A remark on multilinear Fourier multipliers satisfying Besov estimates

By

NAOHITO TOMITA*

Abstract

By using the L^r -based Sobolev space $H^r_s(\mathbb{R}^{Nn})$ with $1 < r \le 2$ and s > Nn/r, Grafakos and Si [6] proved the boundedness of multilinear Fourier multiplier operators. In this paper, we try to replace $H^r_s(\mathbb{R}^{Nn})$ by the Besov space $B^{r,1}_{Nn/r}(\mathbb{R}^{Nn})$ as the critical case for their result.

§ 1. Introduction

For $m \in L^{\infty}(\mathbb{R}^{Nn})$, the N-linear Fourier multiplier operator T_m is defined by

$$T_{m}(f_{1},...,f_{N})(x) = \frac{1}{(2\pi)^{Nn}} \int_{\mathbb{R}^{Nn}} e^{ix\cdot(\xi_{1}+\cdots+\xi_{N})} m(\xi_{1},...,\xi_{N}) \widehat{f}_{1}(\xi_{1}) ... \widehat{f}_{N}(\xi_{N}) d\xi_{1} ... d\xi_{N}$$

for $f_1, \ldots, f_N \in \mathcal{S}(\mathbb{R}^n)$. As the classical Coifman-Meyer theorem [1], it is well known that if $m \in C^L(\mathbb{R}^{Nn} \setminus \{0\})$ satisfies

$$|\partial_{\xi_1}^{\alpha_1} \dots \partial_{\xi_N}^{\alpha_N} m(\xi_1, \dots, \xi_N)| \le C_{\alpha_1, \dots, \alpha_N} (|\xi_1| + \dots + |\xi_N|)^{-(|\alpha_1| + \dots + |\alpha_N|)}$$

for all $|\alpha_1| + \cdots + |\alpha_N| \leq L$, where L is a sufficiently large natural number, then T_m is bounded from $L^{p_1}(\mathbb{R}^n) \times \cdots \times L^{p_N}(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$ for all $1 < p_1, \ldots, p_N \leq \infty$ and $1 satisfying <math>1/p_1 + \cdots + 1/p_N = 1/p$.

Let $\Psi \in \mathcal{S}(\mathbb{R}^d)$ be such that

$$(1.1) \quad \sup \Psi \subset \{\xi \in \mathbb{R}^d : 1/2 \le |\xi| \le 2\}, \quad \sum_{k \in \mathbb{Z}} \Psi(\xi/2^k) = 1 \text{ for all } \xi \in \mathbb{R}^d \setminus \{0\}.$$

Received October 8, 2011. Revised December 11, 2011.

2000 Mathematics Subject Classification(s): 42B15, 42B20, 42B35

Key Words: Besov spaces, Hörmander's multiplier theorem, multilinear operators

*Department of Mathematics, Osaka University, Toyonaka, Osaka 560-0043, Japan.

e-mail: tomita@math.sci.osaka-u.ac.jp

For $m \in L^{\infty}(\mathbb{R}^{Nn})$ and $j \in \mathbb{Z}$, we set

(1.2)
$$m_j(\xi) = m(2^j \xi_1, \dots, 2^j \xi_N) \Psi(\xi_1, \dots, \xi_N),$$

where $\xi = (\xi_1, \dots, \xi_N) \in \mathbb{R}^n \times \dots \times \mathbb{R}^n$ and Ψ is as in (1.1) with d = Nn. In order to weaken the regularity condition to assure the boundedness, Tomita [11] gave a Hörmander type theorem for multilinear Fourier multipliers. More precisely, he proved that if $m \in L^{\infty}(\mathbb{R}^{Nn})$ satisfies

$$\sup_{j\in\mathbb{Z}} \|m_j\|_{H^2_s(\mathbb{R}^{Nn})} < \infty \quad \text{with} \quad s > Nn/2,$$

where H_s^2 is the L^2 -based Sobolev space (see Section 2), then T_m is bounded from $L^{p_1}(\mathbb{R}^n) \times \cdots \times L^{p_N}(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$ for all $1 < p_1, \ldots, p_N, p < \infty$ satisfying $1/p_1 + \cdots + 1/p_N = 1/p$. Grafakos and Si [6] removed the condition $1 , and extended this result as follows (see also Grafakos, Miyachi and Tomita [5], Miyachi and Tomita [7] for the cases where some indices <math>p_j$ are equal to infinity, and $p_j \leq 1$):

Theorem 1.1 ([6]). Let $1 < r \le 2$, $r \le p_1, ..., p_N < \infty$ and $1/p_1 + ... + 1/p_N = 1/p$. If $m \in L^{\infty}(\mathbb{R}^{Nn})$ satisfies

$$\sup_{j\in\mathbb{Z}} \|m_j\|_{H^r_s(\mathbb{R}^{Nn})} < \infty \qquad with \quad s > Nn/r,$$

then T_m is bounded from $L^{p_1}(\mathbb{R}^n) \times \cdots \times L^{p_N}(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$.

