
Synchronized Molecular-Dynamics Simulation via Macroscopic Heat and Momentum Transfer:
An Application to Polymer Lubrication

Shugo Yasuda1,* and Ryoichi Yamamoto2,†
1Graduate School of Simulation Studies, University of Hyogo, Kobe 650-0047, Japan

2Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
(Received 16 January 2014; revised manuscript received 8 July 2014; published 21 October 2014)

A synchronized molecular-dynamics simulation via macroscopic heat and momentum transfer is
proposed to model the nonisothermal flow behaviors of complex fluids. In this method, the molecular-
dynamics simulations are assigned to small fluid elements to calculate the local stresses and temperatures
and are synchronized at certain time intervals to satisfy the macroscopic heat- and momentum-transport
equations. This method is applied to the lubrication of a polymeric liquid composed of short chains of ten
beads between parallel plates. The rheological properties and conformation of the polymer chains coupled
with local viscous heating are investigated with a nondimensional parameter, the Nahme-Griffith number,
which is defined as the ratio of the viscous heating to the thermal conduction at the characteristic
temperature required to sufficiently change the viscosity. The present simulation demonstrates that strong
shear thinning and a transitional behavior of the conformation of the polymer chains are exhibited with a
rapid temperature rise when the Nahme-Griffith number exceeds unity. The results also clarify that the
reentrant transition of the linear stress-optical relation occurs for large shear stresses due to the coupling of
the conformation of polymer chains with heat generation under shear flows.
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I. INTRODUCTION

To predict the transport phenomena of complex fluids
caused by the coupled heat- and momentum-transfer
processes is challenging from both a scientific and engi-
neering point of view. Molecular-dynamics (MD) simu-
lations are often used to predict material properties (e.g.,
the rheological, thermal, and electrical properties), in which
the simulation is performed for a very small piece of the
material under a certain ideal environment [1,2]. However,
in actual engineering and biological systems, the macro-
scopic features of complex fluids are highly affected by
the spatial heterogeneity caused by the macroscopic trans-
port phenomenon involved in the boundary conditions.
A typical example is the generation of heat in lubrication
systems [3]. To predict such complicated behavior in
complex fluids, the entire system, including the boundary
conditions, must be considered on the basis of an appro-
priate molecular model. In principle, full MD simulations
of the entire system can meet these requirements. However,
it is difficult in practice to perform full MD simulations on

the macroscopic scale, which is common in actual engi-
neering systems and is far beyond the molecular size.
Multiscale modeling is a promising candidate to address
this type of problem.
The multiscale simulation for the flow behaviors of

complex fluids was first advanced in the calculation of
non-newtonian flow: finite elements and stochastic simu-
lation technique (CONNFFESSIT) approach for polymeric
liquids by Laso, Öttinger, and co-workers [4–6], where the
local stress in the fluid solver is calculated using the micro-
scopic simulation instead of using any constitutive relations.
The general equation for the nonequilibrium reversible-
irreversible coupling approach is also presented for the
nonisothermal polymeric flows by making important cor-
rections and clarifications to the CONNFFESSIT scheme
[7]. The strategy exploited in the CONNFFESSIT approach
is also introduced into the heterogeneous multiscale model-
ing, which was proposed by E and Engquist [8] as a general
methodology for the efficient numerical computation of
problems with multiscale characteristics. Heterogeneous
multiscale modeling has been applied to various problems,
such as the simple polymeric flow [9], the coarsening of a
binary polymer blend [10], and the channel flow of a simple
Lennard-Jones liquid [11]. The equation-free multiscale
computation proposed by Kevrekidis et al. is also based
on a similar idea and has been applied to various problems
[12,13]. De et al. proposed the scale-bridgingmethod, which
can correctly reproduce the memory effect of a polymeric
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liquid, and demonstrated the nonlinear viscoelastic behavior
of a polymeric liquid in slab and cylindrical geometries
[14,15]. The multiscale simulation for polymeric flows with
the advection of memory in two and three dimensions was
developed by Murashima and Taniguchi [16–18]. We have
also developed a multiscale simulation of MD and computa-
tional fluid dynamics. The multiscale method was first
developed for simple fluids [19] and subsequently extended
to polymeric liquids with the memory effect [20–23].
However, a multiscale simulation for the coupled heat

