) is strictly consistent 

with the contact theorem [19-21]. (The contact theorem explains the pressure on a wall, 

the derivation of which is performed by an infinitesimal change of the volume of a 

system or a solute.) To connect the solvation force and the solvation structures on 

cylindrical solids 1 and 2, we take advantage of the Kirkwood superposition 

approximation [7-9] and express ρ as 

 

𝜌(𝑧; 𝑠) ≈ 𝜌0𝑔1(𝑧)𝑔2(𝑧 − 𝑠).                                                                                                                 (2) 

 

Here, ρ0 is the bulk number density of the solvent (constant value), and gi (i = 1 or 2) is 

a pair correlation function between the cylindrical solid i and solvent. gi is the 

so-called a normalized number density of the solvent or a solvation structure around 

the cylindrical solid i. Applying this approximation, Eq. (1) is rewritten as 

 

𝑓sol(𝑠) = 𝐴𝜌0 ∫ 𝑔1

∞

−∞

(𝑧)𝑔2(𝑧 − 𝑠)
𝜕𝑢2(𝑧 − 𝑠)

𝜕𝑧
𝑑𝑧.                                                                          (3) 

 

The origin of g1 is placed at the center of the whole system (see the black point in Fig. 

1), whereas the origin of g2 is placed at the center of the facing circular surface of the 

cylindrical solid 2 (see the gray point in Fig. 1). The origin of u2 is the same as that of 

g2. Considering the conditions (VI) and (VII), Eq. (3) can be rewritten as 

 

𝑓sol(𝑠) = 𝐴𝜌0 ∫ 𝑔1

𝑠

0

(𝑧)𝑔2(𝑧 − 𝑠)
𝜕𝑢2(𝑧 − 𝑠)

𝜕𝑧
𝑑𝑧 + 𝐴𝜌0 ∫ 𝑔2

∞

𝑠+𝑤

(𝑧 − 𝑠)
𝜕𝑢2(𝑧 − 𝑠)

𝜕𝑧
𝑑𝑧,       (4) 

 

where w represents the height from the facing surface to the backward surface of the 

cylindrical solid 2. The two-body potential between cylindrical solid 2 and the solvent 

sphere being u2 is expressed as 
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𝑢2 = 0        for contact points and non-overlapped points,                                                     (5a) 

𝑢2 = ∞       for overlapped points.                                                                                            (5b) 

 

Then, the value of exp[u2/(kBT)] is expressed as 

 

exp[−𝑢2/(𝑘B𝑇)] = 1        for contact points and non-overlapped points,                             (6a) 

exp[−𝑢2/(𝑘B𝑇)] = 0        for overlapped points,                                                                       (6b) 

 

where kB and T are the Boltzmann constant and absolute temperature, respectively. Eq. 

(6) expresses that the exp[u2/(kBT)] is a step function. Thus, the partial differentiation 

of u2 with respect to z can be expressed as 

 

𝜕𝑢2(𝑧 − 𝑠)

𝜕𝑧
= 𝑘B𝑇exp[𝑢2(𝑧 − 𝑠)/(𝑘B𝑇)]{𝛿[𝑧 − (𝑠 − 𝑑S/2)] − 𝛿[𝑧 − (𝑠 + 𝑤 + 𝑑S/2)]},  (7) 

 

where δ and dS are the delta function and the diameter of the solvent sphere, 

respectively. By substituting Eq. (7) into Eq.(4), the solvation force acting on 

cylindrical solid 2 is rewritten as 

 

𝑓sol(𝑠) = 𝐴𝑘B𝑇𝜌0𝑔1(𝑠 − 𝑑S/2)𝑔2(−𝑑S/2) − 𝐴𝑘B𝑇𝜌0𝑔2(𝑤 + 𝑑S/2).                                      (8) 

 

Since dS/2 and w+dS/2 are the contact points between the cylindrical solid 2 and the 

solvent sphere, the values of g2(dS/2) and g2(w+dS/2) both are represented gC (the 

subscript C denotes the contact point). Hence, the solvation force is simply rewritten as 

 

