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A remark on multilinear Fourier multipliers
satisfying Besov estimates
By

NAOHITO ToMITA*

Abstract

By using the L"-based Sobolev space H. (RY™) with 1 < r < 2 and s > Nn/r, Grafakos
and Si [6] proved the boundedness of multilinear Fourier multiplier operators. In this paper,
we try to replace H. (RV™) by the Besov space By /T(RN ") as the critical case for their result.

§1. Introduction

For m € L>(R""), the N-linear Fourier multiplier operator T, is defined by

Tm(flava)(x)

(27T1)Nn /an oGt e e e . Fn(En) dér .. den

for f1,...,fn € S(R™). As the classical Coifman-Meyer theorem [1], it is well known
that if m € CE(RN™\ {0}) satisfies

|30411 ...8?;]\’711(51, N S Cayan (& + -+ |§N|)—(|a1|+...+|aN|)

for all |ay| + -+ 4 |an| < L, where L is a sufficiently large natural number, then T,
is bounded from LP*(R™) x --- x LPN(R™) to LP(R™) for all 1 < py,...,pny < oo and
1 < p < oo satistying 1/p1 +---+1/py = 1/p.

Let U € S(R?) be such that

(1.1)  supp¥ C{€eR?:1/2<[¢] <2}, D ¥(¢/2%) =1forall £ € R\ {0}.
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For m € L (R"") and j € 7Z, we set

(1.2) m(€) = m(27€y,... 276NV (Er, .. EN),

where £ = (&1,...,&n) € R x -+ x R” and ¥ is as in (1.1) with d = Nn. In or-
der to weaken the regularity condition to assure the boundedness, Tomita [11] gave a

Hormander type theorem for multilinear Fourier multipliers. More precisely, he proved
that if m € L>°(RN"™) satisfies

SUIZD [ || 12 (rvmy < 00 with s> Nn/2,

S

where H? is the L2-based Sobolev space (see Section 2), then T, is bounded from
LPr(R™) x -+ x LPN(R™) to LP(R™) for all 1 < py,...,pN,p < 0o satisfying 1/p; +- -+
1/pn = 1/p. Grafakos and Si [6] removed the condition 1 < p < oo, and extended this
result as follows (see also Grafakos, Miyachi and Tomita [5], Miyachi and Tomita [7] for
the cases where some indices p; are equal to infinity, and p; < 1):

Theorem 1.1 ([6]). Letl<r<2,r<pj,...,pnx <ooandl/p1+---+1/py =
1/p. If m € L®(RY") satisfies

sup ||m;| gr gy < 00 with s> Nn/r,
JEZL

then T, is bounded from LP*(R™) x --- x LPN(R™) to LP(R™).

The purpose of this paper is to consider the critical case s = Nn/r for Theorem
1.1. We note that

H(RY") < By, (RN") if s> Nn/r,

where B]T\,}z /T(RN ™) is the L"-based Besov space (see Section 2), and try to replace
HT(RN™) by B]T\,il /T(]RN ™). At least, by the slight modification of the arguments in

[4, 6, 11], we have

Theorem 1.2. Letl <r<2,r<py,...,py <ooandl/pi+---+1/pny =1/p.
If m € L= (RN™) satisfies

sup lmillpr | avny < o0,

then T,, is bounded from LP*(R™) x --- x LPN(R™) to LP(R™).

However, our argument given in this paper does not seem to work for the proof of
Theorem 1.2 with » = 2, and its case will need a different method. It should be pointed

out that we can replace H (2n /2)+c(R™) by Bi’/12 (R™) in the linear case (see Seeger [9]).
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For the sake of simplicity, we only treat the (usual) Besov spaces in this paper.

However, in Theorem 1.2, we can replace B]TV; /T(RN ™) by the Besov space of product

type B(;%l/r,...,n/r) (R™ x --+ x R™) (see Remark 4.1).