and momentum transfer of complex fluids has yet to be
proposed. For complex fluids, it is usually difficult to
describe the heat generation coupled with the momentum
transport using only macroscopic quantities. The spatial
variation in the temperature also becomes notable at the
macroscopic scale due to local viscous heating under shear
flow. Thus, multiscale modeling is important for the
coupled heat and momentum transfer of complex fluids.
In the present paper, we propose a multiscale simulation,
termed the synchronized molecular-dynamics simulation
(SMD), for the coupled heat and momentum transfer in
complex fluids by extending the multiscale simulation for
momentum transport and apply it to the polymer lubrica-
tion. Using this method, we investigate the rheological
properties and conformation of polymer chains for the
thermohydrodynamic lubrication of a polymeric liquid
composed of short chains in a gap between parallel plates,
in which the width of the gap is sufficiently large compared
to the characteristic length of the flow behaviors, e.g., the
length of the viscous boundary layer, such that the macro-
scopic quantities, e.g., the velocity, stress, and temperature,
become spatially heterogeneous.
The full MD simulations for confined short-chain

molecules in slab geometry were previously studied in
Refs. [24,25]. The viscous heating of simple liquids in the
same geometry was also studied using a full MD simulation
in Refs. [26,27]. However, these results are exclusively for
the molecularly thin films; i.e., the slab width is approx-
imately 10 times the molecular size, whereas in the present

study, a width of over 1000 times the molecular size is
considered in the SMD simulation.
In the following, we first describe the problem consid-

ered in the present paper. The simulation method is
explained after the presentation of the problem. The
SMD simulation of polymer lubrication is performed,
and the results are discussed; these results are mainly
the rheological properties and the coupling of the con-
formations of the polymer chains with heat generation
under shear flows. We also present a critical analysis of the
conceptual and technical issues of the SMD method.
Finally, a short summary and a perspective on the future
of SMD are given.

II. PROBLEM

We consider a polymeric liquid contained in a gap of
width H between parallel plates with a constant temper-
ature T0 [see Fig. 1(a)]. The polymeric liquid is composed
of short Kremer-Grest chains [28] of ten beads, in which all
of the bead particles interact with a truncated Lennard-
Jones potential defined by
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UFðrÞ ¼ − 1

2
kcR2

0 ln

�
1 −

�
r
R0

�
2
�
; ð2Þ

with kc ¼ 30ϵ=σ2 and R0 ¼ 1.5σ. The polymeric liquid is
in a quiescent state with a uniform density ρ0 and a uniform
temperature T0 before a time t ¼ 0. Hereafter, the y axis is
perpendicular to the parallel plates, and the boundaries
between the upper and lower plates and the polymeric
liquid are located at y ¼ H and 0, respectively. The upper

FIG. 1. The schematic of (a) the geometry of the problem and (b) the time evolution.
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plate starts to move in the x direction with a constant shear
stress σ0 at a time t ¼ 0, while the lower plate is at rest.
The macroscopic behavior of the polymeric liquid is

described by the following transport equations:

ρ0
∂vx
∂t ¼ ∂σxy

∂y ; ð3aÞ

ρ0
∂e
∂t ¼ σxy _γ − λ

∂2T
∂y2 ; ð3bÞ

where vα is the velocity, σαβ is the stress tensor, e is the
internal energy per unit mass, and _γ is the shear rate, i.e.,
_γ ¼ ∂vx=∂y. Hereafter, the subscripts α, β, and γ represent
the index in Cartesian coordinates, i.e., fα; β; γg ∈
fx; y; zg. Here, we assume that the macroscopic quantities
are uniform in the x and z directions ∂=∂x ¼ ∂=∂z ¼ 0,
and the density of the polymeric liquid is constant.
Fourier’s law for a heat flux with a constant and uniform
thermal conductivity λ is also considered in Eq. (3b). Note
that the thermal conductivity of polymeric liquids is
anisotropic under shear flows, in general [29–32], and
some experimental studies have reported that the linear
stress-thermal relation between the stress tensor and ther-
mal conductivity holds [33–36]. However, in the present
study, we only consider the isotropic thermal conductivity
as the first step because the effect of shear thinning of the
viscosity is thought to be more crucial to viscous heating
under strong shear flows than that of the anisotropy of the
thermal conductivity. Involving the anisotropic thermal
conductivity in the SMD simulation is an important future
work. We also assume that the velocity and temperature of
the polymeric liquid are the same as those of the plates at
the boundaries, i.e., the nonslip and non-temperature-jump
boundary conditions.
The effect of viscous heating is estimated using the ratio of

the first and second terms in Eq. (3b) to be σ0 _ΓH2=λΔT0.
Here, _Γ is the gross shear rate of the system, which is defined
by the ratio of the velocity of the upper plate vw to the width
of the gap H ( _Γ ¼ vw=H), and ΔT0 is a characteristic
temperature rise for the polymeric liquid. In the present
problem, we consider a characteristic temperature necessary
to substantially change the viscosity of the polymeric liquid,
i.e., ΔT0 ¼ jη0=ð∂η0=∂T0Þj, where η0 is the characteristic
viscosity of the polymeric liquid at a temperature of T0.
Thus, the Nahme-Griffith number Na, defined as

