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Abstract

We introduce bow varieties and construct some ALF spaces as bow varieties.

0. Introduction

It is conjectured that noncompact hyper-Kähler 4-manifolds whose curvatures are in

L2 can be classified into 4 types – ALE, ALF, ALG and ALH – by their volume growth

rates. ALE spaces satisfy Vol(Br) ∼ cr4, and it is known that their metrics converge

asymptotically to the Euclidean metric at infinity. In 1989, Kronheimer classified and

constructed ALE spaces [Kr2], and in 1990, Kronheimer and Nakajima described in-

stantons on them [KN]. It is worth noting that all ALE spaces and the moduli spaces of

instantons are examples of quiver varieties introduced later by [Na1].

ALF spaces satisfy Vol(Br) ∼ cr3, and it is known that S1 × R3 and Taub-NUT

space are ALF, but their classification is not known. In 2010, Cherkis constructed some

ALF spaces and instantons on them as bow varieties [C2]. Bow varieties are made up

by a combination of quiver varieties and the moduli spaces of the solutions of Nahm’s

equations. In particular, bow varieties are constructed as infinite dimensional hyper-

Kähler quotients, while quiver varieties are finite dimensional quotients.

In this paper, we study Cherkis’ constructions of ALF spaces as bow varieties from a

different point of view. Since hyper-Kähler quotients depend on parameters, Cherkis’ bow

varieties also depend on such parameters. First we conjecture that when all parameters

are 0, these bow varieties are isometric to Taub-NUT/Γ for some finite groups Γ. Indeed

Kronheimer’s 0-parameter hyper-Kähler quotients are isometric to C2/Γ. To prove this

conjecture is the first step to establish that Cherkis’ bow varieties are ALF. On the

other hand, Taub-NUT/Γ is obtained by taking fixed points of a symmetric product of

Taub-NUT space by the Γ-action. Thus, as hyper-Kähler quotients, we try to construct a

symmetric product of Taub-NUT space and its fixed points by the Γ-action. And then we

compare our hyper-Kähler quotients with Cherkis’ bow varieties, and prove that Cherkis’

bow varieties are ALF when their parameters are 0.

We first introduce elemental bow varieties as basic building blocks, and study their

properties. For example, we show that elemental bow varieties are isomorphic to certain

quiver varieties as algebraic varieties, and are isomorphic to symmetric products of Taub-

NUT space as hyper-Kähler manifolds. Notice that it is not clear that infinite dimensional

hyper-Kähler quotients are algebraic. We overcome this difficulty by using Kronheimer’s

theorem [Kr1] stating that the moduli space of the solutions of Nahm’s equations on a
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closed interval is holomorphic symplectomorphic to T ∗GL(n,C). Then we can use a well-

known relation between hyper-Kähler quotients and geometric invariant theory (GIT) in

a finite dimensional setting.

Next we construct some ALF spaces by using elemental bow varieties. We prove that

the automorphism group of Taub-NUT space as hyper-Kähler manifolds preserving the

origin is Z2⋉S1. Therefore only type An orDn group acts on Taub-NUT space among the

ADE classification of finite subgroups Γ of SU(2). Then taking fixed points of elemental

bow varieties by the Γ-action, we obtain Taub-NUT/Γ. Furthermore, by using the McKay

correspondence, Taub-NUT/Γ can be constructed as bow varieties which associates with

An-type bow (6.1) or Dn-type bow (7.1). We study the properties of these bow varieties.

These things are summarised as follows:

Theorem 0.1. Taub-NUT/An and their resolutions of singularities are constructed as

An-type bow varieties and ALF. Taub-NUT/Dn are constructed as Dn-type bow varieties

and ALF.

For An-type bow varieties, this result is well-known as mentioned in [C2]. Dn-type bow

varieties we obtain in this paper is a little bit different from that of Cherkis. Details

of this point are written in Remark 7.2 (iii). And the resolutions of singularities of

Taub-NUT/Dn are also constructed as Dn-type bow varieties but we could not prove

they are ALF.

This paper is organised as follows. In §1, we recall the definition of hyper-Kähler

quotients and GIT quotients. In particular, we take care to deal with them in infinite

dimensional setting. Since Nahm’s equations are ordinary differential equations, we state

analytical facts about them.

In §2, we define and study Nahm’s equations. It is known that the moduli space of the

solutions of Nahm’s equations is regarded as a hyper-Kähler quotient MhK := µ−1
I (0) ∩

µ−1
J (0) ∩ µ−1

K (0)/G. And in order to research the relation between MhK and T ∗GL, we

consider another space Msy := µ−1
C (0)/GC, where µR = µI and µC = µJ +

√
−1µK . Then

we study three spaces MhK, Msy and T ∗GL, and maps between them precisely.

In §3, we show the properties of the maps and give a proof of Kronheimer’s theorem,

for completeness.

In §4, we define elemental bow varieties. By their construction, elemental bow vari-

eties have hyper-Kähler structures. We first prove elemental bow varieties are actually

algebraic varieties by using Kronheimer’s theorem. Moreover, we consider the relation

between elemental bow varieties and particular quiver varieties, and prove elemental bow

varieties are isomorphic to symmetric products of Taub-NUT space.

In §5, we calculate automorphisms of Taub-NUT preserving the origin. Then by the

result of §4, they induce the action on elemental bow varieties. In this situation, finite

group actions on elemental bow varieties are classified into An-type and Dn-type. For

Γ = An or Dn we take the Γ-fixed points of elemental bow varieties. Then we have

“Dynkin bows” in the same way as Kronheimer [Kr2]. And we can obtain An-type

and Dn-type ALF spaces but cannot obtain En-type ALF spaces in this way by the

classification.

In §6, we study An-type bow varieties more precisely. These varieties are not elemen-

tal bow varieties, but the above arguments still work and have the same properties as

elemental bow varieties.

In §7, we study Dn-type bow varieties in the same way as §6.
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1. Preliminaries

The moduli space of the solutions of Nahm’s equations is regarded as a hyper-Kähler

quotient. Since the acting group is infinite dimensional and noncompact, we carefully

recall what properties of the group action guarantee the quotient to be a smooth manifold.

Then we review GIT quotients, which are used to study quiver varieties. And last we

recall facts of ordinary differential equations we will use in this paper.

1·1. Hyper-Kähler quotients

We first recall definitions of hyper-Kähler manifolds and hyper-Kähler quotients with

action of a (not necessary compact) Lie group.

Definition 1.1. (M, g, I, J,K) is called a hyper-Kähler manifold, if (M, g) is a Rie-

mann manifold and equipped with three complex structures I, J and K which satisfies

the equations

∇I = ∇J = ∇K = 0 and IJ = K,

where ∇ is the Levi-Civita connection with respect to the metric g.

Let G be a Lie group acting smoothly onM so as to preserve the metric g and complex

structures I, J and K. A map µ = (µI , µJ , µK) : M → g∗ ⊗ R3 is called a hyper-Kähler

moment map if it satisfies

⟨dµA(v), ξ⟩ = g(Aξ̃, v), v ∈ TM, ξ ∈ g, A = I, J,K,

µA(g · x) = Ad∗g µA(x), x ∈M, g ∈ G,A = I, J,K,

where g∗ is the dual space of g, Ad∗ : g∗ → g∗ is the coadjoint map, ⟨, ⟩ denotes the dual

pairing between g and g∗, and ξ̃ denotes a vector field induced by ξ ∈ g.

Put Z = {ζ ∈ g∗ ⊗ R3 | Ad∗g(ζ) = ζ for all g ∈ G} and take ζ ∈ Z. In general, a

hyper-Kähler moment map is not unique, because when µ is a hyper-Kähler moment

map then µ + ζ is also. Afterward we fix one of these hyper-Kähler moment maps and

describe it as µ when we consider a hyper-Kähler moment map. Therefore a quotient

space µ−1(ζ)/G is called a hyper-Kähler quotient. Considering the quotient, we assume

the following conditions are satisfied:

Condition 1.2.

(1) Γ(M,G) := {(x, gx) ∈M ×M | x ∈M, g ∈ G} is closed in M ×M ,

(2) γ(M,G) is a homeomorphism from M ×G onto Γ, where γ(x, g) = (x, gx),

(3) G acts freely on µ−1(ζ).

The first condition is equivalent to that the quotient space is a Hausdorff, and the second

and third give a structure of a smooth manifold on the quotient [V, §2.9]. The second

condition is equivalent to the properness of γ because of the smoothness of the action,

the Hausdorffness of M and G, and the third condition. Once the quotient becomes a

manifold, the argument in [HKLR] or [GN] works, and it has a structure of a hyper-

Kähler manifold. These things are summarised as follows:

Proposition 1.3. If Condition 1.2 is satisfied, a hyper-Kähler quotient µ−1(ζ)/G is

a (smooth) hyper-Kähler manifold.
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Therefore we will check these three conditions for Nahm’s equations in §2.1.

Remark 1.4. The third condition is necessary to be smooth, so if G does not act freely

on p ∈ µ−1(ζ), the quotient space µ−1(ζ)/G has a singular point at G · p.

1·2. GIT quotients and analytic stability

There exists a way to treat quotient spaces in the algebraic geometry, it is called

geometric invariant theory (GIT). First we review the way to construct quotient spaces

in GIT, and next we mention the relation between GIT quotients and Kähler quotients.

1·2·1. GIT quotients

Let X be an affine variety over C and GC be a reductive algebraic group acting on X.

An affine algebro-geometric quotient X //GC is defined as Spec(A(X)G
C
), where A(X)

is the coordinate ring of X and A(X)G
C
is the ring of invariants by the GC-action. By

the theorem of Nagata, A(X)G
C
is a finitely generated algebra, so Spec is defined. In this

situation, the following theorem is well-known (see [MFK]).

Theorem 1.5. (1) There exists a surjective morphism

ϕ : X → X //GC

induced by the inclusion A(X)G
C ⊂ A(X). Moreover, ϕ(x) = ϕ(y) if and only if

x ∼ y ⇔ GC · x ∩GC · y ̸= ∅, (1.6)

where “—” denotes the closure.

(2) The underlying space of X //GC is the set of closed GC-orbits modulo the equiva-

lence relation defined by x ∼ y if and only if above relation holds.

By this theorem, we consider the closed orbits only. We say x ∈ X is stable if GC · x is

closed and its stabiliser is finite. Then X //GC is Xs/ ∼, where Xs denotes the set of

stable points in X.

The idea of the affine algebro-geometric quotient can be modified. Let χ : G → U(1)

be a character, and χ also denotes its complexification,

χ : GC → C∗.

Consider the trivial line bundle X × C over X. Using χ, we lift the GC-action to X × C
by

g · (x, z) = (g · x, χ(g)−1z) for (x, z) ∈ X × C.

Let A(X)G
C,χn

be the space of polynomials satisfying f(g · x) = χ(g)nf(x). It can be

identified with the space of GC-invariant sections of the above line bundle. If we set

f̃(x, z) = f(x)zn, f̃ is an element of A(X × C)GC
. Then the direct sum⊕

n≥0

A(X)G
C,χn

is a finitely generated graded algebra. Hence we can define

X //χG
C := Proj

⊕
n≥0

A(X)G
C,χn

 .
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This is called a geometric invariant theory quotient. The inclusion A(X)G
C⊂ ⊕A(X)G

C,χn

induces a projective morphism

X //χG
C → X //GC. (1.7)

We say x ∈ X is χ-semistable if there exists f ∈ A(X)G
C,χn

with n ≥ 1 such that

f(x) ̸= 0. This happens if and only if the closure of GC(x, z) does not intersect with

X × {0} for z ̸= 0. Let Xss(χ) be the set of χ-semistable points. We introduce an

equivalence relation ∼ on Xss(χ) by defining x ∼ y if and only if GC · x and GC · y
intersects in Xss(χ). The quotient space Xss(χ)/ ∼ is bijective to the set of orbits GC ·x
such that GC · (x, z) is closed for z ̸= 0. Then X //χG

C is Xss(χ)/ ∼.

1·2·2. Relation between GIT quotients and Kähler quotients

Here we show the relation in the same way as [Na2, Proposition 3.21]. A line bundle

plays a main role in GIT, so we also need to consider a line bundle on a Kähler quotient.

Let (M,ω) be a Kähler manifold and π : L → M be a holomorphic hermitian line

bundle. If its curvature form coincides with the Kähler form ω, the pair (M,L) is called

a prequantisation of the Kähler manifold M . Explicitly, a function h : L→ R+ is defined

by the hermitian structure:

h(zp) := ∥zp∥2p,

where zp ∈ π−1(p) and ∥ · ∥p is the hermitian norm. Then the connection form α of L is

defined as

α =
1

π
√
−1

(∂ − ∂̄)(log h) = dc log h, (1.8)

and the curvature form is defined as the exterior derivative of α:

dα =
1

2π
√
−1

∂̄∂ log h = ddc log h.

The definition of the prequantised Kähler manifold needs ω coincides with s∗(dα), where

s : M → L is the 0-section. We assume a compact Lie group G acts on M .

Definition 1.9. A linearisation of the GC-action on M is a holomorphic action of

GC on L covering the action on M , and such that G acts unitarily on the fibres.

We consider a Kähler quotient µ−1(0)/G. Then the following proposition is well-known.

Proposition 1.10. (Bryan [Br]) A choice of a linearisation uniquely determines a

moment map and conversely a choice of a moment map uniquely determines a linearisa-

tion.

In this situation, we say a point p ∈M is analytically semistable for a linearised action of

GC on M if for every non-zero zp ∈ Lp a function g 7→ h(g · zp) is proper as a function on

GC/GC
p . Here G

C
p denotes the stabiliser of p. We describe the set of analytically semistable

points of M as Mass.

Lemma 1.11. (Bryan [Br]) An orbit GC · p ⊂M is analytically semistable if and only

if GC ·p meets µ = 0. Furthermore the set GC ·p∩µ−1(0) consists of exactly one G-orbit.

Thus we have a biholomorphism µ−1(0)/G ∼=Mass/GC. Mass/GC is similar to the GIT
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quotient M //χG
C, so we want to know their relation. Since the author does not know a

general theory about this, we consider it in particular cases later.

For a later purpose, we quote the way how a moment map is determined by a lineari-

sation from Bryan. For ξ ∈ g we describe the induced vector field on M as ξ̃ and the

induced vector field on L as
˜̃
ξ, that is, π∗

˜̃
ξ = ξ̃. Put µξ = ⟨µ, ξ⟩. Define µ by the equation

µξ = s∗(ι ˜̃
ξ
α). Then we have

g(Iξ̃,−) = ιξ̃ω = s∗(ι ˜̃
ξ
dα)

= s∗(dι ˜̃
ξ
α+ L ˜̃

ξ
α) = dµξ,

where L ˜̃
ξ
α = 0 since G acts unitarily on the fibres. Thus µ satisfies dµξ = ιξ̃ω. And we

have

µ[a,ξ] = s∗(ι˜̃
[a,ξ]

α) = s∗(ι
[
˜̃
ξ,˜̃a]

α)

= −s∗(L˜̃aι ˜̃ξα− ι ˜̃
ξ
L˜̃aα)

= −L˜̃aµξ.

This implies µ(g · x) = Ad∗g µ(x), thus µ defines a moment map.

In this paper, we describe a point p ·G of a quotient space M/G as [p]G.

2. Nahm’s equations and three spaces

In this section we prepare to prove Kronheimer’s theorem. Therefore we endow three

spaces MhK, Msy and T ∗GL with C∞ structures, integrable almost complex structures,

and symplectic structures. And next we define maps between them.

2·1. Nahm’s equations and space MhK

We define the space MhK as the moduli space of the solutions of Nahm’s equations.

We start from giving the definition of Nahm’s equations.

Let I = [0, 1] be an interval parameterised by s, and L2
1(I, u(n)) be a set of u(n)-

valued L2
1 functions on I. We describe the norm of u(n) as ∥U∥2 = trUU∗ and the

norm of L2
1(I, u(n)) as ∥|T∥|2L2

1
=
∫
∥T (s)∥2ds+

∫
∥dT/ds∥2ds. Put H = {(T0, T1, T2, T3) ∈

L2
1(I, u(n))⊕4}. We give a flat metric on H: ds2 =

∫ 1

0
dT0dT

∗
0 + dT1dT

∗
1 + dT2dT

∗
2 +

dT3dT
∗
3 ds, i.e. for u = (τ0, τ1, τ2, τ3), u

′ = (τ ′0, τ
′
1, τ

′
2, τ

′
3) ∈ TH,

ds2(u, u′) =

∫ 1

0

tr(τ0τ
′∗
0 + τ1τ

′∗
1 + τ2τ

′∗
2 + τ3τ

′∗
3)ds. (2.1)

We define complex structures on H by

I : (τ0, τ1, τ2, τ3) 7→ (−τ1, τ0,−τ3, τ2),
J : (τ0, τ1, τ2, τ3) 7→ (−τ∗2 , τ∗3 , τ∗0 ,−τ∗1 ),

= (τ2,−τ3,−τ0, τ1),
K : (τ0, τ1, τ2, τ3) 7→ (τ3, τ2,−τ1,−τ0).

(2.2)

A group G00 := {u ∈ L2
2(I, U(n)) | u(0) = u(1) = id} acts on H as follows:

u · T0 = uT0u
−1 − du

ds
u−1,

u · Tk = uTku
−1, k = 1, 2, 3.
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This action preserves the metric and the complex structures.