Our paper is organized as follows: In Section 2, we give definitions and preliminary
lemmas. In Section 3, we give a key estimate used in the proof of Theorem 1.2. In
Section 4, we prove Theorem 1.2.

§2. Preliminaries

Let S(R™) and S’(R™) be the Schwartz spaces of all rapidly decreasing smooth
functions and tempered distributions, respectively. We define the Fourier transform F f
and the inverse Fourier transform F~1f of f € S(R™) by

FIO =T = [ e aa 7w - b [ et

The Hardy-Littlewood maximal operator M is defined by

Mf(x) = sup — F()] dy

n
r>0T |z—y|<r

for locally integrable functions f on R™.
We recall the definitions of Sobolev and Besov spaces. For 1 < r < oo and s € R,
the Sobolev space H'(R?) consists of all f € S’(RY) such that

1Fllzry = (1 = A2 fllr < o0,

where (I—A)¥/2f = F[(1+|¢[2)%/2f]. Let ¥ € S(R%) be as in (1.1), and set Uo(£) =
1= 5702, U(g/2%) and Wi (€) = W(£/2%) if k > 1. Note that supp¥g C {|¢] < 2},
supp Uy C {2F71 < ¢ <2FH1}if k> 1, and Y oo Wg(€) = 1. For 1 < p,q < oo and
s € R, the Besov space BP4(R?) consists of all f € S’(RY) such that

oo 1/q 0o 1/q
1f 5z = (Z 2ksq||f_1[‘1’kf]||%p> = (Z 2851 | (F~1wy,) *f||%p> < 00.

k=0 k=0
We refer to Triebel [12] and the references therein for details on Besov spaces.

The following lemmas will be used later on:

Lemma 2.1 ([3]). Letl <p,q<oo. Then

{Z(Mfm}l/q S {kalq}l/q

kEZ o kEZ I

for all sequences { fx} ez of locally integrable functions on R™.
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Lemma 2.2 ([2, Theorem 8.6]). Let1l < p < oo, and let yp € S(R™) be such that
suppy C{€ e R": 1/r < |§| <r} for some r > 1. Then

1/2
{Z |¢(D/2k)f|2} Sfllee  forall f € LP(R™),

kEZ o

where (D /2%)f = F~ [y (-/24) f).
Let N be a natural number, and let ¢y be a C°°-function on [0, 00) satisfying
¢o(t)=1 on [0,1/(4N)], supp ¢o C [0,1/(2N)].

We also set ¢1(t) = 1 — ¢o(t). For (iy,ia,...,in) € {0,1}, we define the function
P (iriz,enin) 00 RYT\{0} by

(2.1) D i ig.onin) (§) = Pir (1€21/1ED Pis (€21 /1€1) - - - diy (1€ 1/1ED),

where £ = (£1,&s,...6n) €E R" X R™ x --- x R™ and [£] = /|& 2 + &2+ - + [En ]2
Note that ®(g,... o) = 0. Then we have

Lemma 2.3.  Let ®(;, ;) be the same as in (2.1). Then the following are true:
(‘Z) FO’F&Z (517"'751\]) e R™x .- XRn\{(O,,_,,O)}7

Z (b(i1,i2,...,iN)(£) =1.

(i1,i2,...,in ) €{0,1}N
(i1 yi2,++in ) #(0,0,...,0)

(2) For (iy,...,in) € {0,1}Y and (ay,...,an) EZT x -+ X L7,

08 - BEN Dy, in) ()] S O oM (€] -+ €]y~ el FlanD

(i1,eviN)
forall§ = (&1,...,6n) € R x - x R™\ {(0,...,0)}.

(8) If i = 1 for some 1 < j < N and i, =0 for all1 < k < N with k # j, then
supp @(iy,.in) C (&1, 8N) 1 [&k| < |&I/N for k # j}. If iy =i =1 for some
1<j,j" <N with j # j', then supp @i, i) C{(&1, .-, &n) 1 [§]/(AN) < |&r] <
ANIE |, |€| < AN&| for k # 4, 5'}

See [11, Section 5], [4, Lemma 3.1] for the proof of Lemma 2.3.