Na ¼ σ0 _ΓH2

λj∂ logðη0Þ=∂T0j−1
; ð4Þ

represents the effect of viscous heating on the changes in the
rheological properties [3,37]. Usually, in lubrication systems
and in high-speed processing operations with polymeric
liquids, the Nahme-Griffith number is not negligibly small
because of the large viscosity and the small thermal

conductivity of the polymeric liquid [37]. For example,
when a lubrication oil in a gap with a width of 1 μm is
subjected to shear deformation with a strain rate of
1 × 106 s−1, the Nahme-Griffith number is estimated to
be Na≳ 0.1. Thus, the rheological properties of the lubri-
cant in such microdevices must be significantly affected not
only by the large velocity gradient but also by the temper-
ature increase caused by local viscous heating. To predict the
rheological properties of the polymeric liquid in these
systems, one must consider the temperature variation in
Eq. (3b) coupled with Eq. (3a).

III. SIMULATION METHOD

In the present simulation, the gap between the parallel
plates is divided into M mesh intervals with a uniform
width of Δy ¼ H=M, and the local velocities are calculated
at each mesh node through the typical finite volume scheme
shown in Eq. (3a). The local shear stresses σxyðyÞ are
calculated from the local shear rates in the MD cells
associated with each mesh interval using the non-equilib-
rium molecular dynamics (NEMD) simulation with the
SLLOD algorithm. The MD simulations are performed in a
time interval Δt, and the time integrals of the instantaneous
shear stresses Pxy in each MD cell are used to update the
local velocities at the next time step in accordance with the
macroscopic momentum-transport equation (3a):

vnxðyÞ ¼ vn−1x ðyÞ þ 1

ρ0

∂
∂y

Z
nΔt

ðn−1ÞΔt
Pxy½τ; _γn−1ðyÞ�dτ: ð5Þ

Here, the superscript n represents the time-step number,
Pxy½τ; _γn−1ðyÞ� is the instantaneous shear stress in the
NEMD simulation with a shear rate of _γn−1ðyÞ, and τ is
the temporal progress of the NEMD simulation. Note that
the time-step size of the MD simulation is different from
Δt. The local viscous heating caused by the shear flow, i.e.,
the first term of the right-hand side of Eq. (3b), is calculated
in the NEMD simulations without the use of a thermostat
algorithm in each MD cell; however, at each time interval
Δt, the instantaneous kinetic energies of the molecules per
unit mass K in each MD cell are corrected according to the
heat fluxes between neighboring MD cells. Figure 2 is a
schematic of the calculation of the temperature in the SMD
method. The instantaneous temperatures T at each MD cell
and their integrals over the duration of each MD run, i.e.,R
nΔt
ðn−1ÞΔt T ðτÞdτ, are calculated at each MD cell. The heat
fluxes between neighboring MD cells δK are calculated on
the global mesh system (depicted on the upper side in
Fig. 2) as

δK ¼ − λ

ρ0

∂2

∂y2
Z

nΔt

ðn−1ÞΔt
T ðτÞdτ; ð6Þ

and the instantaneous kinetic energies K at each MD
cell are corrected by rescaling the molecular velocities
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according to the corrected temperature T 0 (depicted on the
lower side in Fig. 2) via