Remark 2.3. On the interval I, there is a compact inclusion L2
1 ↪→ C0. Hence a map

f(s, u) = T0(s)u satisfies the Lipschitz condition

∥T0(s)u− T0(s)u
′∥∞ ≤ sup

s
∥T0(s)∥∞∥u− u′∥∞,

where sup ∥T0∥ is independent of s, u and u′. So we can solve the equation u · T0 =

0 (i.e. d
dsu = T0u) with respect to a given initial value of u at s = 0. In other words, any

(T0, T1, T2, T3) can be sent to (0, T ′
1, T

′
2, T

′
3) by an element of G0∗ = {u ∈ L2

2(I, U(n)) |
u(0) = id}.

Definition 2.4. We consider the following ordinary differential equations (Nahm’s

equations) 
d
dsT1 + [T0, T1] + [T2, T3] = 0
d
dsT2 + [T0, T2] + [T3, T1] = 0
d
dsT3 + [T0, T3] + [T1, T2] = 0.

We denote left hand sides by µI , µJ and µK respectively.

These equations are preserved by the G00-action, and µ = (µI , µJ , µK) is a hyper-Kähler

moment map. In fact, for example with respect to I, we have

⟨dµI(u), ξ⟩ =
∫ 1

0

tr d{dT1
ds

ξ∗ + [T0, T1]ξ
∗ + [T2, T3]ξ

∗}(τ0, τ1, τ2, τ3)ds

=

∫ 1

0

tr{−dτ1
ds

ξ − [τ0, T1]ξ − [T0, τ1]ξ − [τ2, T3]ξ − [T2, τ3]ξ}ds

= [tr{−τ1ξ}]10 +
∫ 1

0

tr{τ1
d

ds
ξ − [τ0, T1]ξ − [T0, τ1]ξ − [τ2, T3]ξ − [T2, τ3]ξ}ds

=

∫ 1

0

tr{−([ξ, T1])τ
∗
0 + ([ξ, T0]−

d

ds
ξ)τ∗1 + ([ξ, T3])τ

∗
2 + ([ξ, T2])τ

∗
3 }ds

= g(Iξ̃, u),

where we used integration by parts in the third equality. Therefore, MhK is defined as a

hyper-Kähler quotient.

Remark 2.5. Put G∗∗ = L2
2(I, U(n)). G∗∗ acts on H in the same way as G00. In this

case, the hyper-Kähler moment map is replaced by µA+δ0TA(0)−δ1TA(1) for A = I, J,K.

This is because for ξ ∈ LieG∗∗ we have

[tr{−τ1ξ}]10 = tr{−τ1(1)ξ(1) + τ1(0)ξ(0)}
= ⟨δ1dT1(1)(τ1)− δ0dT1(0)(τ1), ξ⟩.

And when we change coordinate TA(s) 7→ TA(s) + fA(s) id by fA ∈ L2
1(I,

√
−1R), we

have

µA + δ0TA(0)− δ1TA(1) 7→ µA +
dfA
ds

id+δ0(TA(0) + fA(0) id)− δ1(TA(1) + fA(1) id)

In order to see MhK is a hyper-Kähler manifold, we check Condition 1.2.
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Lemma 2.6. Γ(H,G00) = {(x, gx) ∈ H ×H | x ∈ H, g ∈ G00} is closed in H×H.

Proof. Let {(Tn
0 , T

n
k ), (T

′n
0 , T

′n
k )}(k = 1, 2, 3) be a convergent sequence inH×H, where

T ′n
0 = un · T0, T ′n

k = un · Tk. Put

lim
n→∞

{(Tn
0 , T

n
k ), (T

′n
0 , T

′n
k )} = {(T∞

0 , T∞
k ), (T ′∞

0 , T
′∞
k )}.

We define vn = un/∥|un∥|L2
2
, then we have ∥|vn∥|L2

2
= 1 for all n. We may assume vn

converges in the C1 sense by taking a subsequence, because L2
2 is embedded compactly

in C1 on I. Hence both sides of the equations

vnTn
0 − d

ds
vn = T ′n

0 v
n,

vnTn
k = T ′n

kv
n, k = 1, 2, 3

converge as n→ ∞, at least in the C0 sense:

v∞T∞
0 − d

ds
v∞ = T ′∞

0 v
∞, (2.7)

v∞T∞
k = T ′∞

k v
∞, k = 1, 2, 3.

We have to prove that (T ′∞
0 , T

′∞
k ) is in the (T∞

0 , T∞
k )-orbit.

First we suppose lim ∥|un∥| = ∞. According to vn(0) = un(0)/∥|un∥| = id /∥|un∥|, we have

v∞(0) = id / lim ∥|un∥|. Hence, v∞(0) is 0. By (2.7), v∞ is 0 for any s, so we can put

sup ∥vn∥, sup ∥dvn/ds∥ < ε for enough large n. We obtain

∥|vn − v∞∥|2L2
2
= ∥|vn∥|2L2

1
+ ∥| d

2

ds2
vn∥|2L2

≤ sup
s
(∥vn(s)∥2 + ∥ d

ds
vn(s)∥2) + ∥| d

ds
(vnTn

0 − T ′n
0 v

n)∥|2

≤ ε+ sup
s

∥(dv
n

ds
Tn
0 )

2 + (vn
d

ds
Tn
0 )

2 + (
dvn

ds
T ′n

0 )
2 + (vn

d

ds
T ′n

0 )
2∥

≤ ε{1 + sup ∥Tn
0 +

d

ds
Tn
0 + T ′n

0 +
d

ds
T ′n

0∥},

so vn converges to v∞ = 0 in the L2
2 sense. This contradicts with ∥|v∞∥|L2

2
= lim ∥|vn∥|L2

2
= 1.

Next we suppose lim ∥|un∥| = c (≥ 1 = ∥un(0)∥). In this case, we solve (2.7) with

v∞(0) = id /c. We claim that the solution v∞(s) is nondegenerate for any s. If so, cv∞

enters in G00, and hence (T ′∞
0 , T

′∞
k ) is in the (T∞

0 , T∞
k )-orbit as required.

We prove the claim. Let A(s), B(s) be a solution of the following equations:

d

ds
A(s) = −T ′∞

0 (s)A(s), A(0) = id,

d

ds
B(s) = B(s)T∞

0 (s), B(0) = id .

Then the solution v∞(s) of (2.7) can be described as A(s)v∞(0)B(s), and for all s we

get detA(s) ̸= 0 and detB(s) ̸= 0. This is because of the following argument. Put

A(s) = (a1(s), a2(s), . . . , an(s)), where ai(s)s are column vectors and satisfy

d

ds
ai(s) = −T ′∞

0 (s)ai(s), ai(0) = δij . (2.8)

If detA(s) = 0 for some s, we have
∑

i kiai(s) = 0, ki ∈ C with (ki) ∈ Cn∖0. From (2.8)
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we have

d

ds
(
∑
i

kiai(s)) = −T ′∞
0 (s)(

∑
i

kiai(s)),

hence
∑

i kiai(s) = 0 becomes a solution for any s by the uniqueness of solutions. This

contradicts with A(0) = id.

We check the remaining two conditions.

Proposition 2.9. The moduli space of the solutions of Nahm’s equations is a hyper-

Kähler manifold.

Proof. We check the third of Condition 1.2. Assume u ·T0 = T0. There exists u0 ∈ G0∗
such that u0 · 0 = T0 by Remark 2.3. Then we have (u−1

0 uu0) · 0 = 0 i.e. d
ds (u

−1
0 uu0) = 0

by the assumption. This implies u = id, because of (u−1
0 uu0)(s) = (u−1

0 uu0)(0) = id.

Let us check the second condition. When an orbit (T ′n
0 , T

′n
k ) = (un·T0, un·Tk) converges

to (T ′∞
0 , T

′∞
k ), then un converges to u∞ (by taking a subsequence) from the proof of

Lemma 2.6. This means γ is proper.

We describe the tangent space of this manifold in order to write down complex struc-

tures and Kähler structures of MhK. Let (τ0, τ1, τ2, τ3) be an element of the tangent space

of MhK at [(T0, T1, T2, T3)]G00 , where [(T0, T1, T2, T3)]G00 denotes a point represented by

(T0, T1, T2, T3) ∈ H. We regard τk as an element in L2
1(I, u(n))). In general, a tangent

space of a hyper-Kähler quotient is given by Ker dµI ∩Ker dµJ ∩Ker dµK ∩ Im ι⊥, where

ι is the differential of the group action. And ⊥ is the orthogonal complement by the in-

duced Kähler metric. From the results of calculation, Ker dµI is given by d
dsτ1+[T0, τ1]−

[T1, τ0]+ [T2, τ3]− [T3, τ2] = 0 and Im ι is given by {([h, T0]− d
dsh, [h, T1], [h, T2], [h, T3]) ∈

TMhK | h ∈ LieG00}. Hence, (τ0, τ1, τ2, τ3) ∈ T[(T0,T1,T2,T3)]MhK satisfies the following

equations: 
d
dsτ0 + [T0, τ0] + [T1, τ1] + [T2, τ2] + [T3, τ3] = 0
d
dsτ1 + [T0, τ1]− [T1, τ0] + [T2, τ3]− [T3, τ2] = 0
d
dsτ2 + [T0, τ2]− [T1, τ3]− [T2, τ0] + [T3, τ1] = 0
d
dsτ3 + [T0, τ3] + [T1, τ2]− [T2, τ1]− [T3, τ0] = 0.

(2.10)

These linear equations can be solved with respect to a given initial value. Thus the

dimension of the solution space of these equations is 2n2, and this means the dimension

of MhK is also 2n2. The metric and complex structures are induced by (2.1) and (2.2),

and they are described as the restriction of (2.1) and (2.2) to TMhK. Note that three

Kähler forms are described as follows:

ωI =

∫ 1

0

tr{−dT0 ∧ dT1 − dT2 ∧ dT3}ds,

ωJ =

∫ 1

0

tr{dT0 ∧ dT2 − dT1 ∧ dT3}ds,

ωK =

∫ 1

0

tr{dT0 ∧ dT3 + dT1 ∧ dT2}ds.

Here ωJ +
√
−1ωK is a holomorphic symplectic form with respect to I.
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2·2. Space Msy

We construct the second space Msy = µ−1
C (0)/GC in this subsection. We use the same

space H as in the last subsection. We focus on the complex structure I, we put

α :=
1

2
(T0 +

√
−1T1), β :=

1

2
(T2 +

√
−1T3),

so α and β are gl(n)-valued L2
1 functions. By using them, Nahm’s equations can be

described as

d

ds
β + 2[α, β] = 0 (The “complex equation”),

F̂ (α, β) :=
d

ds
(α+ α∗) + 2([α, α∗] + [β, β∗]) = 0 (The “real equation”).

The complex equation and the real equation correspond to µJ +
√
−1µK = 0 and µI = 0

respectively. We put µC = µJ +
√
−1µK and µR = µI . We introduce the complexification

of G00: GC
00 = {g ∈ L2

2(I, GL(n)) | g(0) = g(1) = id}. It acts on H as follows:

g · α = gαg−1 − 1

2

dg

ds
g−1,

g · β = gβg−1.

This action preserves only the complex equation. And it is clear that µC is a moment

map with respect to the symplectic form ωJ +
√
−1ωK and the GC

00-action.

Therefore we define the space Msy as the symplectic quotient µ−1
C (0)/GC

00. This space

is also a manifold, by the same argument as in Lemma 2.6 and Proposition 2.9. Note

that the compactness of the group U(n) was not used in the proofs.

Let us consider the tangent space of this space and the complex structure. There is no

metric preserved by the complex action, the tangent space is not defined as an orthogonal

complement. Instead the tangent space of Msy is given as the middle cohomology of the

following short exact sequence:

LieGC
00

ιC−→ L2
1(I, gl

⊕2)
dµC−−→ LieGC

00,

that is T[(α,β)]Msy
∼= Ker(α,β) dµC/ Im(α,β) ιC. And Ker dµC and Im ιC are given respec-

tively by

{(A,B) | d
ds
B + 2[A, β] + 2[α,B] = 0},

{([h, α]− 1

2

d

ds
h, [h, β]) | h ∈ LieGC

00}.

Put GC
∗∗ = L2

2(I, GL(n)). GC
∗∗ acts on H and preserves the complex equation similarly

to GC
00. Then GL × GL acts on Msy because of the isomorphism between GC

∗∗/GC
00 and

GL×GL. The action induces an isomorphism between T[(α,β)]Msy and T[([g]·α,[g]·β)]Msy.

For Ker dµC and Im ιC, this isomorphism can be written as follows:

[g] · (A,B) = (gAg−1, gBg−1),

[g] · ([h, α]− 1

2

d

ds
h, [h, β]) = ([ghg−1, g · α]− 1

2

d

ds
(ghg−1), [ghg−1, g · β]),

where [g] is an element of GL×GL represented by g ∈ GC
∗∗. The symplectic form on Msy
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is induced by the symplectic form ω = ωJ +
√
−1ωK on H. It can be described as

ω((A,B), (A′, B′)) := 4

∫ 1

0

tr(dα ∧ dβ)ds((A,B), (A′, B′))

= 4

∫ 1

0

tr(AB′ −A′B)ds.

Let ξ be an element of LieGC
00 and v of Ker dµC, then we have

ω(ξ∗, v) = ⟨dµC(v), ξ⟩ = 0.

Thus the symplectic form ω is well-defined on Ker dµC/ Im ιC.

Remark 2.11. The author does not know how to calculate the dimension of Msy

directly. It will be cleared up that it is also equal to 2n2, according to the existence of a

homeomorphism to MhK or T ∗GL.

2·3. Space T ∗GL

A space T ∗GL is the cotangent bundle of the complex general linear group GL(n,C).
This is a complex manifold and an affine variety. The topology of this space is induced

as a variety. Furthermore, as a cotangent bundle, T ∗GL has a symplectic structure. We

define 2-form Ω at (u, η) ∈ T ∗GL = GL× g by

Ω((U,H), (U ′,H ′)) = −2 tr{(HU ′ −H ′U) + [U,U ′]η}, (2.12)

where (U,H) ∈ gl⊕2 is identified with a right invariant vector field (Ũ(u,η), H̃(u,η)) ∈
T(u,η)T

∗GL.

Lemma 2.13. Ω is a symplectic form on T ∗GL.

Proof. Let π : T ∗GL→ GL be the projection. Then, in general, the fundamental form

θ is defined as follows:

θ(u,η)((U,H)) = −η(dπ(U,H))

= − tr(ηduu−1)(U,H),

where duu−1 is the Maurer-Cartan form of GL. Thus we have a symplectic form

dθ(u,η) = − tr(dη ∧ duu−1 + ηduu−1 ∧ duu−1),

and 2dθ is also a symplectic form.

2·4. Maps between three spaces

We define maps F , F−1, G and G−1 in this subsection.

µ−1
R (0) ∩ µ−1

C (0)/G00 µ−1
C (0)/GC

00 T ∗GL

∈ ∈ ∈

[(T0, T1, T2, T3)]G00
[(α, β)]GC

00
(u, η).

F //

F−1

oo

G //

G−1

oo

2·4·1. Maps F and F−1

Both µR and µC are defined on H, so the map F can be defined as the inclusion map

from MhK to Msy:

F ([(T0, T1, T2, T3)]G00) = [(
1

2
(T0 +

√
−1T1),

1

2
(T2 +

√
−1T3))]GC

00
.
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In order to consider the inverse map of F , we solve the real equation µR = 0.

Proposition 2.14. Let (α, β) be an element of H (not necessary of µ−1
C (0)). There

exists at least one g ∈ GC
00 such that g · (α, β) ∈ µ−1

R (0).

Proof. The idea of this proof follows from [Ki] and [Na1]. We consider the gradient

flow of f = ∥|µR∥|2 starting from (α, β). The path is described as gt · (α, β) by using some

gt ∈ GC
00. And according to Neeman [Ne], gt · (α, β) converges to (α∞, β∞). At this time

the convergence of gt follows from Lemma 2.6.

Put µR(α
∞, β∞) = ξ ∈ LieG00. The limit (α∞, β∞) is a critical point of f , hence the

vector field generated by ξ vanishes at (α∞, β∞). The vanishing of the vector field can

be described as

[ξ, α∞]− 1

2

d

ds
ξ = 0, [ξ, β∞] = 0.

But ξ(0) = 0, so we have ξ ≡ 0 and µR(α
∞, β∞) = 0. Then g∞ is the required element

of GC
00.

Theorem 2.15. (Donaldson [Do]) Furthermore, if (α, β) in µ−1
C (0), g ∈ GC

00 at Propo-

sition 2.14 is unique up to G00.

Proof. We sketch the proof by Donaldson. In order to remove an ambiguity of the

G00-action, put h = g∗g ∈ L2
2(I, GL(n)/U(n)). And define

Φ(h) := logmax(eigenvalue of h).

Then according to [Do, Lemma 2.10], we have

d2

ds2
Φ(h) ≥ −2(∥F̂ (α, β)∥+ ∥F̂ (α′, β′)∥),

d2

ds2
Φ(h−1) ≥ −2(∥F̂ (α, β)∥+ ∥F̂ (α′, β′)∥),

(2.16)

where (α′, β′) = g · (α, β). Suppose both (α, β) and (α′, β′) satisfy the real equation, then

the right hand sides of (2.16) are 0. This means that the maximal eigenvalue of h is not

larger than 1 on I and that the minimal eigenvalue of h is not less than 1 on I. They
imply h = id.

In this way, the map F−1 is defined.

