
A fast computational method for potential flows in multiply

connected coastal domains

Mohamed M.S. Nasser∗, Takashi Sakajo†, Ali H.M. Murid‡, Lee Khiy Wei‡

Abstract

We present a fast and accurate numerical method for constructing incompress-
ible, inviscid and irrotational flows in two-dimensional coastal domains, which are
unbounded multiply connected domains above an infinitely long coastline boundary.
In the numerical method, we utilize a numerical conformal mapping method based on a
boundary integral equation with the generalized Neumann kernel in order to construct
conformal mappings from coastal domains onto five of Koebe’s canonical domains. The
numerical method is fast and accurate, since it just requires O((m + 1)n lnn) opera-
tions and it converges with O(e−cn) for coastal domains of connectivity m + 1, where
n is the number of nodes in discretizing each smooth boundary component and c is a
positive constant. With some examples, we also show that it is applicable to arbitrary
coastal domains with high connectivity and complex geometry.

Keywords. Potential flows; Multiply connected domains; Generalized Neu-
mann kernel; Numerical conformal mappings; Kirchhoff-Routh path function

MSC. 30C30, 76B07, 86A05, 76B47.

1 Introduction

The sea areas surrounding Penang Island and Japanese islands as shown in Figure 1 are
represented by flow domains whose boundaries consist of a long coastline of a continent
and offshore islands. In these mesoscale flow domains, we are concerned with how the
existence of topographic obstacles affects the motion of a large eddy, which is a flow
domain with a circulation, since the eddy transports mass, momentum and substances
such as salt and minerals in oceans. For instance, Richardson and Tychensky observed a
collision of a subsurface eddy to seamounts in the Canary Basin [26]. Fratantoni et al. [9]
investigated whether a big ocean current, called North Brazil current ring, can pass the
multiple gaps of southeastern Caribbean islands into the Gulf of Mexico. Moreover, it is
important to investigate the interaction with not only topographic obstacles, but also a
global sea current, an inflow from a river mouth and a flow induced by the other large
eddies, since the eddy is also advected by these ambient flows.

In some flow domains along coastlines, the vertical flow scale is often sufficiently small
compared to the horizontal one, and we thus regard the flow domains as unbounded
multiply connected domains in the two-dimensional space exterior to an infinitely long
coastline boundary and multiple offshore obstacles, which we refer to as coastal domains
in the present paper. For the sake of theoretical convenience, we consider potential flows
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in coastal domains, in which the incompressible and inviscid flows are assumed to be
irrotational except a finite number of point singularities. Then, by identifying the two-
dimensional space with the complex plane with z = x + iy, the velocity field of potential
flows (u(x, y), v(x, y)) is obtained from an analytic function W (z), called a complex poten-
tial, via u − iv = W ′(z). In the theory of potential flows, we assume that a flow domain
with a big circulation is confined into a point and that the vortex eddy is modelled as
a point vortex whose velocity field is induced by a complex potential with a logarithmic
singularity. Johnson and McDonald investigated the motion of a point vortex in a coastal
domain whose boundaries consist of a straight coastline and a circular obstacle [11] and
in a flow domain near multiple gaps between slit segments [12]. In these studies, since the
boundary shapes of obstacles are simple, we can make the best use of analytic formulas of
complex potentials and we are thus able to investigate the interactions between the vortex
motion and the configurations of the obstacles qualitatively by analytic means.

(a) (b)

Figure 1: Coastal domains around (a) Penang Island and the coastline of west Malaysia,
and (b) Japanese islands and the coastline of East Asia.

One extension of the preceding studies of potential flows is dealing with real topography
of coastal domains as shown in Figure 1. It is in principle possible to derive complex
potentials by constructing a conformal mapping from a given real coastal domain to a
canonical multiply connected domain for which analytic expressions of complex potentials
have already been known. However, in practice, it is extremely difficult to construct such
a conformal mapping analytically when the shapes of boundaries become complicated.
Hence we need to rely on numerical conformal mapping techniques. Numerical conformal
mapping methods have been applied to many flow problems. For example, the particle
charge simulation method developed by Amano et al. [1] was used to obtain complex
potentials in multiply connected channel domains with boundaries of arbitrary shapes [29].

In the construction of potential flows, the numerical conformal mapping methods are
required to be fast and accurate in order to consider coastal domains with many obstacles
and with boundaries of arbitrary shapes. Examples of such numerical conformal mapping
methods are presented in [19–23,25,32]. In [19–23], a unified method has been presented
for computing the conformal mapping from multiply connected domains onto Koebe’s 39
canonical slit domains as well as the canonical domain obtained by removing rectilinear
slits from a strip. The method is based on a boundary integral equation with the general-
ized Neumann kernel. Discretizing the integral equation by the Nyström method with the
trapezoidal rule yields an (m+1)n×(m+1)n linear system where m+1 is the multiplicity
of the domain and n is the number of nodes in the discretization of each boundary compo-
nent of the domain. The order of the convergence of the Nyström method is based on the
order of the convergence of the trapezoidal rule which in turn depends on the smoothness
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of the integrand [2, p. 109]. If the integrand is q times continuously differentiable, then
the rate of convergence of the trapezoidal rule is O(1/nq). For infinitely continuously
differentiable integrands, the rate of convergence is O(e−cn) where c is a positive constant
(see [13, p. 223]). The smoothness of the integrand depends on the smoothness of the
boundary of the domain. For C∞ smooth boundaries, the integrands are infinitely contin-
uously differentiable so very accurate results can be obtained. The (m + 1)n × (m + 1)n
linear system can be solved by the generalized minimal residual (GMRES) method com-
bined with the Fast Multipole Method (FMM) in O((m+1)n lnn) operations [23,24]. The
method presented in [25, 32] is based on a boundary integral equations with the adjoint
generalized Neumann kernel. A fast method for solving the integral equations with the
adjoint generalized Neumann kernel is presented in [24].

The purpose of the present paper is constructing potential flows in multiply connected
coastal domains fast and accurately by using these numerical conformal mapping methods.
Let us first state the problem and then give a quick guide showing how to compute
potential flows in Section 2. After constructing three preprocessing conformal mappings
in Section 3 and four canonical conformal mappings in Section 4, we make use of these
conformal mappings to compute potential flows in multiply connected coastal domains
in Section 5. We also show some applications to the coastline of west Malaysia and
the flow domain in the vicinity of East Asia in Figure 1. We then discuss the motion
of a single point vortex as was done by Johnson and McDonald [11, 12]. Final section is
conclusion. In Appendices A and B, we review how to construct conformal mappings using
the generalized Neumann kernel developed in [20, 22, 25]. Appendix C gives a technical
note for the practical numerical computations.

2 Problem setting and a quick guide to the solution

Let us describe the problem considered in this paper and give a list of conformal mappings
required to construct potential flows for the readers’ reference. Figure 2 is a schematic
picture of a multiply connected coastal domain in the complex z-plane, which is an un-
bounded domain above a wall (or a coastline) boundary extending to infinity containing
m obstacles. We focus, in particular, on the domain in the neighborhood of the part
of the wall boundary, say E0, between two points z1 and z2 on it. We assume that the
boundaries of the obstacles E1, E2, . . . , Em are smooth Jordan curves. Let αz, σz denote
fixed points in the coastal domain and βz be a fixed point on the wall boundary E0, which
can be chosen freely when we construct the conformal mappings.