T 0n ¼ T n þ 2

3
δK: ð7Þ

Thus, the MD simulations assigned to each fluid element
are synchronized at time intervals of Δt to satisfy the
macroscopic heat- and momentum-transport equations [see
Fig. 1(b)]. Note that it is difficult to rewrite Eq. (3b) as the
time evolution of temperature, in general, because the
internal energy depends on not only the macroscopic
variables but also on the conformations of the polymer
chains. In the present SMD simulation, the temperature
increase caused by local viscous heating is calculated
autonomously in the MD simulation and satisfies the
macroscopic energy balance of Eq. (3b).
Hereafter, we measure the length, time, temperature, and

density in units of σ, τ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=ϵ

p
, ϵ=kB, and m=σ3,

respectively. Here, kB is the Boltzmann constant, and m is
the mass of the LJ particle. In the following simulations, the
density and thermal conductivity of the polymeric liquid
are fixed to be ρ0 ¼ 1 and λ ¼ 150, respectively, and the
temperature of the plates and the width of the gap between
the plates are fixed to be T0 ¼ 0.2 and H ¼ 2500,
respectively, whereas the shear stress applied to the upper
plate σ0 varies. At this density ρ0 and this temperature
T0, the conformation of the bead particles becomes
severely jammed and results in complicated rheological
properties [22,38].
We have carried out the numerical tests of the present

method for various calculation conditions by varying the
number of mesh intervals M, time interval Δt, and number
of polymer chains in each MD cell Np. The results and a
critical analysis of the present method are given in Sec. V.
In the present paper, unless otherwise stated, the following
calculation parameters are used: The number of mesh
intervals M and the time interval Δt are M ¼ 32 and
Δt ¼ 1, respectively. A total of 100 polymer chains, i.e.,
Np ¼ 100, of ten beads, i.e., 1000 bead particles, is
contained in each MD cell. Thus, the mesh width and side
length of the MD cell are Δy ¼ 78.125 and lMD ¼ 10,
respectively. The time-step size in the MD simulation Δτ is

set to be Δτ ¼ 0.001. Thus, MD simulations are performed
for 1000 time steps in the time interval Δt, i.e.,
Δt ¼ 1000Δτ.

IV. RESULTS

We perform SMD simulations with various values for the
shear stress applied to the plate σ0, i.e., σ0 ¼ 0.002, 0.01,
0.03, 0.05, 0.055, 0.06, 0.07, 0.08, and 0.09, and inves-
tigate the behaviors of a polymeric liquid at the steady
state. In the following, we present quantities averaged for a
long period of time at the steady state, in which the shear
stress is spatially uniform and the time derivative of the
local internal energy, i.e., the left-hand side of Eq. (3b), is
negligible.
Figure 3 shows the spatial variations in local quantities

for various values of the shear stress applied to the plate,
i.e., for σ0 ¼ 0.01, 0.05, 0.06, and 0.08. The shear stress σxy
is found to be spatially uniform, and this fact also indicates
that the condition necessary for the polymeric liquid to be at
the steady state is satisfied in the present simulation. The
spatial variation in the temperature T is small when the
applied shear stress σ0 is smaller than 0.05, i.e., σ0 ≤ 0.05,
whereas for σ0 ≥ 0.06, the spatial variation in T becomes
notable. The spatial variation in the shear rate _γ also
increases rapidly when the applied shear stress σ0 is larger
than 0.05. However, the behaviors of the spatial variations
in the temperature and in the shear rate are different.
The spatial variation in the shear rate is only enhanced in
the vicinity of the plate and is rather moderate, except in the
vicinity of the plate, whereas the spatial variation in the

FIG. 2. A schematic for the calculation of the temperature in the
SMD method. The upper side represents the progress on the
global mesh system, and the lower side represents the progress at
each MD cell.

FIG. 3. The spatial variation in the (a) shear stress σxyðyÞ,
(b) temperature TðyÞ, (c) shear rate _γðyÞ, and (d) xy component of
the bond-orientation tensor in Eq. (8) for various values of σ0.
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temperature is a parabolic curve throughout the region.
Note that in Fig. 3(c), we omit the result for σ0 ¼ 0.01
because the amplitude of the shear rate is very small and
occasionally exhibits negative values as a result of the
fluctuations; the spatial average of the shear rate for σ0 ¼
0.01 is 7.2 × 10−6. In Fig. 3(d), we show the xy component
of the bond-orientation tensor Qxy, which is defined as

