
NUMERICALLY TRIVIAL INVOLUTIONS OF KUMMER
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Abstract. There are two types of numerically trivial involutions of an
Enriques surface according as their period lattice. One is U(2) ⊥ U(2)-
type and the other is U ⊥ U(2)-type. An Enriques surface with an in-
volution of U(2) ⊥ U(2)-type is doubly covered by a Kummer surface of
product type, and such involutions are classified again into two types ac-
cording as the parity of the corresponding Göpel subgroups. Involutions
of odd U(2) ⊥ U(2)-type are constructed from the standard Cremona
involutions of the quadric surface and closely related with quartic del
Pezzo surfaces.

It is known that a nontrivial automorphism of a K3 surface acts nontriv-
ially on its cohomology group. But this is not true for an Enriques surface.
An automorphism of an Enriques surface S is said to be numerically trivial
(resp. cohomologically trivial) if it acts on the cohomology group H2(S, Q)
(resp. H2(S, Z)) trivially. In this paper we classify the numerically trivial
involutions, correcting [3].

Let S be a (minimal) Enriques surface, that is, a compact complex surface
with H1(OS) = H2(OS) = 0 and 2KS ∼ 0, and σ a numerically trivial
(holomorphic) involution of S. We denote the covering K3 surface of S by
S̃ and the covering involution by ε. Then the period lattice NR of (S, σ) is
isomorphic to either U(2) ⊥ U(2) or U ⊥ U(2) as a lattice ([3, Proposition
(2.5)]). σ is called U(2) ⊥ U(2)-type, or Kummer type, in the former case.

In this paper, except the first appendix, we assume that NR ≅ U(2) ⊥
U(2) and classify the numerically trivial involutions of Kummer type using
their periods, that is, the Hodge structures on NR (cf. Remark 21). There
exist a pair of elliptic curves E′ and E′′ and an isomorphism ϕ between S̃
and the Kummer surface of the product abelian surface E′ × E′′ such that
the diagram

(1)
S̃

ϕ→ Km(E′ × E′′)
σR ↓ ↓ µ

S̃
ϕ→ Km(E′ × E′′)

is commutative, where σR is the anti-symplectic lift of σ (Section 1) and µ
is the involution induced by (idE′ ,−idE′′) (Proposition 6).
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Example 1. Let βev be the involution of Km(E′ × E′′) induced by the
translation of E′×E′′ by a 2-torsion point a with a ̸∈ E′×0∪0×E′′. Then
εev = µβev has no fixed points and the involution σev of the Enriques surface
Km(E′ × E′′)/εev induced by µ is numerically trivial (cf. Proposition 4).

The quotient Km(E′ × E′′)/µ is the blow-up of P1 × P1 at the 16 points
(p′i, p

′′
j ), 1 ≤ i, j ≤ 4, where {p′1, . . . , p′4} and {p′′1, . . . , p′′4} are the branches

of the double coverings E′ → P1 ≅ E′/(−id) and E′′ → P1 ≅ E′′/(−id),
respectively. In the course of his classification of Enriques surfaces with finite
(full) automorphism groups, Kondo[2] found a numerically trivial involution
of an Enriques surface which had been overlooked in [3] (cf. Remark 12).

Proposition 2. Assume that
(∗) the ordered 4-tuples (p′1, . . . , p

′
4) and (p′′1, . . . , p

′′
4) ∈ (P1)4 are not

projectively equivalent.
Then the standard Cremona involution of P1×P1 with center the four points
(p′i, p

′′
i ), 1 ≤ i ≤ 4, lifts to a fixed point free involution εodd of Km(E′ ×E′′)

(Section 2). Moreover, the involution σodd of the Enriques surface Km(E′×
E′′)/εodd induced by µ is numerically trivial.

The following is the main result of this paper:

Theorem 3. Every numerically trivial involution of Kummer type of an
Enriques surface is obtained in the way of Example 1 or Proposition 2.

First we characterize the involutions of Kummer type by their periods in
Section 1. In Section 2 we construct an Enriques surface using a Cremona
involution of the smooth quadric, or almost equivalently, from a smooth
quartic del Pezzo surface. In Section 3 the main theorem is proved by the
global Torelli theorem for Enriques surfaces and by computation of periods
of Enriques surfaces of Example 1 and Proposition 2. This article has two
appendices. In the first, we complete the classification of numerically trivial
involutions, correcting [3]. In the second, we exibit 14 smooth rational curves
on Enriques surfaces of Proposition 2 and compute the dual graph of their
arrangement.