2·4·2. Maps G and G−1

By Remark 2.3, we can solve the equation

g · 0 = −1

2

dg

ds
g−1 = α, g(0) = id . (2.17)

When g−1 · α = 0, g−1 · β becomes constant because of the complex equation. Therefore

the solution (α, β) of the complex equation is sent to (0, η), where η is a constant β(0),

by the action of a group GC
0∗ := {g ∈ L2

2(I, GL) | g(0) = id}. Since GC
0∗/GC

00
∼= GL(n), the

map can be defined,

G(α, β) := (g(1), η),

where g is the solution of (2.17).
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Conversely, we define G−1 as follows. Take (u, η) ∈ GL× gl and g ∈ GC
0∗ which satisfy

g(0) = id and g(1) = u. Then the definition of G−1 is

G−1(u, η) := g · (0, η) = (−1

2

dg

ds
g−1, gηg−1).

Needless to say, [g · (0, η)]GC
00

∈ µ−1
C (0)/GC

00 is independent on the choice of g ∈ GC
0∗.

3. Detailed proof of Kronheimer’s theorem

By using the results in the last section, we give a detailed proof of Kronheimer’s

theorem.

Theorem 3.1. (Kronheimer [Kr1]) MhK is holomorphic symplectomorphic to the

cotangent bundle of the general linear group T ∗GL(n,C).
And by this morphism, T ∗GL(n,C) can be regarded as a hyper-Kähler manifold.

First we show MhK, Msy and T ∗GL are homeomorphic. To do this, we should pay

attention to their topologies. Bijective maps are already obtained, so we prove their

continuities.

Next we prove they are diffeomorphic, holomorphic and symplectomorphic. Since these

properties are defined among their tangent bundles, we should calculate the differential

of the maps, and check they preserve the structures of three manifolds.

3·1. Homeomorphy

The next proposition and lemma are essential.

Proposition 3.2. The maps Fand G are bijective and continuous.

Proof. The bijectivities are already known. Since F is the inclusion map, its continuity

is clear. To show the continuity of G at (α0, β0) ∈ µ−1
C (0), we check the Lipschitz condi-

tion. Let (α, β) be in the δ-neighborhood of (α0, β0). Since L
2
1 is compactly embedded in

C0, it means sups ∥α(s)− α0(s)∥ ≤ δ, sups ∥β(s)− β0(s)∥ ≤ δ, and moreover

∥α(s)− α0(s)∥∞ ≤ δ, ∥β(s)− β0(s)∥∞ ≤ δ, for any s ∈ I,

where ∥X∥∞ = maxi,j |Xij | as before. Then we have the following inequality:

∥α(s)g − α(s)g′∥∞ = max
i,j

|{α(s)(g − g′)}ij |

≤ max |α(s)ij |max |(g − g′)ij |
≤ (sup

s
∥α0∥∞ + δ)∥g − g′∥∞.

sup ∥α0∥+ δ is independent of α, so the Lipschitz condition is satisfied.

Lemma 3.3. The map G ◦ F is proper.

Proof. We have a trivial inequality:

∥
k∏

i=1

Ai∥ ≤ nk
k∏

i=1

∥Ai∥ , Ai ∈ GL(n).

This follows from the estimate of all the entries of Ai by ∥Ai∥.
The map (G ◦F )−1 is given as follows. Take (u, η) ∈ T ∗GL and (T0, T1, T2, T3) = (G ◦
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F )−1(u, η) ∈ µ−1
R (0)∩ µ−1

C (0)/G00. In this situation, ((T0 +
√
−1T1)/2, (T2 +

√
−1T3)/2)

can be described as g · (0, η), where g satisfies the differential equation,

d

ds
(h−1 dh

ds
) + 2[η, h−1η∗h] = 0, where h = g∗g, g(0) = id, and g(1) = u−1. (3.4)

The existence and uniqueness of the solution of this equation follows from Theorem 2.15.

This equation is preserved by the G0∗-action, so we can assume T0 = 0 from the beginning.

Then in order to prove this lemma, first we show that ∥T1(s)∥, ∥T2(s)∥ and ∥T3(s)∥ are

estimated by ∥u∥, ∥u−1∥ and ∥η∥ independent of s. Then from Nahm’s equations we have

∥ d
ds
T1∥ ≤ ∥[T2, T3]∥ ≤ 2n2 ∥T2∥ ∥T3∥ ,

∥ d
2

ds2
T1∥ ≤ ∥[ d

ds
T2, T3]∥+ ∥[T2,

d

ds
T3]∥ ≤ 4n4∥T1∥(∥T2∥2 + ∥T3∥3),

so the first and second derivatives are also estimated by ∥u∥, ∥u−1∥ and ∥η∥. Thus

Tks are in L∞
2 , and the compactness of the inclusion L∞

2 ↪→ L2
1 implies that the subset

{(
√
−1T1, T2+

√
−1T3) | estimated as above} is compact if the subset {(u, η)} is compact.

From the relation between T1, T2, T3, h and η, we have inequalities

∥T1∥2 = tr(h−1 dh

ds
)2 ≤ ∥h−1 dh

ds
∥2,

∥T2 +
√
−1T3∥2 = tr(ηh−1η∗h) ≤ n4∥η∥2 sup

s
∥h−1∥ sup

s
∥h∥.

Therefore it is enough to estimate h and h−1. By Theorem 2.15, we have

d2

ds2
Φ(h) ≥ −2∥[η, η∗]∥.

Put f(s) = Φ((uu∗)−1)s+ ∥[η, η∗]∥s(1− s), we get d2

ds2 (f − Φ(h)) ≤ 0 and f − Φ(h) = 0

at s = 0, 1. Hence we have

Φ(h) ≤ Φ((uu∗)−1)s+ ∥[η, η∗]∥s(1− s).

In general, max(eigenvalue of XX∗) ≤ ∥X∥2 ≤ nmax(eigenvalue of XX∗) holds, and

since h is a self-adjoint matrix, we have (the i-th eigenvalue of hh∗) = (the i-th eigenvalue

of h)2. This leads to

sup
s

∥h∥ ≤
√
n sup

s
expΦ(h)

≤
√
n sup

s
{exp(Φ((uu∗)−1)s) exp(∥[η, η∗]∥s(1− s))}

≤
√
n∥u−1∥2 exp(n

2

2
∥η∥2).

Similarly, we have sups ∥h−1∥ ≤
√
n∥u∥2 exp(n

2

2 ∥η∥2). Then,

∥T2 +
√
−1T3∥2 ≤ n5

∥∥u−1
∥∥2 ∥u∥2 ∥η∥2 en2∥η∥2

.

Integrating (3.4), we get

∥h−1 dh

ds
− h−1 dh

ds
|s=0∥ = ∥ − 2

∫ s

0

[η, h−1η∗h]ds∥

≤ 2

∫ s

0

(∥ηh−1η∗h∥+ ∥h−1η∗hη∥)ds.
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As a consequence, we have

∥h−1 dh

ds
∥ ≤ 4n4∥η∥2 sup ∥h∥ sup ∥h−1∥+

∥∥∥∥dhds |s=0

∥∥∥∥
≤ 4n5 ∥η∥2

∥∥u−1
∥∥2 ∥u∥2 en2∥η∥2

+

∥∥∥∥dhds |s=0

∥∥∥∥ .
We estimate the last term. dh/ds|s=0 means lims→+0

1
s (h(s) − id), and we have the

following inequality:

∥h− id ∥2 ≤ n(expΦ(h)− 1)2

≤ n{
(
Φ((uu∗)−1) + ∥[η, η∗]∥

)
s+O(s2)}2.

Hence we get ∥∥∥∥dhds |s=0

∥∥∥∥ ≤ lim
s→+0

√
n

s
{(log ∥u−1∥2 + n2

2
∥η∥2)s+O(s2)}

≤
√
n(log ∥u−1∥2 + n2

2
∥η∥2).

Summarising them, we can conclude.

Proposition 3.5. The maps Fand G are homeomorphic.

Proof. The continuities of Fand G are by (3.2). From (3.3), G ◦ F is proper, so G ◦ F
becomes homeomorphic. Then F−1 = (G ◦ F )−1 ◦ G and G−1 = F ◦ (G ◦ F )−1 are

continuous.

3·2. Other properties

We consider the differential of Fand G, which are the maps between the tangent

bundles of three spaces. Since F is the inclusion map, F∗ is given by

F∗(τ0, τ1, τ2, τ3) = [(
1

2
(τ0 +

√
−1τ1),

1

2
(τ2 +

√
−1τ3))]GC

00
,

where (τ0, τ1, τ2, τ3) ∈ TMhK as (2.10).

Let (αt, βt) be any path in µ−1
C (0) through (α, β) at t = 0. Then the differential of

(αt, βt) at t = 0 gives (α̇0, β̇0) ∈ T(α,β)µ
−1
C (0). By definition,G∗ is given by the differential

at t = 0 of the solution of (2.17). So, we should solve

α̇0 = −1

2
(
dġ0

ds
g−1 − dg

ds
g−1ġ0g−1), (i.e.

d

ds
ġ0 + 2α̇0g + 2αġ0 = 0), (3.6)

with ġ0(0) = 0. Hence, by using the solution ġ0 of (3.6), we get

G∗(α̇
0, β̇0) = (ġ0(1), β̇0(0)). (3.7)

For a later purpose, we also calculate G−1
∗ . Put (ut, ηt) := (uetU , η+ tH), (H,U ∈ gl).

For g ∈ GC
0∗ which satisfies g(1) = u, put gt = gestU . Then gt defines the map G−1 for

(ut, ηt) because gt satisfies gt(1) = ut. Then differentiating

αt = −1

2

dgt

ds
gt

−1
,

βt = gtηtgt,
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at t = 0, we find that

G−1
∗ (U,H) = (α̇0, β̇0),

where

α̇0 = −1

2

dġ0

ds
g−1 +

1

2

dg

ds
g−1ġ0g−1

= −1

2
gUg−1,

β̇0 = gη̇0g−1 + ġ0ηg−1 − gηg−1ġ0g−1

= gHg−1 + sgUηg−1 − sgηUg−1.

First, we show the next proposition by using these equations.

Proposition 3.8. The homeomorphisms F and G are diffeomorphisms.

Proof. In order to prove F and G are diffeomorphisms, we show F∗ and G∗ are iso-

morphisms between the tangent spaces.

First, we show G∗ is isomorphic. We take g ∈ GC
0∗ which sends (α, β) to (0, η), then

g induces an isomorphism from T[(α,β)]Msy to T[(0,η)]Msy. Hence it is enough to check

G∗[(0,η)] is isomorphic. Now we have

Ker(0,η) dµC ∼= {(A,B) | d
ds
B + 2[A, η] = 0},

Im(0,η) ιC ∼= {(−1

2

d

ds
h, [h, η]) | h ∈ LieGC

00},

and G∗[(0,η)] : T[(0,η)]Msy → T(id,η)T
∗GL can be described as (A(s), B(s)) 7→ (

∫ 1

0
A(s)ds,

B(0)) from (3.6) and (3.7).

Suppose G∗[(0,η)](A,B) = (0, 0), i.e.
∫ 1

0
Ads = 0, B(0) = 0. Put h(s) := −2

∫ s

0
A(s′)ds′,

h is in LieGC
00 because of h(0) = h(1) = 0. Then we have

−1

2

d

ds
h = A(s),

[h, η] = −
∫ s

0

2[A(s′), η]ds′

= −
∫ s

0

(− d

ds′
B)ds′ = B(s),

and hence (A,B) ∈ Im ιC. Conversely, for any (U,H) ∈ TT ∗GL, the element (U,−s[U, η]
+H) is sent to (U,H). Therefore G∗ is isomorphic. (In fact, the dimensions of Msy and

T ∗GL are 2n2, so the surjectivity follows from the injectivity.)

Next, we show F∗ is isomorphic. Suppose [((τ0 +
√
−1τ1)/2, (τ2 +

√
−1τ3)/2)]GC

00
= 0

i.e. ((τ0 +
√
−1τ1)/2, (τ2 +

√
−1τ3)/2) ∈ Im ιC. Then, by some h ∈ LieGC

00, we can write

1

2
(τ0 +

√
−1τ1) = [h, α]− 1

2

d

ds
h,

1

2
(τ2 +

√
−1τ3) = [h, β].

Since (τ0, τ1, τ2, τ3) ∈ TMhK, they satisfy d
ds (τ0 +

√
−1τ1) + 2[τ0 +

√
−1τ1, α

∗] + 2[τ2 +
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√
−1τ3, β

∗] = 0. Then we have

0 =

∫ 1

0

tr{ d
ds

([h, α]− 1

2

d

ds
h) + 2[[h, α]− 1

2

d

ds
h, α∗] + 2[[h, β], β∗]}h∗ds

=

∫ 1

0

tr{−([h, α]− 1

2

d

ds
h)

d

ds
h∗ − [

d

ds
h, α∗]h∗ + 2[[h, α], α∗]h∗ + 2[[h, β∗], β]h∗}ds

=

∫ 1

0

tr{2(−1

2

d

ds
h+ [h, α])(−1

2

d

ds
h∗ + [h, α]∗) + 2[h, β][h, β]∗}ds

= 2∥|([h, α]− 1

2

d

ds
h, [h, β])∥|2L2 ,

where we used integration by parts in the second equality. This implies the injectivity of

F∗. The surjectivity of F∗ follows from the injectivity.

Next, the holomorphy of F and G follows from the commutativity of the diagram

TMhK TMsy

∈ ∈
(τ0, τ1, τ2, τ3) [((τ0 +

√
−1τ1)/2, (τ2 +

√
−1τ3)/2)]GC

00

(−τ1, τ0,−τ3, τ2) [(
√
−1(τ0 +

√
−1τ1)/2,

√
−1(τ2 +

√
−1τ3)/2)]GC

00
,

TT ∗GL TMsy

∈ ∈

(U,H) [(−1
2gUg

−1, gHg−1 + sg[U, η]g−1)]GC
00

(
√
−1U,

√
−1H) [(−

√
−1
2 gUg−1,

√
−1gHg−1 +

√
−1sg[U, η]g−1)]GC

00
.

F∗ //

G−1
∗ //

� //

� //

� //

� //

_
I

��

_
I

��

_
I

��

_
I

��

Hence we have the following proposition.

Proposition 3.9. The diffeomorphisms Fand G are holomorphic.

Last, we consider the correspondence of their symplectic forms. The following argument

also appears in [Bi].

Lemma 3.10. The holomorphic maps F and G preserve the symplectic forms.

Proof. The assertion for F is clear. Let us check the symplectic form of Msy is sent to

that of T ∗GL by G−1∗. We have

G−1∗ω((U,H), (U ′,H ′))

= ω((−1

2
gUg−1, gHg−1 + sg[U, η]g−1), (−1

2
gU ′g−1, gH ′g−1 + sg[U ′, η]g−1))

= 2

∫ 1

0

tr{−gUg−1(gH ′g−1 + sg[U ′, η]g−1) + gU ′g−1(gHg−1 + sg[U, η]g−1)}ds

= −2 tr{(UH ′ − U ′H) + ([U,U ′])η}, (3.11)

this coincides with (2.12).

Therefore, the proof of Kronheimer’s theorem is completed.
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Corollary 3.12. Take l ∈ R>0 and suppose the symplectic form of T ∗GL is given

by lΩ instead of Ω. Then T ∗GL is symplectomorphic to the moduli space of the solutions

of Nahm’s equations on the interval [0, l].

Proof. On [0, l] instead of I = [0, 1], the integrand at (3.11) is replaced by

tr{−gUH ′g−1 + gU ′Hg−1 +
s

l
g(−U [U ′, η] + [U, η]U ′)g−1}.

Integrating from 0 to l, we have

G−1∗ω((U,H), (U ′,H ′)) = −2l tr{(UH ′ − U ′H) + ([U,U ′])η}
= lΩ((U,H), (U ′,H ′)).

Proposition 3.13. In the case of n = 1 and on [0, l], the biholomorphism MhK
∼=

T ∗C∗ ∼= S1 × R3 is explicitly given by

[(T0, T1, T2, T3)]G00 7→ (exp(

∫ l

0

T0ds),−
√
−1T1(0),−

√
−1T2(0),−

√
−1T3(0)) ∈ S1 × R3,

and the symplectic form is given by ω = −l(d
∫ l

0
T0ds+

√
−1dT1) ∧ (−dT2 +

√
−1dT3).

Proof. In this case, Nahm’s equations are written by dTk/ds = 0 (k = 1, 2, 3), so

{(T1, T2, T3)} ∼= (
√
−1R)3. By the G00-action, we can regard T0 is constant. Put tk =

−
√
−1Tk ∈ R for k = 0, 1, 2, 3. exp(2π

√
−1s/l) ∈ G00 sends t0 to t0 − 2πl−1 so [t0]

defines an element of R/2πl−1Z. Note that we have [
√
−1t0] = [

∫ l

0
T0ds]. Let g be a

solution of g · 0 =
√
−1t0 − t1, g(0) = id. Then we have g(s) = exp{−(

√
−1t0 − t1)s},

u = g(l) = exp{−l(
√
−1t0 − t1)} and η = (

√
−1t2 − t3)/2. The symplectic form is given

by

ω = 2u−1du ∧ dη = −l(
√
−1dt0 − dt1) ∧ (

√
−1dt2 − dt3).

4. Elemental bow varieties

In this section, we introduce elemental bow varieties and research them in the same

way as [Na2]. The definition of elemental bow varieties is based on Cherkis’ work ([C1,

§2], [C2, §2]). By using elemental bow varieties we will construct ALF spaces in the

following section.

In this paper, we define ALF (i.e. Asymptotically Locally Flat) spaces as follows:

Definition 4.1 (c.f. [M]). A connected complete hyper-Kähler 4-manifold (M, g) is

called an ALF space if there exist c1 and c2 (0 < c1 ≤ c2) such that for any x ∈ M and

for any r ≥ 1, the metric g satisfies

c1r
3 ≤ Volg B(x, r) ≤ c2r

3.