The purpose of this paper is to consider the critical case s=Nn/r for Theorem 1.1. We note that

$$H_s^r(\mathbb{R}^{Nn}) \hookrightarrow B_{Nn/r}^{r,1}(\mathbb{R}^{Nn}) \quad \text{if} \quad s > Nn/r,$$

where $B_{Nn/r}^{r,1}(\mathbb{R}^{Nn})$ is the L^r -based Besov space (see Section 2), and try to replace $H_s^r(\mathbb{R}^{Nn})$ by $B_{Nn/r}^{r,1}(\mathbb{R}^{Nn})$. At least, by the slight modification of the arguments in [4, 6, 11], we have

Theorem 1.2. Let $1 \le r < 2$, $r < p_1, \ldots, p_N < \infty$ and $1/p_1 + \cdots + 1/p_N = 1/p$. If $m \in L^{\infty}(\mathbb{R}^{Nn})$ satisfies

$$\sup_{j\in\mathbb{Z}} \|m_j\|_{B^{r,1}_{Nn/r}(\mathbb{R}^{Nn})} < \infty,$$

then T_m is bounded from $L^{p_1}(\mathbb{R}^n) \times \cdots \times L^{p_N}(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$.

However, our argument given in this paper does not seem to work for the proof of Theorem 1.2 with r=2, and its case will need a different method. It should be pointed out that we can replace $H^2_{(n/2)+\epsilon}(\mathbb{R}^n)$ by $B^{2,1}_{n/2}(\mathbb{R}^n)$ in the linear case (see Seeger [9]).

For the sake of simplicity, we only treat the (usual) Besov spaces in this paper. However, in Theorem 1.2, we can replace $B_{Nn/r}^{r,1}(\mathbb{R}^{Nn})$ by the Besov space of product type $B_{(n/r,\dots,n/r)}^{r,1}(\mathbb{R}^n \times \dots \times \mathbb{R}^n)$ (see Remark 4.1).

Our paper is organized as follows: In Section 2, we give definitions and preliminary lemmas. In Section 3, we give a key estimate used in the proof of Theorem 1.2. In Section 4, we prove Theorem 1.2.

§ 2. Preliminaries

Let $\mathcal{S}(\mathbb{R}^n)$ and $\mathcal{S}'(\mathbb{R}^n)$ be the Schwartz spaces of all rapidly decreasing smooth functions and tempered distributions, respectively. We define the Fourier transform $\mathcal{F}f$ and the inverse Fourier transform $\mathcal{F}^{-1}f$ of $f \in \mathcal{S}(\mathbb{R}^n)$ by

$$\mathcal{F}f(\xi) = \widehat{f}(\xi) = \int_{\mathbb{R}^n} e^{-ix\cdot\xi} f(x) \, dx \quad \text{and} \quad \mathcal{F}^{-1}f(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\cdot\xi} f(\xi) \, d\xi.$$

The Hardy-Littlewood maximal operator M is defined by

$$Mf(x) = \sup_{r>0} \frac{1}{r^n} \int_{|x-y| < r} |f(y)| \, dy$$

for locally integrable functions f on \mathbb{R}^n .

We recall the definitions of Sobolev and Besov spaces. For $1 < r < \infty$ and $s \in \mathbb{R}$, the Sobolev space $H_s^r(\mathbb{R}^d)$ consists of all $f \in \mathcal{S}'(\mathbb{R}^d)$ such that

$$||f||_{H_s^r} = ||(I - \Delta)^{s/2} f||_{L^r} < \infty,$$

where $(I-\Delta)^{s/2}f = \mathcal{F}^{-1}[(1+|\xi|^2)^{s/2}\widehat{f}]$. Let $\Psi \in \mathcal{S}(\mathbb{R}^d)$ be as in (1.1), and set $\Psi_0(\xi) = 1 - \sum_{k=1}^{\infty} \Psi(\xi/2^k)$ and $\Psi_k(\xi) = \Psi(\xi/2^k)$ if $k \geq 1$. Note that supp $\Psi_0 \subset \{|\xi| \leq 2\}$, supp $\Psi_k \subset \{2^{k-1} \leq |\xi| \leq 2^{k+1}\}$ if $k \geq 1$, and $\sum_{k=0}^{\infty} \Psi_k(\xi) = 1$. For $1 \leq p, q \leq \infty$ and $s \in \mathbb{R}$, the Besov space $B_s^{p,q}(\mathbb{R}^d)$ consists of all $f \in \mathcal{S}'(\mathbb{R}^d)$ such that

$$||f||_{B_s^{p,q}} = \left(\sum_{k=0}^{\infty} 2^{ksq} ||\mathcal{F}^{-1}[\Psi_k \widehat{f}]||_{L^p}^q\right)^{1/q} = \left(\sum_{k=0}^{\infty} 2^{ksq} ||(\mathcal{F}^{-1}\Psi_k) * f||_{L^p}^q\right)^{1/q} < \infty.$$

We refer to Triebel [12] and the references therein for details on Besov spaces.

The following lemmas will be used later on:

Lemma 2.1 ([3]). Let $1 < p, q < \infty$. Then

$$\left\| \left\{ \sum_{k \in \mathbb{Z}} \left(M f_k \right)^q \right\}^{1/q} \right\|_{L^p} \lesssim \left\| \left\{ \sum_{k \in \mathbb{Z}} |f_k|^q \right\}^{1/q} \right\|_{L^p}$$

for all sequences $\{f_k\}_{k\in\mathbb{Z}}$ of locally integrable functions on \mathbb{R}^n .