The author would like to thank the anonymous referee for his or her
careful reading, by which the readability of this paper is improved in several
places.

Notation. The symbol U denotes the rank 2 lattice given by the symmetric

matrix
(

0 1
1 0

)
. The lattice obtained from a lattice L by replacing the

bilinear form ( . ) with r( . ), r being a rational number r, is denoted by
L(r).

1. Involutions of Kummer type

Let Km(E′ × E′′) and µ be as in the introduction.
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Proposition 4. Let ε be a fixed point free involution of Km(E′×E′′) which
commutes with the involution µ. Then the involution of the Enriques surface
Km(E′ × E′′)/ε induced by µ is numerically trivial.

Proof. The invariant part of the action of µ on H2(Km(E′ × E′′), Z) is
of rank 18. On the other hand, since εµ is symplectic, the anti-invariant
part of its cohomological action is of rank 8. Therefore, µ mod ε acts on
H2(Km(E′ × E′′)/ε, Q), which is of rank 10, trivially. ¤

Let σ be a numerically trivial involution of an Enriques surface S. There
are two involutions of the K3 cover S̃ of S which lift σ since S̃ has no fixed
point free automorphisms of order 4. One is symplectic and the other is anti-
symplectic. These involutions of S̃ are denoted by σK and σR, respectively.
We denote the anti-invariant parts of the actions of ε := σKσR, σK and
σR on H2(S̃, Z) by N , NK and NR, respectively. N is isomorphic to U ⊥
U(2) ⊥ E8(2) ([1, Chap. VIII, Lemma 19.1]) and NK is isomorphic to E8(2)
([3, Lemma (2.1)]). NR carries a nontrivial polarized Hodge structure of
weight 2, which we call the period of (S, σ).

In order to compute the period for an involution in Proposition 4, we
recall a basic fact on the cohomology of the Kummer surface Km(T ) of a (2-
dimensional) complex torus T . Km(T ) contains sixteen (−2)P1’s {Ea}a∈T2

parametrized by the 2-torsion subgroup T2 ≅ (Z/2Z)4 of T . These generate
a sublattice of rank 16 in the cohomology group H2(Km(T ), Z), which we de-
note by ΓKm. Let Λ be the orthogonal complement of ΓKm in H2(Km(T ), Z).
Λ is the image of H2(T, Z) by the quotient morphism from the blow-up of
T at T2 onto Km(T ). The following is well known ([1, Chap. VIII, §5]).

Lemma 5. Λ ⊂ H2(Km(T )) is isomorphic to H2(T, Z) as a Hodge structure
and to H2(T, Z)(2) ≅ U(2) ⊥ U(2) ⊥ U(2) as a lattice.

Being of Kummer type is characterized in terms of the period as follows:

Proposition 6. The followings are equivalent for a numerically trivial in-
volution σ.

(1) σ is of Kummer type, that is, the lattice NR is isomorphic to U(2) ⊥
U(2).

(2) σ is obtained in the way of Proposition 4.

Proof. ΓKm is fixed in the cohomological action of µ. In the action of the
involution (idE′ ,−idE′′) on H2(E′ × E′′, Z) ≅ U ⊥ U ⊥ U , one U , gener-
ated by two elliptic curves, is invariant and the other two are anti-invariant.
Hence the anti-invariant part N− of the action involution µ on Λ is isomor-
phic to U(2) ⊥ U(2) as a lattice. Therefore, NR ≅ U(2) ⊥ U(2) if σ is
obtained in the way of Proposition 4.

Conversely assume that NR is isomorphic to U(2) ⊥ U(2). The lattice
U ⊥ U is isomorphic to M2(Z) = V ′ ⊗ V ′′, the group of 2 × 2 matrices of
integral entries endowed with the bilinear form form (A.A) = 2 det A, where
V ′ and V ′′ are free Z-modules of rank two. The period ω of S̃ corresponds
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to a complex matrix of rank one via this isomorphism since (ω2) = 0. Hence
we have ω = α′ ⊗ α′′ for α′ ∈ V ′ ⊗ C and α′′ ∈ V ′′ ⊗ C. These α′ and α′′

determine Hodge structures of weight one since (ω.ω̄) > 0. Hence, there
exits a pair of elliptic curves E′ and E′′ such that NR(1/2) is isomorphic
to H1(E′, Z) ⊗ H1(E′′, Z) as a polarized Hodge structure. By Theorem 7
below and the uniqueness property of 2-elementary lattices, there exists an
isomorphism ϕ between S̃ and the Kummer surface of the product E′ ×E′′

such that the diagram (1) commutes. ¤
Theorem 7. Let (X,σ) and (X ′, σ′) be pairs of a K3 surface and its in-
volution. If there exists a Hodge isometry α : H2(X ′, Z) → H2(X, Z) such
that the diagram

H2(X ′, Z) α→ H2(X, Z)
σ∗ ↓ ↓ σ′∗

H2(X ′, Z) α→ H2(X, Z)

commutes, then there exists an isomorphism ϕ : X → X ′ such that ϕσ =
σ′ϕ.