𝑓sol(𝑠) = 𝐴𝑘B𝑇𝜌0𝑔c[𝑔1(𝑠 − 𝑑S/2) − 1].                                                                                           (9) 

 

When s = dS, g1(s  dS/2) becomes g1(dS/2), and its value is equal to gC. Therefore, the 

value of gC is expressed as 

 

𝑔𝐶 =
1

2
+

√𝐴2𝑘B
2𝑇2𝜌0

2 + 4𝐴𝑘B𝑇𝜌0𝑓sol(𝑑S)

2𝐴𝑘B𝑇𝜌0
.                                                                              (10) 

 

In the process of the derivation of Eq. (10), we used the fact that gC is not equal to 0 

but 1 when fsol(dS) is 0 (see Eq. (9)). This equation implies calculation of the contact 

number density of the solvent (ρ0gC) is possible, when fsol(dS) is obtained. 

Subsequently, g1 can be obtained by the following equation: 
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𝑔1(𝑠 − 𝑑S/2) =
𝑓sol(𝑠)

𝐴𝑘B𝑇𝜌0𝑔c
+ 1.                                                                                                        (11) 

 

We call this equation the transform method 1. Here, let us consider the value of g1 

when the solvent sphere is overlapped with the cylindrical solid 1. For example, the 

value of g1(0) should be 0, because when the nearest-neighbor distance between the 

circular surface and the center of the solvent particle is 0 the solvent particle is no 

longer placed. Hence, now we check this prediction from Eq. (11). When s-dS/2=0, s is 

equal to dS/2, and fsol(dS/2) is equal to the solvation force solely from the backward 

surface fB (constant). This is because, there are no solvent spheres within the narrow 

space between the facing surfaces with separation dS/2. The value of fB is given in the 

second term of the right-hand side of Eq. (8), which is written as 

 

𝑓B = −𝐴𝑘B𝑇𝜌0𝑔C.                                                                                                                                 (12) 

 

By substituting Eq. (12) into Eq. (11), the value of g1(0) is calculated to be 0. 

Consequently, it is proven that the behavior of g1 at the overlapped region is physically 

valid. In addition, of course, when the distance between the circular surface and the 

solvent sphere is long enough, the value of g1(s  dS/2) becomes 1, because “fsol(s) → 0” 

when “s  dS/2 → ∞”. 

Next, we briefly explain the transform method 2 in which the linear superposition 

approximation [3] is applied instead of the Kirkwood one. The linear superposition 

approximation is expressed as 

 

𝜌(𝑧; 𝑠) ≈ 𝜌0[𝑔1(𝑧) + 𝑔2(𝑧 − 𝑠) − 1 ].                                                                                             (13) 

 

By substituting Eq. (13) into Eq. (1), the following equation is obtained (the detailed 

derivation process is abbreviated): 

 

𝑔1(𝑠 − 𝑑S/2) =
𝑓sol(𝑠)

𝐴𝑘B𝑇𝜌0
+ 1.                                                                                                            (14) 

 

We call this equation the transform method 2. The difference between Eq. (11) and Eq. 

(14) is only the presence/absence of gC. Calculation of gC is not needed in the 

transform method 2. In the case of Eq. (14), the value of g1 also becomes 1, when the 

distance between the circular surface and the solvent sphere is long enough. However, 

in contrast to Eq. (11), g1(0) does not become 0 in Eq. (14). Therefore, one can 

understand that the transform method 1 is physically valid compared with the 

transform method 2. 
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2.2. Computational verification of the transform methods 

 

To check the validity of the transform methods, we perform the computational 

tests. The tests are conducted in both hard sphere fluid and LJ fluid with hard core 

potential. The tests of the transform methods are done by using liquid theories  [22-24], 

three-dimensional Ornstein-Zernike equation coupled with a hypernetted-chain closure 