Qαβ ¼
1

Np

X
chain

1

Nb − 1

XNb−1

j¼1

bjα
bmin

bjβ
bmin

; ð8Þ

whereNp is the number of polymer chains in each MD cell,
Nb is the number of bead particles in a polymer chain, bj
for 1 ≤ j ≤ Nb − 1 is the bond vector between consecutive
beads in the same chain, and bmin is the distance at which
the sum ULJðrÞ þUFðrÞ has a minimum and is calculated
to be bmin ≃ 0.97. The spatial variation in Qxy is also small
for small applied shear stresses, i.e., σ0 ≤ 0.05, but this
spatial variation becomes notable for σ0 ≥ 0.06. In the
vicinity of the plate, Qxy increases monotonically with
increasing applied shear stress σ0, whereas in the middle of
the plates, Qxy varies nonmonotonically with the applied
shear stress. This complicated behavior arises from the
temperature variation; the conformation of the polymer
chains in the vicinity of the plate is mainly influenced by
the shear rate because the variation in the temperature from
the reference value T0 is small there, but at the middle of the
plates, the conformation of the polymer chains is greatly
influenced by the temperature because the variation in
the temperature from the reference value T0 is large there.
The relations among the temperature, shear rate, and
conformation of the polymer chains are also discussed in
detail later.
In the following, we investigate the rheological proper-

ties of the system. Hereafter, the spatial average of a quan-
tity aðyÞ is represented as ā, i.e., ā ¼ ð1=HÞ RH

0 aðyÞdy.

Figure 4 shows the apparent viscosity of the system and
the spatial averages of the shear stress and temperature
as a function of the gross shear rate. The downward arrows
in Fig. 4 indicate the reference shear rate at which the
Nahme-Griffith number Na defined in Eq. (4) equals unity,
where the reference temperature is calculated from the
viscosities of the model polymeric liquid that were obtained
by the NEMD simulation at the uniform and constant
temperatures of T ¼ 0.2 and 0.4 in Ref. [38] as
ΔT0 ¼ 0.15. In Fig. 4(a), the apparent viscosity is com-
pared to the viscosity of the polymeric liquid with the
uniform and constant temperature T0 obtained from the
NEMD simulation; this case corresponds to a negligible
Nahme-Griffith number, i.e., Na ¼ 0. Strong shear thin-
ning occurs when the Nahme-Griffith number exceeds
unity, i.e., Na > 1. The slope in the power law, i.e.,
the index ν in the approximate relation ηð _ΓÞ ∝ _Γ−ν, is
almost unity (but never exceeds unity), i.e., ν≃ 1, for
_Γ ¼ 1 × 10−4–1 × 10−3. A discrepancy between the ap-
parent viscosity and that forNa ¼ 0 is thought to be caused
by the fact that the temperature slightly increases in the
present simulation even at the smallest gross shear rate (the
average temperature T̄ increases by 2.5% of the wall
temperature T0), and the temporal-spatial fluctuations of
the temperature and shear rate are also induced in the
present simulation, whereas the temperature and the shear
rate are kept constant and uniform in the NEMD simu-
lation. Figure 4(b) shows the spatial averages of the local
shear stress and temperature as functions of the gross shear
rate. We note that the spatial average of the shear stress σ̄xy
coincides with the applied shear stress σ0 on the plate
because the local shear stress is almost spatially uniform at
the steady state, as shown in Fig. 3(b). The average shear
stress σ̄xy is observed to increase monotonically with the
gross shear rate. The plateau region of the curve corre-
sponds to the strongly shear-thinning regime with the
index ν≃ 1 in Fig. 3(a). The average temperature increases
rapidly with increasing gross shear rate when the Nahme-
Griffith number exceeds unity. The rate of increase of the
average temperature is lower than that of the average shear
stress at small gross shear rates, i.e., _Γ≲ 1 × 10−4, but
reverses at large gross shear rates, i.e., _Γ≳ 1 × 10−4.
Figure 5 shows the conformation changes in the polymer

chains as a function of the gross shear rate. A nonmono-
tonic dependence of the conformation of the polymer
chains on the gross shear rate is observed. A transition
occurs at the entrance of the strong shear-thinning regime,
with ν≃ 1 in Fig. 4(a), i.e., _Γ≃ 1 × 10−4. The polymer
chains are stretched in the x direction, and the xy compo-
nent of the bond-orientation tensor increases as _Γ for small
gross shear rates, i.e., _Γ≲ 1 × 10−4. However, for large
gross shear rates, i.e., _Γ≳ 1 × 10−4, the alignment of the
polymer chains is disturbed, and the conformation of the
polymer chains becomes more isotropic as the gross shear
rate increases. This transitional behavior is caused by the