Proof. If neither σ nor σ′ has a fixed point, this is the global Torelli theorem
for Enriques surfaces. The proof in [1, Chap. VIII, §21], especially its key
Proposition (21.1), works in our general case too. ¤

Assume that (S, σ) is of Kummer type. Since (disc NK)(discNR) = 4 ·
disc N , the orthogonal sum NK ⊥ NR is of index two in N . Therefore,
there exists a pair of nonzero 2-torsion elements αK ∈ ANK

= (1
2NK)/NK

and αR ∈ ANR
= (1

2NR)/NR such that N = NK + NR + Z(xK , xR), where
xK ∈ 1

2NK and xR ∈ 1
2NR are representatives of αK and αR, respectively.

This pair (αK , αR) is uniquely determined from the involution σ. We call
it the patching pair of σ. Since NK and NR are orthogonal in N , we have
qNK

(αK) + qNR
(αR) = 0 in Z/2Z.

Definition 8. A numerically trivial involution σ of Kummer type, or a
patching pair (αK , αR), is of even type or of odd type according as the com-
mon quadratic value qNK

(αK) = qNR
(αR) ∈ Z/2Z of patching elements is 0

or 1.

Since NR ≅ U(2) ⊥ U(2), qNR
is a non-degenerate even quadratic space

of dimension 4 over F2. Hence the numbers of patching pairs of even and
odd type are 6 and 9, respectively.

2. Cremona involutions and involutions of odd type

The Enriques surface in Proposition 2 is closely related with a del Pezzo
surface of degree 4 and its small1 involution. For our purpose it is most
convenient to describe it as the blow-up of P1 × P1. We identify P1 × P1

with a smooth quadric surface Q in P3 = P(x1:x2:x3:x4).

1An automorhism of a surface is small if all fixed points are isolated.
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Let p1 = (p′1, p
′′
1), . . . , p4 = (p′4, p

′′
4) be four points of P1 ×P1 which satisfy

(∗∗) p′1, . . . , p
′
4 are distinct and p′′1, . . . , p

′′
4 are distinct.

In terms of a smooth quadric, this is equivalent to
(∗∗′) any line pipj , 1 ≤ i < j ≤ 4, is not contained in Q.

We also assume the condition (∗) in Proposition 2, or equivalently,
(∗′) p1, . . . , p4 ∈ Q ⊂ P3 is not contained in a plane.

We take a system of homogeneous coordinates of P3 such that p1, . . . , p4 are
the coordinate points (1 : 0 : 0 : 0), . . . , (0 : 0 : 0 : 1). Then the defining
equation of Q is of the form

∑
1≤i<j≤4 aijxixj = 0. By the assumption

(∗∗′), all coefficients aij ’s are nonzero. Hence, replacing x1, . . . , x4 by their
suitable constant multiplications, we may and do assume that Q ⊂ P3 is
defined by

(2) a1x2x3 + a2x1x3 + a3x1x2 + (x1 + x2 + x3)x4 = 0

for some nonzero constants a1, a2 and a3 ∈ C. Since Q is smooth, we have

(3) a2
1 + a2

2 + a2
3 − 2a1a2 − 2a1a3 − 2a2a3 ̸= 0.

Now we define a birational involution τ ′ of Q by

(x1 : x2 : x3 : x4) 7→ (
a1

x1
:

a2

x2
:

a3

x3
:
a1a2a3

x4
)

and call it the standard Cremona involution of Q (or P1 × P1) with center
p1, . . . , p4.