(3D-OZ-HNC) [15]. The grid spacings ∆x, ∆y, and ∆z are set at 0.1dS, 0.1dS, and 

0.02dS, respectively. The grid resolution (Nx×Ny×Nz) is (256×256×2048). It has been 

verified that the spacing is sufficiently small and the box size (Nx∆x, Ny∆y, Nz∆z) is 

large enough for the correlation functions at the box surface to be essentially zero.  The 

diameter of the cylindrical solid is set at 10dS [6] and we have checked its diameter is 

large enough. 3D-OZ-HNC calculates the solvation structure around the cylindrical 

solid, which acts as a benchmark structure for the solvation structure calculated 

through the transform methods. Although 3D-OZ-HNC cannot adequately account for 

the evaporation and solidification of the liquid, the theory is used for the verification 

of the transform methods. 3D-OZ-HNC is not so very strict, however, it is accurate 

enough for this first step verification. The transform methods themselves are not 

derived considering the phase transitions. Hence, if the phase transition occurs in the 

measurement of the force curve, the transform methods must not be used. The 

solvation structure calculated only by 3D-OZ-HNC is represented as gn, where the 

subscript n represents the normal method. In the normal method, the solvation force 

between the cylindrical solids is not used, which is different point against the 

transform methods. Input data for calculation of gn are as follows: the diameter of the 

solvent sphere; bulk number density; two-body potential between the solvent-solvent; 

two-body potential between the solvent-cylindrical solid; and temperature. For 

hard-sphere fluid, two-body potential between the solvent-solvent is the rigid potential, 

whereas, for the LJ fluid with hard core potential, it is expressed as 

 

uSS(r) =             for  r  dS, 

uSS(r) = ξSS(dS/r)
6
    for  r ≥ dS,                                      (15) 

 

where r is the distance between the centers of the solvent spheres. ξSS represents the 

affinity between the solvent-solvent, and ξSS/(kBT) is set at 1.5. In Eq. (15), the 

repulsive part of the 12-6 type potential is replaced by the hard-core interaction, which 

enables us to determine the contact point between them definitely. In the LJ fluid, the 

solvation affinity of the cylindrical solid (ξDS) is varied as a parameter. Two-body 

potential between the solvent sphere and the cylindrical solid is expressed as [25] 
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uDS(h) =                                    for  h  dS/2, 

uDS(h) = (DS/8)(dS/h)
3
exp[{h/(10dS)}

10
]         for h ≥ dS/2,             (16) 

 

where h is the distance between the center of the solvent sphere and the nearest surface 

of the cylindrical solid. The dimensionless value of the solvation affinity being 

ξDS/(kBT) is set at 0.5, 1.0, or 1.5. In Eq. (16), the repulsive part of the 9-3 type 

potential is replaced by the hard-core interaction, which enables us to determine the 

contact point between them definitely. The function of exp[{h/(10dS)}
10

] is a 

moderated step function, which cuts off the long-range interaction [23]. The transform 

methods requires following input data: the solvation force between the cylindrical 

solids; surface area of the facing surface of the solid 2; bulk number density; and 

temperature. Thus, “the normal method” and “the transform methods” are different 

factures. By the way, it is necessary to prepare the solvation force between the 

cylindrical solids to perform the test of the transform methods. To prepare it, the 

solvation structures around a pair of the cylindrical solids 1 and 2 are calculated in 

various separations. Then, the solvation structures are used for calculation of the curve 

of the solvation force. Using the transform method, the solvation force curve is 

transformed into the solvation structure. If the solvation structure is very similar to the 

solvation structure obtained by the normal method gn, the transform method turns out 

to be a good method for estimation of the solvation structure. (One might think 

Percus-Yecivk closure should be used instead of HNC when the solvent is hard sphere 

fluid. However, when a solute, i.e. the cylindrical solid is sufficiently large compared 

with the solvent sphere, HNC should be used.) 