8§3. Key estimate

In this section, we prove the following lemma which plays an essential role in the
proof of Theorem 1.2:
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Lemma 3.1. Letl1l <r <2. Then
T oy (s )@ S Il g MOAIN @Y M Sl @)

forall j € Z, mEB N/ (RN and f1, ..., fn € S(R™).

Proof. Let {¥;}22, C S(RN™) be a sequence of functions which appeared in the
definition of Besov spaces. Then

Tm(./gj)(flp .. 7fN)(x)

= /N NN F=Im(29 (2 — 1), ..., 20 (x — yn)) fr(y) - - . fn(yn) dy
R n
(2m) 2 / NI (2 gy — ), 2 (yn — 7))
x m(2"(y1 —a),....2(yn — 2)) filyr) - fn(yw) dy,
where y = (y1,...,yn) € R” x --- x R™. Let 7’ be the conjugate exponent of r. Since
supp Uy C {y e RY™ : Jy| <281} c {y e RN™ |y | <28 j=1,... N},
we have by Holder’s inequality
[ 2 = ). 2y — )2~ ). 2 - )
R n
< fily) - S lyn)dy
. r’ 1/’
< 2N=7”(/ dy)
RNn
1/r 1/r
([ fitldn) ([ ()l )
|29 (y1 —=)|<2k+1 |29 (yn —2)| <2k +1
= oGt/ / ' dy) v
RNn
1 1/r
. i)
X (2(k—j+1)n /|y1—:c|§2k—j+1 | f1(y)]"dya

1 1/r
ox (b )
SR (2(k—]+1)n /|yN_x|§2k_j+1 | (yn)l"dyn

< NGl M) @)Y M) @)

(2 (g1 — 2), .., 2 (yn — 2))(2 (1 — @), 2 (yn — 7))

\I’k(ylwu7yN)m(y17"'7yN)
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It follows from the Hausdorff-Young inequality that |[|[Uxm||; . < | F~H{¥rm]|L-, and
consequently

|Tm(./2j)(f1; .. ,fN)(J:)|

S (Z 2N'm/”IIJT_l[‘I’kﬁ%]||Lr> M| (@) M ] ()

k=0

This completes the proof. O

§4. Proof of Theorem 1.2

In this section, we use the following notation to distinguish linear and multilinear
Fourier multiplier operators: For ¢ € L*°(R"), the (linear) Fourier multiplier operator
©(D) is defined by o(D)f = F~t[of] for f € S(R™). We also use the following notation:
Ao denotes the set of ¢ € S(R™) for which supp ¢ is compact and ¢ = 1 on some
neighborhood of the origin; 4; denotes the set of 1; € S(R™) for which suppfgz is a
compact subset of R™ \ {0}.

Proof of Theorem 1.2. Let 1 <r <2, r <pj,...,py <00, 1/p1+---+1/pn = 1/p,
and let m € L (RN™) satisfy Sup,cz ||mj||Br,1/ < 00, where m; is defined by (1.2). It
Nn/r
follows from Lemma 2.3 (1) that

(4.1) m(§) = Z ‘I’(il,iz,...,iN)(f)m(f)

(i1,02,...,in)€{0,1} N
(il 77:27"'77:1\7)76(0707’“70)

= > M3y g, in) (§)

(i1,i2,...,in )E{0,1}N
(i1 yi2,++in ) #(0,0,...,0)

Estimate for my o,...0)- We first consider the case where (i1,...,ix) satisfies §{j :
i; = 1} = 1, and may assume without loss of generality that i; = 1. This means
M3y ia,...sin) = TH(1,0,...,0), and we simply write m instead of m ;... o). By Lemma 2.3