Let B be the blow-up of a smooth quadric Q at p1, . . . , p4. By the projec-
tion from p4, B is the blow-up of the projective plane also. By (3), the line
l : x1 +x2 +x3 = 0 and the conic C : a1x2x3 +a2x1x3 +a3x1x2 = 0 intersect
transversally in the projective plane P2 = P(x1:x2:x3). Let q4 and q5 be the
two intersection points. Then B is isomorphic to the blow-up of P2 at the
three coordinate points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) and the two points
q4 and q5. The standard Cremona involution τ ′ is induced by the quadratic
Cremona transformation

(4) (x1 : x2 : x3) 7→ (
a1

x1
:

a2

x2
:

a3

x3
),

which interchanges l and C. In particular, it induces an automorphism of
B, which we denote by τ . The following is easily verified:

Lemma 9. (1) The indeterminacy locus of τ ′ : Q · · · → Q is {p1, . . . , p4}.
(2) For each 1 ≤ i ≤ 4, the conic C ′

i : Q ∩ {xi = 0} is contracted to the
point pi by τ ′.

(3) For each 1 ≤ i ≤ 4, the two lines in Q passing through pi are inter-
changed by τ ′.

(4) The fixed points of τ ′ are (ε1
√

a1 : ε2
√

a2 : ε3
√

a3 :
√

a1a2a3), where
all εi’s are ±1 and satisfy ε1ε2ε3 = −1.
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For the later use we compute the cohomological action of τ . The second
cohomology group H2(B, Z), or equivalently, the Picard group of B is the
free abelian group with the standard Z-basis {h1, h2, e1, . . . , e4}, where h1

and h2 are the pull-backs of the two rulings of P1×P1 and e1, . . . , e4 are the
classes of the exceptional curves over p1, . . . , p4.

Lemma 10. The action of the standard Cremona involution τ on H2(B, Z)
is equal to the composite of the two reflections with respect to the mutually
orthogonal (−2)-classes h1 − h2 and h1 + h2 − e1 − · · · − e4.

Proof. We take the description of B as the blow-up of P2. The cohomology
group H2(B, Z) has {h, e1, e2, e3, f1, f2} as a Z-basis. Here h is the pull-
back of a line and f1 and f2 are the classes of the exceptional curves over
q4 and q5. The cohomological action of the transformation (4) on the blow-
up of P2 at the three coordinate points is the reflection r with respect to
h − e1 − e2 − e3. Since the transformation (4) interchanges q4 and q5, the
cohomological action of τ is the composite of r and the reflection with respect
to f1 − f2. This proves the lemma since f1 = h1 − e4, f2 = h2 − e4 and
h = h1 + h2 − e4. ¤

There are 16 smooth rational curves of degree 1 with respect to the anti-
canonical divisor −KB = 2h1 + 2h2 − e1 − · · · − e4:

0) the exceptional divisors e1, . . . , e4 over p1, . . . , p4,
1) the strict transforms of lines in Q passing through one of p1, . . . , p4,

and
2) the strict transforms Ci’s of the conics C ′

i’s in Lemma 9.
We denote the 8 lines of 1) by Γ1̄ and the 8 lines of 0) and 2) by Γ0̄. The
Kummer surface Km(E′×E′′) is the minimal resolution of the double cover

w2 = (a3x2 + a2x3 + x4)(a3x1 + a1x3 + x4)(a2x1 + a1x2 + x4)(x1 + x2 + x3)

of Q with branch the union of 8 lines in Q passing through one of p1, . . . , p4.
Hence it is the the minimal resolution of the double cover of B with branch
the union of the 8 lines in Γ1̄.

Lemma 11. Km(E′ ×E′′) is the minimal resolution of the double cover of
B with branch the union of the 8 lines Γ0̄ also.

Proof. Put g1 = −KB − h1 = h1 + 2h2 − e1 − · · · − e4. The complete
linear system |g1| is a base point free pencil and the morphism (Φ|h1|, Φ|g1|) :
B → P1 × P1 is of degree 2. The covering involution acts on H2(B, Z) by
α 7→ (g1.α)h1 + (h1.α)g1 − α and hence interchanges Γ0̄ and Γ1̄. Hence we
have our assertion. ¤
Proof of Proposition 2. By the above lemma, the Kummer surface Km(E′×
E′′) is the minimal resolution of the double cover w2 = x1x2x3x4 of Q. Let
βodd be the involution of Km(E′×E′′) induced from the birational involution

(w, x1, x2, x3, x4) 7→ (a1a2a3/w, a1/x1, a2/x2, a3/x3, a1a2a3/x4)
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of the double cover. Then βodd lifts τ and τ ′. The involution εodd := µβodd

has no fixed points by (4) of Lemma 9. σodd is numerically trivial by Propo-
sition 4. ¤
Horikawa expression. Let P1

