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Abstract

We introduce bow varieties and construct some ALF spaces as bow varieties.

0. Introduction

It is conjectured that noncompact hyper-Kahler 4-manifolds whose curvatures are in
L? can be classified into 4 types — ALE, ALF, ALG and ALH - by their volume growth
rates. ALE spaces satisfy Vol(B,.) ~ cr?, and it is known that their metrics converge
asymptotically to the Fuclidean metric at infinity. In 1989, Kronheimer classified and
constructed ALE spaces [Kr2], and in 1990, Kronheimer and Nakajima described in-
stantons on them [KN]. It is worth noting that all ALE spaces and the moduli spaces of
instantons are examples of quiver varieties introduced later by [Nal].

ALF spaces satisfy Vol(B,) ~ cr3, and it is known that S* x R3 and Taub-NUT
space are ALF, but their classification is not known. In 2010, Cherkis constructed some
ALF spaces and instantons on them as bow varieties [C2]. Bow varieties are made up
by a combination of quiver varieties and the moduli spaces of the solutions of Nahm’s
equations. In particular, bow varieties are constructed as infinite dimensional hyper-
Kahler quotients, while quiver varieties are finite dimensional quotients.

In this paper, we study Cherkis’ constructions of ALF spaces as bow varieties from a
different point of view. Since hyper-Kéhler quotients depend on parameters, Cherkis’ bow
varieties also depend on such parameters. First we conjecture that when all parameters
are 0, these bow varieties are isometric to Taub-NUT/T for some finite groups I'. Indeed
Kronheimer’s 0-parameter hyper-Kihler quotients are isometric to C2/I". To prove this
conjecture is the first step to establish that Cherkis’ bow varieties are ALF. On the
other hand, Taub-NUT/T is obtained by taking fixed points of a symmetric product of
Taub-NUT space by the I'-action. Thus, as hyper-Kéahler quotients, we try to construct a
symmetric product of Taub-NUT space and its fixed points by the I'-action. And then we
compare our hyper-Kéhler quotients with Cherkis’ bow varieties, and prove that Cherkis’
bow varieties are ALF when their parameters are 0.

We first introduce elemental bow varieties as basic building blocks, and study their
properties. For example, we show that elemental bow varieties are isomorphic to certain
quiver varieties as algebraic varieties, and are isomorphic to symmetric products of Taub-
NUT space as hyper-Kahler manifolds. Notice that it is not clear that infinite dimensional
hyper-Kéhler quotients are algebraic. We overcome this difficulty by using Kronheimer’s
theorem [Krl1] stating that the moduli space of the solutions of Nahm’s equations on a
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closed interval is holomorphic symplectomorphic to T*GL(n,C). Then we can use a well-
known relation between hyper-K&hler quotients and geometric invariant theory (GIT) in
a finite dimensional setting.

Next we construct some ALF spaces by using elemental bow varieties. We prove that
the automorphism group of Taub-NUT space as hyper-Kéhler manifolds preserving the
origin is Zo x S*. Therefore only type A,, or D,, group acts on Taub-NUT space among the
ADE classification of finite subgroups I" of SU(2). Then taking fixed points of elemental
bow varieties by the I'-action, we obtain Taub-NUT /T'. Furthermore, by using the McKay
correspondence, Taub-NUT/T" can be constructed as bow varieties which associates with
Ap-type bow (6.1) or D,-type bow (7.1). We study the properties of these bow varieties.
These things are summarised as follows:

THEOREM 0.1. Taub-NUT/A,, and their resolutions of singularities are constructed as
A, -type bow varieties and ALF. Taub-NUT/D,, are constructed as D, -type bow varieties
and ALF.

For A,-type bow varieties, this result is well-known as mentioned in [C2]. D,,-type bow
varieties we obtain in this paper is a little bit different from that of Cherkis. Details
of this point are written in Remark 7.2 (iii). And the resolutions of singularities of
Taub-NUT/D,, are also constructed as D,-type bow varieties but we could not prove
they are ALF.

This paper is organised as follows. In §1, we recall the definition of hyper-Kéahler
quotients and GIT quotients. In particular, we take care to deal with them in infinite
dimensional setting. Since Nahm’s equations are ordinary differential equations, we state
analytical facts about them.

In §2, we define and study Nahm’s equations. It is known that the moduli space of the
solutions of Nahm’s equations is regarded as a hyper-Kahler quotient My := u;l(O) N
15 1(0) N ' (0)/G. And in order to research the relation between Myk and T*GL, we
consider another space Mg, := ,ugl(O)/gC, where pur = py and puc = py++/—1px. Then
we study three spaces Myk, My, and T*GL, and maps between them precisely.

In §3, we show the properties of the maps and give a proof of Kronheimer’s theorem,
for completeness.

In §4, we define elemental bow varieties. By their construction, elemental bow vari-
eties have hyper-Kéhler structures. We first prove elemental bow varieties are actually
algebraic varieties by using Kronheimer’s theorem. Moreover, we consider the relation
between elemental bow varieties and particular quiver varieties, and prove elemental bow
varieties are isomorphic to symmetric products of Taub-NUT space.

In §5, we calculate automorphisms of Taub-NUT preserving the origin. Then by the
result of §4, they induce the action on elemental bow varieties. In this situation, finite
group actions on elemental bow varieties are classified into A,-type and D,-type. For
I' = A, or D, we take the I'-fixed points of elemental bow varieties. Then we have
“Dynkin bows” in the same way as Kronheimer [Kr2]. And we can obtain A,-type
and D, -type ALF spaces but cannot obtain E,-type ALF spaces in this way by the
classification.

In §6, we study A,-type bow varieties more precisely. These varieties are not elemen-
tal bow varieties, but the above arguments still work and have the same properties as
elemental bow varieties.

In §7, we study D, -type bow varieties in the same way as §6.
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1. Preliminaries

The moduli space of the solutions of Nahm’s equations is regarded as a hyper-Kahler
quotient. Since the acting group is infinite dimensional and noncompact, we carefully
recall what properties of the group action guarantee the quotient to be a smooth manifold.

Then we review GIT quotients, which are used to study quiver varieties. And last we
recall facts of ordinary differential equations we will use in this paper.

1-1. Hyper-Kahler quotients

We first recall definitions of hyper-Kéhler manifolds and hyper-Kéhler quotients with
action of a (not necessary compact) Lie group.