αz

EmE4

E1

σz

E2

E3

E0

z1 βz z2

Figure 2: A coastal domain: a domain exterior to a curved wall (or a coastline) boundary
E0 and m obstacles Ej for j = 1, . . . ,m.

We introduce three preprocessing conformal mappings ζ = H(z), ξ = Φ(ζ) and η =
Υ(ξ) in Section 3, and four canonical conformal mappings w = ωD(ξ), w = ωS(ξ), w =
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Potential flows Conformal mappings Subsections
Point vortex w = ωD(ξ), ξ = Φ(ζ), ζ = H(z) 3.1, 3.2, 4.1, 5.1

Source-sink pair w = ωS(ξ), ξ = Φ(ζ), ζ = H(z) 3.1, 3.2, 4.2, 5.1
Uniform flow w = ωU (η), η = Υ(ξ), ξ = Φ(ζ), ζ = H(z) 3.1, 3.2, 3.3, 4.3, 5.1

Source at boundary w = ωB(η), η = Υ(ξ), ξ = Φ(ζ), ζ = H(z) 3.1, 3.2, 3.3, 4.4, 5.1
Kirchhoff-Routh function w = ωD(ξ), ξ = Φ(ζ), ζ = H(z) 3.1, 3.2, 4.1, 5.2

Table 1: List of conformal mappings used in order to construct complex potentials for
various flow elements in multiply connected coastal domains and the subsections to be
referred in this paper.

ωU (η) and w = ωB(η) in Section 4. Potential flows in this coastal domain are defined
as their compositions. Table 1 shows which conformal mappings are required in order
to construct the complex potentials for various flow elements. The conformal mappings
H(z) and Φ(ζ) are expressed analytically, while the conformal mappings Υ(ξ), ωD(ξ),
ωS(ξ), ωU (η) and ωB(η) are constructed by numerical means. On the construction of
the conformal mappings, there arise Riemann-Hilbert problems and their solutions are
obtained by solving a boundary integral equation with the generalized Neumann kernel
explained in Appendices A and B.

3 Preprocessing conformal mappings

3.1 Conformal mapping to the domain Λ

Let H be the linear transformation

ζ = H(z) =
2

z2 − z1
(z − z1) − 1, (1)

which maps the coastal domain in the z-plane to a multiply connected domain Λ in the
ζ-plane as shown in Figure 3(a). The wall boundary E0 is transformed into a simple arc
L′

0 between −1 and +1 and the boundaries of the obstacles E1, E2, . . . , Em are mapped
to smooth Jordan curves L1, . . . , Lm. Let L′′

0 be the part of the real line from −∞ to −1
and L′′′

0 be the part of the real line from +1 to +∞. We assume that the part of the wall
on the left of z1 is mapped to L′′

0 and the part of the wall on the right of z2 is mapped to
L′′′

0 . The images of αz and σz are αζ and σζ ∈ Λ, respectively, and H(βz) = βζ ∈ L′
0.

Let L0 be an infinite simple curve in the ζ-plane that consists of three parts L′
0, L′′

0

and L′′′
0 , i.e., L0 = L′

0 ∪L′′
0 ∪L′′′

0 . Then Λ becomes a multiply connected domain obtained
by removing m simply connected domains from the half ζ-plane above L0. The boundary
L of the domain Λ is given by L = L0 ∪ L1 ∪ · · · ∪ Lm. The orientation of the boundary
L is taken so that the domain Λ is always on the left-hand side of L, which are shown in
Figure 3(a) by bold arrows.

3.2 Conformal mapping to the domain D

In the second step, we map the domain Λ to a bounded multiply connected domain D in
Figure 3(b). We introduce the Möbius transform

ξ = Φ(ζ) =
1 + iτζ

ζ + iτ
, (2)

where a positive real constant τ is chosen so that −iτ is located below L0 and i/τ located
above L0. The Möbius transform ξ = Φ(ζ) maps Λ in the ζ-plane to the bounded domain

4



(a)
Λ

αζ

LmL4

L1σζ

L2

L3

−∞ + 0i · · · · · · +∞ + 0i
L′′

0
−1 βz L′

0
+1 L′′′

0

i i(b) (c)

D S

αξ αη
−1 +1 Υ(−1) +1

Cm Γm

C1 Γ1
C2

Γ2

σξ
ση

C3 Γ3

C4 Γ4

C0

Γ0

βξ −i

Figure 3: (a) An unbounded multiply connected domain Λ in the ζ-plane. (b) A bounded
multiply connected domain D in the ξ-plane. (c) A bounded domain inside the unit circle
S in the η-plane.

D in the ξ-plane and the image of the boundary L0 of Λ becomes a closed curve, say
C0. For j = 1, . . . ,m, Cj = Φ(Lj) are closed smooth Jordan curves inside D. Thus the
boundary C of the domain D becomes C = C0 ∪ C1 ∪ · · · ∪ Cm. The orientation of the
boundary is such that the domain D is on the left-hand side of C.

In this paper, we may assume that τ = 1, without loss of generality, i.e., i is always
above L0 and −i is always below L0. Hence, the function Φ satisfies Φ(∞) = i, Φ(−1) = −1
and Φ(1) = 1. The mapping function ξ = Φ(ζ) maps the points αζ , σζ in Λ to points
αξ = Φ(αζ), σξ = Φ(σζ) in D and the point βζ on L0 to the point βξ on C0, respectively.
See Figure 3(b).

3.3 Conformal mapping to the domain S

In order to compute the conformal mappings to the canonical domains ΩU and ΩB in
Section 4, we need another mapping from the domain D to a bounded multiply connected
domain S whose external boundary is the unit circle. This can be done by mapping the
simply connected domain inside C0 onto the unit disc. According to [20], the Riemann
mapping function R(ζ) that maps the boundary of the simply connected domain inside
C0 onto the unit disk is represented by

R(ξ) = c (ξ − αξ) e(ξ−αξ)f̊(ξ), (3)

where c is a real positive constant. Since the boundary C0 is mapped to the unit circle,
the boundary condition of this function is given by |R(ξ)| = 1 on ξ ∈ C0. Taking the
logarithm of the absolute value of (3) and evaluating it on the boundary C0, we obtain
the equation for the function f̊ on the boundary C0,

Re[(ξ − αξ)f̊(ξ)] = γ̊(ξ) + h̊(ξ), (4)

5



where
γ̊(ξ) = − log |ξ − αξ|, h̊(ξ) = log

|R(ξ)|
c

= log
1
c
.

This is a Riemann-Hilbert problem, whose unique solution is given by solving the bound-
ary integral equation with the generalized Neumann kernel explained in Appendix B. In
addition, let T (z) be the Möbius transformation that maps the unit disk onto itself and
the points R(1), R(i) and R(βξ) into 1, i and −i, respectively, i.e.,

T (z) =
(1 − i)(z − R(βξ))(R(i) − R(1)) + i(z − R(1))(R(i) − R(βξ))
(1 − i)(z − R(βξ))(R(i) − R(1)) − (z − R(1))(R(i) − R(βξ))

.