Lemma 2.2 ([2, Theorem 8.6]). Let $1 , and let <math>\psi \in \mathcal{S}(\mathbb{R}^n)$ be such that supp $\psi \subset \{\xi \in \mathbb{R}^n : 1/r \le |\xi| \le r\}$ for some r > 1. Then

$$\left\| \left\{ \sum_{k \in \mathbb{Z}} |\psi(D/2^k) f|^2 \right\}^{1/2} \right\|_{L^p} \lesssim \|f\|_{L^p} \quad \text{for all } f \in L^p(\mathbb{R}^n),$$

where $\psi(D/2^k)f = \mathcal{F}^{-1}[\psi(\cdot/2^k)\widehat{f}].$

Let N be a natural number, and let ϕ_0 be a C^{∞} -function on $[0,\infty)$ satisfying

$$\phi_0(t) = 1$$
 on $[0, 1/(4N)]$, supp $\phi_0 \subset [0, 1/(2N)]$.

We also set $\phi_1(t) = 1 - \phi_0(t)$. For $(i_1, i_2, \dots, i_N) \in \{0, 1\}^N$, we define the function $\Phi_{(i_1, i_2, \dots, i_N)}$ on $\mathbb{R}^{Nn} \setminus \{0\}$ by

$$\Phi_{(i_1,i_2,\ldots,i_N)}(\xi) = \phi_{i_1}(|\xi_1|/|\xi|)\phi_{i_2}(|\xi_2|/|\xi|)\ldots\phi_{i_N}(|\xi_N|/|\xi|),$$

where $\xi = (\xi_1, \xi_2, \dots \xi_N) \in \mathbb{R}^n \times \mathbb{R}^n \times \dots \times \mathbb{R}^n$ and $|\xi| = \sqrt{|\xi_1|^2 + |\xi_2|^2 + \dots + |\xi_N|^2}$. Note that $\Phi_{(0,0,\dots,0)} = 0$. Then we have

Lemma 2.3. Let $\Phi_{(i_1,...,i_N)}$ be the same as in (2.1). Then the following are true:

(1) For
$$\xi = (\xi_1, \dots, \xi_N) \in \mathbb{R}^n \times \dots \times \mathbb{R}^n \setminus \{(0, \dots, 0)\},\$$

$$\sum_{\substack{(i_1,i_2,\dots,i_N)\in\{0,1\}^N\\(i_1,i_2,\dots,i_N)\neq(0,0,\dots,0)}} \Phi_{(i_1,i_2,\dots,i_N)}(\xi) = 1.$$

(2) For
$$(i_1, ..., i_N) \in \{0, 1\}^N$$
 and $(\alpha_1, ..., \alpha_N) \in \mathbb{Z}_+^n \times ... \times \mathbb{Z}_+^n$,

$$|\partial_{\xi_1}^{\alpha_1} ... \partial_{\xi_N}^{\alpha_N} \Phi_{(i_1, ..., i_N)}(\xi)| \leq C_{(i_1, ..., i_N)}^{\alpha_1, ..., \alpha_N}(|\xi_1| + ... + |\xi_N|)^{-(|\alpha_1| + ... + |\alpha_N|)}$$

for all
$$\xi = (\xi_1, \dots, \xi_N) \in \mathbb{R}^n \times \dots \times \mathbb{R}^n \setminus \{(0, \dots, 0)\}.$$

(3) If $i_j = 1$ for some $1 \leq j \leq N$ and $i_k = 0$ for all $1 \leq k \leq N$ with $k \neq j$, then $\sup \Phi_{(i_1,...,i_N)} \subset \{(\xi_1,...,\xi_N) : |\xi_k| \leq |\xi_j|/N \text{ for } k \neq j\}$. If $i_j = i_{j'} = 1$ for some $1 \leq j, j' \leq N$ with $j \neq j'$, then $\sup \Phi_{(i_1,...,i_N)} \subset \{(\xi_1,...,\xi_N) : |\xi_j|/(4N) \leq |\xi_{j'}| \leq 4N|\xi_j|, |\xi_k| \leq 4N|\xi_j| \text{ for } k \neq j,j'\}$.

See [11, Section 5], [4, Lemma 3.1] for the proof of Lemma 2.3.

§ 3. Key estimate

In this section, we prove the following lemma which plays an essential role in the proof of Theorem 1.2:

Lemma 3.1. Let $1 \le r \le 2$. Then

$$|T_{m(\cdot/2^{j})}(f_{1},\ldots,f_{N})(x)| \lesssim ||m||_{B_{Nn/r}^{r,1}} M(|f_{1}|^{r})(x)^{1/r} \ldots M(|f_{N}|^{r})(x)^{1/r}$$

for all $j \in \mathbb{Z}$, $m \in B^{r,1}_{Nn/r}(\mathbb{R}^{Nn})$ and $f_1, \ldots, f_N \in \mathcal{S}(\mathbb{R}^n)$.