 

 

 

3. Results and discussion 

3.1. Test of the transform methods in the hard sphere fluid 

 

   In what follows, the solvation structures calculated by the normal method (gn), the 

transform method 1 (gt1), and the transform method 2 (gt2) are compared. The solvent 

here is the hard sphere fluid and its number density is a parameter in this survey. If gti 

(i = 1 or 2) deviates little from gn, it is concluded that the transform method has 

worked well. Let us start the comparison among gn, gt1 and gt2. In Fig. 2(a), (b), (c), 

and (d), dimensionless values of the solvent density being ρ0dS
3
 are 0.5, 0.6, 0.7, and 

0.8, respectively. In appearance, the deviations from gn becomes smaller as the number 

density becomes lower. To corroborate the finding, we calculated the surface area of 

the deviation (Sdev) defined as 
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𝑆dev ≡ ∫ |𝑔t𝑖(ℎ𝑛) − 𝑔n(ℎ𝑛)|
3.5

0.5

𝑑ℎn,                                                                                                 (17) 

 

where hn = h/dS and i = 1 or 2. The values of Sdev are displayed in Table 1. The 

deviation from gn becomes smaller as the distance between the circular surface and the 

solvent becomes longer. The reproducibility of the transform method 1 is generally 

better than the transform method 2. Furthermore, unfortunately, minus values are 

outputted from the transform method 2, the values of which are physically irrelevance. 

    As the number density becomes higher, the interval between the first solvation 

layer (h/dS = 0.5) and the second one (h/dS ≈ 1.5) is slightly shortened. Although it is 

difficult to distinguish the intervals of gn, gt1 and gt2 from Fig. 2, the intervals of gt1 

and gt2 are always shorter than that of gn. This behavior originates from the 

compression of the solvent during the sandwich. Since the solvent spheres are 

sandwiched by the two large surfaces, the solvent tends to be compressed. The 

compression behavior influences on the force curve (an input datum for the transform 

methods), and therefore the intervals of gt1 and gt2 are always shorter than that of gn. 

 

 

3.2. Test of the transform methods in the LJ fluid 

 

The computational verification of the transform methods is conducted also in the 

LJ fluid. Here, the values of ρ0dS
3
 and ξSS/(kBT) are fixed constant, which are 

respectively 0.7 and 1.5. The solvation affinity of the cylindrical solid being ξDS/(kBT) 

is changed as the parameter. In Fig. 3(a), (b), and (c), the values of ξDS/(kBT) are set at 

0.5, 1.0, and 1.5, respectively. When the cylindrical solid is solvophobic, the contact 

number density of the solvent is lower, whereas when it is solvophilic, the contact 

number density is higher [26,27]. This natural property is also reflected in gn, gt1 and 

gt2. As shown in Fig. 3 and Table 2, the difference between gn and gti (i = 1 or 2) 

becomes smaller as the solvation affinity becomes smaller. This behavior originates 

from the theoretical condition (II) that the cylindrical solids are presupposed to be the 

rigid bodies. 

    The interval between the first solvation layer (h/dS = 0.5) and the second one (h/dS 

≈ 1.5) corresponds to the diameter of the solvent sphere (dS). Although it is difficult to 

distinguish the interval differences among gn, gt1 and gt2, the intervals of gt1 and gt2 are 

always shorter than that of gn. This behavior comes from the compression of the 

solvent during the sandwich, too. 

 

 

4. Conclusions 

 



 12 

We have proposed the methods for transforming a force curve measured by SFA 

into the solvation structure on the surface of the SFA probe. The transform methods 

have been derived based on the statistical mechanics of the simple liquids, where we 

have taken advantage of Kirkwood and linear super position approximations to 

perform the derivations. In the verifications of the transform methods, we have 

computationally tested them in both the hard sphere fluid and LJ fluid with hard core 

potential. The verification in the hard sphere fluid has revealed that the transform 

method 1 always works well compared with that of 2 and the reproducibility becomes 

better as the number density becomes lower (see Fig. 2 and Table 1). Also in the LJ 

fluid test (see Fig. 3 and Table 2), it has been found that the transform method 1 always 

works well compared with that of 2. The reproducibility of the transform method  

becomes better as the solvation affinity (ξDS/(kBT)) becomes lower. This behavior 

comes from the theoretical condition (II) in which the cylindrical solids are 

hypothecated to be the rigid bodies. By the way, if the evaporation or solidification 

occurs during the measurement, the transform method should not be used, because the 

phase transitions are not considered in the theory. The intervals between the first 

solvation layer (h/dS = 0.5) and the second one (h/dS ≈ 1.5) calculated by the normal 

method and the transform methods have also been compared. We have found that the 

intervals of gt1 and gt2 are shorter than that of gn. The difference originates from the 

compression of the solvent during the sandwich. It is deemed that Kirkwood or linear 

superposition approximation should be improved or a new approach for the 

transformation should be created in order to decrease the difference. Another cause of 

the difference between gn and gti (i = 1 or 2) is considered to be the use of HNC 

approximation. The contact theorem is not perfectly satisfied by the integral equation 

theory with the HNC. This is the additional source for the errors. 