FIG. 4. (a) The apparent viscosity η, defined as η ¼ σ0= _Γ, and
(b) the spatial averages of the shear stress and temperature σ̄xy and
T̄, as functions of the gross shear rate _Γ. In (a), the asterisks show
the results of the viscosity for a uniform temperature T ¼ 0.2, i.e.,
Na ¼ 0, obtained by the NEMD simulations. The downward
arrows in both panels represent the shear rate at which the
Nahme-Griffith number Na defined in Eq. (4) equals unity.
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temperature variation; when the temperature increases
sufficiently for the large gross shear rates, the coherent
structure becomes disturbed by the thermal motion of the
bead particles.
Figure 6 shows the stress-optical relation for the present

problem [39–41]. For the present model polymeric liquid,
the NEMD simulations for the isothermal shear flows, i.e.,
Na ¼ 0, show that a universal curve in the stress-optical
relation holds in both the linear (Q̄xy ≲ 0.05) and nonlinear
(Q̄xy ≳ 0.05) regimes [38]. In the figure, the present results
are compared with those for the case Na ¼ 0. The leftmost
square symbol in the present study represents the result for
the smallest gross shear rate, i.e., _Γ≃ 1 × 10−6. It is
observed that σ̄xy=T̄ increases with Q̄xy, while the gross
shear rate increases up to _Γ≲ 1 × 10−4 because the shear
stress increases more rapidly with the gross shear rate than
does the temperature [see Fig. 4(b)]; moreover, Q̄xy
also increases with the gross shear rate in this regime
(see Fig. 5). However, for large gross shear rates, i.e.,

_Γ≳ 1 × 10−4, the temperature increases more rapidly than
does the shear stress, and the xy component of the bond-
orientation tensor decreases with the gross shear rate.
Interestingly, the linear stress-optical relation is recovered
for shear stresses larger than that for the transitional
behavior of the conformation tensor, although the temper-
ature, shear stress, and conformation of the polymer chains
exhibit very complicated nonlinear behavior. This reentrant
transition of the linear stress-optical relation for large shear
stresses can never be reproduced in the NEMD simulations
using a thermostat because both the shear stress σ̄xy and the
xy component of the bond-orientation tensor Q̄xy mono-
tonically increase with the shear rate at a constant temper-
ature T̄, but Q̄xy saturates to a limiting value Q̄xy ∼ 0.1;
therefore, the nonlinear stress-optical relation forms, as
shown in Fig. 6, for the case Na ¼ 0.

V. CRITICAL ANALYSIS OF THE METHOD

In this section, numerical tests for various calculation
conditions are implemented by varying the number of mesh
intervals M (i.e., Δx ¼ H=M), time interval Δt, and
number of polymer chains in each MD cell Np, which
are given in Table I. The comparisons between the results of
the present method and the analytic solutions given by
Gavis and Laurence are also presented [42].
Figures 7 and 8 show the comparisons of the velocity and

temperature profiles obtained under the different calcula-
tion conditions for the applied shear stresses σ0 ¼ 0.01 and
σ0 ¼ 0.08, respectively. The comparisons between C1, C2,
and C3 show the effect of changing the mesh interval Δx,
and the comparisons between C1, C4, and C5 show
the effect of changing the time interval Δt. Note that the
time-step size of the MD simulation Δτ is fixed to be
Δτ ¼ 0.001. Thus, the MD simulations are performed for
500 and 5000 time steps for C4 and C5, respectively, in
each time interval Δt. The comparison between C1 and C6
shows the effect of changing the number of particles in each
MD cell, i.e., the effect of the noise intensity arising from
the MD simulations.
It is observed in Figs. 7 and 8 that for σ0 ¼ 0.01, the

velocity profiles for C2 and C5 significantly deviate from
those under other calculation conditions, whereas for
σ0 ¼ 0.08, the deviations under different calculation con-
ditions are not notable. The deviations of C2 and C5 for

FIG. 5. The spatial average of the bond-orientation tensor of the
polymer chains Q̄αβ as a function of the gross shear rate _Γ. In
addition, see the caption in Fig. 4.

FIG. 6. The stress-optical relation σ̄xy=T̄ vs Q̄xy. The squares
indicate the present results, and the symbols plus, times, and
asterisk indicate the results obtained in Ref. [38] at uniform
temperatures.

TABLE I. Calculation conditions.