DEFINITION 1.1. (M, g,1,J,K) is called a hyper-Kdhler manifold, if (M, g) is a Rie-
mann manifold and equipped with three complex structures I, J and K which satisfies
the equations

VI=VJ=VK=0and IJ =K,
where V is the Levi-Civita connection with respect to the metric g.

Let G be a Lie group acting smoothly on M so as to preserve the metric g and complex
structures I, J and K. A map p = (ur, py, pr): M — g* @ R? is called a hyper-Kdhler
moment map if it satisfies

(dpa(v), &) = g(A&,v), wveTM,{e€g A=1IJK,
pa(g-z) =Adjpa(z), reM,ge G A=1,JK,

where g* is the dual space of g, Ad*: g* — g* is the coadjoint map, (,) denotes the dual
pairing between g and g*, and € denotes a vector field induced by € € g.

Put Z = {( € g* ® R3 | Ady(¢) = ( forall g € G} and take ¢ € Z. In general, a
hyper-Kéhler moment map is not unique, because when p is a hyper-Kahler moment
map then p + ¢ is also. Afterward we fix one of these hyper-Kéhler moment maps and
describe it as g when we consider a hyper-Kdhler moment map. Therefore a quotient
space 1~ 1(¢)/G is called a hyper-Kdhler quotient. Considering the quotient, we assume
the following conditions are satisfied:

CONDITION 1.2.

(1) Tare) = 1{(z,gv) e M x M |z € M,g € G} is closed in M x M,
(2) v, s a homeomorphism from M x G onto I', where v(x, g) = (z, gx),
(3) G acts freely on u=*(C).

The first condition is equivalent to that the quotient space is a Hausdorff, and the second
and third give a structure of a smooth manifold on the quotient [V, §2.9]. The second
condition is equivalent to the properness of v because of the smoothness of the action,
the Hausdorffness of M and G, and the third condition. Once the quotient becomes a
manifold, the argument in [HKLR] or [GN] works, and it has a structure of a hyper-
Kahler manifold. These things are summarised as follows:

PROPOSITION 1.3. If Condition 1.2 is satisfied, a hyper-Kdhler quotient u='(¢)/G is
a (smooth) hyper-Kdhler manifold.
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Therefore we will check these three conditions for Nahm’s equations in §2.1.

REMARK 1.4. The third condition is necessary to be smooth, so if G does not act freely
on p € u=1(C), the quotient space u=*(¢)/G has a singular point at G - p.

1-2. GIT quotients and analytic stability

There exists a way to treat quotient spaces in the algebraic geometry, it is called
geometric invariant theory (GIT). First we review the way to construct quotient spaces
in GIT, and next we mention the relation between GIT quotients and Kéhler quotients.

1-2-1. GIT quotients

Let X be an affine variety over C and G€ be a reductive algebraic group acting on X.
An affine algebro-geometric quotient X /) GC is defined as Spec(A(X)C"), where A(X)
is the coordinate ring of X and A(X )GC is the ring of invariants by the GC-action. By

the theorem of Nagata, A(X )GL is a finitely generated algebra, so Spec is defined. In this
situation, the following theorem is well-known (see [MFK]).

THEOREM 1.5. (1) There exists a surjective morphism
¢: X - X )G
induced by the inclusion A(X)GC C A(X). Moreover, ¢(z) = ¢(y) if and only if
r~ye GCornGCy £, (1.6)

“

where “—7 denotes the closure.
(2) The underlying space of X /| GC is the set of closed GC-orbits modulo the equiva-
lence relation defined by x ~ y if and only if above relation holds.

By this theorem, we consider the closed orbits only. We say = € X is stable if GC - z is
closed and its stabiliser is finite. Then X J/ G is X*/ ~, where X*® denotes the set of
stable points in X.

The idea of the affine algebro-geometric quotient can be modified. Let x: G — U(1)
be a character, and x also denotes its complexification,

x: G = C*.
Consider the trivial line bundle X x C over X. Using x, we lift the GC-action to X x C
by
g-(z,2) = (g-2,x(9)"'2) for (z,2) € X x C.

Let A(X)GC’XW be the space of polynomials satisfying f(g-x) = x(g9)"f(x). It can be
identified with the space of GC-invariant sections of the above line bundle. If we set
flz,z) = f(x)2z™, f is an element of A(X X (C)GC. Then the direct sum

P Ax)“ X"
n>0

is a finitely generated graded algebra. Hence we can define

X/, G® = Proj | @ A(X)¢" "

n>0
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This is called a geometric invariant theory quotient. The inclusion A(X)GCC EBA(X)GC’X"
induces a projective morphism

X/, G"— X ) G". (1.7)

We say ¢ € X is y-semistable if there exists f € A(X)GC’X" with n > 1 such that
f(x) # 0. This happens if and only if the closure of G(z,2) does not intersect with
X x {0} for z # 0. Let X*°°(x) be the set of x-semistable points. We introduce an
equivalence relation ~ on X*5(x) by defining z ~ y if and only if G-z and G-y
intersects in X**(). The quotient space X**(x)/ ~ is bijective to the set of orbits G-z
such that G© - (z, 2) is closed for z # 0. Then X J/, G® is X**(x)/ ~.

1-2-2. Relation between GIT quotients and Kdhler quotients

Here we show the relation in the same way as [Na2, Proposition 3.21]. A line bundle
plays a main role in GIT, so we also need to consider a line bundle on a Kahler quotient.

Let (M,w) be a Kéhler manifold and 7: L — M be a holomorphic hermitian line
bundle. If its curvature form coincides with the Kéhler form w, the pair (M, L) is called
a prequantisation of the Kahler manifold M. Explicitly, a function h: L — R™T is defined
by the hermitian structure:

h(zp) = ll2ll5,
where z, € 77!(p) and || - ||, is the hermitian norm. Then the connection form « of L is
defined as
1
a= e
and the curvature form is defined as the exterior derivative of «:
1

2my/—1

The definition of the prequantised Kéhler manifold needs w coincides with s*(da), where
s: M — L is the 0-section. We assume a compact Lie group G acts on M.

(0 — 0)(logh) = d°log h, (1.8)

da = 001og h = dd° log h.

DEFINITION 1.9. A linearisation of the GC-action on M is a holomorphic action of
G® on L covering the action on M, and such that G acts unitarily on the fibres.