    In the near future, we will apply the transform method 1 to a real SFA experiment. 

Recently, Amano and Tanaka derived an improved version of the transform method 1 

[28], where the rigid potential between the solvent and the model SFA surface is 

alternated with a soft attractive potential with hard wall. The improved one is 

considered to be more practicable. We will show its detailed derivation process and 

results of its verification tests in the near future. In addition, we will report on the 

structure of a confined liquid between SFA surfaces. Since the confined liquid 

structure is related to nanotribology [29], this prospective study including the present 

transform method could be an important research for i ts study filed. The present 

transform methods are derived in a simple liquid, however, it is considered that the 

transform methods can also be used for calculation of the density distribution of 

colloid (micell) particles on a surface, if the experimental condition is in an ideal 

condition [30,31]. Moreover, it can be used for measurement of the wettability of a 

surface, because the wettability is related to the solvation structure  [27]. A recent 

spectroscopic measurement [32,33] can detect water orientation near a surface. 
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Meanwhile, our experimental theory can obtain the density distribution near a surface. 

Thus, it is expected that “water density distribution” and “accompanying water 

orientations” could be experimentally obtained in the future by combining SFA and the 

spectroscopic measurement. 
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Appendix A. Relation between solvation force acting on arbitrary two solutes and 

solvation structure around them 

 

    In this chapter, the solvation force acting between two arbitrary solutes is 

connected with the solvation structure around them, i.e., an original equation for Eq. 

(1) is derived here. Key points that should be notified here are as follows: (A) the 

relationship between the solvation force and the solvation structure is derived based on 

the statistical mechanics of a simple liquid in equilibrium state; (B) the solvation force 

itself is the partial differentiation of the solvent’s free energy with respect to separation 

between the two solutes. The key point (B) indicates that Eq. (1) contains not only 

energetic force, but also entropic force, although it is difficult to have an insight into 

the fact in Eq. (1) at a glance. In the theory, the shape of the solvent molecule is 

approximated as a small sphere and two-body potential between solvent-solvent is 

arbitrary. The arbitrary property and the key point (B) enable us to perform the 

transform methods in both hard-sphere and non-hard-sphere fluids. (The hard-sphere 

fluid is purely entropic system, whereas the non-hard-sphere fluid contains energy and 

entropy components in the system.) 

    When the two solutes are immersed in the solvent, the fundamental partition 

function Q0 is expressed as 

 

𝑄0 =
𝜁𝑁𝜁U1𝜁U2

𝑁!
∫ ⋯ ∫ exp{−𝛽𝑈(𝐫′U1, 𝐫′U2, 𝐫1, ⋯ , 𝐫𝑁)} 𝑑𝐫′U1𝑑𝐫′U2𝑑𝐫1 ⋯ 𝑑𝐫N,                 (A. 1) 

 

where N is the number of small spheres, U the whole system energy, r 

three-dimensional position vector. β is equal to 1/(kBT), which is called “inverse 
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temperature”. The subscripts from 1 to N represent the numbers for the solvent 

particles, and the subscripts U1 and U2 represent solutes 1 and 2, respectively. ζ, ζU1, 

ζU2 are expressed as 

 

𝜁 =
(2π𝑚𝑘𝐵𝑇)3 2⁄

ℎ3
,                                                                                                                            (A. 2) 

 

𝜁U1 =
(2π𝑚U1𝑘𝐵𝑇)3 2⁄

ℎ3
,                                                                                                                    (A. 3) 

 

 

𝜁U2 =
(2π𝑚U2𝑘𝐵𝑇)3 2⁄

ℎ3
,                                                                                                                    (A. 4) 