M Δt Np

C1 32 1.0 100
C2 64 1.0 100
C3 16 1.0 100
C4 32 0.5 100
C5 32 5.0 100
C6 32 1.0 1000
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σ0 ¼ 0.01 are considered to be a result of the numerical
stability condition for the momentum-transport equation
[Eq. (3a)], which is written as Δt < Δx2=2η for a
Newtonian fluid with a constant viscosity η. The exact
stability condition for the SMD method is unknown
because in the SMD simulations, the fluctuations are
involved in local stresses, and the local viscosities are also
autonomously modulated according to the local flow
velocities. In the present numerical tests, only the calcu-
lation conditions C2 and C5 do not satisfy the condition
Δt < Δx2=2η, where η is the proper viscosity obtained
under other calculation conditions. A similar situation is
also found in the previous study in Ref. [21], in which
numerical tests for the creep motion of the model polymer
melt with a uniform temperature are performed. In the
previous study, we found that the multiscale simulation in
which the time-step size Δt is larger than the viscous
diffusion time Δx2=2η, i.e., Δt > Δx2=2η, reproduces the
velocity profile with a pseudoviscosity that is smaller than
the proper viscosity. These facts indicate that the time
interval Δt must be smaller than the viscous diffusion time
Δx2=2η, within which the viscous force propagates for the
mesh interval Δx, to obtain the proper solutions in the
SMD simulations. This analysis also explains why the
deviations of the solutions between different calculation
conditions for σ0 ¼ 0.08 are small because for σ0 ¼ 0.08,

the local viscosities decrease as a result of both the shear
thinning and the temperature increase, so that the relation
η ≪ Δx2=Δt is satisfied everywhere, except at the vicinity
of the plate, where the temperature is close to the reference
temperature. Incidentally, a similar condition is also
required for the energy-transport equation, but it is usually
satisfied as long as that for the momentum-transport
equation is satisfied because the thermal conductivity is
usually small compared to the viscosity (i.e., the Prandtl
number is small) for polymeric liquids.
The temperature profiles for σ0 ¼ 0.01 do not coincide

with each other, although the absolute differences are small,
i.e., at most 1% of the wall temperature T0, while for
σ0 ¼ 0.08, the deviations between different calculation
conditions are very small. This tendency may be caused
by the fluctuations of local shear rates and stresses because
the signal-to-noise ratio is smaller for σ0 ¼ 0.01 than for
σ0 ¼ 0.08. However, by increasing the particle numbers in
each MD cell, the fluctuations due to the noise arising from
the MD simulations can be reduced. Figure 9 shows the
comparisons between the SMD simulations and the ana-
lytic solutions for different applied shear stresses. Here, the
analytic solution is obtained for a Newtonian liquid with an
exponential dependence of the viscosity on temperature
[42,43], i.e., ηðTÞ ¼ η0 exp½−ðT − T0Þ=ΔT0�, where η0 is a
characteristic viscosity at a uniform temperature T0 and
ΔT0 is defined above Eq. (4). The analytic solution for the
temperature is written as [42,43]

TðŷÞ ¼ T0 þ ΔT0 × log
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FIG. 7. The comparisons of the (a) velocity and (b) temperature
profiles under the various calculation conditions for the applied
shear stress σ0 ¼ 0.01.

FIG. 8. The comparisons of the (a) velocity and (b) temperature
profiles under the various calculation conditions for the applied
shear stress σ0 ¼ 0.08.

FIG. 9. The comparisons of temperature profiles between the
SMD simulations and the analytic solutions for various shear
stresses.
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where ŷ ¼ y=H, and ~Na is obtained by replacing σ0 with
η0 _Γ in Eq. (4). Here, the characteristic viscosity η0 is
estimated using the NEMD simulation with a uniform
temperature T0 at a shear rate _γ ¼ 1 × 10−6 as η0 ¼ 1930.
In Fig. 9, it can be observed that the temperature profile

for σ0 ¼ 0.01 under the calculation condition C1 deviates
considerably from the analytic solution; however, under the
calculation condition C6, where the number of polymer
chains in the MD cell is increased tenfold, the temperature
profile becomes much closer to the analytic solution. Note
that for σ0 ¼ 0.01, the effect of the shear thinning of the
viscosity is very small, as observed in Fig. 4. Thus, the
analytic solution is thought to represent an accurate
temperature profile for which the noise effects in the
SMD simulation are completely neglected. This fact
indicates that the temperature profile obtained by the
SMD simulation for small applied shear stresses is greatly
affected by the noise even after the long-time average is
taken. Thus, to obtain an accurate temperature profile for a
small applied shear stress, one needs a large number of
molecules in each MD cell, although the cell size lMD
should be smaller than the mesh interval Δx for an efficient
computation. The temperature profile obtained using the
SMD simulation for σ0 ¼ 0.05 also deviates from the
analytic solution; this deviation is caused by shear thinning,
which is not considered for the analytic solution.
In addition to the overall technical issues, there are also