We consider a Kéhler quotient ~1(0)/G. Then the following proposition is well-known.

PROPOSITION 1.10. (Bryan [Br]) A choice of a linearisation uniquely determines a
moment map and conversely a choice of a moment map uniquely determines a linearisa-
tion.

In this situation, we say a point p € M is analytically semistable for a linearised action of
G® on M if for every non-zero zp € Ly a function g — h(g- zp) is proper as a function on
G®/ GS. Here G% denotes the stabiliser of p. We describe the set of analytically semistable
points of M as M*ss.

LEMMA 1.11. (Bryan [Br]) An orbit GC-p C M is analytically semistable if and only
if G- p meets pn = 0. Furthermore the set GC-pNp~1(0) consists of exactly one G-orbit.

Thus we have a biholomorphism g ~1(0)/G = M5 /GC. M**% /G is similar to the GIT
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quotient M J/ X G©, so we want to know their relation. Since the author does not know a
general theory about this, we consider it in particular cases later.

For a later purpose, we quote the way how a moment map is determined by a lineari-
sation from Bryan. For § € g we describe the induced vector field on M as £ and the
induced vector field on L as é, that is, mf~ = é Put pe = (,§). Define p by the equation
e = 5*(L§oz). Then we have

(1€, =) = 1gw = 5"1gda)
= S*(dbga + 25:04) = dpe,

where 26:04 = 0 since G acts unitarily on the fibres. Thus 1 satisfies due = LW, And we

have
Mag) = 5 (Lﬁa) =57z 5
=-—s (£¢:1L£:a - Lgi}aa)
= —L5ue.

This implies p(g - v) = Ady pu(x), thus p defines a moment map.
In this paper, we describe a point p - G of a quotient space M/G as [p|¢g.

2. Nahm’s equations and three spaces
In this section we prepare to prove Kronheimer’s theorem. Therefore we endow three
spaces Mpk, Mg, and T*GL with C* structures, integrable almost complex structures,
and symplectic structures. And next we define maps between them.
2-1. Nahm’s equations and space Mpy

We define the space Mk as the moduli space of the solutions of Nahm’s equations.
We start from giving the definition of Nahm’s equations.

Let Z = [0,1] be an interval parameterised by s, and L?(Z,u(n)) be a set of u(n)-
valued L? functions on Z. We describe the norm of u(n) as |U]|* = trUU* and the
norm of L2(Z,u(n)) as |||T|Hi% = [IT(s)|?ds+ [ ||[dT/ds||*ds. Put H = {(To,T1,T»,T3) €

L3(Z,u(n))®*}. We give a flat metric on H: ds? = fol dTodTy + dThdTy + dTdTs +
dT5dTyds, i.e. for uw = (19,71, 72,73), 4 = (7/0,7'1,7'2,7'3) € TH,

1
ds*(u,u') = / tr(ro’y + 7' + 1oty + 1373 )ds. (2.1)
0

We define complex structures on H by
I: (10,71, 72,73) — (=71, 70, — T3, T2),
J: (70,71, 72, T3) = (=75, 75,70, —71)s
= (19,73, —T0,71),
K: (79,71,72,73) = (T3, T2, —T1, —T0).
A group Goo := {u € L3(Z,U(n)) | u(0) = u(1) = id} acts on H as follows:

u-1p = uTouf1 — @ufl,
ds

w- T = uTpu™t, k=123
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This action preserves the metric and the complex structures.

REMARK 2.3. On the interval Z, there is a compact inclusion L? — C°. Hence a map
f(s,u) = To(s)u satisfies the Lipschitz condition

I To(s)u = To(s)u'[loo < sup [ To(s)lloc [l = v’ oo,
s

where sup ||Ty|| is independent of s, u and u'. So we can solve the equation u - Ty =

0 (i-e. d%u = Tou) with respect to a given initial value of u at s = 0. In other words, any

To,Th, To, T3) can be sent to (0,T'1,T"2,T'3) by an element of Go. = {u € L3(Z,U(n
2
u(0) = id}.

DEFINITION 2.4. We consider the following ordinary differential equations (Nahm’s
equations)

%T1 + [Ty, Th] + [T, T3] =0
ATy + [Ty, To) + [T, T1] =0
LTy + [Ty, T3] + [T1, T2) =0.

We denote left hand sides by g, py and pg respectively.

These equations are preserved by the Gop-action, and = (pur, pg, px) is a hyper-Kéahler
moment map. In fact, for example with respect to I, we have

! dT * * *
(dpr(u), ) :/0 trd{g& + [Ty, Th 6" + 1o, T5]€" } (10, T1, T2, T3)ds
1
= / tr{—%f = [0, T1]§ — [To, T1]€ — [12, T5]€ — [T, 73]€}ds
0
1
= [tr{-7:&}5 +/o tf{ﬁd%f — [10, T1]€ — [To, T1]§ — [12, T3)€ — [To, T3]€ }ds

= [ e T + (€ Bl = 00w + (T + (6 Tl s

= g(I&,u),

where we used integration by parts in the third equality. Therefore, My is defined as a
hyper-Kéahler quotient.

REMARK 2.5. Put Gy = L2(Z,U(n)). G.x acts on H in the same way as Goo. In this
case, the hyper-Kdhler moment map is replaced by pa—+060Ta(0)—61Ta(1) for A=1,J, K.
This is because for & € Lie G, we have

[tr{—71&}]5 = tr{-71(1)E(D) + 72(0)£(0)}
= <51dT1(1)(7’1) - (50dT1(0)(T1),€>.

And when we change coordinate Ta(s) — Ta(s) + fa(s)id by fa € L3(Z,V/—1R), we
have

pa+00Ta(0) — 01Ta(1) = pa + % id +00(T'a(0) + fa(0)id) — 61(Ta(1) + fa(1)id)

In order to see Myxk is a hyper-Kéhler manifold, we check Condition 1.2.
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LEMMA 2.6. T'(3,6,0) = {(7,92) e H x H |z € H,g € Goo} is closed in H x H.