 

respectively. m, mU1, and mU2 represent masses of the solvent particle, solute 1, and 

solute 2, respectively. h represents Plank’s constant. When a system of AFM is 

considered, the solutes 1 and 2 correspond to the solid plate (sample surface) and the 

AFM probe, respectively. In the case of SFA, the solutes 1 and 2 both correspond to the 

solid plates, where one is the sample surface and the other is the SFA probe. In those 

cases, ζU1 and ζU2 are neglected (i.e., ζU1 = ζU2 = 1), because the solid plate and probe 

do not change the positions kinetically. These positions are artificially changed in 

general. The values of ζU1 and ζU2 are dependent on the situation, however, the 

conclusion (i.e., Eq. (A.19)) does not change. Thus, it is needless to worry about the 

values in this study. 

When solutes 1 and 2, respectively, are located at rU1 and rU2, the fundamental 

partition function Q0 is expressed as Q(rU1,rU2) which is written as 

 

𝑄(𝐫U1, 𝐫U2) = 𝑐 ∫ ⋯ ∫ δ(𝐫′
U1 − 𝐫U1)δ(𝐫′

U2 − 𝐫U2) exp(−𝛽𝑈)𝑑𝐫′
U1𝑑𝐫′

U2𝑑𝐫1 ⋯ 𝑑𝐫𝑁               

                      = 𝑐 ∫ ⋯ ∫ exp{−𝛽𝑈(𝐫U1, 𝐫U2, 𝐫1, ⋯ , 𝐫𝑁)} 𝑑𝐫1 ⋯ 𝑑𝐫𝑁 ,                                         (A. 5) 

 

where c represents the coefficient of Eq. (A.1). The content of U is described as 

 

𝑈 = ∑ 𝑢(𝐫𝑗 − 𝐫𝑖)

𝑖≠𝑗

+ ∑ 𝑢1(𝐫𝑖 − 𝐫U1) +

𝑁

𝑖=1

∑ 𝑢2(𝐫𝑖 − 𝐫U2)

𝑁

𝑖=1

,                                                      (A. 6) 

 

where u, u1, and u2 represent the two body potentials between solvent-solvent, 

solvent-solute 1, and solvent-solute 2, respectively. The first summation term in Eq. 
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(A.6) can be expressed as 

 

∑ 𝑢(𝐫𝑗 − 𝐫𝑖)

𝑖≠𝑗

=
1

2
{∑ ∑ 𝑢(𝐫𝑗 − 𝐫𝑖) − ∑ 𝑢(𝐫𝑘 − 𝐫𝑘)

𝑁

𝑘

𝑁

𝑗

𝑁

𝑖

}.                                                      (A. 7) 

 

The partition function Q(rU1,rU2) has the hole system energy U, however, there is not 

two-body potential between the solutes 1 and 2 (see Eq. (A.6)). The reason of the 

absence is that the two-body potential between the solutes 1 and 2 does not have an 

influence on the solvation force. That is, the solvation force (fsol) and the two-body 

force between the solutes (f12) are independent in a classical manner, which is 

expressed as ftot = fsol + f12 where ftot is the total force between the solutes 1 and 2. (If 

one substitutes all of the two-body potentials into U, one can purely separate the 

solvation force and the two-body force between two solutes by analyzing the partition 

function.) 

    Next, the solvation force acting between the solutes 1 and 2 being f12 (i.e., 

solvation force acting on the solute 2 near the solute 1) is written as 

 

𝐟12 = −
∂𝛷(𝐫U1, 𝐫U2)

∂𝐫U2
= −

∂

∂𝐫U2

{𝐹(𝐫U1, 𝐫U2) − 𝐹(𝐫U1, ∞)},                                                    (A. 8) 

 

where Φ and F represent the potential of the mean force and solvent’s free energy, 

respectively. The sign ∞ represents that the solute 2 is sufficiently (infinitely) far from 

the solute 1. The partial differentiation with respect to rU2 has the form:  

 