Then the function
Υ(ξ) = T (R(ξ)) (5)

conformally maps the simply connected domain inside C0 to the unit disk with Υ(1) = 1,
Υ(i) = i and Υ(βξ) = −i. Hence, the conformal mapping η = Υ(ξ) maps the domain
D in the ξ-plane onto a multiply connected domain S in the η-plane with the boundary
Γ = Γ0 ∪ Γ1 ∪ · · · ∪ Γm in Figure 3(c). The boundary Γ0 is the unit circle and the other
boundaries Γj = Υ(Cj) for j = 0, 1, . . . ,m are smooth Jordan curves inside Γ0. The
orientation of the boundary Γ is chosen so that S is on the left-hand side of Γ. The
function Υ maps the point αξ in D to a point αη in S and maps the three points 1, i and
βξ on C0 to the three points 1, i and −i on Γ0, respectively.

4 Conformal mappings to canonical domains

4.1 Conformal mapping to the unit disk with circular slits ΩD

Let ΩD be a canonical multiply connected domain inside the unit circle with m finite
circular slits Bj for j = 1, . . . ,m as shown in Figure 4(a). We construct the conformal
mapping w = ωD(ξ) from the domain D in the ξ-plane onto a canonical domain ΩD in
the w-plane satisfying the following boundary condition:

|ωD(ξ)| = Rj , ξ ∈ Cj , j = 0, 1, . . . ,m, (6)

where R0 = 1 and R1, R2, . . . , Rm are unknown real constants. According to [20, §4.2],
the mapping function ωD can be written as

w = ωD(ξ) = c(ξ − αξ)e(ξ−αξ)f(ξ), (7)

where c is a real constant and f is an auxiliary analytic function on D. By taking the
logarithm of the absolute value of (7) and evaluating it on the boundary C = C0 ∪ C1 ∪
· · · ∪ Cm of the domain D with (6), we obtain the following Riemann-Hilbert problem.

Re[(ξ − αξ)f(ξ)] = γ(ξ) + h(ξ), ξ ∈ C, (8)

where

γ(ξ) = − log |ξ − αξ|, h(ξ) = log
|ωD(ξ)|

c
=

(
log

1
c
, log

R1

c
, . . . , log

Rm

c

)
.

The unique solution of this problem is obtained by solving the boundary integral equation
with the generalized Neumann kernel in Appendix A. It gives us the boundary value of f
and the constants c, Rj for j = 1, . . . ,m. The value of the function f(ξ) in the interior
points of the domain D is evaluated from its boundary value through Cauchy’s integral
formula.
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ωD(i)

ΩD ωD(1)
ωD(−1)

ωD(αξ)
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Bm
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ΩS

B2

O
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B0

Bm

(a) (b)

Figure 4: Canonical multiply connected domains in the w-plane; (a) ΩD and (b) ΩS .

4.2 Conformal mapping to radial slits domain ΩS

Figure 4(b) shows a canonical domain ΩS in the w-plane with m + 1 finite radial slits Bj

for j = 0, 1, . . . ,m emanating from the origin. Let w = ωS(ξ) be the conformal mapping
from the domain D in the ξ-plane onto ΩS . The boundary condition of this function ωS

is given by
arg(ωS(ξj)) = Rj , ξ ∈ Cj , j = 0, 1, . . . ,m, (9)

where R0, R1, . . . , Rm are some real constants. It is shown in [20, §4.4] that the function
ωS is written as

ωS(ξ) =
(

1
ξ − αξ

− 1
σξ − αξ

)
ei(ξ−αξ)f(ξ), (10)

where f is an auxiliary analytic function on D. Taking the argument of both sides of (10)
and evaluating it on the boundary C = C0 ∪C1 ∪ · · · ∪Cm of the domain D with (9) give
rise to the following Riemann-Hilbert problem.

Re[(ξ − αξ)f(ξ)] = γ(ξ) + h(ξ), ξ ∈ C, (11)

where

γ(ξ) = − arg
(

1
ξ − αξ

− 1
σξ − αξ

)
, h(ξ) = arg(ωS(ξ)) = (R0, R1, . . . , Rm) . (12)

The unique solution of this problem is again obtained by solving the boundary integral
equation with the generalized Neumann kernel in Appendix A, which gives the boundary
value of f(ξ) and the constants Rj for j = 0, 1, . . . ,m.

4.3 Conformal mapping to the half plane with horizontal slits ΩU

Figure 5 shows a canonical domain ΩU in the upper half w-plane Im w > 0 with m
horizontal rectilinear slits Bj for j = 1, . . . ,m. Let w = ωU (η) be the conformal mapping
from the bounded multiply connected domain S in the η-plane onto the canonical domain
ΩU satisfying the following boundary condition on Γ = Γ0 ∪ Γ1 ∪ · · · ∪ Γm.

Im[ωU (η)] = Rj , η ∈ Γj , j = 0, 1, . . . ,m, (13)

where R0 = 0 and R1, R2, . . . , Rm are some real constants. According to [22, §4.5], the
function ωU can be written in the form of

w = ωU (η) = Ψ(η) + i(η − αη)f(η) − ic, (14)
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where c is an unknown real constant, f is an auxiliary analytic function in S, and Ψ is
given by

Ψ(η) =
1 − iη
η − i

. (15)

Evaluating the imaginary part of (14) on the boundary Γ = Γ0 ∪ Γ1 ∪ · · · ∪ Γm with (13)
yields the following Riemann-Hilbert problem.

Re[(η − αη)f(η)] = γ(η) + h(η), η ∈ Γ, (16)

where

γ(η) = − Im[Ψ(η)], h(η) = Im[ωU (η)] + c = (c,R1 + c, . . . , Rm + c).

It is clear from (15) that Ψ(η) is on the real line when η ∈ Γ0. Hence, γ(η) = − Im[Ψ(η)] =
0 for η ∈ Γ0, i.e., the function γ is given by

γ(η) =

{
0, η ∈ Γ0,

− Im[Ψ(η)], η ∈ Γj , j = 1, . . . ,m.

The boundary integral equation with the generalized Neumann kernel in Appendix A with
ξ being replaced by η gives the solution of this problem. We thus obtain the boundary
value of f and the constants c, Rj for j = 1, . . . ,m. The value of the function f(η) in
the interior points of the domain S can be evaluated from its boundary values through
Cauchy’s integral formula.

ΩU

ωU(αη)
BmB4

B1
B2B3

ωU(ση)

ωU(Υ(−1)) B0 ωU(−i) ωU(1)

Figure 5: The canonical multiply connected domain ΩU in the w-plane.