Proof. Let {(T¢", T{), (T"y, T";:) }(k = 1,2, 3) be a convergent sequence in H X H, where
Ty =u"-To, Ty = u™ - Tg. Put

T (T, T0), (T8, T/} = {(T5°, T32), (T8, T30}

We define v" = u"/[Ju"|rz, then we have [v"[rz = 1 for all n. We may assume v"
converges in the C! sense by taking a subsequence, because L2 is embedded compactly
in C' on Z. Hence both sides of the equations

d
T — %Uﬂ =T'gv",
VTR =T 0", k=1,2,3
converge as n — 00, at least in the C° sense:
d

vXTEe — gqﬁo =T v, (2.7)

VTR =T v™, k=1,2,3.
We have to prove that (7757, 7";) is in the (T§°, T7°)-orbit.

First we suppose lim |Ju™|| = co. According to v™(0) = u™(0)/|Ju™| = id /|u™|, we have
v°(0) = id /lim |u"|. Hence, v>°(0) is 0. By (2.7), v> is 0 for any s, so we can put
sup ||v™],sup ||dv"™ /ds|| < e for enough large n. We obtain

a2
" — o1z = "l + Iz s

" d n d nmn n n
< sup([lo”(s)” + [0 ()IIP) + I (0" Tg = TP

do™ n n d n do™ n n d n
<e+sup H(ETO )2+ (v £To )2+ (ET/O)2 + (v £T/0)2||
d n d n
<e{l +sup |7y + gTél +T' + dfsTlo 1},

s0 v™ converges to v> = 0 in the L3 sense. This contradicts with [[o™ ],z = lim [o"{|;z = 1.

Next we suppose lim [u”|| = ¢ (> 1 = ||u"(0)|]). In this case, we solve (2.7) with
v>(0) = id /e. We claim that the solution v™°(s) is nondegenerate for any s. If so, cv™>
enters in Goo, and hence (777, 7';°) is in the (T5°,T7°)-orbit as required.

We prove the claim. Let A(s), B(s) be a solution of the following equations:

LAG) = ~TF(9)As), A0)=id,

s

d%B(S) = B(s)I5°(s), B(0)=id.

Then the solution v™(s) of (2.7) can be described as A(s)v>°(0)B(s), and for all s we

get det A(s) # 0 and det B(s) # 0. This is because of the following argument. Put

A(s) = (a1(s),a2(s),...,an(s)), where a;(s)s are column vectors and satisfy
d o0
254(8) = =Ty (s)ai(s),  ai(0) = 6. (2.8)

If det A(s) = 0 for some s, we have ), k;a;(s) = 0,k; € C with (k;) € C* 0. From (2.8)
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we have
SO kas)) =~ ()3 kiau(s)),

hence ), kja;(s) = 0 becomes a solution for any s by the uniqueness of solutions. This
contradicts with A(0) =id. O

We check the remaining two conditions.

PROPOSITION 2.9. The moduli space of the solutions of Nahm’s equations is a hyper-
Kahler manifold.

Proof. We check the third of Condition 1.2. Assume u - Ty = Ty. There exists ug € Go«
such that ug - 0 = Ty by Remark 2.3. Then we have (uy 'uug) -0 = 0 i.e. %(uo_lqu) =0
by the assumption. This implies u = id, because of (ug ‘uug)(s) = (ug 'uug)(0) = id.

Let us check the second condition. When an orbit (777, T";) = (u™-Tp, u™ T}) converges
to (T75°,T'%), then u™ converges to u> (by taking a subsequence) from the proof of

Lemma 2.6. This means ~ is proper. []

We describe the tangent space of this manifold in order to write down complex struc-
tures and Kéhler structures of Myxk. Let (79, 71, T2, 73) be an element of the tangent space
of Myxk at [(To, T1, T2, T3)]Goo, Where [(To, T1, T2, T3)]g,, denotes a point represented by
(To, Ty, Tz, T3) € H. We regard 74 as an element in L?(Z,u(n))). In general, a tangent
space of a hyper-Kihler quotient is given by Ker du; NKer dpy NKer dpg NIm b, where
¢ is the differential of the group action. And L is the orthogonal complement by the in-
duced Kéhler metric. From the results of calculation, Ker du; is given by %7’1 +[To, 1] —
[Ty, 70) + [T2, 73] — [T3, 72] = 0 and Im is given by {([h, To] — 2k, [h, T1], [k, T2), [h, T3]) €
TMuk | h € LieGoo}. Hence, (70,71,72,73) € Ti(1,,11,1%,7%)Muk satisfies the following
equations:

2270 + [To, 7o) + [T, 11] + [To, 2] 4 [T3,73] =0

21+ [To, 7] — [Th, 70] + [To, 73] — [T3,72] =0 (2.10)
272 + [To, 7o) — [Th, 73] — [T, 7o) + [T3, 1] =

213+ [To, 73] + [T1, 7] — [T2, 1] — [T3,70] =

These linear equations can be solved with respect to a given initial value. Thus the
dimension of the solution space of these equations is 2n2, and this means the dimension
of My is also 2n%. The metric and complex structures are induced by (2.1) and (2.2),
and they are described as the restriction of (2.1) and (2.2) to TMyk. Note that three
Kahler forms are described as follows:

1
wy = / tI‘{—dTo ANdT, — dT5 A dTg}dS,
0
1
Wy = / tr{dTo ANdTy — dT7 A dTg}dS,
0
1
WK = / tr{dTO ANdIT3 4+ dTy A dTg}dS.
0

Here wy + v —1wg is a holomorphic symplectic form with respect to I.
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2:2. Space Mg,

We construct the second space My, = /1(51(0)/@C in this subsection. We use the same
space H as in the last subsection. We focus on the complex structure I, we put

o= %(To +V-1Ty), B:= %(TQ +V/-1Ty),

so a and 8 are gl(n)-valued L} functions. By using them, Nahm’s equations can be
described as

d
d—ﬂ + 2[a, 8] = 0 (The “complex equation”),
s

- d
F(a, B) = d—(a +a") 4+ 2([o, "] + [8, 57]) = 0 (The “real equation”).

S
The complex equation and the real equation correspond to py++/—1lux =0 and puy =0
respectively. We put uc = s ++v—1ux and ug = pr. We introduce the complexification
of Goo: G5y = {g € L3(Z,GL(n)) | g(0) = g(1) = id}. It acts on H as follows:

_ ldg _
g-a=gag ' —s=2g7",

2dsg
g-B=gBg "

This action preserves only the complex equation. And it is clear that pc is a moment
map with respect to the symplectic form w; 4+ v/—lwg and the ggo—action.