For example, R3 × S1 is an ALF space. For nontrivial example, Taub-NUT space is

ALF. Taub-NUT space is homeomorphic to C2 and has a hyper-Kähler structure, and

its metric is given by

gTN =

(
λ+

1

|x|

)
dx2 +

(
λ+

1

|x|

)−1

(dψ + ω)2, (4.2)
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where x ∈ R3, ψ ∈ S1, dω = ∗d 1
|x| and λ > 0 is a parameter. As |x| → ∞, we have

gTN → dx2 + (dψ + ω)2, so the metric gTN actually satisfies the condition about the

volume growth.

4·1. Elemental bows

For l > 0, we consider the following diagram:

▶
h+−

◀
h−+

• • •

•

n n

P1

IL = {−l ≤ s ≤ 0} IR = {0 ≤ s ≤ l}.
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o

��

OO

We call this diagram (with the following data) an elemental bow. We give a rank-n

hermitian vector space W ∼= C on P and a trivial hermitian vector bundle π : V →
IL ∪ IR, and describe π−1(s) as V (s). Let us define complex vector spaces MΩ, MΩ̄ and

M respectively by

MΩ = Hom(V (l), V (−l))⊕Hom(W,V (0)) = {(B−+, i) ∈M(n, n;C)⊕M(1, n;C)},
MΩ̄ = Hom(V (−l), V (l))⊕Hom(V (0),W ) = {(B+−, j) ∈M(n, n;C)⊕M(n, 1;C)},
M = MΩ ⊕MΩ̄ ⊕HL ⊕HR,

where H•s are as in §2.1. The metric of M is given by

ds2 = tr{dB−+dB
∗
−++dB+−dB

∗
+− + didi∗ + dj∗dj}

+
∑

A=L,R

∫
IA

tr{dTA
0 d(T

A
0 )∗ + dTA

k d(T
A
k )∗}ds, (4.3)

where the meaning of the integrand is as (2.1) and X∗ means Hermitian adjoint tX̄. We

define a complex structure J as J(B−+, B+−, i, j) := (−B∗
+−, B

∗
−+,−j∗, i∗), then M has

a hyper-Kähler structure. The Kähler forms are written as

ωI =

√
−1

2
tr{dB−+ ∧ dB∗

−+ + dB+− ∧ dB∗
+− + di ∧ di∗ + dj ∧ dj∗}

+
∑

A=L,R

∫
IA

− tr{dTA
0 ∧ dTA

1 + dTA
2 ∧ dTA

3 }ds,

ωJ +
√
−1ωK = tr{dB−+ ∧ dB+− + di ∧ dj}

+
∑

A=L,R

∫
IA

tr{(dTA
0 +

√
−1dTA

1 ) ∧ (dTA
2 +

√
−1dTA

3 )}ds.

A group G = {g = (gL, gR) ∈ L2
2(IL, U(n))×L2

2(IR, U(n)) | gL(0) = gR(0)} acts on M
by

g · (B−+, B+−, i, j, T
A
0 (s), TA

k (s))

= (g(−l)B−+g(l)
−1, g(l)B+−g(−l)−1, g(0)i, jg(0)−1, gTA

0 g
−1 − dg

ds
g−1, gTA

k g
−1),
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for k = 1, 2, 3, A = L,R. This action preserves the hyper-Kähler structure. Then we have

a hyper-Kähler moment map µ (see also Remark 2.5 and [Kr2]). The explicit form is as

follows:

µR =


−
√
−1
2 (B−+B

∗
−+ −B∗

+−B+−) + TL
1 (−l) at s = −l

d
dsT

A
1 + [TA

0 , T
A
1 ] + [TA

2 , T
A
3 ] at s ∈ (−l, 0), (0,−l)

−
√
−1
2 (ii∗ − j∗j)− TL

1 (0) + TR
1 (0) at s = 0

−
√
−1
2 (B+−B

∗
+− −B∗

−+B−+)− TR
1 (l) at s = l,

µC =


B−+B+− + (T l

2 +
√
−1T l

3)(−l) at s = −l
d
ds (T

A
2 +

√
−1TA

3 ) + [TA
0 +

√
−1TA

1 , T
A
2 +

√
−1TA

3 ] at s ∈ (−l, 0), (0,−l)
ij − (TL

2 +
√
−1TL

3 )(0) + (TR
2 +

√
−1TR

3 )(0) at s = 0

−B+−B−+ − (TR
2 +

√
−1TR

3 )(l) at s = l.

(4.4)

Put Z = {ζ ∈ Lie(U(n))∗ ⊗ (R ⊕ C) | Ad∗g(0)(ζ) = ζ for all g ∈ G}. Choose an element

ζ = (ζR, ζC) ∈ Z, and define a hyper-Kähler quotient Mζ(n, l) of M by G as follows:

Mζ(n, l) := {(B, i, j, T ) ∈ M | µ(B, i, j, T ) = ζδ0}/G.

Here δ0 is Dirac’s delta on IL ∪ IR i.e. δ0(0) = 1 and δ0(s) = 0 for s ̸= 0. We call this

hyper-Kähler manifold Mζ(n, l) an elemental bow variety.

Remark 4.5. (i) As a usual hyper-Kähler quotient, we may have to change Z into

Z ′ = {ζ ′ ∈ LieG∗ ⊗ (R ⊕ C) | Ad∗g(ζ ′) = ζ ′ for all g ∈ G}. However, by a change of

coordinates, we get Mζ′ ∼= Mζ for a certain ζ ∈ Z. Thus we do not need Z ′ and at

insides of intervals µ(B, i, j, T ) = ζδ0 means {T} satisfies Nahm’s equations (see also

Remark 2.5).

(ii) ζ can be written as (ζR, ζC) = (cR
√
−1 id, cC id), where cR = tr ζR/n

√
−1 ∈ R, cC =

tr ζC/n ∈ C.

We apply Kronheimer’s theorem to Mζ(n, l), we have

Mζ(n, l) ∼= {(B, i, j, u, η) ∈ MC | µ(B, i, j, u, η) = ζδ0}/G,

where we put MC = MΩ⊕MΩ̄⊕T ∗GL(n)⊕T ∗GL(n) and G = U(n)×U(n)×U(n). We

describe these data as the following diagram:

▶
B+−

◀
B−+

• • •

•P

∼=
uL

// ∼=
uR

oo

ηL

__

ηR,

__
j

��
i

OO

where ∼= means KeruA = 0. The real moment map cannot be described explicitly by
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using u and η, but the complex moment map can be described as

µC(B, i, j, u, η) =


B−+B+− + 2ηL at s = −l
ij − 2uLηLu

−1
L + 2uRηRu

−1
R at s = 0

−B+−B−+ − 2ηR at s = l.

(4.6)

And the group G acts on {(u, η)} as

(g−, g0, g+) : (uL, ηL, uR, ηR) 7→ (g0uLg
−1
− , g−ηLg

−1
− , g0uRg

−1
+ , g+ηRg

−1
+ ).

4·2. General properties of elemental bow varieties

In the last subsection, we claimed that elemental bow varieties can be constructed

as finite dimensional hyper-Kähler quotient. By considering the relation between finite

dimensional hyper-Kähler quotient and GIT quotient, we prove the following proposition.

Proposition 4.7. The elemental bow variety Mζ(n, l) is algebraic.

Proof. We prove the hyper-Kähler quotient µ−1
R (ζR) ∩ µ−1

C (ζC)/G is biholomorphic to

the GIT quotient µ−1
C (ζC) //χGC. By the same argument as [Kr2, Corollary 3.12], it is

enough to consider in the case of ζC = 0. According to the argument in §1·2·2, first we

consider a prequantisation of µ−1
C (0).

We take a trivial line bundle L on µ−1
C (0) and give a hermitian structure by a function

h(zp) = |z|2ef(p), where zp = (p, z) ∈ µ−1
C (0) × C ∼= L. Here we give f(B, i, j, u, η) =

f1(u, η) + f2(B) + f3(i, j), and

f1(u, η) =
1

2

∑
A=L,R

∫
IA

∥αA(s) + α∗
A(s)∥2 + 2∥βA(s)∥2ds,

f2(B−+, B+−) =
1

4
(∥B−+∥2 + ∥B+−∥2),

f3(i, j) =
1

4
(∥i∥2 + ∥j∥2),

where (α, β) satisfies Nahm’s equation and G(α, β) = (u, η) ∈ T ∗GL (c.f. §2.4). In fact

this line bundle (L, h) is a prequantisation of µ−1
C (0). It is because we have

(∂ − ∂̄)f1(u, η) =

∫
tr{(α+ α∗)(dα− dα∗) + dββ∗ − βdβ∗}ds,

d(∂ − ∂̄)f1(u, η) =

∫
tr{(dα+ dα∗) ∧ (dα− dα∗)− dβ ∧ dβ∗ − dβ ∧ dβ∗}ds

= −
∫

2 tr{dα ∧ dα∗ + dβ ∧ dβ∗}ds

= −
√
−1

∫
tr{dT0 ∧ dT1 + dT2 ∧ dT3}ds,

(∂ − ∂̄)f2(B−+, B+−) =
1

4
tr{(dB−+B

∗
−+ −B−+dB

∗
−+) + (dB+−B

∗
+− −B+−dB

∗
+−)},

d(∂ − ∂̄)f2(B−+, B+−) = −1

2
tr{dB−+ ∧ dB∗

−+ + dB+− ∧ dB∗
+−},

d(∂ − ∂̄)f3(i, j) = −1

2
tr{di ∧ di∗ + dj ∧ dj∗},

and the summation of the fourth, sixth and seventh of right hand sides coincide with√
−1ωI .
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On the other hand, since L is trivial, a linearisation of the GC-action can be described

as g · (p, z) = (g ·p, χ(g)−1z), where χ is a complexification of a character χR : G→ U(1).

Suppose

χ(g)−1 = (det g−)
c−(det g0)

c0(det g+)
c+ , c• ∈ R. (4.8)

By Proposition 1.10, this linearisation determines the moment map µχ.
Recall that ⟨µχ(B, i, j, u, η), ξ⟩ is given by s∗ι ˜̃

ξ
A, where s : M → L is the 0-section.

Here the connection form A of L (see (1.8)) is given by

A =
1

4
√
−1

(
4
dz

z
− 4

dz̄

z̄
+
∑

A=L,R

∫
IA

4 tr{(αA + α∗
A)(dαA − dα∗

A) + dβAβ
∗
A − βAdβ

∗
A}ds

+ tr{(dB−+B
∗
−+ −B−+dB

∗
−+) + (dB+−B

∗
+− −B+−dB

∗
+−)}

+ tr{(dii∗ − idi∗) + (djj∗ − jdj∗)}
)
.

We identify exp(ξ) ∈ G with exp(ξ(s)) ∈ G/G000, where G000 = {g ∈ G | g(−l) = g(0) =

g(l) = id}. Since ξ∗ = −ξ, we have

−ι ˜̃
ξ
dz = (c− tr ξ(−l) + c0 tr ξ(0) + c+ tr ξ(l))z,

−ι ˜̃
ξ
dz̄ = −(c− tr ξ(−l) + c0 tr ξ(0) + c+ tr ξ(l))z̄,

−ι ˜̃
ξ
dα = [ξ(s), α(s)]− 1

2

d

ds
ξ(s), −ι ˜̃

ξ
dα∗ = [α∗(s),−ξ(s)] + 1

2

d

ds
ξ(s),

−ι ˜̃
ξ
dβ = [ξ(s), β(s)], −ι ˜̃

ξ
dβ∗ = [β∗(s),−ξ(s)],

−ι ˜̃
ξ
dB−+ = ξ(−l)B−+ −B−+ξ(l), −ι ˜̃

ξ
dB∗

−+ = ξ(l)B∗
−+ −B∗

−+ξ(−l),

−ι ˜̃
ξ
di = ξ(0)i, −ι ˜̃

ξ
dj = −jξ(0).

Hence we get

⟨4
√
−1µχ, ξ⟩ = 8(c− tr ξ(−l) + c0 tr ξ(0) + c+ tr ξ(l))

+
∑

A=L,R

∫
IA

4 tr{(αA + α∗
A)([ξ, αA]−

1

2

d

ds
ξ + [α∗

A, ξ]−
1

2

d

ds
ξ)

+ [ξ, βA]β
∗
A + βA[β

∗
A, ξ]}ds

+ tr{
(
ξ(−l)B−+ −B−+ξ(l)

)
B∗

−+ −B−+

(
ξ(l)B∗

−+ −B∗
−+ξ(−l)

)
+
(
ξ(l)B+− −B+−ξ(−l)

)
B∗

+− −B+−

(
ξ(−l)B∗

+− +B∗
+−ξ(l)

)
}

+ tr{ξ(0)ii∗ − i(−i∗ξ(0)) + (−jξ(0))j∗ − jξ(0)j∗}
= tr{8c+ − 4(αR(l) + α∗

R(l)) + 2(B+−B
∗
+− −B∗

−+B−+)}ξ(l)
+ tr{8c0 + 4(αR(0) + α∗

R(0))− 4(αL(0) + α∗
L(0)) + 2(ii∗ − j∗j)}ξ(0)

+ tr{8c− + 4(αL(−l) + α∗
L(−l)) + 2(B−+B

∗
−+ −B∗

+−B+−)}ξ(−l).

Here we used integration by parts and the assumption that (α, β) is the solution of

Nahm’s equations. This implies

µχ(B, i, j, u, η) =


µR − 2c−

√
−1 id at s = −l

µR − 2c0
√
−1 id at s = 0

µR − 2c+
√
−1 id at s = l.
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Instead of (4.8), we define a linearisation by putting

χ(g)−1 = (det g0)
tr ζR

2n
√

−1 .

Then we apply Lemma 1.11 to this linearisation, we have a biholomorphism

{µ−1
C (0)}ass/GC ∼= µ−1

χ (0) ∩ µ−1
C (0)/G = µ−1

R (ζR) ∩ µ−1
C (0)/G = Mζ(n, l).

On the other hand, we can consider the GIT quotient µ−1
C (0) //χGC, because the above

linearisation is trivial. We claim that µ−1
C (0)ass coincides with µ−1

C (0)ss. We can make

the similar argument as [Na2, Proposition 3.9., 3.21.] to prove this claim. The difference

is that ∥x∥ is replaced by f . In [Na2, p.32, 35], he used the properness of x 7→ ∥x∥ so it is

enough to check the properness of f . For f2 and f3 it is clear, and for f1 the compactness

of the subset {(u, η) | f1(u, η) ≤ C} follows from the argument of Lemma 3.3.

Therefore we have

Mζ(n, l) = µ−1
R (ζR) ∩ µ−1

C (0)/G ∼= µ−1
C (0) //χGC,

and the elemental bow variety Mζ(n, l) is actually an algebraic variety because µ−1
C (0)

//χGC is algebraic. (When ζR = 0, µ−1
C (0) //χGC is regarded as an affine algebro-

geometric quotient because χ = id.)

We give another characterisation to the (semi)stability condition of the GIT quotient

µ−1
C (0) //χGC. Here we recall that (B, i, j, u, η) is called a (χ-)semistable point when

GC · (B, i, j, u, η, z) is closed for z ̸= 0, and (B, i, j, u, η) is called a stable point when

GC · (B, i, j, u, η) is closed and its stabiliser is finite (see also §1.2).

Definition 4.9. For V = {V (−l), V (0), V (l)}, a set of three subspaces S = {S(−l),
S(0), S(l)}, (S(s) ⊂ V (s)) is called invariant for (B, i, j, u, η) if it satisfies the following

conditions:

B−+(S(l)) ⊂ S(−l), uL(S(−l)) = S(0), ηL(S(−l)) ⊂ S(−l),
B+−(S(−l)) ⊂ S(l), uR(S(l)) = S(0), ηR(S(l)) ⊂ S(l).

Theorem 4.10. Put x = (B, i, j, u, η) ∈ µ−1
C (0) and c = tr ζR

2n
√
−1

∈ R.
(i)When c < 0, (x, z) is semistable if and only if there exists no set of proper subspaces

S ⊊ V such that S is invariant for x and Im i ⊂ S(0).

(ii)When c > 0, (x, z) is semistable if and only if there exists no set of nonzero subspaces

0 ̸= S ⊂ V such that S is invariant for x and S(0) ⊂ Ker j.

(iii)When c = 0, x is stable if and only if there exists no set of nonzero proper subspaces

0 ̸= S ⊊ V such that S is invariant for x and Im i ⊂ S(0) ⊂ Ker j.

Proof. The proofs of three assertions are analogous. First we suppose the orbit GC ·
(x, z) is closed for z ̸= 0 and there exists an invariant set of subspaces S ⊂ V . If

Im i ⊂ S(0), we take

gt− = (id, t−1 id) ∈ GL(S(−l))×GL(S(−l)⊥) ⊂ GL(V (−l)),
gt0 = (id, t−1 id) ∈ GL(S(0))×GL(S(0)⊥) ⊂ GL(V (0)),

gt+ = (id, t−1 id) ∈ GL(S(l))×GL(S(l)⊥) ⊂ GL(V (l)).
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Then we have gt0uL(g
t
−)

−1 = uL, g
t
0uR(g

t
+)

−1 = uR and

gt−B−+(g
t
+)

−1|S(l)⊥→S(−l) = tB−+|S(l)⊥→S(−l),

gt+B+−(g
t
−)

−1|S(−l)⊥→S(l) = tB+−|S(−l)⊥→S(l),

gt−ηL(g
t
−)

−1|S(−l)⊥→S(−l) = tηL|S(−l)⊥→S(−l),

gt+ηR(g
t
+)

−1|S(l)⊥→S(l) = tηR|S(l)⊥→S(l),

gt0i = i, j(gt0)
−1|S(0)⊥→W = tj|S(0)⊥→W ,

χ(gt)−1z = t−c dimS(0)⊥ .