4.4 Conformal mapping to the half plane with radial slits ΩB

An upper half plane Im w > 0 in the w-plane containing m finite radial slits Bj for
j = 1, . . . ,m is denoted by ΩB as shown in Figure 6. We construct the conformal mapping
w = ωB(η) from the domain S in the η-plane onto the canonical domain ΩB with the
following boundary conditions:

Im[ωB(η)] = 0, η ∈ Γ0,

arg[ωB(η)] = Rj , η ∈ Γj , j = 1, . . . ,m,
(17)

where R1, R2, . . . , Rm are some real constants. The function ωB can be expressed as [22,
§4.6]

w = ωB(η) = Ψ(η)ei(η−αη)f(η)−ic, (18)

where Ψ is given by (15), c is a real constant, and f is an auxiliary analytic function in
S. Taking the logarithm of (18), we obtain

log ωB(η) = log Ψ(η) + i(η − αη)f(η) − ic. (19)
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Owing to (15), we have Ψ(η) is real for η ∈ Γ0, Ψ(−i) = 0 and Ψ(i) = ∞. Similarly, it
follows from the boundary condition (17) and the functional form (18) that ωB(η) is real
for η ∈ Γ0, ωB(−i) = 0, and ωB(i) = ∞. Since the orientation of Γ0 is taken so that S is
on the left of Γ0, then the orientation of both curves Ψ(Γ0) and ωB(Γ0) goes so that the
upper half plane is on their left. Hence, for η ∈ Γ0, the real functions Ψ(η) and ωB(η)
have the same sign. Hence, by taking the imaginary part of (19) on the boundary Γ0, we
obtain

Re[(η − αη)f(η)] = c, η ∈ Γ0. (20)

For η ∈ Γj , j = 1, 2, . . . ,m, taking the imaginary part of both sides of (19) and using (17),
we obtain

Re[(η − αη)f(η)] = − Im[log Ψ(η)] + Rj + c, η ∈ Γj . (21)

Hence, the equations (20) and (21) become the following Riemann-Hilbert problem,

Re[(η − αη)f(η)] = γ(η) + h(η), η ∈ Γ, (22)

where

γ(η) =

{
0, η ∈ Γ0,

− Im[log Ψ(η)], η ∈ Γj , j = 1, . . . ,m,
, h(η) = (c,R1 + c, . . . , Rm + c).

The solution of this problem is obtained by solving the boundary integral equation with
the generalized Neumann kernel in Appendix A with ξ being replaced by η, which gives
rise to the boundary value of f and the constants c, Rj for j = 1, . . . ,m. The value of the
function f(η) in the interior points of the domain S can be evaluated from its boundary
values through Cauchy’s integral formula.

ΩB

ωB(αη)

BmB4

B1

ωB(ση)
B3

B2

ωB(Υ(−1)) ωB(−i) B0 ωB(1)

Figure 6: The canonical multiply connected domain ΩB in the w-plane.

5 Potential flows in the multiply connected coastal domains

5.1 Complex potentials

According to the theory of potential flows, the level curves of Im[W (z)] for a given complex
potential W (z) represent streamlines of the potential flow. Hence, when we construct
complex potentials using the conformal mappings in Sections 3 and 4, it is necessary to
check whether they have the same singularity as the complex potentials in the unbounded
domain without boundary and the imaginary part of W (z) takes a constant value on each
boundary of the domain so that the streamline coincides with the boundary.

Let us remember that 1
2πi log(z−αz) represents the complex potential of a point vortex

located at z = αz in the unbounded complex z-plane without boundary. It follows from

9



αξ = Φ(H(αz)) and (7) that the analytic function

WD(z) =
1

2πi
log FD(z; αz), FD(z; αz) = ωD(Φ(H(z))), (23)

has the same logarithmic singularity in the neighborhood of z = αz and its imaginary
part becomes 1

2π log Rj on the boundary Ej of the coastal domain for j = 0, . . . ,m owing
to (6), which indicates that (23) represents the complex potential for a point vortex at
z = αz. When there are N point vortices at αz1 , αz2 , . . . , αzN with strengths κ1, κ2, . . . ,
κN , its complex potential is given by

W (z) =
1

2πi

N∑
j=1

κj log FD(z; αzj ). (24)

The analytic function

WS(z) =
1
2π

log ωS(Φ(H(z))) (25)

has the same logarithmic singularities as the complex potentials 1
2π log(z − σz) for a sink

and − 1
2π log(z − αz) for a sink in the neighborhood of z = σz and αz, since we have

αξ = Φ(H(αz)), σξ = Φ(H(σz)) and (10). In addition, Im[WS(z)] becomes 1
2π log Rj on

the boundary Ej for j = 0, . . . ,m owing to (9). Hence, the function represents the complex
potential for the flow of a source-sink pair located at z = αz and σz, respectively.

The complex potential for the uniform flow in the unbounded complex plane without
boundary is represented by Uz for a complex constant U , which indicates that it has a
pole singularity in the neighborhood of infinity. Owing to i = Φ(H(∞)), (14) and (15),
the function

WU (z) = ωU (Υ(Φ(H(z)))) (26)

has the pole singularity at infinity and the boundary value of Im[WU (z)] becomes constant
on each Ej . Hence, the function represents the complex potential for a uniform flow in
the z-plane.

Finally, it follows from (1), (2) and (18) that we have Ψ(Υ(Φ(H(βz))) = 0. Then the
function

WB(z) =
1
2π

log ωB(Υ(Φ(H(z)))) (27)

gives rise to the complex potential for the flow induced by a source (or a sink) located at
z = βz on the wall boundary of the coastal domain in the z-plane, since it has the same
singularity as the source in the neighborhood of z = βz and the boundary value of its
imaginary part becomes constant on each Ej owing to (17).

As an example, we consider a coastal domain with five elliptic obstacles, in which
we show streamlines for a uniform flow in Figure 7(a), a source point in Figure 7(b), a
source-sink pair in Figure 7(c), and a vortex point in Figure 7(d), respectively. Figure 7(e)
shows the streamline of the complex potential

UWU (z) +
1

2πi

20∑
j=1

κj log FD(z; αzj ), (28)

where U = 1.5 and κj = ±1 with
∑20

j=1 κj = 0.

5.2 The Kirchhoff-Routh path function

Lin [15,16] considered a special Green function, the hydrodynamic Green’s function G(z; z0),
for a domain D in the z-plane with a logarithmic singularity at z = z0. The Hamilto-
nian H(z1, z2, . . . , zN ) describing the motion of N -point vortices located at zm ∈ D with
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the strength κm ∈ R for m = 1, . . . , N , called the Kirchhoff-Routh path function [27], is
constructed from the Green function as follows:

H(z1, z2, . . . , zN ) =
N∑

m=1

N∑
k=m+1

κmκkG(zm; zk) −
1
2

N∑
m=1

κ2
mg(zm; zm).

Here, the last term g(zm; zm) is called the Robin function and it is defined by

g(zm; zm) = lim
z→zm

g(z; zm),

where
g(z; zm) = −G(z; zm) − 1

2π
log |z − zm|

is a harmonic function in the domain D.
According to Crowdy and Marshall [5], the hydrodynamic Green function G(z; z0) for

unbounded domains with boundaries extending to infinity, which are referred to as coastal
domains in this paper, satisfies the following boundary conditions.

G(z; z0) = Aj , on Ej , j = 1, . . . ,m, (29)∮
Ej

∂G

∂n
ds = 0, j = 1, . . . ,m, (30)

G(z; z0) = 0, on E0, (31)
G(z; z0) = o(1), on a very large circle of radius r0, (32)

for some real constants Aj for j = 1, . . . ,m. Let us recall that the imaginary part of the
complex potential of a point vortex WD(z) is harmonic except the logarithmic singularity
at z = αz and it takes constant values along the boundaries of obstacles Ej for j = 0, . . . ,m
in coastal domains. Hence, the hydrodynamic Green function in coastal domains is given
by

G(z;αz) = − 1
2π

log |FD(z)| .