∂

∂𝐫𝐔𝟐
=

∂

∂𝑥U2
𝐢 +

∂

∂𝑦U2
𝐣 +

∂

∂𝑧U2
𝐤,                                                                                                   (A. 9) 

 

where i, j, and k are unit vectors of x-, y-, and z-axes, respectively. Since F(rU1, ∞) is 

the constant, the partial differentiation with respect to rU2 is zero. Here, applying a 

bridge function between thermodynamics and statistical mechanics (i.e., F(rU1,rU2)=－

kBT lnQ(rU1,rU2)), Eq. (A.8) is rewritten as 

 

𝐟12 = −
∂

∂𝐫U2

(−𝑘B𝑇ln𝑄) = 𝑘B𝑇
1

𝑄

∂𝑄

∂𝐫U2
,                                                                                  (A. 10) 

 

where the partial differentiation of Q with respect to rU2 is 

 

∂𝑄

∂𝐫U2
= −𝛽𝑐 ∫ ⋯ ∫ (

∂𝑈

∂𝐫U2
) exp(−𝛽𝑈)𝑑𝐫1 ⋯ 𝑑𝐫𝑁 ,                                                                   (A. 11) 
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and the partial differentiation of U with respect to rU2 is 

 

∂𝑈

∂𝐫U2
=

∂

∂𝐫U2
∑ 𝑢2(𝐫𝑖 − 𝐫U2).                                                                                                       (A. 12)

𝑁

𝑖=1

 

 

By substituting Eq. (A.12) into Eq. (A.11), it is rewritten as 

 

∂𝑄

∂𝐫U2
= −𝛽𝑐 ∫ ⋯ ∫ ∑ {

∂

∂𝐫U2
𝑢2(𝐫𝑖 − 𝐫U2)}

𝑁

𝑖=1

exp(−𝛽𝑈)𝑑𝐫1 ⋯ 𝑑𝐫𝑁                                                    

           = −𝛽𝑐𝑁 ∫ ⋯ ∫ {
∂

∂𝐫U2
𝑢2(𝐫1 − 𝐫U2)} exp(−𝛽𝑈)𝑑𝐫1 ⋯ 𝑑𝐫𝑁.                                       (A. 13) 

 

By the way, the distribution of the number density (ρ) wherein the solutes 1 and 2 

respectively are located at rU1 and rU2 is defined as 

 

𝜌(𝐫; 𝐫U1, 𝐫U2) = 〈∑ δ(𝐫𝑖 − 𝐫)

𝑁

𝑖=1

〉                                                                                                    (A. 14) 

 

Here, < X > means an ensemble average of X with respect to the partition function 

Q(rU1,rU2). Thus, Eq. (A.14) is rewritten as 

 

𝜌(𝐫; 𝐫U1, 𝐫U2) =
𝑁𝑐

𝑄
∫ ⋯ ∫ exp{−𝛽𝑈(𝐫U1, 𝐫U2, 𝐫, 𝐫2, ⋯ , 𝐫𝑁)}𝑑𝐫2 ⋯ 𝑑𝐫𝑁 ,                            (A. 15) 

 

 

and it is rewritten as following form, 

 

∫ ⋯ ∫ exp{−𝛽𝑈(𝐫U1, 𝐫U2, 𝐫1, 𝐫2, ⋯ , 𝐫𝑁)}𝑑𝐫2 ⋯ 𝑑𝐫𝑁 =
𝑄𝜌(𝐫1; 𝐫U1, 𝐫U2)

𝑁𝑐
.                           (A. 16) 

 

In Eq. (A.16), we replaced r with r1 (see Eq. (A.15)). The value of r1 itself is not 

changed from r, i.e. only the character itself is replaced. Then, we substitute Eq. 