And if Ker j ⊃ S(0), we take

g′
t
− = (t id, id) ∈ GL(S(−l))×GL(S(−l)⊥) ⊂ GL(V (−l)),

g′
t
0 = (t id, id) ∈ GL(S(0))×GL(S(0)⊥) ⊂ GL(V (0)),

g′
t
+ = (t id, id) ∈ GL(S(l))×GL(S(l)⊥) ⊂ GL(V (l)).

Then we have the same equations for uL, uR, B−+, B+−, ηL and ηR as above and

g′
t
0i|W→S(0) = ti|W→S(0), j(g′

t
0)

−1 = j, χ(g′
t
)−1z = tc dimS(0).

Combined with these things, when c < 0 and Im i ⊂ S(0), S(0)⊥ ̸= 0 leads to a contra-

diction and when c > 0 and Ker j ⊃ S(0), S(0) ̸= 0 also does.

And when c = 0, Im i ⊂ S(0) ⊂ Ker j implies there exists x = (B, i, j, u, η) ∈ µ−1
C (0)

which satisfies

B−+|S(l)⊥→S(−l) = B+−|S(−l)⊥→S(l) = ηL|S(−l)⊥→S(−l) = ηR|S(l)⊥→S(l) = i = j = 0,

by taking the limit t→ 0. The stabiliser of this element is infinite, so this is a contradic-

tion.

Conversely, we suppose that the (semi)stability condition is satisfied and that the

orbit is not closed for z ̸= 0. Then there exists λ = (λ−, λ0, λ+) : C∗ → GC, such that

limt→0 λ(t) · (x, z) exists and this limit is contained in GC · (x, z) \GC · (x, z). Let us take
a weight decomposition of V with respect to λ:

V (−l) = ⊕αV (−l,m−,α), V (0) = ⊕αV (0,m0,α), V (1) = ⊕αV (l,m+,α),

where m•,αs are the weights. Then the existence of limt→0 λ0(t)uLλ
−1
− (t) implies m−,α =

m0,α and this also holds for uR, we put mα := m−,α = m0,α = m+,α. We can assume

m1 ≥ m2 ≥ · · · ≥ mn. The existence of limt→0 λ(t) · (x, z) implies the following:

B−+(V (l,mα)) ⊂
⊕
β≥α

V (−l,mβ), B+−(V (−l,mα)) ⊂
⊕
β≥α

V (l,mβ),

ηL(V (−l,mα)) ⊂
⊕
β≥α

V (−l,mβ), ηR(V (l,mα)) ⊂
⊕
β≥α

V (l,mβ),

Im i ⊂
⊕
β≥0

V (0,mβ), Ker j ⊃
⊕
β≥0

V (0,mβ).

Thus ⊕β≥αV (mβ) = {V (−l,mβ), V (0,mβ), V (l,mβ)} is an invariant set of subspaces.

When c < 0, we have V =
⊕

β≥0 V (mβ) by the stability condition. Hence det(λ(t)) =

tN for some N ≥ 0. If N = 0, V = V (0) and λ(t) ≡ 0 is against limt→0 λ(t) · (x, z) /∈
GC · (x, z). If N > 0, χ(λ(t))−1z = t−cNz is against the existence of limλ(t) · (x, z).
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When c > 0, we have V =
⊕

β≤0 V (mβ) by the stability condition. This also leads to

a contradiction by the same argument.

When c = 0, we have V = V (0) by the stability condition. This also leads to a

contradiction.

Proposition 4.11. As algebraic varieties, the elemental bow variety is isomorphic to

the quiver variety given by {[B1, B2] + ij = 0} //χGL.

Proof. We give a map and check the map preserves the complex moment map and the

stability condition. We define a map

(B−+, B+−, uA, ηA) 7→ (B1, B2) = (uLB−+u
−1
R , uRB+−u

−1
L ).

Then by (4.6), µC = 0 corresponds to [B1, B2] + ij = 0. We have to consider the induced

(semi)stability condition on {[B1, B2] + ij = 0} //χGL. By Theorem 4.10, we have the

stability condition for x = (B1, B2):

(i)When c < 0, (x, z) is semistable if and only if there exists no proper subspace

S(0) ⊊ V (0) such that S(0) is invariant for x and Im i ⊂ S(0).

(ii)When c > 0, (x, z) is semistable if and only if there exists no nonzero subspace

0 ̸= S(0) ⊂ V (0) such that S(0) is invariant for x and S(0) ⊂ Ker j.

(iii)When c = 0, x is stable if and only if there exists no nonzero proper subspace

0 ̸= S(0) ⊊ V (0) such that S(0) is invariant for x and Im i ⊂ S(0) ⊂ Ker j.

This is because uLS(−l) = S(0), uRS(l) = S(0). The above condition coincides with the

(semi)stability condition of the quiver variety {[B1, B2]+ ij = 0} //χGL (c.f. [Na2]).

Corollary 4.12. When ζ ̸= 0, Mζ(n, l) is isomorphic to the Hilbert scheme (C2)[n],

and when ζ = 0, M0(n, l) is isomorphic to the symmetric product Sn(C2) as algebraic

varieties.

Proof. This follows from Proposition 4.11 and [Na2].

Remark 4.13. These isomorphisms do not preserve the metrics.

4·3. Metrics of elemental bow varieties

First we calculate the metric of M0(1, l). This is also mentioned by Cherkis [C1, §3.2].
In this case we have B−+, B+−, i, j ∈ C, TA

k ∈ Γ(IA,
√
−1R), and the moment map is

given as follows:

µR =


−
√
−1
2 (B−+B

∗
−+ −B∗

+−B+−) + TL
1 (−l) at s = −l

d
dsT

A
1 at s ∈ (−l, 0), (0, l)

−
√
−1
2 (ii∗ − j∗j)− TL

1 (0) + TR
1 (0) at s = 0

−
√
−1
2 (B+−B

∗
+− −B∗

−+B−+)− TR
1 (l) at s = l,

µC =


B−+B+− + (TL

2 +
√
−1TL

3 )(−l) at s = −l
d
ds (T

A
2 +

√
−1TA

3 ) at s ∈ (−l, 0), (0, l)
√
−1
2 ij − (TL

2 +
√
−1TL

3 )(0) + (TR
2 +

√
−1TR

3 )(0) at s = 0

−B+−B−+ − (TR
2 +

√
−1TR

3 )(l) at s = l.

The equation µ = 0 means TL
1 ≡ TR

1 ≡
√
−1
2 (|B−+|2 − |B+−|2), TL

2 +
√
−1TL

3 ≡ TR
2 +√

−1TR
3 ≡ B+−B−+, and i = j = 0. Put tk = −

√
−1TA

k , b1 = B−+ and b2 = B+−. We
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apply Proposition 3.13 for the interval [−l, l], then we can conclude

M0(1, l) = {(b1, b2, t0, tk) ∈ C× C× (R/(l−1π)Z)× R3

| |b1|2 − |b2|2 = 2t1, b1b2 =
√
−1t2 − t3}/S1,

where S1 = R/Z = {ϕ} acts as

eπ
√
−1ϕs/l : (b1, b2, t0, tk) 7→ (e−2π

√
−1ϕb1, e

2π
√
−1ϕb2, [t0 − l−1πϕ], tk).

The metric of the whole space (R/(l−1π)Z)× R3 × C× C is given by

ds2 = db1db̄1 + db2db̄2 + 2l(dt20 + dt21 + dt22 + dt23).

On the other hand, the Hopf fibration C2 → R × C is given by (z1, z2) 7→ (|z1|2 −
|z2|2, 2z1z2). If we put (2x1, 2

√
−1x2 − 2x3) = (|z1|2 − |z2|2, 2z1z2), then (x1, x2, x3, θ)

becomes a new coordinate of C2, where θ is the coordinate of the S1-fibre of the fibration.

We have dz1dz̄1 + dz2dz̄2 = 1/|x|dx2 + |x|(dθ + ω)2, where dω = ∗d 1
|x| , ∗ denotes the

Hodge operator for R3. The S1-action on {θ} is given by θ 7→ θ− 2π
√
−1ϕ. By using the

coordinate (x1, x2, x3, θ), the above equations are written as tk = xk, and the restricted

metric is given by

ds2 =
1

|x|
dx2 + |x|(dθ + ω)2 + 2l(dt20 + dx2k)

=

(
2l +

1

|x|

)
dx2 + |x|(dθ + ω)2 + 2ldt20.

And θ− 2l
√
−1t0 is invariant by the S1-action, we put ψ = θ− 2l

√
−1t0. By using ψ, we

have

ds2 =

(
2l +

1

|x|

)
dx2 +

(
2l +

1

|x|

)−1

(dψ + ω)2.

This coincides with Taub-NUT metric gTN (4.2), so M0(1, l) is regarded as Taub-NUT

space. Conversely, we can consider that the hyper-Kähler structure of Taub-NUT space

is defined by that of M0(1, l). In this paper TN denotes Taub-NUT space. This metric

converges to the normal metric of C2 as l → 0, and this corresponds to the behaviour of

the diagram:

▶
◀

• • •

•

▲ • ▲

•

l → 0

TN ∼= ∼= C2.
[−l, 0] [0, l]

///o/o/o/o/o/o/o/o/o/o/o/o/o/o/o

��

OO

��

OO

(4.14)

We note the relation between Taub-NUT space and C2 without taking the limit l → 0.

As §4.1 we apply Kronheimer’s theorem to M0(1, l), and by Proposition 3.13 we have

uL = exp{−l(
√
−1t0 − t1)}, ηL = (

√
−1t2 − t3)/2,

uR = exp{l(
√
−1t0 − t1)}, ηR = (

√
−1t2 − t3)/2.
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Put u := uLu
−1
R = exp{−2l(

√
−1t0− t1)}, η := ηL = ηR = (

√
−1t2− t3)/2. Then we have

TN = {(b1, b2, t0, tk) | |b1|2 − |b2|2 = 2t1, b1b2 =
√
−1t2 − t3}/S1 (4.15)

= {(b1, b2, u, η) | |b1|2 − |b2|2 = l−1 Re log u, 2b1b2 = η}/S1

And the Kähler forms of Taub-NUT space are written as

ωI =

√
−1

2
(db1 ∧ db̄1 + db2 ∧ db̄2) + 2l(dt0 ∧ dt1 + dt2 ∧ dt3)

=

√
−1

2
(db1 ∧ db̄1 + db2 ∧ db̄2) +

√
−1

4l
d log u ∧ d log ū+

√
−1l

4
dη ∧ dη,

ωJ +
√
−1ωK = db1 ∧ db2 + 2l(

√
−1dt0 − dt1) ∧ (−

√
−1dt2 + dt3)

= db1 ∧ db2 + 2d log u ∧ dη.

Furthermore by Proposition 4.7, we have the following isomorphism as algebraic vari-

eties:

Φ:
{
(b1, b2, u, η)

|b1|2 − |b2|2 = l−1 Re log u,

2b1b2 = η

}
/S1 ∼=−−→ {(b1, b2, u, η) | b1b2 = 2η}/C∗.

Φ is given by the inclusion map, and Φ−1 is given by the action of v ∈ C∗ such that

(v−1b1, vb2, vu, η) satisfies µR = 0, i.e. v−2|b1|2 − v2|b2|2 = l−1 Re log(vu). We define

TNC := {(b1, b2, u, η) | b1b2 = 2η}/C∗.

Proposition 4.16. Taub-NUT space is holomorphic symplectomorphic to C2. And

the morphism is explicitly given by

TN TNC C2

∈ ∈ ∈

[(b1, b2, u, η)]S1 [(b1, b2, u, η)]C∗ (ub1, b2u
−1).

Φ // Ψ //

� // � //

Proof. This is the conclusion of Proposition 4.11 in the case of n = 1. And we have

dz1 ∧ dz2 = d(ub1) ∧ d(b2u−1)

= db1 ∧ db2 − b1db2 ∧ u−1du+ b2db1 ∧ ud(u−1)

= db1 ∧ db2 + 2u−1du ∧ dη.

Remark 4.17. Ψ−1 is given by Ψ−1(z1, z2) = [(z1, z2, 1, z1z2/2)]C∗ .

Next we consider M0(n, l) in the case of n ≥ 1.

Theorem 4.18. (i) As algebraic varieties, M0(n, l) is isomorphic to Sn(C2) and the

holomorphic symplectic form is preserved.

(ii) As hyper-Kähler manifolds, M0(n, l) is isomorphic to Sn(TN).

Proof. (i) follows from Corollary 4.12 and Proposition 4.16. Let us prove (ii). We check

how (B, i, j, T ) ∈ µ−1(0) is described.

Since there exists the isomorphism M0(n, l) ∼= Sn(C2) given by Proposition 4.11 and
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[Na2], all closed GC-orbits in µ
−1
C (0) contain elements written as

uLB−+u
−1
R = B1 =

(
b1.11 0. . .
0 bn.n1

)
, uRB+−u

−1
L = B2 =

(
b1.12 0. . .
0 bn.n2

)
, i = j = 0.

(4.19)

Furthermore, by using the action of the subgroup {(g−, id, g+)} ⊂ GC, we can regard

uL = uR = idn, and then we can assume

(B−+, B+−, uA, ηA) =

((
b1.11 0. . .
0 bn.n1

)
,

(
b1.12 0. . .
0 bn.n2

)
, idn,

(
η1.1A 0. . .
0 ηn.nA

))
,

where b•1b
•
2 = 2η•L = 2η•R holds (c.f. (4.6)).

Now we consider the action of the subgroup{(
id,

(
h1.1 0. . .
0 hn.n

)
, id

)
∈ GC

∣∣∣∣∣ h• ∈ C∗

}
.

Note that this action preserves the description of (4.19). Each [(b•1, b
•
2, 1, η

•)]C∗ determines

a point in TNC, and each Ψ−1([(b•1, b
•
2, 1, η

•)]C∗) determines a point in TN. Thus all the

points in µ−1
R (0) ∩ µ−1

C (0)/G are represented as

(B−+, B+−, u, η) =

((
b1.11 0. . .
0 bn.n1

)
,

(
b1.12 0. . .
0 bn.n2

)
,

(
u1.1 0. . .
0 un.n

)
,

(
η1.1 0. . .
0 ηn.n

))
,

(4.20)

where each (b•1, b
•
2, u

•, η•) ∈ TN.

Therefore we get an isomorphism M0(n, l) ∼= (TN)n/Sn.

Remark 4.21. As a GIT quotient, we can take a representative x = (B−+, B+−, i, j,

uA, ηA) of [x]GC ∈ M0(n, l) as

x =

( b1.11 0. . .
0 bn.n1

)
,

(
b1.12 0. . .
0 bn.n2

)
,

 1
...

1

 , 0,

(
u1.1A 0. . .
0 un.nA

)
,

(
η1.1A 0. . .
0 ηn.nA

) .

This is because the closure of GC · (B, i, 0, u, η) contains the closed orbit GC · (B, 0, 0, u, η)
(see also [Na2, Proposition 2.8.]). Notice that unlike on the representative (4.20), GC
acts freely on this representative.

5. Construction of other bow varieties

Let Γ be a finite subgroup of SU(2), Q be its canonical 2-dimensional representation,

and R be its regular representation. At [Kr2], Kronheimer showed

C2/Γ ∼= X0 = {(α, β) ∈ (Q⊗ End(R))Γ | µ(α, β) = 0}/U(R)Γ,

and X0 is a quiver variety corresponding to the extended Dynkin diagram of Γ.

In this section, we find out bow varieties which are isomorphic to Taub-NUT/Γ as

hyper-Kähler manifolds.
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5·1. Automorphisms of Taub-NUT space

In this subsection, we first discuss about the automorphisms of Taub-NUT space. Then

we consider divided Taub-NUT space by finite groups.

Theorem 5.1. As a hyper-Kähler manifold, the automorphism group preserving the

origin of Taub-NUT space is the semi-direct product Z2 ⋉ S1 generated by

ωζ : [(b1, b2, u, η)]S1 7→ [(ζb1, ζ
−1b2, u, η)]S1 ,

ι : [(b1, b2, u, η)]S1 7→ [(−b2, b1, u−1,−η)]S1 ,

where ζ ∈ C, |ζ| = 1 and the origin is [(0, 0, 1, 0)]S1 ∈ TN.

We consider what actions preserve the Kähler form ωI and the holomorphic symplectic

form ωJ +
√
−1ωK . By Proposition 4.16, Taub-NUT space is holomorphic symplectomor-

phic to C2, and the holomorphic symplectic form is written as dz1∧dz2. So all the actions

which preserve the holomorphic symplectic form are described as Φ−1 ◦Ψ−1 ◦ f ◦Ψ ◦ Φ
by using a biholomorphism f (Φ and Ψ are given at Proposition 4.16):

f : C2 → C2, f(z1, z2) = (f1(z1, z2), f2(z1, z2)).

Take [(b1, b2, u, η)]S1 ∈ TN and fix the S1-action as u ∈ R i.e. u = exp{l|b1|2 − l|b2|2}.
Then the action is written as follows:

f̃ := Φ−1 ◦Ψ−1 ◦ f ◦Ψ ◦ Φ,

f̃(b1, b2, u, b1b2/2) = (e−rf1(ub1, u
−1b2), e

rf2(ub1, u
−1b2), e

r, f1f2/2),

where r ∈ R satisfies

e−2r|f1|2 − e2r|f2|2 =
r

l
. (5.2)

Needless to say, r depends on b1, b1, u, f1 and f2.