Proof. Let $\{\Psi_k\}_{k=0}^{\infty} \subset \mathcal{S}(\mathbb{R}^{Nn})$ be a sequence of functions which appeared in the definition of Besov spaces. Then

$$T_{m(\cdot/2^{j})}(f_{1},\ldots,f_{N})(x)$$

$$= \int_{\mathbb{R}^{N_{n}}} 2^{N_{j}n} \mathcal{F}^{-1} m(2^{j}(x-y_{1}),\ldots,2^{j}(x-y_{N})) f_{1}(y_{1}) \ldots f_{N}(y_{N}) dy$$

$$= (2\pi)^{-N_{n}} \sum_{k=0}^{\infty} \int_{\mathbb{R}^{N_{n}}} 2^{N_{j}n} \Psi_{k}(2^{j}(y_{1}-x),\ldots,2^{j}(y_{N}-x))$$

$$\times \widehat{m}(2^{j}(y_{1}-x),\ldots,2^{j}(y_{N}-x)) f_{1}(y_{1}) \ldots f_{N}(y_{N}) dy,$$

where $y = (y_1, \dots, y_N) \in \mathbb{R}^n \times \dots \times \mathbb{R}^n$. Let r' be the conjugate exponent of r. Since

$$\operatorname{supp} \Psi_k \subset \{ y \in \mathbb{R}^{Nn} : |y| \le 2^{k+1} \} \subset \{ y \in \mathbb{R}^{Nn} : |y_j| \le 2^{k+1}, \ j = 1, \dots, N \},$$

we have by Hölder's inequality

$$\begin{split} \Big| \int_{\mathbb{R}^{Nn}} 2^{Njn} \Psi_k(2^j(y_1 - x), \dots, 2^j(y_N - x)) \widehat{m}(2^j(y_1 - x), \dots, 2^j(y_N - x)) \\ & \times f_1(y_1) \dots f_N(y_N) dy \Big| \\ & \leq 2^{Njn} \Big(\int_{\mathbb{R}^{Nn}} \Big| \Psi_k(2^j(y_1 - x), \dots, 2^j(y_N - x)) \widehat{m}(2^j(y_1 - x), \dots, 2^j(y_N - x)) \Big|^{r'} dy \Big)^{1/r'} \\ & \times \Big(\int_{|2^j(y_1 - x)| \leq 2^{k+1}} |f_1(y_1)|^r dy_1 \Big)^{1/r} \dots \Big(\int_{|2^j(y_N - x)| \leq 2^{k+1}} |f_N(y_N)|^r dy_N \Big)^{1/r} \\ & = 2^{N(k+1)n/r} \Big(\int_{\mathbb{R}^{Nn}} \Big| \Psi_k(y_1, \dots, y_N) \widehat{m}(y_1, \dots, y_N) \Big|^{r'} dy \Big)^{1/r'} \\ & \times \Big(\frac{1}{2^{(k-j+1)n}} \int_{|y_1 - x| \leq 2^{k-j+1}} |f_1(y_1)|^r dy_1 \Big)^{1/r} \\ & \times \dots \times \Big(\frac{1}{2^{(k-j+1)n}} \int_{|y_N - x| \leq 2^{k-j+1}} |f_N(y_N)|^r dy_N \Big)^{1/r} \\ & \leq 2^{N(k+1)n/r} \|\Psi_k \widehat{m}\|_{L^{r'}} M(|f_1|^r)(x)^{1/r} \dots M(|f_N|^r)(x)^{1/r}. \end{split}$$

It follows from the Hausdorff-Young inequality that $\|\Psi_k \widehat{m}\|_{L^{r'}} \lesssim \|\mathcal{F}^{-1}[\Psi_k \widehat{m}]\|_{L^r}$, and consequently

$$|T_{m(\cdot/2^{j})}(f_{1},\ldots,f_{N})(x)| \lesssim \left(\sum_{k=0}^{\infty} 2^{Nkn/r} \|\mathcal{F}^{-1}[\Psi_{k}\widehat{m}]\|_{L^{r}}\right) M(|f_{1}|^{r})(x)^{1/r} \ldots M(|f_{N}|^{r})(x)^{1/r}.$$

This completes the proof.

§ 4. Proof of Theorem 1.2

In this section, we use the following notation to distinguish linear and multilinear Fourier multiplier operators: For $\varphi \in L^{\infty}(\mathbb{R}^n)$, the (linear) Fourier multiplier operator $\varphi(D)$ is defined by $\varphi(D)f = \mathcal{F}^{-1}[\varphi \widehat{f}]$ for $f \in \mathcal{S}(\mathbb{R}^n)$. We also use the following notation: \mathcal{A}_0 denotes the set of $\varphi \in \mathcal{S}(\mathbb{R}^n)$ for which supp φ is compact and $\varphi = 1$ on some neighborhood of the origin; \mathcal{A}_1 denotes the set of $\widetilde{\psi} \in \mathcal{S}(\mathbb{R}^n)$ for which supp $\widetilde{\psi}$ is a compact subset of $\mathbb{R}^n \setminus \{0\}$.