(1) and P1
(2) be the projective lines whose inho-

mogenous coordinates are y1 = x1/x3 and y2 = x2/x3. Then the surface
B is blow-up of P1

(1) × P1
(2) with center (0, 0), (∞,∞) and the intersection

points of y1 + y2 + 1 = 0 and a2y1 + a1y2 + a3y1y2 = 0. The involution βodd

is induced by the automorphism (y1, y2) 7→ (
a1

a3y1
,

a2

a3y2
) of P1

(1) × P1
(2). By

Lemma 11, Km(E′ × E′′) is the minimal resolution of the double cover

w2 = y1y2(a2y1 + a1y2 + a3y1y2)(y1 + y2 + 1)

whose branch locus is as follows:

(5) y1 = ∞

y2 = ∞

y2 = 0

y1 = 0

Remark 12. In the special case a1 = a2 = a3 = 1, the two elliptic curves
E′ and E′′ are both isomorphic to Eω := C/(Z + Ze2π

√
−1/3). The Enriques

surface S = Km(Eω×Eω)/εodd is studied in [2, (3.5)] as an Enriques surface
whose automorphism group is finite. In fact, Aut S is the extension of Z/2Z,
the group of numerically trivial automorphisms, by the symmetric group of
degree 4.

3. Computation of the periods

Let Km(T ) and Λ = (ΓKm)⊥ be as in Lemma 5. The discriminant group
AΛ is (1

2Λ)/Λ ≅ H2(T, Z/2Z) and the discriminant form qΛ is essentially
the cup product, that is, qΛ(ȳ) = (y ∪ y)/2 mod 2 for y ∈ H2(T, Z).

Let P = {0, a, b, c} ⊂ T2 be a subgroup of order 4, or equivalently, a
2-dimensional subspace of T2. We put EP = E0 + Ea + Eb + Ec ∈ ΓKm. We
denote the Plücker coordinate of P⊥ ⊂ T∨

2 by πP ∈
∧2 T∨

2 ≅ H2(T, Z/2Z)
and regard it as an element of Λ/2Λ. The following is easily verified ([1,
Chap. VIII, §5]):

Lemma 13. (EP mod 2) + πP = 0 holds in H2(Km(T ), Z/2Z).

Now we specialize Km(T ) to Km := Km(E′×E′′) of product type. Two
rulings of P1 × P1 give two elliptic fibrations Km −→ P1. We denote the
classes of these fibers by h̃1 and h̃2 ∈ H2(Km, Z). These h̃1 and h̃2 generate
a rank 2 sublattice of Λ which is isomorphic to U(2). Λ is the orthogonal
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(direct) sum of 〈h̃1, h̃2〉 and N−, the anti-invariant part of the action of µ.
As we saw in the proof of Proposition 6, N− is isomorphic to U(2) ⊥ U(2)
as a lattice.

Observation 14. A subgroup P of order 4 of (E′ ×E′′)2 is naturally asso-
ciated with a numerically trivial involution of Kummer type:

(1) Let a = (a′, a′′) ∈ (E′ × E′′)2 be a 2-torsion point as in Example 1
and we set P := {0, a, (a′, 0), (0, a′′)}. Then P is of order 4 and the
Plücker coordinate πP belongs to N−/2N−.

(2) Let P ⊂ T2 be a subgroup of order 4 such that

P ∩ ((E′)2 × 0) = P ∩ (0 × (E′′)2) = 0

and πP the Plücker coordinate. Then πP−h̃1−h̃2 belongs to N−/2N−.
Let βP be the involution of Km induced by the standard Cremona
involution τ ′ of P1 × P1 with center the image of P . All βodd’s of
Proposition 2 are obtained from βP ’s.

In both cases, P ⊂ (E′ × E′′)2 is a Göpel subgroup, that is, P is totally
isotropic with respect to the Weil pairing.

A subgroup P ⊂ T2 of order 4 is Göpel if and only if the Plücker coordinate
πP is parpendicular to h̃1 + h̃2. Hence either πP or πP − h̃1 − h̃2 belongs
to N−/2N−. There are exactly 15 Göpel subgroups. 9 of them satisfy the
above (1) and 6 satisfy (2). All 9 odd elements and 6 even non-zero elements
of N−/2N− are obtained in the way of (1) and (2), respectively.

Remark 15. The number of non-Göpel subgroups of order 4 is 20. By
adding h̃1 or h̃2, one obtain a 2 to 1 map from the set of non-Göpel subgroups
to {x ∈ N−/2N− | (x2) = 0}.