From now, we consider when this action f̃ preserves ωI . Here, fixing the S1-action, we

have

−2
√
−1ωI = db1 ∧ db̄1 + db2 ∧ db̄2 + 2ld(b1b2) ∧ d(b1b2).

Put

f1(z1, z2) = p10z1 + p01z2 + h1(z1, z2),

f2(z1, z2) = q10z1 + q01z2 + h2(z1, z2),

where hk are holomorphic and h(0, 0) = 0, ∂h∂z (0, 0) = 0. Since (f1, f2) preserves dz1∧dz2,
we get

f1,1f2,2 − f1,2f2,1 = 1. (5.3)

Here, for example, f1,2 denotes ∂f1
∂z2

.

The exterior derivative of fk(ub1, u
−1b1) and r is written as

d(f1(ub1, u
−1b2)) = f1,1(ub1, u

−1b2)d(ub1) + f1,2(ub1, u
−1b2)d(u

−1b2),

d(f2(ub1, u
−1b2)) = f2,1(ub1, u

−1b2)d(ub1) + f2,2(ub1, u
−1b2)d(u

−1b2),

dr =
l{e−2r(df1f̄1 + df̄1f1)− e2r(df2f̄2 + df̄2f2)}

2l(e−2r|f1|2 + e2r|f2|2) + 1
.
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The induced Kähler form by f̃ is

−2
√
−1f̃∗ωI = d(e−rf1) ∧ d(e−rf̄1) + d(erf2) ∧ d(erf̄2) + 2ld(f1f2) ∧ d(f1f2)

= e−2rdf1 ∧ df̄1 + e2rdf2 ∧ df̄2 + 2ld(f1f2) ∧ d(f1f2)
+ dr ∧ {e−2r(−f1df̄1 + f̄1df1) + e2r(f2df̄2 − f̄2df2)}

=
1

2l(e−2r|f1|2 + e2r|f2|2) + 1
{e−2rdf1 ∧ df̄1 + e2rdf2 ∧ df̄2

+ 4l(le−2r|f1|2 + le2r|f2|2 + 1)d(f1f2) ∧ d(f1f2)}.

Considering f̃∗ωI = ωI at the origin, we have q10 = −p̄01, q01 = p̄10 and |p10|2+|p01|2 =

1.

Lemma 5.4. When f̃∗ωI = ωI , we have h1 = h2 = 0.

Proof. From f̃∗ωI we pick up 2-forms whose coefficients are holomorphic functions.

Expanding f̃∗ωI with respect to b1, b̄1, b2 and b̄2 around the origin, then we collect 2-

forms whose coefficients consist of products of b1 and b2 (i.e. we ignore terms containing

b̄1 and b̄2).

First we consider the expansion of u and r. We have

u = el|b1|
2−l|b2|2

= 1 + (l|b1|2 − l|b2|2) +
(l|b1|2 − l|b2|2)2

2
+O(|b|4),

and since r is analytic around the origin, from (5.2), we have

r = (l|p10|2 − l|q10|2)|b1|2 + (l|p01|2 − l|q01|2)|b2|2 +O(|b|3)
= (l|p10|2 − l|p01|2)(|b1|2 − |b2|2) +O(|b|3).

Especially the holomorphic parts of u and r are respectively 1 and 0. Then we find that the

holomorphic parts of f1(ub1, u
−1b2), f1(ub1, u−1b2), f1,1(ub1, u

−1b2) and f1,1(ub1, u−1b2)

are respectively f1(b1, b2), 0, f1,1(b1, b2) and p̄10.

Therefore we only consider the term df1 ∧ df̄1 + df2 ∧ df̄2. And we have 1-forms whose

coefficients are holomorphic:

d(f1(ub1, u
−1b2))⇝ f1,1(b1, b2){(lb1db̄1 − lb2db̄2)b1 + db1}

+ f1,2(b1, b2){−(lb1db̄1 − lb2db̄2)b2 + db2},
d(f2(ub1, u

−1b2))⇝ f2,1(b1, b2){(lb1db̄1 − lb2db̄2)b1 + db1}
+ f2,2(b1, b2){−(lb1db̄1 − lb2db̄2)b2 + db2},

d(f1(ub1, u−1b2))⇝ p̄10db̄1 + p̄01db̄2,

d(f2(ub1, u−1b2))⇝ q̄10db̄1 + q̄01db̄2.

Then we get

df1 ∧ df̄1 ⇝l(f1,1b1 − f1,2b2)(p̄10b2 + p̄01b1)db̄1 ∧ db̄2
+ f1,1p̄10db1 ∧ db̄1 + f1,1p̄01db1 ∧ db̄2 + f1,2p̄01db2 ∧ db̄2 + f1,2p̄10db2 ∧ db̄1,

df2 ∧ df̄2 ⇝l(f2,1b1 − f2,2b2)(q̄10b2 + q̄01b1)db̄1 ∧ db̄2
+ f2,1q̄10db1 ∧ db̄1 + f2,1q̄01db1 ∧ db̄2 + f2,2q̄01db2 ∧ db̄2 + f2,2q̄10db2 ∧ db̄1.
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On the other hand, the holomorphic part of −2
√
−1ωI is db1∧db̄1+db2∧db̄2. Therefore

when f̃∗ωI = ωI , we have

f1,1p̄01 + f2,1q̄01 = 0,

f1,2p̄10 + f2,2q̄10 = 0.

Comparing them with (5.3), we have f1 = p10z1 + p01z2 and f2 = −p̄01z1 + p̄10z2.

Lemma 5.5. In addition to Lemma 5.4, we have p10p01 = 0.

Proof. Put P = (0, ϵ, e−lϵ2 , 0), (ϵ ∈ R). We calculate how f̃∗ωI |P and ωI |P vary as ϵ

varies. Especially we pick up the coefficient of db1 ∧ db̄1-term.

Since f̃(P ) = (e−rp01e
lϵ2ϵ, erp̄10e

lϵ2ϵ, er, p01p̄10e
2lϵ2ϵ2/2), we have

−2
√
−1ωI(

∂

∂b1
,
∂

∂b̄1
)|P = 1 + 2lϵ2,

df1 ∧ df̄1(
∂

∂b1
,
∂

∂b̄1
)|P = e−2lϵ2 |p10|2,

df2 ∧ df̄2(
∂

∂b1
,
∂

∂b̄1
)|P = e−2lϵ2 |p01|2,

d(f1f2) ∧ d(f1f2)(
∂

∂b1
,
∂

∂b̄1
)|P = (|p10|2 − |p01|2)2ϵ2,

so if f̃∗ωI = ωI , we get

{2l(e−2r|f1|2 + e2r|f2|2) + 1}(1 + 2lϵ2)

= e−2re−2lϵ2 |p10|2 + e2re−2lϵ2 |p01|2 + 4l(le−2r|f1|2 + le2r|f2|2 + 1)(|p10|2 − |p01|2)2ϵ2.

Now we expand them by ϵ around ϵ = 0. Since we have

u = 1− lϵ2 +O(ϵ4), r = l(|p01|2 − |p10|2)ϵ2 +O(ϵ3),

|f1(0, elϵ
2

ϵ)| = |p01|ϵ+O(ϵ2), |f2(0, elϵ
2

ϵ)| = |p10|ϵ+O(ϵ2),

we get

{2l|p01|2ϵ2 + 2l|p10|2ϵ2 + 1}(1 + 2lϵ2) +O(ϵ3)

= (1− 2lϵ2)(1− 2l(|p01|2 − |p10|2)ϵ2)|p10|2 + (1− 2lϵ2)(1 + 2l(|p01|2 − |p10|2)ϵ2)|p01|2

+ 4l(l|p01|2ϵ2 + l|p10|2ϵ2 + 1)(|p10|2 − |p01|2)2ϵ2 +O(ϵ3),

⇔ 1 + 4lϵ2 +O(ϵ3) = 1 + 4lϵ2 − 24lϵ2|p10p01|2 +O(ϵ3).

Therefore we have p10p01 = 0.

Proof of Theorem 5.1 By Lemma 5.4 and Lemma 5.5, if f̃ preserves the hyper-Kähler

structure of Taub-NUT space and the origin, we have

f(z1, z2) =

(
p 0

0 p̄

)(
z1
z2

)
,

(
0 q

−q̄ 0

)(
z1
z2

)
, |p| = |q| = 1.

The former leads to f̃(b1, b2, u, η) = [(pb1, p̄b2, u, η)] and the latter leads to f̃(b1, b2, u, η) =

[(−q̄b2, qb1, u−1, η)].
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By Theorem 5.1, finite groups acting on Taub-NUT space which preserve the origin

are generated by

ωm : [(b1, b2, u, η)]S1 7→ [(ζmb1, ζ
−1
m b2, u, η)]S1 ,

ι : [(b1, b2, u, η)]S1 7→ [(−b2, b1, u−1,−η)]S1 ,

where ζmm = 1. We define

An = ⟨ωn+1⟩ (n ≥ 1),

Dn = ⟨ω2n−4, ι⟩ (n ≥ 3).

In fact they correspond to the finite subgroups of SU(2) by Φ ◦Ψ: TN → C2.

Corollary 5.6. En ⊂ SU(2) does not act on Taub-NUT space in such a way as to

preserve the hyper-Kähler structure and the origin.

Remark 5.7. As the subgroups of SU(2), A3 and D3 are identified because
(

0 1
−1 0

)
and

(√
−1 0

0 −
√
−1

)
are conjugate. However as the actions on Taub-NUT space, A3 and

D3 are different.

Let Γ be An or Dn. The Γ-action on Taub-NUT space induces it on Sn(TN).

Proposition 5.8. Put m = ♯Γ. (Sm(TN))Γ and TN/Γ are isomorphic as hyper-

Kähler manifolds.

Proof. By definition of the symmetric product, Γ-fixed points in Sm(TN) consist of

m-points in Taub-NUT space all of which are in the same Γ-orbit. And these Γ-orbits

correspond to elements of TN/Γ.

5·2. Decomposition of elemental bows

In the last subsection, we constructed TN/Γ as Γ-fixed points. In this subsection, we

introduce the way to construct TN/Γ by a hyper-Kähler quotient. To do this, we first

consider the way to construct TN/Γ by an affine algebro-geometric quotient.

First we consider a general case. LetM be an affine variety and G be an algebraic group

acting onM . PutM free = {x ∈M | gx ̸= x for all g ∈ G\id}. And suppose a finite group

Γ acts onM in such a way as to commute with the G-action. Then the Γ-action descends

to the affine algebro-geometric quotient M //0G. When we distinguish these two actions,

we describe the G-action as g · x and the Γ-action as γ ⋆ x, for x ∈M, g ∈ G, γ ∈ Γ.

Assume we can take a representative x ∈M free for any [x]G ∈ (M //0G)
Γ. Then by the

freeness, for any γ ∈ Γ there exists unique ρx(γ) ∈ G which satisfies γ ⋆ x = ρx(γ)
−1 · x.

Lemma 5.9. This ρx is a homomorphism from Γ to G.

Proof. We get ρx(γ1γ2)
−1 · x = (γ1γ2) ⋆ x = γ1 ⋆ (ρx(γ2)

−1 · x) = ρx(γ2)
−1 · (γ1 ⋆ x) =

ρx(γ2)
−1ρx(γ1)

−1 · x. Since x ∈M free, we have ρx(γ1γ2) = ρx(γ1)ρx(γ2).

Lemma 5.10. For any x′ ∈M free, if [x′]G = [x]G, then ρx′ is conjugate with ρx.

Proof. There exists g ∈ G such that x′ = gx. Then we have

ρx′(γ)−1x′ = γ ⋆ (gx) = g(γ ⋆ x) = gρx(γ)
−1x = gρx(γ)

−1g−1x′.

By the freeness, we have ρx′ = gρxg
−1.
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For a fixed homomorphism ρ : Γ → G, put (M //0G)
Γ
ρ := {[x]G | ρx is conjugate with ρ}.

On the other hand, we can define a new Γ-action on M by x 7→ ρ(γ)γx for a given

homomorphism ρ : Γ → G. Needless to say when x ∈ M is fixed by the (Γ, ρ)-action, x

satisfies γ ⋆ x = ρ(γ)−1 · x. We write these fixed points as MΓ,ρ. Put GΓ,ρ := {g ∈ G |
ρ(γ)gρ(γ)−1 = g for all γ ∈ Γ}.

Proposition 5.11. (M //0G)
Γ
ρ is isomorphic to MΓ,ρ //0G

Γ,ρ.

Proof. Since x ∈ MΓ,ρ satisfies γx = ρ(γ)−1x, we can regard that ρ is ρx and x

represents a point in (M //0G)
Γ
ρ . Thus we have a map MΓ,ρ → (M //0G)

Γ
ρ .

First we claim this map is surjective from (M free)Γ,ρ to (M free //0G)
Γ
ρ . Take an element

x ∈M free which represents a point in (M free //0G)
Γ
ρ . Since ρx is conjugate with ρ, there

exists g ∈ G which satisfies ρx = gρg−1. Put x′ := g−1x, we have

γx′ = g−1γx = g−1ρx(γ)
−1x = ρ(γ)−1g−1x = ρ(γ)−1x′.

Thus x′ enters in (M free)Γ,ρ and it means the surjectivity.

Suppose x, x′ ∈ (M free)Γ,ρ and there exists g ∈ G such that x = gx′. Then we have

x = ρ(γ)γx = ρ(γ)γgx′ = ρ(γ)gρ(γ)−1ρ(γ)γx′ = ρ(γ)gρ(γ)−1x′,

so we get g = ρ(γ)gρ(γ)−1 by the freeness. This induces an isomorphism (M free)Γ,ρ

//0G
Γ,ρ → (M free //0G)

Γ
ρ .

For x ∈ M \M free, it is enough to consider a sequence {xn} ⊂ M free such that xn
converges to x as n→ ∞. Therefore (M //0G)

Γ
ρ and MΓ,ρ //0G

Γ,ρ are isomorphic.

From now we apply Proposition 5.11 to (µ−1
C (0) //0GC)

Γ. Take [x]GC ∈ (µ−1
C (0) //0GC)

Γ

∼= Sm(TN)Γ. By Remark 4.21 and Proposition 5.8, x is represented as

x = (B, i, j, u, η) =

((
γ1⋆b1 0

. . .
0 γn⋆b1

)
,

(
γ1⋆b2 0

. . .
0 γn⋆b2

)
,

(
1
...
1

)
, 0,(

γ1⋆uA 0

. . .
0 γn⋆uA

)
,

(
γ1⋆ηA 0

. . .
0 γn⋆ηA

))
,

where {γ1, · · · , γn} = Γ and we write γk ⋆ (b1, b2, u, η) as (γk ⋆ b1, γk ⋆ b2, γk ⋆ u, γk ⋆ η).

Here the Γ-action is defined on such {x}, and in fact we can extend the Γ-action on MC
in the case appearing later.

GC acts freely on above {x}, so ρ(γ) = (ρ−(γ)
−1, ρ0(γ)

−1, ρ+(γ)
−1) ∈ GC is uniquely

determined. In order to know ρ(γ) explicitly, we have to solve the following equations:

γ ⋆ B−+ = ρ−(γ)
−1B−+ρ+(γ), γ ⋆ B+− = ρ+(γ)

−1B+−ρ−(γ), (5.12)

γ ⋆ i = ρ0(γ)
−1i, γ ⋆ j = jρ0(γ),

γ ⋆ uL = ρ+(γ)
−1uLρ−(γ), γ ⋆ uR = ρ+(γ)

−1uRρ0(γ),

γ ⋆ ηL = ρ−(γ)
−1ηLρ−(γ), γ ⋆ ηR = ρ0(γ)

−1ηRρ0(γ).

The following subsection we will solve them particularly in the case of An and Dn. Note

that there are two reasons why we chose i as t(1, · · · , 1). The first is that GC acts freely

for such i, as we mentioned in Remark 4.21. The second is that the solution ρ of the

equations (5.12) enters G not only GC. This is cleared up by the later calculation.

Therefore by Proposition 5.11, we get TN/Γ ∼= (µ−1
C (0) //0GC)

Γ ∼= (µ−1
C (0))Γ //0G

Γ
C
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as algebraic varieties. And we consider the way to get a similar isomorphism as hyper-

Kähler manifolds, that is, an isomorphism between (µ−1
R (0)∩µ−1

C (0)/G)Γ and (µ−1
R (0)∩

µ−1
C (0))Γ/GΓ. Furthermore, we consider how to construct (µ−1

R (0) ∩ µ−1
C (0))Γ/GΓ as a

hyper-Kähler quotient.

First we recall that there exists the biholomorphism (µ−1
R (0) ∩ µ−1

C (0))/G ∼= µ−1
C (0)

//0GC by Proposition 4.7. By this biholomorphism we can take a representative [x]G ∈
(µ−1

R (0) ∩ µ−1
C (0))/G)Γ as

x =

((
γ1⋆b1 0

. . .
0 γn⋆b1

)
,

(
γ1⋆b2 0

. . .
0 γn⋆b2

)
, 0, 0,

(
γ1⋆u 0

. . .
0 γn⋆u

)
,

(
γ1⋆η 0

. . .
0 γn⋆η

))
,

where [(b1, b2, u, η)]S1 ∈ TN. Since the above solution ρ is in G, we can define the same

Γ-action on MC as before. It is clear that {x ∈ µ−1(0) | γx = ρ(γ)−1x} = {x ∈ MΓ
C |

µ(x) = 0} holds.