Proof of Theorem 1.2. Let $1 \le r < 2$, $r < p_1, \ldots, p_N < \infty$, $1/p_1 + \cdots + 1/p_N = 1/p$, and let $m \in L^{\infty}(\mathbb{R}^{Nn})$ satisfy $\sup_{j \in \mathbb{Z}} \|m_j\|_{B^{r,1}_{Nn/r}} < \infty$, where m_j is defined by (1.2). It follows from Lemma 2.3 (1) that

(4.1)
$$m(\xi) = \sum_{\substack{(i_1, i_2, \dots, i_N) \in \{0, 1\}^N \\ (i_1, i_2, \dots, i_N) \neq (0, 0, \dots, 0)}} \Phi_{(i_1, i_2, \dots, i_N)}(\xi) m(\xi)$$

$$= \sum_{\substack{(i_1, i_2, \dots, i_N) \in \{0, 1\}^N \\ (i_1, i_2, \dots, i_N) \neq (0, 0, \dots, 0)}} m_{(i_1, i_2, \dots, i_N)}(\xi).$$

Estimate for $m_{(1,0,...,0)}$. We first consider the case where $(i_1,...,i_N)$ satisfies $\sharp\{j:i_j=1\}=1$, and may assume without loss of generality that $i_1=1$. This means $m_{(i_1,i_2,...,i_N)}=m_{(1,0,...,0)}$, and we simply write m instead of $m_{(1,0,...,0)}$. By Lemma 2.3 (3),

(4.2)
$$\sup m \subset \{\xi = (\xi_1, \dots, \xi_N) \in \mathbb{R}^n \times \dots \times \mathbb{R}^n : |\xi_i| \le |\xi_1|/N, \ i = 2, \dots, N\}.$$

Let ψ be as in (1.1) with d=n. Note that

$$\|g\|_{L^p} \lesssim \|g\|_{\mathcal{H}^p} \approx \left\| \left(\sum_{j \in \mathbb{Z}} |\psi(D/2^j)g|^2 \right)^{1/2} \right\|_{L^p}$$

for appropriate functions g, where \mathcal{H}^p is the Hardy space (e.g. [6, Lemma 2.4]). Then

(4.3)
$$||T_m(f_1,\ldots,f_N)||_{L^p} \lesssim \left\| \left(\sum_{j\in\mathbb{Z}} |\psi(D/2^j)T_m(f_1,\ldots,f_N)|^2 \right)^{1/2} \right\|_{L^p}.$$

It follows from (4.2) that if $(\xi_1, \ldots, \xi_N) \in \text{supp } m$ then $|\xi_1 + \cdots + \xi_N| \approx |\xi_1|$ and $|\xi_i| \lesssim |\xi_1|$ for $2 \leq i \leq N$, and we can find functions $\varphi \in \mathcal{A}_0$ and $\widetilde{\psi} \in \mathcal{A}_1$ independent of j such that

$$m(\xi)\psi((\xi_1+\cdots+\xi_N)/2^j)$$

= $m(\xi)\psi((\xi_1+\cdots+\xi_N)/2^j)\widetilde{\psi}(\xi_1/2^j)^2\varphi(\xi_2/2^j)\ldots\varphi(\xi_N/2^j),$

where we have used the fact supp $\psi \subset \{\eta \in \mathbb{R}^n : 1/2 \leq |\eta| \leq 2\}$. Hence, setting

$$m_{(j)}(\xi) = m(2^{j}\xi)\psi(\xi_1 + \dots + \xi_N)\widetilde{\psi}(\xi_1)\varphi(\xi_2)\dots\varphi(\xi_N),$$

we see that

$$\psi(D/2^{j})T_{m}(f_{1},...,f_{N})(x)
= \frac{1}{(2\pi)^{Nn}} \int_{\mathbb{R}^{Nn}} e^{ix\cdot(\xi_{1}+...+\xi_{N})} m(\xi) \psi((\xi_{1}+...+\xi_{N})/2^{j}) \widehat{f}_{1}(\xi_{1}) \widehat{f}_{2}(\xi_{2}) ... \widehat{f}_{N}(\xi_{N}) d\xi
= \frac{1}{(2\pi)^{Nn}} \int_{\mathbb{R}^{Nn}} e^{ix\cdot(\xi_{1}+...+\xi_{N})} m_{(j)}(\xi/2^{j}) (\widetilde{\psi}(\xi_{1}/2^{j}) \widehat{f}_{1}(\xi_{1})) \widehat{f}_{2}(\xi_{2}) ... \widehat{f}_{N}(\xi_{N}) d\xi
= T_{m_{(j)}(\cdot/2^{j})} (\widetilde{\psi}(D/2^{j}) f_{1}, f_{2}, ..., f_{N})(x).$$

By Lemma 3.1,

$$|T_{m_{(j)}(\cdot/2^{j})}(\widetilde{\psi}(D/2^{j})f_{1},f_{2},\ldots,f_{N})(x)|$$

$$\lesssim ||m_{(j)}||_{B_{N^{n}/r}^{r,1}}M(|\widetilde{\psi}(D/2^{j})f_{1}|^{r})(x)^{1/r}M(|f_{2}|^{r})(x)^{1/r}\ldots M(|f_{N}|^{r})(x)^{1/r},$$

and consequently

(4.4)
$$\left(\sum_{j\in\mathbb{Z}} |\psi(D/2^{j})T_{m}(f_{1},\ldots,f_{N})(x)|^{2}\right)^{1/2}$$

$$\lesssim \left(\sup_{k\in\mathbb{Z}} ||m_{(k)}||_{B_{Nn/r}^{r,1}}\right) \left(\sum_{j\in\mathbb{Z}} M(|\widetilde{\psi}(D/2^{j})f_{1}|^{r})(x)^{2/r}\right)^{1/2}$$