Consequently, owing to FD(αz) = 0, the Robin function is represented by

g(αz;αz) = lim
z→αz

g(z; αz) = lim
z→αz

1
2π

log
∣∣∣∣FD(z) − FD(αz)

z − αz

∣∣∣∣ =
1
2π

log
∣∣∣∣dFD

dz
(αz)

∣∣∣∣ , (33)

where the point αz is taken arbitrarily in the flow domain. For each point αz, in order
to compute the Robin function g(αz;αz), we need to compute the conformal mapping
w = FD(z) which maps αz in z-plane to the origin of w-plane. Thus, by the chain rule,
we have

g(αz; αz) =
1
2π

log
∣∣∣∣dωD

dξ
(αξ)

dΦ
dζ

(αζ)
dH

dz
(αz)

∣∣∣∣ =
1
2π

log
∣∣∣∣cdΦ

dζ
(αζ)

dH

dz
(αz)

∣∣∣∣ , (34)

where c is the real constant obtained by solving (8).
The Robin function is available to describing the motion of a single point vortex, since

it has been shown in [5] that the trajectory of this vortex corresponds to a contour line of

H(αz) = −κ2

2
g(αz; αz), (35)

where κ denotes the strength of the point vortex. We show in Figure 7(f) contour plots
of (35) for κ = 1 in the coastal domain with five elliptic obstacles. Each contour line
corresponds to an orbit of a single point vortex.
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5.3 Accuracy and efficiency of the numerical methods

5.3.1 Comparison with analytic formula

We compare the numerical results computed by the present method with those by the
analytic formula. As a test bed, we consider the three coastal domains with a straight
coastline that contain three circular obstacles in the complex z-plane as shown in Fig-
ures 8(a)–(c). Under the Möbius transformation

ξ = Φ(H(z)) =
iz − 5i
z + 5

, (36)

these domains become the pre-images of the circular regions interior to the unit circle with
circular inner boundaries in the complex ξ-plane, for which we have the analytic formula
of complex potentials in terms of the Schottky-Klein prime function [5,6]. The Schottky-
Klein prime function is computed by using the MATLAB code with an approximation
parameter N [7].

We use the formula in [5] to evaluate the complex potential WD(z) for the two coastal
domains in Figures 8(a)–(b) for a point vortex at αz = 1.5 + 1.25i. Let WD,n(zk,j)
be the numerical approximation of WD(zk,j) obtained by the present numerical method
at n discretization points along the boundary Lj , i.e. zk,j ∈ Lj for k = 1, . . . , n and
j = 0, . . . ,m. Then, the maximum error is defined as follows.

E(n,m)
∞ = max

0≤j≤m
max

1≤k≤n
|Im[WD,n(zk,j)] − Im[WD(zk,j)]| . (37)

We then compute the Kirchhoff-Routh path function for the two coastal domains in Fig-
ures 8(a)–(b) with the analytic formula given in [6]. Since this function diverges along
the boundaries, we pick 100 points in the coastline domain, which are shown as dots in
Figure 8), and compute the maximum of differences, say Ẽ

(n,m)
∞ , between the analytic and

approximate values evaluated at these points.
The numerical parameter for computing the Schottky-Klein prime function is set N =

100 for the domain of Figure 8(a). In the domain of Figure 8(b), we make the circular
boundaries close to each other but still away from the coastline. Since the analyticity of
the Schottky-Klein prime function is getting worse as the distances between the circular
boundaries are close, a large value of N = 400 is required for computing the Schottky-
Klein prime function for the domain of Figure 8(b). The maximum errors E

(n,3)
∞ and Ẽ

(n,3)
∞

vs. the numbers of the discretization points n for the domain of Figures 8(a,b) are shown
in Figures 9(a,b), which indicate the spectral convergence of O(e−0.11n) and O(e−0.054n),
respectively. See Figure 9(a,b).

When the circular boundaries approach to the coastline as in Figure 8(c), the com-
putation of the Schottky-Klein prime function no longer converges with N = 400, but
the computation becomes out of memory for N = 800. On the other hand, since our
method still converges, we use the numerical data obtained by using our method with
n = 16384 as the analytic values. The point vortex in the complex potential WD(z) is
located at αz = 4 in this case. The maximum errors in Figure 9(c) still yield the spectral
convergence of O(e−0.019n) as in Figure 9(c). Thus we conclude that the present method
converges spectrally as the number of discretization increases when the all boundaries in
the coastal domains are smooth.

Let us discuss why the rate of exponential decay rate given in Figure 9 varies. As
shown in [3, 8, 17], the rate of convergence becomes slow or divergent in many methods
when the distances between the boundaries are so close to touch each other. For the
domain in Figure 8(a), the discs are well separated from each other, so we get good rate
of convergence O(e−0.11n) as shown in Figure 9(a). For the domain in Figure 8(b), the
discs are close to each other but away from the wall, so the rate of convergence decreases
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to O(e−0.054n) as in Figure 9(b). In Figure 8(c), the discs become much close to each
other and to the wall, so the rate of convergence is getting worse to be O(e−0.019n). See
Figure 9(c).

5.3.2 Convergence and efficiency for domains with many obstacles

This subsection is concerned with the effect of the number of obstacles on the efficiency
and the accuracy of the presented numerical method. We consider a coastal domain
with m circular obstacles where the coastline is a straight line. We fix the number of
discretizing points on each boundaries n = 2048 and let the number obstacles m increase.
Figures 10(a)–(c) show some examples of coastal domains for m = 93, m = 651 and
m = 1953, respectively. The total CPU time (sec.) required to evaluate the boundary
values of the complex potential WD(z) for αz = 1.5 + i with respect to the number
of obstacles m is shown in 11(a), which clearly shows O(m lnm) computational costs.
We also present the maximum error E

(2048,m)
∞ and the number of GMRES iterations for

various m in Figures 11(b,c), respectively. Let us note that we are unable to compute
the complex potential from the analytic formula for large m, since the MATLAB code
for computing the Schottky-Klein prime function does not converge. Thus we regard the
complex potential computed by our method with n = 4096 as the analytic value. These
figures clearly illustrate that both of them almost independent of the number of obstacles
m and thus the present numerical method remains efficient regardless of m.

5.3.3 Convergence with respect to smoothness of boundaries

We consider a coastal domain where the coastline is not C∞. Since we are interested in
the part of coastline L′

0 between the points ±i as in Figure 3(a), we may assume that L′
0

is sampled by the following 21 points. See Figure 12(a).

L′
0 : (0.05 sin 6πti, ti), ti = 1 − 0.1i, i = 0, 1, . . . , 20. (38)

We here propose three methods for interpolating the sample points in L′
0 to observe how the

convergence rate of the present method depends on smoothness of boundaries. In the first
method, assuming that the coastlines from 0±i∞ to 0±1i are straight lines, we interpolate
the sample points (38) between ±i by the cubic spline as shown in Figure 12(b). Then the
boundary condition for the cubic spline is chosen so that the coastline L0 becomes C1 at
the points ±i. We regard the complex potential computed by our method with n = 16384
as the analytic value. Figure 13(a) shows the maximum error (37) on the boundary values
of the complex potential WD(z) for αz = 1.5 + i in a coastal domain with 17 × 8 offshore
circular boundaries in Figure 12(b) for various n, which indicates an algebraic convergence
of O(n−2) as n → ∞.