Therefore we define the space My, as the symplectic quotient pi 1(0)/GS,. This space
is also a manifold, by the same argument as in Lemma 2.6 and Proposition 2.9. Note
that the compactness of the group U(n) was not used in the proofs.

Let us consider the tangent space of this space and the complex structure. There is no
metric preserved by the complex action, the tangent space is not defined as an orthogonal
complement. Instead the tangent space of M, is given as the middle cohomology of the
following short exact sequence:

LieGS, 45 L2(Z, g1%?) 5, Lie GE,,

that is T, 8)) Msy = Ker(q,p) duc/ Im(, gy tc. And Kerdpuc and Im ¢ are given respec-
tively by

{(A,B) | B+ 2[4,5) +2la, B] =0},

{(1h,0] — 3,10, B]) | P € LieGly).

Put GS, = L3(Z,GL(n)). GS, acts on H and preserves the complex equation similarly
to G&. Then GL x GL acts on My, because of the isomorphism between GT, /GS, and
GLxGL. The action induces an isomorphism between T|(q, 5y Msy and Tj((g].a,[g]-8)] M sy -
For Ker duc and Im ¢, this isomorphism can be written as follows:

[9] - (A, B) = (gAg~ ", gBg™"),
1d

91 - ([h o] = 5= [, B]) = (lghg™",g- o] — %%(ghg’l), [ghg™". g+ B)),

where [g] is an element of GL x GL represented by g € GS,. The symplectic form on My
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is induced by the symplectic form w = w; + v —1lwgk on H. It can be described as

w((A,B), (A", B")) := 4/0 tr(da A dB)ds((A, B), (A’, B"))

1
= 4/ tr(AB" — A’B)ds.
0

Let ¢ be an element of Lie G5, and v of Ker dyuc, then we have
w(§",v) = (duc(v), &) = 0.
Thus the symplectic form w is well-defined on Ker duc/Im ¢c.

REMARK 2.11. The author does not know how to calculate the dimension of Mg,
directly. It will be cleared up that it is also equal to 2n?, according to the existence of a
homeomorphism to Myx or T*GL.

2-3. Space T*GL

A space T*GL is the cotangent bundle of the complex general linear group GL(n,C).
This is a complex manifold and an affine variety. The topology of this space is induced
as a variety. Furthermore, as a cotangent bundle, T*GL has a symplectic structure. We
define 2-form Q at (u,n) € T*GL = GL x g by

(U, H), (U, H')) = —2tc{(HU' — H'U) + [U,U"]n}, (2.12)

where (U, H) € gl%? is identified with a right invariant vector field (U(um%ﬁ(um) €
Ty T*GL.

LEMMA 2.13. Q is a symplectic form on T*GL.

Proof. Let w: T*GL — GL be the projection. Then, in general, the fundamental form
0 is defined as follows:

Oty (U, H)) = —n(dx (U, H))
= —tr(nduu1) (U, H),
where duu~! is the Maurer-Cartan form of GL. Thus we have a symplectic form
Ay = —tr(dn A duu™" + nduu™" A duu™"),
and 2d6 is also a symplectic form. [

2-4. Maps between three spaces
We define maps F, F~1, G and G~! in this subsection.

F G

p ' (0) N g (0)/Goo ne ' (0)/GG TGL
w Ft w a1 w
[(To, T, T2, T3)] gy, [(a’ﬁ)]g& (u,n).

2:4-1. Maps F and F~!

Both pg and pc are defined on H, so the map F' can be defined as the inclusion map
from Mpk to Mgy:

F([(To, Ty, T, T5)]go0) = [(%(TO +v/=1Ty), %(Tz +V/=1T3))]ge, -



12 YuuvA TAKAYAMA

In order to consider the inverse map of F', we solve the real equation ug = 0.

PROPOSITION 2.14. Let (o, 8) be an element of H (not necessary of ug'(0)). There
evists at least one g € G5, such that g - (o, B) € pg ' (0).

Proof. The idea of this proof follows from [Ki] and [Nal]. We consider the gradient
flow of f = |Jur|P starting from (a, 3). The path is described as g* - (o, 3) by using some
g' € G&. And according to Neeman [Ne], ¢ - (a, 3) converges to (o>, 3°°). At this time
the convergence of g* follows from Lemma 2.6.

Put ur(a®,5>) = £ € LieGyo. The limit (a®°, %) is a critical point of f, hence the
vector field generated by £ vanishes at (a®,3°°). The vanishing of the vector field can
be described as

€0~ 2 0e=0, [.5%] =0,

But £(0) = 0, so we have £ = 0 and pgr(a®,3°) = 0. Then ¢ is the required element
of G§,. O

THEOREM 2.15. (Donaldson [Do]) Furthermore, if (o, 8) in ug'(0), g € GS, at Propo-
sition 2.14 is unique up to Gog.

Proof. We sketch the proof by Donaldson. In order to remove an ambiguity of the
Goo-action, put h = g*g € L3(Z,GL(n)/U(n)). And define

®(h) := log max(eigenvalue of h).
Then according to [Do, Lemma 2.10], we have

2 n N
L3(h) > ~2(| Pl B)] + [ F(al, 8],
(2.16)

2 n N
LB > <2 (|E (0, B+ |1F (o, 3],

where (o, 8") = g+ («, 8). Suppose both («, 8) and (¢/, 5’) satisfy the real equation, then
the right hand sides of (2.16) are 0. This means that the maximal eigenvalue of h is not

larger than 1 on Z and that the minimal eigenvalue of h is not less than 1 on Z. They
imply h =id. [

In this way, the map F~! is defined.

2-4-2. Maps G and G~*
By Remark 2.3, we can solve the equation

_ ldg ., .
g-0= 359 T g(0) =id. (2.17)

When ¢~ '-a =0, g~' - 3 becomes constant because of the complex equation. Therefore
the solution («, 8) of the complex equation is sent to (0,7), where 7 is a constant 3(0),
by the action of a group G, := {g € L4(Z,GL) | g(0) = id}. Since G, /G5, = GL(n), the
map can be defined,

Gla, B) = (9(1),m),
where g is the solution of (2.17).
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Conversely, we define G~! as follows. Take (u,n) € GL x gl and g € G, which satisfy
g(0) = id and g(1) = u. Then the definition of G~! is

_ ldg _ _
1 — _ (2 1 1
G (u,m) =g (0,m) = ( 5759 919 )-

Needless to say, [g- (0,n)]ge € 112 (0)/GS, is independent on the choice of g € G, .