Now we are ready to compute the patching pair for Examples 1 and
Proposition 2.

Lemma 16. Let Π ∈ Λ be a representative of πP ∈ Λ/2Λ.
(1) An Enriques involution εev of Example 1 is of even type and the patch-

ing pair is (Σ/2, Π/2) with Σ := E0 − Ea + E(a′,0) − E(0,a′′).
(2) An Enriques involution εodd of Proposition 2 is of odd type and the

patching pair is ((h̃1 + h̃2 − EP )/2, (Π − h̃1 − h̃2)/2).

Proof. Since σR = µ, NR coincides with N−. Hence the discriminant form
of NK is essentially the cup product on H2(T, Z/2Z). Here we use the latter
for computation.

(1) Since βev is induced by the translation of E′ ×E′′ by a, Σ belongs to
NK . By Lemma 13, Σ + Π is divisible by 2. Hence the second half of (1)
follows. Since πP is the Plücker coordinate, 1

2(πP ∪ πP ) = 0 ∈ Z/2Z and σ
is of even type.

(2) h̃1 + h̃2 −EP belongs to NK by virtue of Lemma 10. The second half
of (2) follows from this and Lemma 13. εodd is of odd type since 1

2(πP − h̃1−
h̃2)∪ (πP − h̃1 − h̃2) = 1

2(πP ∪ πP ) + 1
2(h̃1 + h̃2)∪ (h̃1 + h̃2) = 1 ∈ Z/2Z. ¤
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Proof of Theorem 3. Let ε be an Enriques involution of the Kummer surface
Km = Km(E′ × E′′) which commutes with µ. Let σ be the involution of
the Enriques surface S := Km/ε induced by µ. Let (αK , αR) ∈ ANK

×ANR

be the patching pair of σ. NR coincides with N− since σR = µ in our
situation Recall that NR(1/2) is isomorphic to U ⊥ U as a lattice and
isomorphic to H1(E′, Z) ⊗ H1(E′′, Z) as a polarized Hodge structure. In
particular, (1

2NR)/NR is isomorphic to the tensor product (E′)2 ⊗ (E′′)2.
By this isomorphism, 0 ̸= αR ∈ (1

2NR)/NR corresponds to a′⊗ a′′ ∈ (E′)2 ⊗
(E′′)2 or to an isomorphism ϕ : (E′)2

∼→ (E′′)2 according as (αK , αR) is
of even type or of odd type. ((E′)2 is identified with its dual since it is
of dimension 2 over F2.) In the even case S is isomorphic to the Enriques
surface Km/εev of Example 1 with a = (a′, a′′) by Lemma 16 and the global
Torelli theorem for Enriques surfaces since the group of numerically trivial
automorphisms of S is cyclic by [3, (1.1)].

Assume that (αK , αR) is of odd type.

Claim. There exists no isomorphism from E′ to E′′ whose restriction to the
2-torsion subgroups is ϕ.

Proof. Assume the contrary and let Φ ⊂ E′ × E′′ be the graph of such an
isomorphism. Then Φ − E′ × 0 − 0 × E′′ is a divisor of self-intersection −2
and its class belongs to H1(E′, Z) ⊗ H1(E′′, Z) ⊂ H2(E′ × E′′, Z). Hence
NR ⊂ H2(Km, Z) contains an algebraic cycle c′ of self-intersection number
−4 such that c′/2 represents αR. Since NK ≅ E8(2), αK is represented by a
(−4)-element c ∈ NK . Then x := (c + c′)/2 belongs to N by the definition
of patching pairs and is algebraic since c is orthogonal to H0(Ω2) ⊂ NR⊗C.
Since (x2) = −2, either x or −x is effective by the Riemann-Roch theorem.
This is a contradiction since ε(x) = −x. ¤

Let P ⊂ T2 be the graph of ϕ and put P = {(p′i, p′′i )}1≤i≤4 as in Propo-
sition 2. Then, by the claim, (p′1, . . . , p

′
4) and (p′′1, . . . , p

′′
4) are not projec-

tively equivalent and we obtain an Enriques surface Km/εodd. Again, by
Lemma 16 and the global Torelli theorem, the Enriques surface S is isomor-
phic to that obtained from the image of P as in (2) of Observation 14. By
the same argument as the even case, we have (S, σ) ≅ (Km/εodd, σodd). ¤

4. Appendix: Kummer type is not cohomologically trivial

Contrary to the erroneous Proposition (4.8) of [3], the involution of Ex-
ample 1 is not cohomologically trivial.