In the following two interpolation methods of the coastline L0, we first consider the
conformal mapping

ξ = Φ(H(z)) =
iz − i
z + 1

, (39)

that maps the sampling points (38) of Figure 12(a) in the complex z-plane to the points
close to the lower part of the unit circle in the complex ξ-plane as in Figure 12(c). We
also pick up additional 19 sampling points along the upper half of the unit circle as we
see in Figure 12(d). Thus, we have sampled the 40 points along the closed curve C0. Note
that the sampling points for the coastline L0 are obtained through the inverse of (39).

In the second interpolation method, we use the periodic cubic spline that passes
through these 40 points, which gives us a C2 curve for C0 as well as L0. The maxi-
mum error vs. the number of discretizing points n in Figure 13(b) indicates an O(n−3)
convergence as n → ∞. The last method utilizes trigonometric polynomials to an interpo-
lation of the curve C0 that passes through the points in Figure 12(d), which gives rise to
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a C∞ curve. The maximum error vs. n in Figure 13(c) then shows a spectral convergence
of O(e−0.03n) as n → ∞.

5.4 Application to real coastal domains

The present fast numerical conformal mapping methods are applicable to coastal domains
with many obstacles of arbitrary shapes. The boundary of the coastline is approximated
by using trigonometric interpolating polynomials as explained in §5.3.3. Similarly, the
boundaries of the obstacles are approximated by using trigonometric interpolating poly-
nomials. It is thus easy to construct the complex potentials in real coastal domains. For
example, we consider the flow domain in the vicinity of the Penang Island and the coast-
line of west Malaysia in Figure 1(a), in which we illustrate streamlines of a uniform flow
in Figure 14(a), a flow induced by a source (or a sink) point, which is a model of a river
mouth, in Figure 14(b), a flow by a source-sink pair in Figure 14(c), a flow around a point
vortex in Figure 14(d) and a flow induced by a vortex dipole in Figure 14(e).

We here observe the behavior of a single point vortex, which is a model of a coherent
big ocean eddy, by plotting contour lines of the Robin function (35). We are in particular
interested in stagnation points of the point vortex. This is because the motion of a
point vortex becomes periodic in the neighborhood of an elliptic stagnation point, while
hyperbolic (saddle) stagnation points and their separatrices divide the flow domain into
some small subdomains where the qualitative behaviors of a point vortex becomes different.
Moreover, we observe how the motion of the point vortex changes in the presence of a
uniform flow representing a global ocean current. Specifically, we plot the contour lines of
the following function in coastal domains.

HK(α) = −κ2

2
g(α; α) + U Im[WU (α)], (40)

where κ and U denote the strength of the point vortex and the flux of the uniform flow.
Figure 15(a) shows trajectories of a point vortex with κ = 1 near Penang Island and

the coastline of west Malaysia in the absence of the uniform flow, i.e. U = 0. There is
a hyperbolic stagnation point between the island and the coastline, whose separatrices
give rise to three flow domains. First, there is a narrow band domain along the coastline,
in which the point vortex goes along the coastline from bottom to top. Second, there
is an annular domain where the point vortex rotates around the island in the clockwise
direction. In the third domain, trajectories coming from the bottom along the coastline
move around the outer side of the island and then go upward along the coastline. If the
uniform flow is included and its flux rate becomes U = 1, the stagnation point still exists
and an elliptic stagnation point gives rise to a small domain of periodic orbits near the
upper-left side of the island as shown in Figure 15(b). When we increase the flux up to
U = 4, the domain of periodic orbits disappears and the point vortex is just advected by
the uniform flow from bottom to top as we see in Figure 15(c).

Let us finally show another example for trajectories of a point vortex in the flow domain
around Japanese islands and the coastline of East Asia in Figure 1(b). Here, we set κ = 1
and just change U in (40). We may assume that the sign of U is non positive, since the
uniform flow with U ≤ 0 goes from south to north, which corresponds to the real global
ocean current in this flow domain. Trajectories of the point vortex for U = 0, −0.25, −1,
and −4 are shown in Figure 16(a), (b), (c) and (d), respectively. Without the uniform
flow in Figure 16(a), there are many hyperbolic stagnation points between the islands and
the coastline, whose separatrices enclose a big domain consisting of periodic orbits in the
clockwise direction in the Sea of Japan. The point vortex goes from north to south in the
Pacific ocean in the absence of the uniform flow. When the uniform flow with U = −0.25
is introduced as in Figure 16(b), the point vortex located far from Japan islands in the
Pacific ocean changes its moving direction, while the domain of periodic orbits in the Sea
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of Japan still remains. This indicates that the weak uniform flow prevents the point vortex
from getting into the flow domain between Japan island and the coastline. For U = −1
in Figure 16(c), periodic orbits are confined in domains near the east side of the coastline
and thus most of the point vortices in the Sea of Japan move northward according to the
uniform flow from the south. This indicates that the self-induced velocity by the point
vortex is unable to overcome the strong uniform flow. When the northward uniform flow
is strong enough U = −4, the domain of periodic orbits disappears and the point vortex
is just advected by the uniform flow as we see in Figure 16(d).

6 Concluding remarks

We have developed a fast and accurate numerical method for constructing potential flows
and the Kirchhoff-Routh path functions in 2D multiply connected coastal domains with
complex topography and high connectivity, in which the numerical conformal mapping
method based on the boundary integral equations with the generalized Neumann kernel
and its adjoint kernel play a significant role. The numerical conformal mapping method is
solved by a fast method in O((m + 1)n lnn) operations where m + 1 is the multiplicity of
the multiply connected coastal domain and n is the number of nodes in the discretization
of each boundary component (see also [23, 24]). The method is fast, accurate, flexible,
and has the ability to be used for domains with very high connectivity and complex
geometry. When the boundaries are C∞, it converges spectrally as O(e−cn) for a certain
constant even if the distances between boundaries are very close. It also shows an algebraic
convergence for Cq (q ≥ 1) boundaries. When the boundaries of the coastline is sampled
just by discrete points, we have proposed the three interpolation methods. Using the
trigonometric interpolating, we have a spectral convergence of O(e−cn) where c is a positive
real constant. The implementation of the present numerical method is also easy as shown
in the following appendices, since we just choose the right-hand side of the integral equation
appropriately for each canonical domains. Thus it is possible for us to consider 2D vortex
dynamics in many real geographic flows near a long coastline with many offshore islands,
since some of these flows are modelled by coastal domains.

Appendix A. Numerical conformal mapping onto the canonical domains

Let us review the method presented in [20,22] for numerical construction of the conformal
mapping from the multiply connected domain D or S onto the canonical domains ΩD,
ΩS , ΩU and ΩB used in Section 4.