$$\times M(|f_{2}|^{r})(x)^{1/r}\ldots M(|f_{N}|^{r})(x)^{1/r}.$$

Since $1 \le r < 2$ and $r < p_1, \ldots, p_N < \infty$, we see that $1 < 2/r, p_1/r, \ldots, p_N/r < \infty$. Then, it follows from Hölder's inequality, Lemmas 2.1 and 2.2 that

$$(4.5) \left\| \left(\sum_{j \in \mathbb{Z}} M(|\widetilde{\psi}(D/2^{j})f_{1}|^{r})^{2/r} \right)^{1/2} M(|f_{2}|^{r})^{1/r} \dots M(|f_{N}|^{r})^{1/r} \right\|_{L^{p}}$$

$$\leq \left\| \left(\sum_{j \in \mathbb{Z}} M(|\widetilde{\psi}(D/2^{j})f_{1}|^{r})^{2/r} \right)^{1/2} \right\|_{L^{p_{1}}} \|M(|f_{2}|^{r})^{1/r}\|_{L^{p_{2}}} \dots \|M(|f_{N}|^{r})^{1/r}\|_{L^{p_{N}}}$$

$$= \left\| \left(\sum_{j \in \mathbb{Z}} M(|\widetilde{\psi}(D/2^{j})f_{1}|^{r})^{2/r} \right)^{r/2} \right\|_{L^{p_{1}/r}}^{1/r} \|M(|f_{2}|^{r})\|_{L^{p_{2}/r}}^{1/r} \dots \|M(|f_{N}|^{r})\|_{L^{p_{N}/r}}^{1/r}$$

$$\lesssim \|f_{1}\|_{L^{p_{1}}} \|f_{2}\|_{L^{p_{2}}} \dots \|f_{N}\|_{L^{p_{N}}}.$$

Thus, by (4.3)-(4.5),

$$||T_m(f_1, f_2, \dots, f_N)||_{L^p} \lesssim \left(\sup_{j \in \mathbb{Z}} ||m_{(j)}||_{B^{r,1}_{Nn/r}}\right) ||f_1||_{L^{p_1}} ||f_2||_{L^{p_2}} \dots ||f_N||_{L^{p_N}}.$$

Recall that $m(\xi) = m_{(1,0,\ldots,0)}(\xi)$, and

$$m_{(i)}(\xi) = m(2^{j}\xi)\Phi_{(1,0,\ldots,0)}(2^{j}\xi)\psi(\xi_1 + \cdots + \xi_N)\widetilde{\psi}(\xi_1)\varphi(\xi_2)\ldots\varphi(\xi_N).$$

Let us prove

(4.6)
$$\sup_{j \in \mathbb{Z}} \|m_{(j)}\|_{B_{Nn/r}^{r,1}} \lesssim \sup_{j \in \mathbb{Z}} \|m_j\|_{B_{Nn/r}^{r,1}},$$

where m_i is defined by (1.2). Once this is proved, we have the desired estimate:

$$||T_{m_{(1,0,\ldots,0)}}(f_1,f_2,\ldots,f_N)||_{L^p} \lesssim \left(\sup_{j\in\mathbb{Z}} ||m_j||_{B^{r,1}_{N^n/r}}\right) ||f_1||_{L^{p_1}} ||f_2||_{L^{p_2}} \ldots ||f_N||_{L^{p_N}}.$$

Let Ψ be as in (1.1) with d = Nn. Since $\sup \Psi(\cdot/2^{\ell}) \subset \{2^{\ell-1} \leq |\xi| \leq 2^{\ell+1}\}$, $\sup \widetilde{\psi}(\xi_1)\varphi(\xi_2)\ldots\varphi(\xi_N) \subset \{2^{-j_0} \leq |\xi| \leq 2^{j_0}\}$ for some $j_0 \in \mathbb{N}$ and $B^{r,1}_{Nn/r}(\mathbb{R}^{Nn})$ is a multiplication algebra (Triebel [12, Theorem 2.8.3]), we have

$$\begin{split} \|m_{(j)}(\xi)\|_{B^{r,1}_{Nn/r}} &\leq \sum_{\ell=-j_0}^{j_0} \|m_{(j)}(\xi)\Psi(\xi/2^{\ell})\|_{B^{r,1}_{Nn/r}} \\ &\lesssim \sum_{\ell=-j_0}^{j_0} \|m(2^{j}\xi)\Psi(\xi/2^{\ell})\|_{B^{r,1}_{Nn/r}} \\ &\qquad \times \|\Phi_{(1,0,\dots,0)}(2^{j}\xi)\psi(\xi_1+\dots+\xi_N)\widetilde{\psi}(\xi_1)\varphi(\xi_2)\dots\varphi(\xi_N)\|_{B^{r,1}_{Nn/r}}. \end{split}$$