Theorem 17. A numerically trivial involution of Kummer type is not co-
homologically trivial.

Proof. We prove our assertion by constructing an elliptic fibration.
Let {p′1, . . . , p′4} and {p′′1, . . . , p′′4} be the branch of the double coverings

E′ → P1 ≅ E′/(−id) and E′′ → P1 ≅ E′′/(−id), respectively. The Kummer
surface Km(E′×E′′) is the minimal resolution of the double cover of P1×P1
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with branch

(p′1 × P1 ∪ · · · ∪ p′4 × P1) ∪ (P1 × p′′1 ∪ · · · ∪ P1 × p′′4).

More precisely, it is the double cover of the blow-up of P1 × P1 at the 16
points (p′i, p

′′
j ), i, j = 1, . . . , 4, with branch the strict transform of these eight

rational curves.

p′′1

p′′2

p′′3

p′′4

p′1 p′2 p′3 p′4

The fixed locus of µ is the inverse images of these strict transform. We
denote them by

(A1 ⊔ · · · ⊔ A4) ⊔ (B1 ⊔ · · · ⊔ B4).
The involution ε := µβ of Example 1 acts on this disjoint union. Renum-
bering A1, . . . , A4 and B1, . . . , B4, we may assume that

ε(Ai) = Ai+1 and ε(Bi) = Bi+1

for i = 1, 3. Then ε interchanges two divisors A1 + A3 + B2 + B4 and
A2 + A4 + B1 + B3. Let Λ be the linear pencil spanned by their images

H1 := p′1 × P1 + p′3 × P1 + P1 × p′′2 + P1 × p′′4

and
H2 := p′2 × P1 + p′4 × P1 + P1 × p′′1 + P1 × p′′3

on P1 × P1. Then Λ induces elliptic fibrations

ΦΛ : Km(E′ × E′′)/µ → Λ(≅ P1)

of the rational surface and

Km(E′ × E′′) → Λ̃(≅ P1)

of the Kummer surface. The latter is the base change of the former by
the double covering Λ̃ → Λ with branch [H1] and [H2], and descends to an
elliptic fibration f of the Enriques surface Km(E′ × E′′)/ε.

The action of 〈ε, µ〉 ≅ Z/2Z × Z/2Z on Km(E′ × E′′) induces the action
of Z/2Z × Z/2Z on Λ̃ ≅ P1. In our cases this action is effective (and hence
of Heisenberg type). Let ε̄ and µ̄ be the automorphisms of Λ induced by ε
and µ, respectively. ε̄ interchanges the points [H1] and [H2] underneath the
singular fibers. µ̄ fixes exactly these two points, but the corresponding fiber
of the elliptic fibration f on the Enriques surface is not multiple. Since µ̄ is
not the identity on Λ̃/ε̄, the involution µ mod ε interchanges two multiple
fibers of f . Let G1 and G2 be the reduced part of the two multiple fibers of
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f . Since the linear equivalence classes of G1 and G2 differ by the canonical
class, µ mod ε is not cohomologically trivial.

For ε = εodd in Proposition 2, we have ε(Ai) = Bi for every i = 1, . . . , 4,
since a Cremona involution interchanges p′i × P1 and P1 × p′′i for every i =
1, . . . , 4. The above argument works literally in this case too. Now our
assertion follows from Theorem 3. ¤

Now we are ready to complete the classification of numerically trivial
involutions, correcting [3].

At the 6th line in [3, p. 388], it is erroneously stated that the common
value qT (α) = qT ′(α′) ∈ Z/2Z is nonzero in the case where T ′, or NR, is
isomorphic to U(2) ⊥ U(2). But the value can be both 0 and 1 mod 2. We
call a primitive embedding of T (≅ E8(2)) into N(≅ E8(2) ⊥ U(2) ⊥ U)
even or odd accordingly. Then Proposition (2.6) in [3] should be replaced by

Proposition 18. Let T1 and T2 be primitive sublattices of N isomorphic to
E8(2). If their orthogonal complements T ′

1 and T ′
2 are isomorphic to each

other and if in addition they have the same parity in the case T ′
1 ≅ T ′

2 ≅
U(2) ⊥ U(2), then there exists an isometry of N which maps T1 and T ′

1 onto
T2 and T ′

2, respectively.