(3);
(4.2)  suppm C{&=(&,...,én) ER" x -+ xR" : || < |&|/N, i=2,...,N}.
Let 1 be as in (1.1) with d = n. Note that

1/2

lgllze S llgllser = ||| D [0(D/27)g)?
JEZL L
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for appropriate functions g, where H? is the Hardy space (e.g. [6, Lemma 2.4]). Then

(43) ||Tm(f177fN ||Lp ~

1/2
(Zw D/2)T (fl,...,fN)Q)

JEZL

Lr

It follows from (4.2) that if (£1,...,&n) € suppm then |§1+- - -+En| &~ |€1] and |&] S |6
for 2 < ¢ < N, and we can find functions ¢ € Ay and ¥ € A; independent of j such
that

m(E)PY((& + -+ En)/27)
= m(E)Y((&1 + -+ En)/2)P(E1/27)2p(€2/27) ... p(En/27),

where we have used the fact suppy C {n € R™ : 1/2 <|n| < 2}. Hence, setting

my(€) = m(PEVY(E + -+ En)D(E) (&) . .. p(EN),

we see that

(D/2J)Tm(f1, s fn)(@)
/RN i (Eb ) () ((61 + -+ + E)/2) Fa(€0) ol€2) - .. v (En) dE
[ T i (€2 D62V (€) Fl€a) Tl
:Tm(j)(./gj)(¢(D/2j)flvf27---7fN)(x)'

By Lemma 3.1,

|Tm(j)(~/2j)(i§(D/2j)fl7 f27 e 7fN)(x)|
S ||m(j)||B;}1/TM(|J(D/2j)f1|T)(93)1/TM(|f2|r)(33)1/r M) @)Y

and consequently

1/2
(4.4) (Z (D)2 T f1, - - - fN)(x)Q)

JE€Z

1/2
: (i“p”m<k>“3“ ) (ZM [G(D/2) fa]")(w )2/r>

JEZL

x M (| fal") @) M| ) (@)
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Since 1 <r <2andr < pi,...,pNy < 00, we see that 1 < 2/r,p1/r,...,pn/r < o0.
Then, it follows from Hoélder’s inequality, Lemmas 2.1 and 2.2 that

1/2
@5) ||| SS MDA M) M)
JEZ e
1/2
<[ 3= M(d(D/2) fa] ) 1M fo "V | oo - (] o
JEZ Lo
r/2 1/r
= [ S" M(d(D/2) )" 1M fo I IS I,
JeL Lr1/r
S llze lfallzes - 1 Fxll o -

Thus, by (4.3)-(4.5),
ITon(frsfoesfidlir 5 (supllmey s ) Uil Ml - Ll
Je n/r

Recall that m(§) = m,...,0)(§), and

my(€) = m(276) @0, 0)(ZE)Y(Er + -+ ENP(ED)P(E) - .. p(En).
Let us prove

4.6 sup ||m; , < sup ||ml| o
(46) sup mg s S sup myl

where m; is defined by (1.2). Once this is proved, we have the desired estimate:

oo (oo Foveeosfidlier 5 (supllmslags ) Uil Mol - Lo
Je n/r

Let ¥ be as in (1.1) with d = Nn. Since supp ¥(-/2¢) c {27! < |¢] < 2¢H1}
supp ¥(£1)p(&2) ... p(En) C {2790 < [€] < 270} for some jo € N and B;\}L/T(RN”) is a
multiplication algebra (Triebel [12, Theorem 2.8.3]), we have

Jo
Imay©llpge < D2 Ime(©W(E/2)lIpg

£=—7jo

Jo
$ Y Im@OUE/2) g

f=—jo

X | ®10..0)27EY(E + -+ EN)D(ENP(E) ... plEn)lipre -
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By a change of variables,

IR (E/2) g < 277 (max{1, 27 H VM [m(27H W)

Nn/r

< 2] , e ; s
< sup [m@ Uy = sup sl

for all |[¢| < jo (see, for example, [8, Proposition 2.1.3/3], [10, Proposition 1.1]). On the
other hand, by Lemma 2.3 (2),

02 (21.0,..0/@OV(E + -+ +ENTE)P(E) - 9(En) ) | £ Caxpa-so<ieiai) €)

for all o and 7, and consequently

sup || @ 10,0y (27 (&1 + -+ EN)D(E1) 0 (E2) - - pEn)lpre < oo

JEL
Combining these estimates, we have (4.6).