By a change of variables,

$$||m(2^{j}\xi)\Psi(\xi/2^{\ell})||_{B_{Nn/r}^{r,1}} \lesssim (2^{-\ell})^{-Nn/r} (\max\{1,2^{-\ell}\})^{Nn/r} ||m(2^{j+\ell}\xi)\Psi(\xi)||_{B_{Nn/r}^{r,1}}$$
$$\lesssim \sup_{j\in\mathbb{Z}} ||m(2^{j}\xi)\Psi(\xi)||_{B_{Nn/r}^{r,1}} = \sup_{j\in\mathbb{Z}} ||m_{j}||_{B_{Nn/r}^{r,1}}$$

for all $|\ell| \leq j_0$ (see, for example, [8, Proposition 2.1.3/3], [10, Proposition 1.1]). On the other hand, by Lemma 2.3 (2),

$$\left| \partial_{\xi}^{\alpha} \left(\Phi_{(1,0,\dots,0)}(2^{j}\xi) \psi(\xi_{1} + \dots + \xi_{N}) \widetilde{\psi}(\xi_{1}) \varphi(\xi_{2}) \dots \varphi(\xi_{N}) \right) \right| \leq C_{\alpha} \chi_{\{2^{-j_{0}} \leq |\xi| \leq 2^{j_{0}}\}}(\xi)$$

for all α and j, and consequently

$$\sup_{j \in \mathbb{Z}} \|\Phi_{(1,0,\dots,0)}(2^{j}\xi)\psi(\xi_{1}+\dots+\xi_{N})\widetilde{\psi}(\xi_{1})\varphi(\xi_{2})\dots\varphi(\xi_{N})\|_{B_{Nn/r}^{r,1}} < \infty.$$

Combining these estimates, we have (4.6).

Estimate for $m_{(1,1,i_3,...,i_N)}$. We next consider the case where $(i_1,...,i_N)$ satisfies $\sharp\{j:i_j=1\}\geq 2$, and may assume without loss of generality that $i_1=i_2=1$. This means $m_{(i_1,i_2,i_3,...,i_N)}=m_{(1,1,i_3,...,i_N)}$, where $i_3,...,i_N\in\{0,1\}$. We simply write m instead of $m_{(1,1,i_3,...,i_N)}$ as before. By Lemma 2.3 (3),

$$(4.7) \sup m \subset \{|\xi_1|/(4N) \le |\xi_2| \le 4N|\xi_1|, |\xi_i| \le 4N|\xi_1|, i = 3, \dots, N\}.$$

Let $\psi \in \mathcal{S}(\mathbb{R}^n)$ be as in (1.1) with d = n. By (4.7), we can find $\varphi \in \mathcal{A}_0$ and $\widetilde{\psi} \in \mathcal{A}_1$ independent of j such that

$$m(\xi)\psi(\xi_1/2^j) = m(\xi)\psi(\xi_1/2^j)\widetilde{\psi}(\xi_1/2^j)\widetilde{\psi}(\xi_2/2^j)^2\varphi(\xi_3/2^j)\dots\varphi(\xi_N/2^j).$$

Hence, setting

$$m_{(j)}(\xi) = m(2^{j}\xi)\psi(\xi_1)\widetilde{\psi}(\xi_2)\varphi(\xi_3)\dots\varphi(\xi_N),$$

we see that

$$T_{m}(f_{1},...,f_{N})(x)$$

$$= \sum_{j \in \mathbb{Z}} \frac{1}{(2\pi)^{Nn}} \int_{\mathbb{R}^{Nn}} e^{ix \cdot (\xi_{1} + \cdots + \xi_{N})} m(\xi) \psi(\xi_{1}/2^{j}) \widehat{f}_{1}(\xi_{1}) \dots \widehat{f}_{N}(\xi_{N}) d\xi$$

$$= \sum_{j \in \mathbb{Z}} \frac{1}{(2\pi)^{Nn}} \int_{\mathbb{R}^{Nn}} e^{ix \cdot (\xi_{1} + \cdots + \xi_{N})} m_{(j)}(\xi/2^{j}) (\widetilde{\psi}(\xi_{1}/2^{j}) \widehat{f}_{1}(\xi_{1})) (\widetilde{\psi}(\xi_{2}/2^{j}) \widehat{f}_{2}(\xi_{1}))$$

$$\times \widehat{f}_{3}(\xi_{3}) \dots \widehat{f}_{N}(\xi_{N}) d\xi$$

$$= \sum_{j \in \mathbb{Z}} T_{m_{(j)}(\cdot/2^{j})} (\widetilde{\psi}(D/2^{j}) f_{1}, \widetilde{\psi}(D/2^{j}) f_{2}, f_{3}, \dots, f_{N})(x).$$

It follows from Lemma 3.1 and Schwarz's inequality that

$$\sum_{j \in \mathbb{Z}} |T_{m_{(j)}}(\widetilde{\psi}(D/2^{j})f_{1}, \widetilde{\psi}(D/2^{j})f_{2}, f_{3}, \dots, f_{N})(x)|
\lesssim \sum_{j \in \mathbb{Z}} ||m_{(j)}||_{B_{Nn/r}^{r,1}} M(|\widetilde{\psi}(D/2^{j})f_{1}|^{r})(x)^{1/r} M(|\widetilde{\psi}(D/2^{j})f_{2}|^{r})(x)^{1/r}
\times M(|f_{3}|^{r})(x)^{1/r} \dots M(|f_{N}|^{r})(x)^{1/r}
\leq \left(\sup_{k \in \mathbb{Z}} ||m_{(k)}||_{B_{Nn/r}^{r,1}}\right) \left(\sum_{j \in \mathbb{Z}} M(|\widetilde{\psi}(D/2^{j})f_{1}|^{r})(x)^{2/r}\right)^{1/2}
\times \left(\sum_{j \in \mathbb{Z}} M(|\widetilde{\psi}(D/2^{j})f_{2}|^{r})(x)^{2/r}\right)^{1/2} M(|f_{3}|^{r})(x)^{1/r} \dots M(|f_{N}|^{r})(x)^{1/r}.$$

The rest of the proof is similar to that of $m_{(1,0,\ldots,0)}$, and we omit it.