Then we get a map from µ−1
R (0)∩µ−1

C (0)∩MΓ
C to (µ−1

R (0)∩µ−1
C (0)/G)Γ like Proposition

5.11. However we cannot make the same argument to show the injiectivity of the map

µ−1(0)∩MΓ
C/G

Γ → (µ−1(0)/G)Γ as Proposition 5.11 because there is no point in µ−1(0)

on which G acts freely. To clear up this problem, it is enough to check Stab(x)∩GΓ acts

trivially on µ−1(0) ∩MΓ
C for any x ∈ µ−1(0).

Last we check µ−1
R (0)∩µ−1

C (0)∩MΓ
C/G

Γ is obtained by a hyper-Kähler quotient ofMΓ
C by

GΓ. Let µΓ be the moment map defined by the GΓ-action. Since GΓ is a (closed) subgroup

of G, the moment map µΓ is given by the orthogonal projection of µ on (LieGΓ)∗. Then

it is enough to check that the image of the restriction map µ|MΓ
C
is included in (LieGΓ)∗.

Therefore we can get an isomorphism

TN/Γ ∼= (µ−1
R (0) ∩ µ−1

C (0)/G)Γ ∼= µΓ
R
−1

(0) ∩ µΓ
C
−1

(0)/GΓ,

as hyper-Kähler manifolds, if the following condition hold:

Condition 5.13.

(1) If ρ(γ) ∈ GC is the solution of (5.12), it is in G.

(2) Stab(x) ∩GΓ acts trivially on µ−1(0) ∩MΓ
C for any x ∈ µ−1(0).

(3) The image of the restriction map µ|MΓ
C
is included in (LieGΓ)∗.

In the following subsections, we calculate MΓ
C and GΓ for Γ = An, Dn cases.

Example 5.14. In Kronheimer’s situation [Kr2], one can check that the homomor-

phism ρ and MΓ
C coincide with the regular representation of the finite groups of SU(2)

and (Q⊗ End(R))Γ respectively.

5·3. Γ = An case

By using the results in §5.2, we get TN/An as a hyper-Kähler quotient. Because An =

⟨ωn+1⟩(n ≥ 0), so we can take (B, i, j, u, η) as
 b1 0 ··· 0

0 ζb1 ··· 0

...
...

. . .
...

0 0 ··· ζnb1

 ,


b2 0 ··· 0

0 ζ−1b2 ··· 0

...
...

. . .
...

0 0 ··· ζ−nb2

 ,


1
...
...
1

 , 0,

 uA 0 ··· 0
0 uA ··· 0

...
...
. . .

...
0 0 ··· uA

 ,

 ηA 0 ··· 0
0 ηA ··· 0

...
...
. . .

...
0 0 ··· ηA


 ,
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where ζ = ζn+1. And by definition of the Γ-action on Taub-NUT space, we have

ω ⋆ (B, i, j, u, η) =
 ζb1 0 ··· 0

0 ζ2b1 ··· 0

...
...

. . .
...

0 0 ··· b1

 ,

 ζ−1b2 0 ··· 0

0 ζ−2b2 ··· 0

...
...

. . .
...

0 0 ··· b2

 ,


1
...
...
1

 , 0,

 uA 0 ··· 0
0 uA ··· 0

...
...
. . .

...
0 0 ··· uA

 ,

 ηA 0 ··· 0
0 ηA ··· 0

...
...
. . .

...
0 0 ··· ηA


 .

This action is extended on MC as ω ⋆ (B, i, j, u, η) = (ζB−+, ζ
−1B+−, i, j, u, η). And the

ω-action and the GC-action commute, so we can apply Proposition5.11. The solution of

(5.12) is given by

ρ−(ω)
−1 = ρ0(ω)

−1 = ρ+(ω)
−1 =


0 1 0 0 ··· 0
0 0 1 0 ··· 0
0 0 0 1 0
...
...
...

. . . 0
0 0 0 0 1
1 0 0 0 ··· 0

 .

In this case each ρ• is a homomorphism from An to U(n + 1). By a change of basis, ρ

can be described as

ρ−(ω) = ρ0(ω) = ρ+(ω) = diag(1, ζ, ζ2, · · · , ζn).

This means that each ρ• is actually the regular representation of An. For this ρ, we apply

Proposition5.11. A point in MΓ,ρ
C = MΓ

C is represented as

(
0 b01 0 0 ··· 0
0 0 b12 0 ··· 0
0 0 0 b23 0

...
...

...
. . .

0 0 0 0 bn−1,n

bn0 0 0 0 ··· 0

 ,


0 0 0 ··· 0 b0n
b10 0 0 ··· 0 0
0 b21 0 ··· 0 0
0 0 b32 0 0

...
...

. . .
...

0 0 0 bn,n−1 0

 ,

( 1
0
...
0

)
, 0,

(
uA,0 0

. . .
0 uA,n

)
,

(
ηA,0 0

. . .
0 ηA,n

))
.

It satisfies µC = 0 if and only if
bk,k+1bk+1,k + 2ηL,k = 0

−2uL,kηL,ku
−1
L,k + 2uR,kηR,ku

−1
R,k = 0

−2ηR,k − bk,k−1bk−1,k = 0.

And GΓ ⊂ G is given by

GΓ = {(diag(g−,0, · · · , g−,n), diag(g0,0, · · · , g0,n), diag(g+,0, · · · , g+,n)) ∈ G}.

These data are described as the following diagram:

• • • • • • • • • • • • •
1 1 1 1 1 1 1 1 1 1 1 1 1

uR,0

∼=oo
b10 //
b01

oo uL,1

∼= //
uR,1

∼=oo
b21 //
b12

oo uL,2

∼= //
uR,2

∼=oo
uR,n

∼=oo
b0n //
bn0

oo uL,0

∼= //
uR,0

∼=oo

ηR,0

__

ηL,1

__

ηR,1

__

ηL,2

__

ηR,2

__

ηR,n

__

ηL,0

__

ηR,0.

__

Notice that the both ends of the above diagram are connected. And by Kronheimer’s

theorem, each {(u, η)} is regarded as the moduli space of the solutions of 1-dimensional

Nahm’s equation, so we can get a new bow by replacing

• • • with • • •.__ __
∼= // ∼=oo /o/o/o /o/o/o
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It is clear that Condition 5.13 holds in this case, so TN/An is constructed by a hyper-

Kähler quotient corresponding to the above diagram. In §6, we study such a hyper-Kähler

quotient.

5·4. Γ = Dn case

By using the results in §5.2, we get TN/Dn as a hyper-Kähler quotient. Because Dn =

⟨ωm, ι⟩ (m = 2n − 4, n ≥ 3), and we order them as {1, ω, ω2, · · · , ωm−1, ι, ιω, ιω2, · · · ,
ιωm−1}, where ω denotes ωm. Then we can take (B, i, j, u, η) as

B−+ = diag(b1, ζb1, · · · , ζm−1b1,−b2,−ζ−1b2, · · · ,−ζ−(m−1)b2),

B+− = diag(b2, ζ
−1b2, · · · , ζ−(m−1)b2, b1, ζb1, · · · , ζm−1b1),

i = diag(1, 1, · · · , 1, 1, 1, · · · , 1), j = 0,

uL = diag(uL, uL, · · · , uL, uR, uR, · · · , uR),
uR = diag(uR, uR, · · · , uR, uL, uL, · · · , uL),
ηL = diag(ηL, ηL, · · · , ηL,−ηR,−ηR, · · · ,−ηR),
ηR = diag(ηR, ηR, · · · , ηR,−ηL,−ηL, · · · ,−ηL).

And the Γ-action can be extended on MC as

ω ⋆ (B, i, j, u, η) = (ζB−+, ζ
−1B+−, i, j, uL, uR, ηL, ηR),

ι ⋆ (B, i, j, u, η) = (B+−,−B−+, i, j, uR, uL,−ηR,−ηL).

But the ι-action does not commute with the GC-action. In order to decompose the ele-

mental bow, we modify Proposition5.11. For g = (g−, g0, g+) ∈ GC, put g
ι := (g+, g0, g−).

Then we have

ι ⋆ (g · (B, i, j, u, η)) = gι · (ι ⋆ (B, i, j, u, η)).

Thus rewriting g by gι if necessary, we have the same result as Proposition5.11.

Hence the solution of (5.12) is given by

ρ−(ω)
−1 = ρ0(ω)

−1 = ρ+(ω)
−1 =

(
Pm 0

0 tPm

)
,

ρ−(ι)
−1 = ρ0(ι)

−1 = ρ+(ι)
−1 =

(
0 idm
Qm 0

)
,

where

Pm =


0 1 0 0 ··· 0
0 0 1 0 ··· 0
0 0 0 1 0
...
...
...

. . .
0 0 0 0 1
1 0 0 0 ··· 0

 ∈ U(m), Qm =

(
0 idm/2

idm/2 0

)
= P

m
2

m .

Here ρ0 is a homomorphism from Dn to U(2m). Each ρ± is not a homomorphism but

ω 7→
(

ρ−(ω) 0
0 ρ+(ω)

)
, ι 7→

(
0 ρ−(ι)

ρ+(ι) 0

)
is a homomorphism from Dn to U(4m). By using this representation, a change of basis

is written as

ρ0(ω) 7→ g0ρ0(ω)g
−1
0 ,

(
ρ−(ω) 0

0 ρ+(ω)

)
7→
(

g− 0
0 g+

)(
ρ−(ω) 0

0 ρ+(ω)

)(
g− 0
0 g+

)−1

,

ρ0(ι) 7→ g0ρ0(ι)g
−1
0 ,

(
0 ρ−(ι)

ρ+(ι) 0

)
7→
(

g− 0
0 g+

)(
0 ρ−(ι)

ρ+(ι) 0

)(
g− 0
0 g+

)−1

.
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Then ρ• can be described as

ρ−(ω) = ρ0(ω) = ρ+(ω) = diag(id2, ζ
−1 id2, ζ id2, · · · , ζ−m id2, ζ

m id2,− id2)

ρ−(ι) = ρ+(ι) =



id2

0 id2

− id2 0
0 id2

id2 0
0 id2

− id2 0

. . .
c id2

 , ρ0(ι) =



I2
0 id2

− id2 0
0 id2

id2 0
0 id2

− id2 0

. . .
cI2

 ,

where c =
√
−1(resp. 1) when n is odd (resp. even) and I2 = diag(1,−1). This means

that ρ0 is the regular representation of Dn. A point in MΓ is represented as

B1 =



0 B12 0
0 0 0 B34 0

B21 0 0 0 0
0 0 0 0 B56 0
0 B43 0 0 0 0

0 0 0 0
0 B65 0 0

. . .
0 0Bm−1,m

0 0 0
0 Bm,m−1 0


, i = t(1, 0, · · · , 0),

B2 =



0 0 B12

−B21 0 0 0 0
0 0 0 0 B34

−B43 0 0 0 0 0
0 0 0 0 0 B56

−B65 0 0 0
0 0 0 0

. . .
0 0 0
0 0 cBm−1,m

−cBm,m−1 0 0


, j = 0,

uL =


u1

u3
u2

u5
u4

. . .
um

 , uR =


I2u1

u2
u3

u4
u5

. . .
I2um

 ,

ηL =


η1

η3
η2

η5
η4

. . .
ηm

 , ηR =


−η1

−η2
−η3

−η4
−η5

. . .
−ηm

 .

It satisfies µC = 0 if and only if



−Bk,k+1Bk+1,k + 2uk = 0 (k : odd)

−2u1η1u
−1
1 − 2I2u1η1u

−1
1 I2 = 0

−2ukηku
−1
k − 2uk−1ηk−1u

−1
k−1 = 0 (k : odd)

2ηk −Bk,k+1Bk+1,k = 0

Bk+1,kBk,k+1 − 2ηk+1 = 0

2umηmu
−1
m + 2I2umηmu

−1
m I2 = 0.
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And GΓ = {(g−, g0, g+)} ⊂ G is given by

g− = diag(g−,1, g−,3, g−,2, g−,5, g−,4, · · · , g−,m),

g0 = diag(g0,1, g0,2, g0,3, g0,4, g0,5, · · · , g0,m),

g+ = diag(g+,1, g+,2, g+,3, g+,4, g+,5, · · · , g+,m),

where g•,• ∈ U(2) and g0,1, g0,m satisfy g0,• = I2g0,•I2. Here for A =
(
a b
c d

)
, we have(

1 0
0 −1

) (
a b
c d

) (
1 0
0 −1

)
=
(

a −b
−c d

)
, so A + I2AI2 = 0 means diagonal entries are 0 and

A = I2AI2 means off diagonal entries are 0. Especially g0,• =

(
g1,1
0,• 0

0 g2,2
0,•

)
∈ U(1) ×

U(1), (• = 1,m). Then we get a new diagram:

•• • • • • • • • • • • ••
1

1 2 2 2 2 2 2 2 2 2 2 1

1
u1

∼=oo
B21 //
B12

oo u2

∼= //
u3

∼=oo
B43 //
B34

oo u4

∼= //
u5

∼=oo
um−1

∼=oo
Bm,m−1 //
Bm−1,m

oo um

∼= //

η1

__

η2

__

η3

__

η4

__

η5

__

ηm−1

__

ηm.

__

Here •• means that the acting group on it is U(1)× U(1) ⊂ U(2) (diagonal subgroup).

In the same way as the previous subsection, we can get a new bow by Kronheimer’s

theorem. And it is also clear that Condition 5.13 holds in this case, so TN/Dn is con-

structed by a hyper-Kähler quotient corresponding to the above diagram. In §7, we study
such a hyper-Kähler quotient.

6. An-type bow varieties

In this section, we study the properties of An-type bow varieties (see also [C2, §4.2]).

6·1. An-type bow

We consider the following diagram:

•

•

• •

•

•

•

•

•

• •

I0R I0L
•

I1L

I1R
•

I2L In−1,R

InL

InR
O�
O�
O�
O�
O�
O�
O�
O�

h21

��?
??

??
??

??
??

??

h12

__?????????????

�O
�O
�O
�O
�O
�O
�O
�O

hn,n−1

??�������������
hn−1,n

����
��

��
��

��
��

�

o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/

h01

??�������������
h10

����
��

��
��

��
��

�
hn0

��?
??

??
??

??
??

??

h0n

__?????????????

/o/o/o /o/o/o (6.1)

where IσL = {−lσ ≤ sσ ≤ 0} and IσR = {0 ≤ sσ ≤ lσ}. For l⃗ = (l0, · · · , ln), we assume

|⃗l| =
∑
lσ > 0. Put Ω = {hσ+1,σ} and Ω = {hσ,σ+1}.

We give rank-1 trivial hermitian vector bundles πσ : Vσ → IσL ∪ IσR. We describe

π−1
σ (sσ) as Vσ(sσ). In the same way as §4.1., let us define complex vector spaces MAn

Ω ,



Bow varieties and ALF spaces 39

MAn

Ω
and MAn respectively by

MAn

Ω :=
⊕
h∈Ω

Hom(V (o(h)), V (i(h)) ∼=
⊕
σ

{bσ+1,σ ∈ C},

MAn

Ω
:=
⊕
h∈Ω

Hom(V (o(h)), V (i(h)) ∼=
⊕
σ

{bσ,σ+1 ∈ C},

MAn (⃗l) := MAn

Ω ⊕MAn

Ω
⊕

n⊕
σ=0

HσL ⊕
n⊕

σ=0

HσR.

When lσ = 0 for some σ, we replace the vector bundle πσ : Vσ → IσL ∪ IσR with a

1-dimensional vector space V ′
σ and remove HσL ⊕ HσR from MAn (⃗l). This corresponds

to taking the limit lσ → 0 as (4.14).

A group GAn =
∏

σ Gσ =
∏
{gσ = (gσL, gσR) ∈ L2

2(IσL, U(1)) × L2
2(IσR, U(1)) |

gσL(0) = gσR(0)} acts on MAn (⃗l) as §4. We have a hyper-Kähler moment map µ and the

explicit form is as follows:

µR =


−
√
−1
2 (bσ,σ−1b

∗
σ,σ−1 − b∗σ−1,σbσ−1,σ) + T σL

1 (−lσ) at sσ = −lσ
d
dsT

σA
1 at sσ ∈ (−lσ, 0), (0, lσ)

−T σL
1 (0) + T σR

1 (0) at sσ = 0
−
√
−1
2 (bσ,σ+1b

∗
σ,σ+1 − b∗σ+1,σbσ+1,σ)− TσR

1 (lσ) at sσ = lσ,

µC =


bσ,σ−1bσ−1,σ + (TσL

2 +
√
−1T σL

3 )(−lσ) at sσ = −lσ
d
ds (T

σA
2 +

√
−1T σA

3 ) at sσ ∈ (−lσ, 0), (0, lσ)
−(T σL

2 +
√
−1TσL

3 )(0) + (T σR
2 +

√
−1TσR

3 )(0) at sσ = 0

−bσ,σ+1bσ+1,σ − (T σR
2 +

√
−1T σR

3 )(lσ) at sσ = lσ.

Put ZAn = {ζ = (ζσ) ∈ (LieU(1)n+1)∗⊗(R⊕C)}. Choose an element ζ = (ζR, ζC) ∈ ZAn ,

and define a hyper-Kähler quotient MAn

ζ (⃗l) of MAn (⃗l) by GAn as follows:

MAn

ζ (⃗l) := {(b, T ) ∈ MAn (⃗l) | µ(b, T ) = ζδsσ=0}/GAn .