concerns about the conceptual issues of the SMD method.
The synchronous scheme via the macroscopic transport
equations imposes ignoring the molecular transports of
constituents across the mesh interval. Thus, the SMD
method is not applicable for the dilute polydisperse fluids
but is rather designed for dense fluids such as the polymer
melt. In the concept of locality of the SMD method, the
viscous diffusion is resolved in the global mesh system.
Thus, the mesh interval and the size of the MD cell must be
sufficiently small such that the fluid inertia can be ignored
at those scales; i.e., the local Reynolds number at the mesh
interval Δx must be very small. This condition is also
related to the technical aspects of the SMDmethod because
this warrants exploiting the SLLOD algorithm and the
homogeneous rescaling of the kinetic energies in each
MD cell.

VI. SUMMARY

We have proposed a synchronized molecular-dynamics
simulation via macroscopic heat and momentum transfer
and applied this method to the analysis of the lubrication of
a polymeric liquid, coupled with viscous heating. The
rheological properties and the conformations of the poly-
mer chains are investigated using a nondimensional param-
eter, i.e., the Nahme-Griffith number. The SMD simulation
demonstrates that strong shear thinning, which is almost
inversely proportional to the shear rate, and the transitional
behavior for the conformation of the polymer chains occur

with a rapid temperature increase when the Nahme-Griffith
number exceeds unity. The results show that the linear
stress-optical relation holds despite the complicated behav-
iors of the temperature, shear rate, and conformation of the
polymer chains.
We have also carried out numerical tests under various

calculation conditions by varying the number of mesh
intervals M (i.e., Δx ¼ H=M), time interval Δt, and
number of polymer chains in each MD cell Np and found
the following critical issues in the implementation of the
SMD simulations. 1. The time interval Δt must be smaller
than the viscous diffusion time Δx2=2η, within which the
viscous force propagates for the mesh interval Δx; other-
wise, the SMD simulations reproduce the solutions with a
pseudoviscosity that is smaller than the true viscosity.
2. The temperature profile at a small applied shear stress
is strongly affected by the noise arising from the local MD
cells. To obtain an accurate solution, taking the long-time
averages as well as increasing the number of particles in
each MD cell is required. 3. Concerning the concept of
locality in the SMD method, the flow behaviors involving
the viscous dissipation are resolved in the global mesh
system. Thus, the mesh interval Δx and the size of the MD
cell lMD must be sufficiently small such that the fluid inertia
can be ignored at those scales; i.e., the local Reynolds
numbers at those scales must be very small.
The first issue concerns the numerical stability con-

dition for the macroscopic transport equations [Eq. (3)],
although the exact stability condition is unknown for the
SMD method. The second issue is the consequence of the
comparisons between the SMD simulations and the ana-
lytic solutions. For the present problem, an SMD simu-
lation using 10 000 particles in each MD cell can
successfully reproduce an accurate temperature profile that
is described by the analytic solution. The third issue is
concerned with the locality concept of the SMD method,
and this issue also involves the technical aspects of the
SMD method because the use of the small local Reynolds
number warrants exploiting the SLLOD algorithm and the
homogeneous rescaling of the kinetic energies at each time
interval Δt, which are described in Sec. III.
Although these issues must be considered, the SMD

simulation has two distinctive advantages over the full MD
simulations: First, the SMD simulation can reduce the
computational effort (i.e., the number of molecules) com-
pared to that of the full MD simulation by a factor of
ðlMD=ΔxÞd, where d is the dimension number of the
macroscopic transport equation. In the present simulation,
the factor is 0.128 because d is 1. However, the extension to
the two- and three-dimensional cases is also possible by
incorporating the algorithms developed in, for example,
Refs. [16–19]. Second, almost perfect parallelization effi-
ciency (i.e., using N CPUs in the parallel computation
speeds up the calculation compared to using a single CPU
by N times) is achieved in a parallel computation with as
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many CPUs as there are MD cells by assigning each CPU
to anMD cell [21]. This efficiency is obtained because each
MD simulation is performed independently in the time
interval Δt. The advantage in parallel computation holds
not only for the short-range interaction molecular models
but also for any complicated molecular models for which
the parallelization of MD simulations is difficult. These
advantages enable us to analyze the complicated flow
behaviors of complex liquids at the macroscopic scales
found in actual engineering and biological systems on the
basis of the appropriate molecular model.
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