3. Detailed proof of Kronheimer’s theorem
By using the results in the last section, we give a detailed proof of Kronheimer’s

theorem.

THEOREM 3.1. (Kronheimer [Krl]) Mk is holomorphic symplectomorphic to the
cotangent bundle of the general linear group T*GL(n,C).
And by this morphism, T*GL(n,C) can be regarded as a hyper-Kdihler manifold.

First we show Mk, My, and T*GL are homeomorphic. To do this, we should pay
attention to their topologies. Bijective maps are already obtained, so we prove their
continuities.

Next we prove they are diffeomorphic, holomorphic and symplectomorphic. Since these
properties are defined among their tangent bundles, we should calculate the differential
of the maps, and check they preserve the structures of three manifolds.

3-1. Homeomorphy

The next proposition and lemma are essential.
ProprosSITION 3.2. The maps Fand G are bijective and continuous.

Proof. The bijectivities are already known. Since F' is the inclusion map, its continuity
is clear. To show the continuity of G at (ag,30) € pg ' (0), we check the Lipschitz condi-
tion. Let (a, 8) be in the §-neighborhood of (ayg, Bo). Since L? is compactly embedded in
C°, it means supy ||a(s) — ao(s)| < d,sup;, ||B(s) — Bo(s)|| < &, and moreover

lar(s) — a0 (s)lloc <6, [IB(s) = Bo(s)llec <0, for any s € T,
where ||X ||oc = max; ; |X;;| as before. Then we have the following inequality:
lee()g — a(s)g[loc = max [{a(s)(g — ')}l
< max |a(s);;| max|(g — g')s;]
< (suplaoflec +0)llg = ¢'llec-
sup ||apl| + 9 is independent of «, so the Lipschitz condition is satisfied. [J
LEMMA 3.3. The map G o F' is proper.

Proof. We have a trivial inequality:

k k
ITT Al <n"TTII4ll, Ai € GL(n).
i=1 i=1

This follows from the estimate of all the entries of A; by || A;]|.
The map (G o F)~! is given as follows. Take (u,n) € T*GL and (Tp, Ty, T2, T3) = (G o
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F)~ (u,n) € pg*(0) N et (0)/Goo. In this situation, (T +v—171)/2, (Ts +/—1T3)/2)
can be described as g - (0,1), where g satisfies the differential equation,

d dh
d—(hfld—) +2[n, h~'*h] = 0, where h = g*g, ¢g(0) =id, and g(1) =u~'.  (3.4)
s s

The existence and uniqueness of the solution of this equation follows from Theorem 2.15.
This equation is preserved by the Gy.-action, so we can assume Ty = 0 from the beginning.
Then in order to prove this lemma, first we show that ||7%(s)], ||T2(s)|| and ||T5(s)| are

estimated by ||ul|, [[u~!|| and ||n|| independent of s. Then from Nahm’s equations we have
d
I Tl < H[TstHl < 2% || Tl | T3],

d? d
== Tl < Il T27T3H| +I[Te,

so the first and second derivatives are also estimated by |[u|/, [[u~!| and |/n|]. Thus
Tys are in L, and the compactness of the inclusion L$® < L? implies that the subset
{(v/=1Ty, Ty++/—1T3) | estimated as above} is compact if the subset {(u,n)} is compact.
From the relation between T4,75,75, h and 7, we have inequalities
1dh 1dh
- g
T2 + V=1T5)1* = tr(nh™'n*h) < n*|[nl|* sup || =" || sup [|A].

o)l < 4n* ||| Tl + 1 T5]1),

IT3|* = tr(h™" =) < [|A~

Therefore it is enough to estimate h and h~!. By Theorem 2.15, we have

d2
752 2(h) = =2l|[n, n”][l

Put £(s) = @((uu) s + [, n*]lls(1  s), we get 2 (f — (h)) < 0 and f — B(h) =
at s = 0, 1. Hence we have

©(h) < @((uw)™")s + ([ 07]ls(1 — 9).

In general, max(eigenvalue of XX*) < || X||* < nmax(eigenvalue of X X*) holds, and
since h is a self-adjoint matrix, we have (the i-th eigenvalue of hh*) = (the i-th eigenvalue
of h)2. This leads to

sup ||A]| < v/nsup exp ®(h)

< Visup{exp(®((uu”)~)s) exp(||ln.n7]ls(1 ~ 5)))
< Vallu™ | exp (5 [lnl?):

Similarly, we have sup, ||h 71| < \/ﬁ||u||2exp(”—2||77||2). Then,

2 2
1Tz +V=1T5 )% < 0 [lu | [full ] €171,
Integrating (3.4), we get

. dh dh s
I G = el =1 =2 [ s

<2 / (lnh=t0"h]) + A~ k] )ds
0
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As a consequence, we have

57192 < an 2 sup 1 s 1~ 1||+H|6 )

< an® | e 10 | oo

We estimate the last term. dh/ds|s—9 means lim,_, g g(h(s) —id), and we have the
following inequality:

Ih —id ||* < n(exp ®(h) — 1)
< 0 (@((uu™) ™) + [0, 07ll) s + O(s%) ).

Hence we get

2
n
< tim Y (Qog [ |2 + 2 Jnl?)s + O(s*)}

H|s 0

< Vin(log [ 2 + ).
O
Summarising them, we can conclude.
PrOPOSITION 3.5. The maps Fand G are homeomorphic.

Proof. The continuities of Fand G are by (3.2). From (3.3), G o F is proper, so Go F
becomes homeomorphic. Then F~! = (Go F)"'oG and G™! = Fo (Go F)™!
continuous. [

3-2. Other properties

We consider the differential of Fand G, which are the maps between the tangent
bundles of three spaces. Since F' is the inclusion map, Fy is given by

Fu(r0,m1,72,73) = [(5 (To+\ﬁﬁ) (TerFTs))]ggo,

where (19,71, T2, 73) € TMpk as (2.10).