(A.16) into Eq. (A.13), and we obtain 

 

∂𝑄

∂𝐫U2
= −𝛽𝑐𝑁 ∫ {

∂𝑢2(𝐫1 − 𝐫U2)

∂𝐫U2
}

𝑄𝜌(𝐫1; 𝐫U1, 𝐫U2)

𝑁𝑐
𝑑𝐫1.                                                         (A. 17) 
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Consequently, the solvation force is expressed as 

 

𝐟12(𝐫U1, 𝐫U2) = − ∫ 𝜌(𝐫1; 𝐫U1, 𝐫U2) {
∂𝑢2(𝐫1 − 𝐫U2)

∂𝐫U2
} 𝑑𝐫1.                                                      (A. 18) 

 

If the partial differentiation with respect to rU2 is replaced by that with respect to r1, 

Eq. (A.18) is rewritten as 

 

𝐟12(𝐫U1, 𝐫U2) = ∫ 𝜌(𝐫1; 𝐫U1, 𝐫U2) {
∂𝑢2(𝐫1 − 𝐫U2)

∂𝐫1
} 𝑑𝐫1.                                                          (A. 19) 

 

Eq. (A.19) is the basic relational expression between f12 and ρ. Eq. (1), the 

fundamental equation for deriving the transform methods 1 and 2, is derived by 

extracting the z-component of the solvation force. 
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Figure and Table captions 

 

Fig. 1. Cylindrical solids 1 and 2 are immersed in the solvent. The black point is the 

origin of the whole system. The black and gray points are the origin of the functions of 

g1 and g2, respectively. (g1 and g2 are the normalized number densities of the solvent 

around the isolated cylindrical solids 1 and 2, respectively. In this paper, they are 

simply called “solvation structure”.) The double-headed arrow represents the 

separation between the two circular surfaces. At first, the force acting on c ylindrical 

solid 2 is measured. Next, the solvation structure on cylindrical solid 1 is calculated by 

the transforming methods. 

 

Fig. 2. Comparisons of the solvation structures calculated by the normal method (gn: 

blue solid line), the transform method 1 (gt1: red dashed line), and the transform 

method 2 (gt2: green dotted line). The solvent here is the hard sphere fluid. The values 
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of gC
n
, gC

t1
, and gC

t2
 represent normalized number densities at the contact point 

calculated by the normal method, the transform methods 1 and 2, respectively. In (a), 

(b), (c), and (d), dimensionless values of the solvent number density being ρ0dS
3
 are 

0.5, 0.6, 0.7, and 0.8, respectively. When h/dS = 0.5, the solvent sphere contacts the 

circular surface, i.e. it is the contact point. The parts of the lines calculated by the 

transform method 2 are not displayed due to the large deviation. 

 

Fig. 3. Comparisons of the solvation structures calculated by the normal method (gn: 

blue solid line), the transform method 1 (gt1: red dashed line), and the transform 

method 2 (gt2: green dotted line). The solvent here is the LJ fluid with hard core 

potential. In (a)-(c), dimensionless values of the solvent number density being ρ0dS
3
 is 

0.7 and affinity between the two solvent spheres being ξSS/(kBT) is 1.5. The values of 

gC
n
, gC

t1
, and gC

t2
 represent normalized number densities at the contact point calculated 

by the normal method, the transform methods 1 and 2, respectively. In (a), (b), and (c), 

the solvation affinity of the cylindrical solid being ξDS/(kBT) is set at 0.0 (solvophobic), 

1.0 (neutral), and 2.0 (solvophilic), respectively. When h/dS = 0.5, the solvent sphere 

contacts the circular surface, i.e. it is the contact point. The parts of the lines 

calculated by the transform method 2 are not displayed due to the large deviation.  

 

Table 1. Surface area of the deviation (Sdev) in the hard sphere fluid. The values are 

calculated by using Eq. (17). 

 

Table 2. Surface area of the deviation (Sdev) in the LJ fluid. The values are calculated 

by using Eq. (17). The values of ρ0dS
3
 and ξSS/(kBT) are set at 0.7 and 1.5, respectively. 
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ρ 0 d S

3 Kirkwood (g t1 ) Linear (g t2 ) 
0.5 0.31 1.52 
0.6 0.42 2.12 
0.7 0.56 2.87 
0.8 0.88 3.90 

Table 1 
 

 1 



 
ξDS /(k B T) Kirkwood (g t1 ) Linear (g t2 ) 

0.5 0.21 0.69 
1.0 0.28 0.93 
1.5 0.43 2.61 

Table 2 
 

 1 
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