Let P be the set of periods of E8(2)-polarized Enriques surfaces as defined
in [3, p. 388]. Then P is the disjoint union of P1 and P2 for which the
orthogonal complements of E8(2) ⊂ N are isomorphic to U ⊥ U(2) and
U(2) ⊥ U(2), respectively. The latter decomposes into two parts, P ev

2 and
P odd

2 , according to the parity. Corollary (2.7) in [3] should be replaced by

Corollary 19. P1/Γ, P ev
2 /Γ and P odd

2 /Γ are irreducible.

Here Γ is the arithmetic group acting on the 10-dimensional Hermitian
symmetric domain Ω− of type IV such that the quotient Ω−/Γ is the moduli
space of Enriques surfaces. In fact, P ev

2 /Γ parametrizes Example 1 and an
open subset of P odd

2 /Γ parametrizes Enriques surfaces in Proposition 2.

Theorem 20. Every pair of an Enriques surface and a cohomologically
trivial involution is obtained in the way of Example 2 of [3]. Moreover, they
are parametrized by P1/Γ.

Proof. Let σ be a cohomologically trivial involution of an Enriques surface
S. NR is isomorphic to U ⊥ U(2) by Theorem 17, and the periods of such
involutions form an irreducible variety by Corollary 19. Hence (S, σ) is a
deformation of Example 2 of [3]. As is shown in [3, §5], the fixed locus
of the anti-symplectic involution is the disjoint union of an elliptic curve E
and 8 smooth rational curves E1, . . . , E8 for Example 2. Therefore, the same
holds for the anti-symplectic involution σR. Let f : S̃ → P1 be the elliptic
fibration defined by the linear system |E|. f descends to an elliptic fibration
of the quotient rational surface S̃/σR. We denote its minimal fibration by
fR : R → P1. The rational surface R is obtained from S̃/σR by blowing
down an exceptional curve of the first kind 8 times. For Example 2, it is
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easily checked that the image of
∑8

i=1 Ei is a singular fiber of type I8 of fR

and that fR has 4 sections. The same holds for (S, σ) as a deformation of
Example 2. Hence, as is claimed in [3, §5], the configuration of the elliptic
curves E and 20 rational curves is the same as Example 2, and (S, σ) is
obtained in the way of Example 2. The second assertion follows from the
Torelli type theorem and [3, (1.1)], the uniqueness of cohomologically trivial
involution. ¤

Remark 21. The fixed locus of the anti-symplectic involution σR is the
disjoint union of 8 smooth rational curves E1, . . . , E8 for numerically trivial
involutions of Kummer type. Our (main) Theorem 3 can be also proved
using certain elliptic fibrations containing E1, . . . , E8 in their fibers though
the existence of such fibrations is not straightforward as above and they are
not unique. Furthermore, Theorem 20 can be proved using periods also.
These alternative proofs will be discussed elsewhere.

5. Appendix : Rational curves on an Enriques surface of
Proposition 2

Let B, τ , Γ0̄ and Γ1̄ be as in Section 2. The dual graph of the 8 smooth
rational curves in Γ0̄ is a cube:

(6)

C2

e3

C1
e2

C4

e4C3

e1

The automorphism τ sends each vertex of the cube Γ0̄ to its antipodal. The
same holds for Γ1̄. The following is easily verified:

(†) for every curve m in Γ0̄ (resp. Γ1̄), there exists an antipodal pair of
vertices n and n′ in Γ1̄ (resp. Γ0̄) such that (m.n) = (m.n′) = 1 and that m
is disjoint from other curves in Γ1̄ (resp. Γ0̄).

Therefore, the quotient graph (Γ1̄ ∪ Γ0̄)/τ is as follows:
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Γ1̄/τ Γ0̄/τ

The Kummer surface Km(E′ ×E′′) is the double cover of B with branch
the union of the 8 curves in Γ1̄. The union has 12 nodes corresponding to
the 12 edges of Γ1̄. The pull-backs of the curves in Γ0̄ are smooth rational
curves on Km(E′×E′′) by (†). Hence Km(E′×E′′) has 28 smooth rational
curves, 12 of which come from the nodes of the double cover and the rest
from Γ0̄ ∪ Γ1̄. Since the involution τ lifts to εodd of Proposition 2, we have

Proposition 22. On the Enriques surface Km(E′ × E′′)/εodd of Proposi-
tion 2, there are 14 smooth rational curves whose dual graph is as follows:

(7)

The proposition, together with [3, (4.7)], shows the ‘only if’ part of [2,
Theorem (1.7), (i)] in the case of Kummer type.
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