Let (af, 8%) be any path in pz'(0) through (o, B) at t = 0. Then the differential of
(af, BY) at t = 0 gives (a°, %) € Tia.p)lc 1(0). By definition, G, is given by the differential
at t = 0 of the solution of (2.17). So, we should solve

. 1.dg° _ dg _ _ d
o_ _Li.ag 1:0 —1 a 9 9 — )
a (9 — 5,99, (e 74" +2d% + 209" = 0), (3.6)
with ¢°(0) = 0. Hence, by using the solution ¢° of (3.6), we get
G.(a°,8%) = (9°(1), 8°(0)). (3.7)

For a later purpose, we also calculate G; 1. Put (uf,n?) := (uetV,n+tH), (H,U € gl).
For g € G§, which satisfies g(1) = u, put g* = ge*'U. Then g' defines the map G~! for
(ut,n?) because g* satisfies g*(1) = u’. Then differentiating

t_ ldg" 1

2 ds g >
Bt =g'n'y’,
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at t = 0, we find that

GNUH) = (&, 8%,
where

1dg° 1d
FY O | 9 —1:0 -1

T2ds Y 2as? 99
1
= —59Ug L
B =g’ +¢"ng — gng g
=gHg "+ sgUng™" — sgnUg™".

First, we show the next proposition by using these equations.
PrOPOSITION 3.8. The homeomorphisms F and G are diffeomorphisms.

Proof. In order to prove F and G are diffeomorphisms, we show F, and G, are iso-
morphisms between the tangent spaces.

First, we show G, is isomorphic. We take g € G§, which sends (a, 3) to (0,7), then
g induces an isomorphism from T4, 5y Msy to Tj(g,,)Msy. Hence it is enough to check
G[(0,n)) 1s isomorphic. Now we have

d
Ker(O,n) dﬂ(c = {(A7B) | %B + 2["4’77] = O}a
1d .
IIn(D,n) e = {(_77115 [ha 77]) ‘ h € Lie gé():()}a
2ds
and G0, Ti0.mMsy = Tiian)T*GL can be described as (A(s), B(s)) + (fol A(s)ds,
B(0)) from (3.6) and (3.7).

Suppose G0, (4, B) = (0,0), i.e. fol Ads = 0,B(0) = 0. Put h(s) := =2 [ A(s)ds/,
h is in Lie G, because of h(0) = h(1) = 0. Then we have

1d
—§£h = Als),
(hyn] = - / 2(A(s"), n)ds’

S d ;o
= [ = 5mas = B)

and hence (A, B) € Imc. Conversely, for any (U, H) € TT*GL, the element (U, —s[U, n]
+H) is sent to (U, H). Therefore G, is isomorphic. (In fact, the dimensions of M, and
T*GL are 2n?, so the surjectivity follows from the injectivity.)

Next, we show F\ is isomorphic. Suppose [((70 + v/ —171)/2, (12 + vV —173)/2)]gc = 0
ie. (1o + v—171)/2, (12 + v/—1713)/2) € Im 1. Then, by some h € Lie GS,, we can write

1 1d
5(7’0 +\/le1) = [h704 — §£h7
%(7'2 + \/leg) = [h,ﬁ}

Since (79,71, T2, 7T3) € T Mk, they satisfy %(Tg +V—=1n) +2[r0 + V—171,a*] + 2[m2 +
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v/—173,6*] = 0. Then we have

Yood 1d ld, -
0= [ (G (el = 54h) + 2llhvol = oo+ 2Bl 5 ds
:/0 tr{—([h,a] — §£h)£h - [gh,a |h* +2[[h, o], &*|h* + 2[[h, B*], B]h™ }ds
! 1d 1d,, . .
= [ a5 g e (g oh + hoal) + 20, Bl A1 s
= 2l([h0] ~ 5 b, 0, B) B,

where we used integration by parts in the second equality. This implies the injectivity of
F,. The surjectivity of F follows from the injectivity. [

Next, the holomorphy of F' and G follows from the commutativity of the diagram

T Mk r TMs,
w W
(7—077-177-2’7-3) f [((TO + v _17-1)/2? (T2 + v _17'3)/2)]ggo

b b

(=71,70, =73, 72) ————[(V/=1(10 + V=171) /2, V/=1(72 + \/—7173)/2)]%0,

Gt
TT*GL T Mgy
w W
(U, H) i [(—39Ug™ ", gHg™" + sglU,n]g™")lge,

s b
(V=1U,V=1H) ——— (-3 gUg™", V=1gHg™" + vV=Tsg[U.nlg~")lge, -
Hence we have the following proposition.

ProprosSITION 3.9. The diffeomorphisms Fand G are holomorphic.

Last, we consider the correspondence of their symplectic forms. The following argument
also appears in [Bi].

LEMMA 3.10. The holomorphic maps F and G preserve the symplectic forms.

Proof. The assertion for F' is clear. Let us check the symplectic form of M,y is sent to
that of T*GL by G=1". We have

G~ Yw((U,H), (U, H'))
- w((*%gUg*,gHsf1 +sg[U,nlg™"), (*%QU’gfl,gH’sf1 +sg[U",n)g™ )
= 2/01 tr{—gUg™ ' (gH'g™" + sg[U’,nlg™") + gU'g " (gHg™ " + 59U, n]g~")}ds
— 2te{(UH' — U'H) + ([U,U"])n}, (3.11)
this coincides with (2.12). O

Therefore, the proof of Kronheimer’s theorem is completed.
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COROLLARY 3.12. Take |l € Rsqg and suppose the symplectic form of T*GL is given
by 1) instead of Q. Then T*GL is symplectomorphic to the moduli space of the solutions
of Nahm’s equations on the interval [0,1].

Proof. On [0,1] instead of Z = [0, 1], the integrand at (3.11) is replaced by
tr{—gUH'g™" +gU'Hg™" + ?9(—U[U’7n] +[U,nU")g™ "}

Integrating from 0 to [, we have

G Vw((U,H), (U, H")) = =2te{(UH' — U'H) + ([U,U)n}
= IQ((U, H), (U, H")).

O

PROPOSITION 3.13. In the case of n = 1 and on [0,1], the biholomorphism Mpx =
T*C* =2 St x R3 is explicitly given by

l
[(To, Ty, Ta, T3)]goo (exp(/o Tods), —/—1T1(0), —/—1T5(0), —/—1T3(0)) € S* x R?,

and the symplectic form is given by w = —I(d fol Tods + /—1dTy) A (—dTs + +/—1dT3).