Suppose that each boundary component Cj is parametrized by a continuously differ-
entiable complex function ξj(t) with ξ′j(t) 6= 0 for t ∈ Jj = [0, 2π], j = 0, 1, . . . ,m in
the complex ξ-plane. The whole boundary C is represented by a smooth function on the
disjoint union J of the m + 1 intervals J0, J1, . . . , Jm, which is defined by (see [4, p. 16]
and [14, p. 394])

J =
m⊔

j=0

Jj =
m⋃

j=0

{(t, j) : t ∈ Jj}. (41)

The elements of J are order pairs (t, j) where j is an auxiliary index indicating which
of the intervals the point t lies in. Thus, the parametrization of the whole boundary
C = C0 ∪ C1 ∪ · · · ∪ Cm is defined on J by

ξ(t, j) = ξj(t), t ∈ Jj , j = 0, 1, . . . ,m. (42)

We assume that for a given t that the auxiliary index j is known, so we replace the pair
(t, j) in the left-hand side of (42) by t, i.e., for a given point t ∈ J , we always know the
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interval Jj that contains t. The function ξ in (42) is thus simply written as

ξ(t) :=


ξ0(t), t ∈ J0 = [0, 2π],
ξ1(t), t ∈ J1 = [0, 2π],

...
ξm(t), t ∈ Jm = [0, 2π].

(43)

In the construction of the conformal mapping, for a given Hölder continuous real-valued
function γ(ξ(t)) defined on C and α ∈ D, there appears the following Riemann-Hilbert
problem for a function f(ξ(t)) and a piecewise constant function h(ξ(t)).

Re[A(ξ(t))f(ξ(t))] = γ(ξ(t)) + h(ξ(t)), t ∈ J, (44)

where A(ξ) = ξ − α. Note that the functional form of γ(ξ) varies depending on the
conformal mappings as shown in Section 4, and this problem is solvable uniquely according
to [19]. When we set µ(ξ(t)) = Im[A(ξ(t))f(ξ(t))] for t ∈ J , the boundary value of the
function f is given by

A(ξ(t))f(ξ(t)) = γ(ξ(t)) + h(ξ(t)) + iµ(ξ(t)), t ∈ J. (45)

For a Hölder continuous function µ on C, let us introduce the integral operators N and
M as

Nµ =
∫

J
N(s, t)µ(t)dt, Mµ =

∫
J

M(s, t)µ(t)dt, (46)

where the generalized Neumann kernel N(s, t) and the kernel M(s, t) are defined on J ×
J [31] as follows.

N(s, t) :=
1
π

Im
(

A(s)
A(t)

ξ′(t)
ξ(t) − ξ(s)

)
, M(s, t) :=

1
π

Re
(

A(s)
A(t)

ξ′(t)
ξ(t) − ξ(s)

)
. (47)

The operator N is a Fredholm integral operator and the operator M is a singular operator,
which are bounded on the space of Hölder continuous functions on C and map this space
onto itself [30]. Then the boundary value problem is solved based on the following theorem.

Theorem 1. For any Hölder continuous real-valued function γ defined on C, there exists
a unique Hölder continuous real-valued function µ and a unique piecewise constant real-
valued function h = (h0, h1, . . . , hm) such that (45) are boundary values of analytic function
f in D. Then function µ is the unique solution of the integral equation

(I − N)µ = −Mγ, (48)

where I denotes the identity operator and the function h is given by

h = [Mµ − (I − N)γ]/2. (49)

In practical computations, by discretizing the integral equation (48) by a quadrature
rule with n nodes along the m + 1 boundaries, we have the (m + 1)n dimensional linear
equations for the boundary values of µ, i.e. the imaginary part of f , which is numerically
solved fast as explained in Appendix C. We then compute the piecewise constant function
h on the boundary by (49). The real part of f is finally computed from (44).
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Appendix B. Numerical conformal mapping onto the domain
S

In order to compute the conformal mappings to the canonical domains ΩU and ΩB, we
need to map the domain D to a bounded multiply connected domain S inside the unit
circle. This can be done by mapping the simply connected domain inside C0 onto the
unit disc. Such a mapping function is computed using the method presented in [20, §4.2],
which is explained in what follows. The basic idea is the same as the method explained
Appendix A. Here, we just care the image of the outer curved boundary C0, which is
parameterized by ξ0(t) for t ∈ J0 = [0, 2π], and we don’t need to consider the images of
the inner boundaries of D.

For a complex-valued function Å(t) = ξ0(t) − αξ and the outer curved boundary ξ0(t)
for t ∈ J0 = [0, 2π] and αξ ∈ D, let us define the following generalized Neumann kernel
N̊(s, t) and the real kernel M̊(s, t) on J0 × J0 [18, 30].

N̊(s, t) :=
1
π

Im

(
Å(s)
Å(t)

ξ′0(t)
ξ0(t) − ξ0(s)

)
, M̊(s, t) :=

1
π

Re

(
Å(s)
Å(t)

ξ′0(t)
ξ0(t) − ξ0(s)

)
.

The Riemann-Hilbert problem (4) in §3.3 is solved again based on Theorem 1. Namely, for
the function γ̊(t) = − ln |ξ0(t) − αξ|, let µ̊ be the unique solution of the integral equation

(I − N̊)µ̊ = −M̊γ̊, (50)

in which I denotes the identity operator and

N̊µ̊ =
∫

J0

N̊(s, t)µ̊(t)dt, M̊γ̊ =
∫

J0

M̊(s, t)̊γ(t)dt.

Then, the function h̊ = [M̊µ̊−(I−N̊)̊γ]/2 becomes a constant function and Åf̊ = γ̊+h̊+i̊µ
are boundary values of an analytic function f̊ on the simply connected domain interior of
C0.

In the construction of the conformal mapping ωU (η) and ωB(η) with the numerical
conformal mapping technique in Appendix A, we need to compute the derivative of the
boundaries in the domain S, i.e. η′j(t) for j = 0, . . . ,m, in order to compute the kernels
(47). For the outer boundary η0(t), it follows from (5) that it is computed by

η′0(t) = Υ′(ξ0(t))ξ′0(t) = T ′(R(ξ0(t)))R′(ξ0(t))ξ′0(t), t ∈ J0. (51)

The derivative of the conformal mapping R can be computed using a boundary integral
equation with the adjoint generalized Neumann kernel [25]. The boundary value of the
mapping function R can be written as [25, §6]

R(ξ0(t)) = eiφ(t), t ∈ J0, (52)

where φ is known as the boundary correspondence function. Differentiating both sides
of (52) with respect to the parameter t, we obtain

ξ′0(t)R
′(ξ0(t)) = iφ′(t)eiφ(t), t ∈ J0. (53)

The function φ′ is the unique solution of the integral equation [25, §6]:

(I + N̊∗ + J̊)φ′ = 1, (54)

where N̊∗ is the adjoint operator of the operator N̊, which is given by

N̊∗µ =
∫

J0

N̊(t, s)µ(t)dt,
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and the operator J̊ is defined by

J̊µ =
1
2π

∫
J0

µ(t)dt. (55)

By solving the integral equation (54), we obtain approximation of the boundary value of
φ′. Hence, it follows from (51), (52) and (53), that the boundary value of Υ′ on C0 is
given by

Υ′(ξ0(t)) =
iφ′(t)R(ξ0(t))T ′(R(ξ0(t)))

ξ′0(t)
, t ∈ J0, (56)

which yields the derivative η′0(t) from (51). For j = 1, 2, . . . ,m, the derivatives of the
boundaries η′j(t) are given by η′j(t) = ζ ′j(t)Υ

′(ζj(t)) for t ∈ Jj . Since Υ is analytic in the
domain interior to C0, in view of (56), the values of Υ′(ζj(t)) are computed using Cauchy’s
integral formula. Thus the boundaries of Γ of the domain S is parameterized by ηj(t),
t ∈ Jj = [0, 2π] for j = 0, 1, . . . ,m.