Estimate for m 1,,..iy)- We next consider the case where (i1,...,iy) satisfies
#{j : i; = 1} > 2, and may assume without loss of generality that i; = io = 1. This

means m;, = M(1,1,i,....in)> Where iz,...,in € {0,1}. We simply write m

7:277:37~~~77:N)
instead of M1 1 4,,...,i5) as before. By Lemma 2.3 (3),

(4.7) suppm C {|&1]/(4N) < || < 4AN|&|, [&] < 4AN|&], i=3,...,N}.

Let ) € S(R™) be as in (1.1) with d = n. By (4.7), we can find ¢ € Ay and ¢ € A;
independent of j such that

m(E)(€1/27) = m(€)(&1/2)b (& /2)(&/2)*0(Es/20) . p(én/2).

Hence, setting

mj)(€) = MY (&) P(E)p(Es) - . . p(En),

we see that

(fl,... fN (il'}

1Nn / pRES (§1+"'+§N)m(£)w(£1/2j)ﬁ(51) e fl\V(gN) d§
27r) RNn
1

x f3(€3)... Fn(En) dE
_ZTmm(/m G(D/2) f1,0(D/2) fo, f3,. .., f) ().

JEZ

(i Gt iy (£/29) (9(€1/20) Fr(60)) (9(62/27) Fa(61))
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It follows from Lemma 3.1 and Schwarz’s inequality that

S Ty, (H(D2) f1, 0(D/20) fo, f -, fv) (@)

JEL

S Ime g, MG /2 A @) MED/2) fo]) (@)

JEL

X M(|f3|") (@) V" - M ] ) (a)

1/2
< (sup||m(k)||BT1 > ZM WJ D/29) f1|")(z)*/"
JEZ
1/2
D MB(D/2) M) @) | M S @) M| ] )

jEZ

The rest of the proof is similar to that of m(; .. ), and we omit it.

We end this paper by giving the following remark:

Remark 4.1.  Let {¥;}72, C S(R™) be a sequence of functions appearing in the
definition of Besov spaces. For 1 < r < oo and si,...,sy € R, the Besov space of
product type B(si SN)(R” X +-+ X R™) is defined by the norm

0
g = > 2ttt F A (€)W () O]l evn),
""" k1,....kn=0

where £ = (§1,...,&n) € R x --- x R™. Note that if s1,...,sy > 0, then

BiY o RY™) < B

(517 781\7)

(R™ x -+ x R™).
In the same way as in the proof of Lemma 3.1, we can prove

T 20y (f1s - -5 ) ()]

o0

, 1/r'
< 3 o ([ ) R )
RNn

Eki,....kn=0

1 1/r
7 - a~_ ’I"d
X (2(k1—J+1)n /|y1—:v|§2k1—j+1 |f1(y1)| y1>

1/r
1 T
s [ p |
X -ee X (2(kN—J+1)n /IyN—x|§2kN—j+1 |fn(yn)l yN>

As a result,

T (f1se o @IS Imllrs — MOAM @Y M a7 @)
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for 1 <r < 2. Then, in the case 1 < r < 2, by using this estimate instead of Lemma 3.1,

r,1

we can prove Theorem 1.2 with B! replaced by B(n i) It should be mentioned

Nn/r
that dilation and multiplication properties of Besov spaces were used in the proof of

Theorem 1.2. See [10, Proposition 1.1, Theorem 1.4] for their properties of Besov spaces
of product type.
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