We call this hyper-Kähler manifold an An-type bow variety.

Remark 6.2. The subgroup {(c, · · · , c) ∈ GAn | c ∈ U(1)} acts on MAn (⃗l) trivially,

so when
∑

σ ζσ ̸= 0, MAn

ζ is empty. Afterward we only consider the case
∑

σ ζσ = 0.

By Proposition 3.13, we can rewrite these data as

MAn

C (⃗l) =
⊕
σ

{(bσ,σ−1, bσ−1,σ, uσL, ησL, uσR, ησR) ∈ C× C× C∗ × C× C∗ × C},

GAn =
∏
σ

{(gσ−, gσ0 , gσ+) ∈ U(1)× U(1)× U(1)}.

When all the lσ is equal and ζ = 0, the An-type bow variety MAn
0 (⃗l) coincides with

TN/An (c.f. §5.3).

6·2. General properties of An-type bow varieties

For the An-type bow variety, we can make the same arguments in §4.2.

Proposition 6.3. The An-type bow variety MAn

ζ is algebraic.
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Proof. It is enough to define

χ(g)−1 =
∏

(gσ0 )
ζσ/2

√
−1,

instead of (4.8), then actually we have

µχ(b, u, η) =


µR at sσ = −lσ
µR + ζσ at sσ = 0

µR at sσ = lσ.

Proposition 6.4. As algebraic varieties, MAn

ζ (⃗l) is isomorphic to an An-type quiver

variety constructed by Kronheimer [Kr2].

Corollary 6.5. If ζ = (ζσ) satisfies the following condition, MAn

ζ (⃗l) is smooth.

Moreover the projection MAn

ζ → MAn
0 induced by (1.7) is the resolution of singularities.

(∗) There does not exist (j, k) which satisfies j < k and
∑

j≤σ<k

ζσ = 0.

Proof. This follows immediately from Proposition 6.4 and [Kr2]. We write down the

condition in [Kr2, Proposition 2.8.] in the case of An, then we have the condition (∗).

6·3. Metrics of An-type bow varieties

In order to study the metric of the An-type bow variety, we construct MAn

ζ explicitly

like §4.3 (see also [C2, §4.3]).
First we solve the equations at sσ = lσ and sσ+1 = −lσ+1:{

−1
2 (|bσ,σ+1|2 − |bσ+1,σ|2)− tσR1 = 0

−bσ,σ+1bσ+1,σ − (
√
−1tσR2 − tσR3 ) = 0,{

−1
2 (|bσ+1,σ|2 − |bσ,σ+1|2) + tσ+1L

1 = 0

bσ+1,σbσ,σ+1 + (
√
−1tσ+1L

2 − tσ+1L
3 ) = 0.

Put (2xσ1,−
√
−1xσ2 + xσ3) = (|bσ+1,σ|2 − |bσ,σ+1|2, bσ,σ+1bσ+1,σ) as §4.3. By using the

new coordinate (xσ1, xσ2, xσ3, θσ), the above equations are written as tσRk = xσk = tσ+1L
k ,

and the metric is given by

ds2 =
∑
σ

{(lσ + lσ+1 +
1

|xσ|
)dx2σ + (lσ + lσ+1 +

1

|xσ|
)−1(dψσ + ωσ)

2}.

Then the equations at sσ = 0 are

−xσk + xσ+1k = −ζσ+1k.

Put x := x0 = x1 + ζ1 = x2 + (ζ1 + ζ2) = · · · = xσ +
∑σ

k=1 ζk, and ζ̃σ =
∑σ

k=1 ζk. Then

we can write xσ = x− ζ̃σ. Note that ζ̃0 =
∑n+1=0

k=1 ζk = 0 by Remark 6.2. Hence we have

ds2 = (2|⃗l|+
∑
σ

1

|x− ζ̄σ|
)dx2 + (2|⃗l|+

∑
σ

1

|x− ζ̄σ|
)−1(

∑
σ

dψσ + ωσ)
2.

This metric is a so-called multi-Taub-NUT metric. Summarising this section, we have the

following theorem:
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Theorem 6.6. When ζ = 0, we have MAn
0 (⃗l) ∼= TN/An as hyper-Kähler manifolds.

In general, MAn

ζ (⃗l) is a multi-Taub-NUT space and an ALF space.

Proof. The metric of MAn
0 (⃗l) depends only on |⃗l|. So it is enough to consider the case

which all the lσ is equal, then the first assertion holds.

7. Dn-type bow varieties

In this section we consider the case of Dn in the same way as §6.

7·1. Dn-type bow

We consider the following diagram (n ≥ 2):

•• • • • • • • • • • ••
1

1 2 2 2 2 2 2 2 2 2 1

1
I1

o/ o/ o/
h21 //
h12

oo
I2L

/o/o/o
I2R

/o/o/o
h32 //
h23

oo
I3L

/o/o/o/o/o
In−2,R

o/ o/ o/ o/ o/
hn−1,n−2//

hn−2,n−1

oo
In−1

/o/o/o (7.1)

where I1 = {0 ≤ s1 ≤ l1}, In−1 = {−ln−1 ≤ sn−1 ≤ 0}, IσL = {−lσ ≤ sσ ≤ 0} and

IσR = {0 ≤ sσ ≤ lσ}. For l⃗ = (l1, · · · , ln−1), we assume |⃗l| := l1 + ln−1 +
∑n−2

σ=2 2lσ > 0.

Put Ω = {hσ+1,σ} and Ω = {hσ,σ+1}.
We give rank-2 trivial hermitian vector bundles πσ : Vσ → Iσ. In the same way as

§4.1., let us define complex vector spaces MDn

Ω , MDn

Ω
and MDn respectively by

MDn

Ω :=
⊕
h∈Ω

Hom(V (o(h)), V (i(h)) ∼=
⊕
σ

{Bσ+1,σ ∈M(2, 2;C)},

MDn

Ω
:=
⊕
h∈Ω

Hom(V (o(h)), V (i(h)) ∼=
⊕
σ

{Bσ,σ+1 ∈M(2, 2;C)},

MDn (⃗l) := MDn

Ω ⊕MDn

Ω
⊕

n−1⊕
σ=2

HσL ⊕
n−2⊕
σ=1

HσR.

When lσ = 0 for some σ, we treat MDn (⃗l) in the same way as the case of the An-type,

that is, we take the limit lσ → 0.

A group GDn = G1 × Gn−1 ×
∏

σ ̸=1,n−1 Gσ acts on MDn , where

G1 = {g1 ∈ L2
2(I1, U(2)) | g1(0) ∈ U(1)× U(1) ⊂ U(2) (diagonal)},

Gn−1 = {gn−1 ∈ L2
2(In−1, U(2)) | gn−1(0) ∈ U(1)× U(1) ⊂ U(2) (diagonal)},

Gσ = {gσ = (gσL, gσR) ∈ L2
2(IσL, U(2))× L2

2(IσL, U(2)) | gσL(0) = gσR(0)}.

We have a hyper-Kähler moment map µ and the explicit form is as follows:

µR =



−
√
−1
2 (Bσ,σ−1B

∗
σ,σ−1 −B∗

σ−1,σBσ−1,σ) + TσL
1 (−lσ)

at sσ = −lσ
d
dsT

σA
1 + [T σA

0 , T σA
1 ] + [TσA

2 , T σA
3 ] at sσ ∈ (−lσ, 0), (0, lσ)

−
√
−1
2 (Bσ,σ+1B

∗
σ,σ+1 −B∗

σ+1,σBσ+1,σ)− T σR
1 (lσ)

at sσ = lσ

−TσL(0) + T σR(0) at sσ = 0, for σ ̸= 1, n− 1

±TσA
1 (0)1,1, ±TσA

1 (0)2,2 at sσ = 0, for (sσ, A,±) = (s1, R,+), (sn−1, L,−),
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µC =



Bσ,σ−1Bσ−1,σ + (TσL
2 +

√
−1T σL

3 )(−lσ) at sσ = −lσ
d
ds (T

σA
2 +

√
−1T σA

3 ) + [T σA
0 +

√
−1TσA

1 , T σA
2 +

√
−1TσA

3 ]

at sσ ∈ (−lσ, 0), (0, lσ)
−Bσ,σ+1Bσ+1,σ − (T σ

2 +
√
−1T σ

3 )(lσ) at sσ = lσ

−(T σL
2 +

√
−1TσL

3 )(0) + (T σR
2 +

√
−1TσL

3 )(0) at sσ = 0, for σ ̸= 1, n− 1

±(T σA
2 +

√
−1T σA

3 )(0)1,1, ±(T σA
2 +

√
−1T σA

3 )(0)2,2

at sσ = 0, for (sσ, A,±) = (s1, R,+), (sn−1, L,−).

Put ZDn = {ζ = (ζσ) ∈ (LieU(2)n−1)∗ ⊗ (R⊕C) | Ad∗g(ζ) = ζ for all g ∈ GDn}. Choose
an element ζ = (ζR, ζC) ∈ ZDn , and define a hyper-Kähler quotient MDn

ζ of MDn by

GDn as follows:

MDn

ζ (⃗l) := {(B, T ) ∈ MDn | µ(B, T ) = ζδsσ=0}/GDn .

We call this hyper-Kähler manifold a Dn-type bow variety.

Remark 7.2. (i) In the case of l⃗ = (0, 1, 0, · · · , 0), the hyper-Kähler manifold coin-

cides with what Dancer constructed in [Da].

(ii) Put G⋆0 = {g ∈ L2
2(I, U(2)) | g(l) = 0, g(0) ∈ U(1) × U(1) ⊂ U(2)(diagonal)}.

A hyper-Kähler quotient of H by G⋆0 is holomorphic symplectomorphic to the cotangent

bundle of GL(n,C)/C∗×C∗. This follows from [DS] and is considered as a generalisation

of Kronheimer’s theorem.

(iii) About the ends of the above diagram, one may think that (as appearing in [C2])

it is more natural to replace

1
•
1
•
{0 ≤ s1 ≤ l1}

•
2

•
2

•
1

{0 ≤ s′′ ≤ l′′}
•
1.

•
{0 ≤ s′ ≤ l′}

1
•
1

•
2

witho/ o/ o/ o/ o/ //
oo /o/o/o

/o/o/o/o/o/o/o

/o/o/o/o/o/o/o

??���������
��

�

��?
??

??__?????
/o/o/o

But in fact the former diagram contains the latter diagram.

First we consider the hyper-Kähler quotient µ−1(ζ)/GDn of the latter diagram. Then

we have

T 1
1 (0) = ζ1R

T 2
1 (0) = ζ2R
d
dsT

1
1 = 0

d
dsT

2
1 = 0

−
√
−1
2 (B02B

∗
02 −B∗

20B20)− T 1
1 (l

′) = 0
−
√
−1
2 (B12B

∗
12 −B∗

21B21)− T 2
1 (l

′′) = 0,



(T 1
2 +

√
−1T 1

3 )(0) = ζ1C

(T 2
2 +

√
−1T 2

3 )(0) = ζ2C
d
ds (T

1
2 +

√
−1T 1

3 ) = 0
d
ds (T

2
2 +

√
−1T 2

3 ) = 0

−B02B20 − (T 1
2 +

√
−1T 1

3 )(l
′) = 0

−B12B21 − (T 2
2 +

√
−1T 2

3 )(l
′′) = 0,

for T 1
k , T

2
k ∈ L2

1(I,
√
−1R). And we get{

−
√
−1
2 (B02B

∗
02 −B∗

20B20) = ζ1R
−
√
−1
2 (B12B

∗
12 −B∗

21B21) = ζ2R,

{
−B02B20 = ζ1C

−B12B21 = ζ2C.

These equations also appear in the case of l1 = 0 at the former diagram. In other words,
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even if we take l′, l′′ ̸= 0 at the latter diagram, the hyper-Kähler quotient µ−1(ζ)/GDn

does not depend on l′ and l′′.

On the other hand, from the former diagram we get the hyper-Kähler quotient depend-

ing on l1 (see also Theorem 7.6).

7·2. General properties of Dn-type bow varieties

We can make the same arguments as the case of §4.2 and §6.2.

Proposition 7.3. The Dn-type bow variety MDn

ζ is algebraic.

Proposition 7.4. As algebraic varieties, MDn

ζ is isomorphic to a Dn-type quiver

variety constructed by Kronheimer [Kr2] for n ≥ 3.

It is well-known that C2/Dn is isomorphic to an affine variety {(x, y, z) ∈ C3 |
x2 − zy2 = zn−1} for n ≥ 3. Combining this fact with Proposition 7.4, we have the

isomorphism MDn
0

∼= {(x, y, z) ∈ C3 | x2 − zy2 = zn−1} for n ≥ 3. In fact for n = 2, this

is true [Da].

Proposition 7.5. MD2
0 is isomorphic to {(x, y, z) ∈ C3 | x2 − zy2 = z}.

•• ••
1

1 1

1

D2-type bow.

/o/o/o/o/o/o/o/o/o

Proof. We sketch the proof by Dancer. We considerMD2
0 as an affine algebro-geometric

quotient.

It is clear that the quotient of GL(2)×gl(2) by (U(1)×U(1))×(U(1)×U(1)) coincides

with the quotient of SL(2)× sl(2) by C∗ × C∗. Here C∗ × C∗ ∋ (a, b) acts as

(a, b) · (u, η) :=
((

b 0
0 b−1

)
u
(
a 0
0 a−1

)−1
,
(
a 0
0 a−1

)
η
(
a 0
0 a−1

)−1
)
, u ∈ SL(2), η ∈ sl(2).

Then the moment map is given by

µC =

{
η1,1 − η2,2

(uηu−1)1,1 − (uηu−1)2,2.

Therefore we consider µ−1
C (0)/C∗ × C∗. Put u = ( x y

z w ) , η = ( 0 s
t 0 ). Since u ∈ SL(2), we

have xw − yz = 1. And by µC = 0, we get tyw − sxz = 0. On the other hand C∗ × C∗-

invariant polynomials are generated by {st, sxz, tyw, xw, yz}. Put X = sxz,
√
−1Y =

2xw − 1, Z = − st
4 . By using the above equations, we have

X2 = stxyzw

= −4Zxw(xw − 1) = −Z(−Y 2 − 1).

Thus MD2
0

∼= {(X,Y, Z) ∈ C3 | X2 − ZY 2 = Z} holds.

7·3. Metrics of Dn-type bow varieties

Let us consider the metric of MDn
0 .

Theorem 7.6. For n ≥ 3, the Dn-type bow variety MDn
0 (⃗l) is isomorphic to TN/Dn

as hyper-Kähler manifolds.
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Proof. As we proved in §5, the Dn-type bow variety MDn
0 is isomorphic to TN/Dn

when l1 = l2 = ln−2 = ln−1 and the morphism is given by the G-action. TN/Dn is

described by the explicit coordinate, and the coordinate does not depend on the length

l, so for any l1, · · · , ln−1 we can take the same coordinate. Thus all the Dn-type bow

varieties with ζ = 0 are biholomorphic to each other and their metric depend only on |⃗l|.
So, taking l0 := 1

2n−4 |⃗l|, we have

MDn
0 (l1, l2, · · · , ln−2, ln−1) ∼= MDn

0 (l0, l0, · · · , l0, l0) ∼= TN(l0)/Dn,

as hyper-Kähler manifolds.

Corollary 7.7. For n ≥ 3, the hyper-Kähler 4-manifold constructed by Dancer [Da]

is ALF when ζ = 0.

By Remark 5.7, we have the following proposition.

Proposition 7.8. MA3
0 and MD3

0 are isomorphic as algebraic varieties, but are not

as hyper-Kähler manifolds.

Remark 7.9. It is well-known that a Dn-type ALF space is obtained by dividing (2n−
3)-centred multi-Taub-NUT space by ι. By using our notation, this is written as follows.

Take l⃗ = (l1, · · · , ln−1) and ζ = (ζ1, · · · , ζn−1) ∈ ZDn as ζ1 = c1 id2, ζn−1 = cn−1 id2.

Since for σ ̸= 1, n− 1 we also have ζσ = cσ id2, we get
∑n−1

σ=1 cσ = 0. This implies MDn

ζ

has an A1-type singular point.

On the other hand, we construct an A2n−3-type bow variety with

l⃗0 = (l1, l2, · · · , ln−2, ln−1, ln−2, · · · , l2),
ζ0 = (2c1, c2, · · · , cn−2, 2cn−1, cn−2, · · · , c2).

And for MA2n−3

ζ (⃗l), we define the ι-action as follows:

(uL0 , η
L
0 , u

R
0 , η

R
0 ) 7→ (uR0 ,−ηR0 , uL0 ,−ηL0 ),

(bσ,σ+1, bσ+1,σ) 7→ (−b2n−2−σ,2n−3−σ, b2n−3−σ,2n−2−σ),

(uLσ , η
L
σ , u

R
σ , η

R
σ ) 7→ (uR2n−4−σ,−ηR2n−4−σ, u

L
2n−4−σ,−ηL2n−4−σ),

(uLn−2, η
L
n−2, u

R
n−2, η

R
n−2) 7→ (uRn−2,−ηRn−2, u

L
n−2,−ηLn−2).

Then for these l⃗, ζ and ι, we have MDn

ζ (⃗l) ∼= MA2n−3

ζ0
(⃗l0)/ι.

All Dn-type bow varieties which we discussed in this subsection are ALF spaces and

have singular points. According to these examples, we can conjecture that smooth Dn-

type bow varieties are also ALF spaces and their metric depend not on each lσ but on

the sum |⃗l|. But the author could not know how to prove these conjectures.
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