We end this paper by giving the following remark:

Remark 4.1. Let $\{\Psi_k\}_{k=0}^{\infty} \subset \mathcal{S}(\mathbb{R}^n)$ be a sequence of functions appearing in the definition of Besov spaces. For $1 \leq r \leq \infty$ and $s_1, \ldots, s_N \in \mathbb{R}$, the Besov space of product type $B_{(s_1,\ldots,s_N)}^{r,1}(\mathbb{R}^n \times \cdots \times \mathbb{R}^n)$ is defined by the norm

$$||f||_{B^{r,1}_{(s_1,\ldots,s_N)}} = \sum_{k_1,\ldots,k_N=0}^{\infty} 2^{(k_1s_1+\cdots+k_Ns_N)} ||\mathcal{F}^{-1}[\Psi_{k_1}(\xi_1)\ldots\Psi_{k_N}(\xi_N)\widehat{f}(\xi)]||_{L^r(\mathbb{R}^{Nn})},$$

where $\xi = (\xi_1, \dots, \xi_N) \in \mathbb{R}^n \times \dots \times \mathbb{R}^n$. Note that if $s_1, \dots, s_N > 0$, then

$$B^{r,1}_{s_1+\cdots+s_N}(\mathbb{R}^{Nn}) \hookrightarrow B^{r,1}_{(s_1,\ldots,s_N)}(\mathbb{R}^n \times \cdots \times \mathbb{R}^n).$$

In the same way as in the proof of Lemma 3.1, we can prove

$$|T_{m(\cdot/2^{j})}(f_{1},\ldots,f_{N})(x)|$$

$$\lesssim \sum_{k_{1},\ldots,k_{N}=0}^{\infty} 2^{(k_{1}+\cdots+k_{N})n/r} \left(\int_{\mathbb{R}^{N_{n}}} |\Psi_{k_{1}}(y_{1})\ldots\Psi_{k_{N}}(y_{N})\widehat{m}(y)|^{r'} dy \right)^{1/r'}$$

$$\times \left(\frac{1}{2^{(k_{1}-j+1)n}} \int_{|y_{1}-x|\leq 2^{k_{1}-j+1}} |f_{1}(y_{1})|^{r} dy_{1} \right)^{1/r}$$

$$\times \cdots \times \left(\frac{1}{2^{(k_{N}-j+1)n}} \int_{|y_{N}-x|\leq 2^{k_{N}-j+1}} |f_{N}(y_{N})|^{r} dy_{N} \right)^{1/r}.$$

As a result,

$$|T_{m(\cdot/2^{j})}(f_{1},\ldots,f_{N})(x)| \lesssim ||m||_{B_{(n/r,\ldots,n/r)}^{r,1}} M(|f_{1}|^{r})(x)^{1/r} \ldots M(|f_{N}|^{r})(x)^{1/r}$$

for $1 \le r \le 2$. Then, in the case $1 \le r < 2$, by using this estimate instead of Lemma 3.1, we can prove Theorem 1.2 with $B_{Nn/r}^{r,1}$ replaced by $B_{(n/r,...,n/r)}^{r,1}$. It should be mentioned that dilation and multiplication properties of Besov spaces were used in the proof of Theorem 1.2. See [10, Proposition 1.1, Theorem 1.4] for their properties of Besov spaces of product type.

References

- [1] Coifman, R. R., and Meyer, Y. Au delà des opérateurs pseudo-différentiels, *Astérisque*, **57** (1978), 1-185.
- [2] Duoandikoetxea, J., Fourier Analysis, Amer. Math. Soc., Providence, RI, 2001.
- [3] Fefferman, C. and Stein, E. M., Some maximal inequalities, Amer. J. Math., 93 (1971), 107-115.
- [4] Fujita, M. and Tomita, N., Weighted norm inequalities for multilinear Fourier multipliers, Trans. Amer. Math. Soc., to appear.
- [5] Grafakos, L., Miyachi, M. and Tomita, N., On multilinear Fourier multipliers of limited smoothness, submitted.
- [6] Grafakos, L and Si, Z., The Hörmander multiplier theorem for multilinear operators, J. Reine Angew. Math., to appear.
- [7] A. Miyachi and N. Tomita, Minimal smoothness conditions for bilinear Fourier multipliers, Rev. Mat. Iberoam., to appear.
- [8] Runst, T. and Sickel, W., Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, De Gruyter, Berlin, 1996.
- [9] Seeger, A., A limit case of the Hörmander multiplier theorem, *Monatsh. Math.*, **105** (1988), 151-160.
- [10] Sugimoto, M., Pseudo-differential operators on Besov spaces, *Tsukuba J. Math.*, **12** (1988), 43-63.
- [11] Tomita, N., A Hörmander type multiplier theorem for multilinear operators, *J. Funct.* Anal., **259** (2010), 2028-2044.
- [12] Triebel, H., Theory of Function Spaces, Birkhäuser, Basel-Boston-Stuttgart, 1983.