Appendix C. Technical notes for solving the integral equation

The boundary integral equations (48) and (50) can be solved accurately by the Nyström
method with the trapezoidal rule (see e.g., [2,13]). For j = 0, 1, . . . ,m, each interval Jj is
discretized by n equidistant nodes

sj,k = (k − 1)
2π

n
, k = 1, 2, . . . , n. (57)

Hence, the total number of nodes in the total parameter domain J is (m + 1)n.
The equations (50) and (54) are boundary integral equations on a single boundary

component C0. The Nyström method with the trapezoidal rule with the n equidistant
nodes s0,k, k = 1, 2, . . . , n, are used to discretize the integral equations (50) and (54) to
obtain n × n linear systems. The equation (48) is a boundary integral equation on m + 1
boundary components. The Nyström method with the trapezoidal rule with the (m+1)n
equidistant nodes sj,k for j = 0, 1, . . . ,m and k = 1, 2, . . . , n, are used to discretize the
integral equation (48) to obtain (m + 1)n× (m + 1)n linear systems (see [19,20,23,24] for
details). These linear systems are solved by the generalized minimal residual (GMRES)
method [28]. Each iteration of the GMRES method requires a matrix-vector product
which can be computed using the Fast Multipole Method (FMM).

The order of the convergence of the Nyström method is based on the order of the con-
vergence of the trapezoidal rule which in turn depends on the smoothness of the integrand.
Under suitable regularity assumptions on the integrand, the order of the convergence of
the Nyström method is the same as the order of the convergence of the trapezoidal rule
(see e.g., [2, p. 109] and [13, p. 227]). If the integrand is q times continuously differen-
tiable, then the rate of convergence of the trapezoidal rule is O(1/nq). For C∞ smooth
integrands, the rate of convergence is O(e−cn) for some positive constant c depending on
the integrand (see [13, p. 223]). The smoothness of the integrand depends on the smooth-
ness of the boundary of the domain. This convergence property is confirmed clearly in the
present paper.

In actual numerical computations, the integral equation (50) is solved using the func-
tion FBIE that requires O(n lnn) operations, while we need O(n) operations to solve the
integral equation (54) using the function FBIEad. These functions utilize the MATLAB
function gmres and the function zfmm2dpart in the MATLAB toolbox FMMLIB2D developed
by Greengard and Gimbutas [10] for the solutions of the linear system and the matrix-
vector product, respectively. Consequently, the computational cost for solving the integral
equation (48) becomes O((m + 1)n lnn), since we use the function FBIE. In the MAT-
LAB functions FBIE and FBIEad, we choose the parameters iprec = 5, restart = 10,
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gmrestol = 0.5 × 10−14, maxit = 10, which means that the tolerance of the FMM is
0.5 × 10−15, the GMRES method is restarted every 10 inner iterations, the tolerance
of the GMRES method is 0.5 × 10−15, and the maximum number of outer iterations of
GMRES method is 10. See [23,24] for more details.
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(a) (d)

(b) (e)

(c) (f)

Figure 7: Potential flows in a coastal domain with five elliptic obstacles. (a) Streamlines
of a uniform flow. (b) Streamlines of a source point on the wall boundary. (c) Streamlines
of a source-sink pair. (d) Streamlines of a point vortex. (e) Streamlines of a uniform flow
with 20 point vortices whose complex potential is given by (28). (f) Trajectories of a point
vortex.
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Figure 8: The pre-images under the Möbius transformation (36) of the circular regions
interior to the unit circle with three inner circular boundaries, whose centers qi ∈ C and
radii ri ∈ R for i = 1, 2, 3 are given by (a) q1 = 0.5 − 0.2i, q2 = −0.5 − 0.2i, q3 = −0.3i,
and r1 = r2 = 0.15, r3 = 0.2; (b) q1 = 0.35 − 0.2i, q2 = −0.35 − 0.2i, q3 = −0.3i and
r1 = r2 = 0.15, r3 = 0.2; (c) q1 = 0.52 − 0.57i, q2 = −0.52 − 0.57i, q3 = −0.67i and
r1 = r2 = 0.21, r3 = 0.31, respectively. Dots represent the points where we evaluate the
Kirchhoff-Routh path function.
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Figure 9: The maximum errors vs. the discretization points n for the multiply connected
coastal domains shown in Figure 8.

(a) (b) (c)

Figure 10: Multiply connected coastal domains with a straight coastline and m offshore
circular islands; (a) m = 93, (b) m = 651 and (c) m = 1953.
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Figure 11: Efficiency of the present numerical algorithm with respect to the number of
circular boundaries m in the coastal domains in Figure 10. (a) Total computational time;
(b) The maximum error E

(2048,m)
∞ ; (c) The number of iterations for GMRES solver.
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Figure 12: The interpolations of the coastline L0. (a) Discrete sampling points along the
coastline L′

0 between the points ±i in the complex z-plane. (b) A coastal domain with
a coastline interpolated by the cubic spline and 17 × 8 offshore circular boundaries. The
images of the sampling points owing to the conformal mapping (39) (c) for the lower half
circle and (d) for the full circle in the complex ξ-plane.

10
1

10
2

10
3

10
410

−15

10
−12

10
−9

10
−6

10
−3

10
0

Number of nodes: n

E
rr

or

n
−2

10
1

10
2

10
3

10
410

−15

10
−12

10
−9

10
−6

10
−3

10
0

Number of nodes: n

E
rr

or

20n
−3

10
1

10
2

10
3

10
410

−15

10
−12

10
−9

10
−6

10
−3

10
0

Number of nodes: n

E
rr

or

0.05e
−0.037n

(a) (b) (c)

Figure 13: Convergence of the maximum error (37) for the complex potential WD(ζ) for
αz = 1.5 + i in the coastal domain with a coastline approximated by discrete points in
Figure 12(a). The coastline is interpolated by (a) the cubic spline, (b) the periodic cubic
spline, and (c) a trigonometric polynomial.
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(a) (b) (c)

(d) (e)

Figure 14: Streamlines in the vicinity of Penang Island and the coastline of west Malaysia.
(a) A uniform flow. (b) A flow induced by a source (or a sink) on the coastline. (c) A flow
of a source-sink pair. (d) A flow around a point vortex. (e) A flow induced by a vortex
dipole.
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(a) (b) (c)

Figure 15: Trajectories of a point vortex in the vicinity of Penang Island and the coastline
of west Malaysia. Stagnation points are drawn as gray rectangles.
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(a) (b)

(c) (d)

Figure 16: Trajectories of a point vortex with the strength κ = 1 in the vicinity of many
islands and the coastline of East Asia in the presence of the uniform flow of (a) U = 0,
(b) U = −0.25, (c) U = −1, (d) U = −4.
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