Proof. In this case, Nahm’s equations are written by dTy/ds = 0 (k = 1,2,3), so
{(T1,T5,T3)} = (vV—1R)3. By the Gyo-action, we can regard Ty is constant. Put t; =
—/—1Ty € R for k = 0,1,2,3. exp(2mv/—1s/1) € Goo sends ty to tg — 27l~1 so [to]
defines an element of R/27l~'Z. Note that we have [y/—1ty] = [fé Tods]. Let g be a
solution of g -0 = y/—1tg — t1,9(0) = id. Then we have g(s) = exp{—(v/—1ty — t1)s},
u=g(l) = exp{—I(v/~1tg — t1)} and n = (/—1t3 — t3)/2. The symplectic form is given
by

w="2u"tduAdny=—1(v/—1dty — dt;) A (v/=1dty — dt3).

4. Elemental bow varieties

In this section, we introduce elemental bow varieties and research them in the same
way as [Na2]. The definition of elemental bow varieties is based on Cherkis’ work ([C1,
§2], [C2, §2]). By using elemental bow varieties we will construct ALF spaces in the
following section.

In this paper, we define ALF (i.e. Asymptotically Locally Flat) spaces as follows:

DEFINITION 4.1 (c.f. [M]). A connected complete hyper-Kdhler 4-manifold (M, g) is
called an ALF space if there exist ¢y and ¢y (0 < ¢1 < ¢2) such that for any x € M and
for any r > 1, the metric g satisfies

erd < Vol, B(z,r) < cors.

For example, R?® x S' is an ALF space. For nontrivial example, Taub-NUT space is
ALF. Taub-NUT space is homeomorphic to C? and has a hyper-Kéhler structure, and
its metric is given by

gTN = </\ + 1> dx® + (A + |zl|)_1 (dip + w)?, (4.2)

||
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where € R3,¢ € S',dw = *dﬁl‘ and A > 0 is a parameter. As |z| — oo, we have

grN — dx? + (dy + w)?, so the metric grn actually satisfies the condition about the
volume growth.

4-1. Elemental bows

For [ > 0, we consider the following diagram:

I, ={-1<s<0} N In=1{0<s<l}
lepP

We call this diagram (with the following data) an elemental bow. We give a rank-n
hermitian vector space W = C on P and a trivial hermitian vector bundle 7: V' —
Z;, UZg, and describe 771(s) as V(s). Let us define complex vector spaces Mg, Mg and
M respectively by

Mq = Hom(V (1), V(=1)) ® Hom(W, V(0)) = {(B-4+,) € M(n,n;C) ® M(1,n;C)},

Mg, = Hom(V (1), V(1)) & Hom(V (0), W) = {(B+—.j) € M(n,n;C) & M(n, 1;C)},

M=Mqg®dMg®Hr D Hg,

where Hos are as in §2.1. The metric of M is given by

ds® = tr{dB_,dB*  +dB;_dB’ _ + didi* + dj*dj}

+ > / te{dT3 d(TE)* + dTPd(T) Yds,  (4.3)
A=L,R

where the meaning of the integrand is as (2.1) and X* means Hermitian adjoint *X. We

define a complex structure J as J(B_1, B, _,4,j) := (=B} _,B* ,—j*,i*), then M has
a hyper-Kahler structure. The Kéahler forms are written as
v—=1
wr == tr{dB_, ANdB* , +dB,_ NdB}_ +di Ndi* +dj Ndj*}

s / — te{dT{ A AT + dTS A dT s,
A=L,R”'Za

wy+V—lwg =tr{dB_ NdBy_ +diNdj}
+ > / tr{ (AT + V=1dT{) A (dT5 + V—1dT5) Yds.

A=L,R

A group G = {g = (91, 9r) € L3(Z1,U(n)) x L3(Zr,U(n)) | g(0) = gr(0)} acts on M
by

g+ (B_y, By_,i, j, TgM(s), T (5))
dg

= (g(—=0)B_+g()~", g()By—_g(=1)~", g(0)i, jg(0) ', gTg'g ™" — 2.9 g gTitg™),
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for k=1,2,3,A = L, R. This action preserves the hyper-Kéahler structure. Then we have
a hyper-Kéhler moment map p (see also Remark 2.5 and [Kr2]). The explicit form is as
follows:

——L(B_yB* - B:_ By )+TE(-) at s = —I
i = iifgﬂL [T6", T + (151, T3] at s € (—1,0), (0, —1)
F=(i5* — j*j) — TE(0) + T(0) at s =0
==L(B,_B*_ - B*,B_;)-T{() at s =1,
B_ By + (TL+ —1T%)(-1) at s = —I
e — (TP 4+ /AT + [T+ VAT, T+ V—1T5Y]  at s € (=1,0), (0, 1)
ij — (T3 +V=1T5)(0) + (T3* + V=1T3%)(0) at s =0
—Bi_B_ — (TF 4+ V=1TH)(1) at s =1.

(4.4)

Put Z = {¢ € Lie(U(n))* ® (R® C) | Ady)(¢) = ¢ for all g € G}. Choose an element
¢ = (Cr,¢c) € Z, and define a hyper-Kéhler quotient M¢(n,l) of M by G as follows:

Mc(n, 1) :=A{(B,1,5,T) € M| p(B, 4,5, T) = (6o} /G-

Here 4y is Dirac’s delta on Zy, UZg i.e. 69(0) = 1 and dp(s) = 0 for s # 0. We call this
hyper-Kéhler manifold M¢(n,l) an elemental bow variety.

REMARK 4.5. (i) As a usual hyper-Kahler quotient, we may have to change Z into
Z' ={¢ € LieG*® (R C) | Ady(¢') = (' for all g € G}. However, by a change of
coordinates, we get M¢ = M, for a certain ( € Z. Thus we do not need Z' and at
insides of intervals w(B,i,7,T) = (do means {T} satisfies Nahm’s equations (see also
Remark 2.5).

(ii) ¢ can be written as (Cr,{c) = (crv/—11d, ccid), where cg = tr(g/nv/—1 € R, cc =
tr(c/n € C.

We apply Kronheimer’s theorem to M (n, 1), we have

MC(nal) = {(BJ}J}UJ?) € Mc | M(B7iaj’uv 77) = C60}/G7

where we put Mg = Mo ®Mg @ T*GL(n) ®T*GL(n) and G = U(n) x U(n) x U(n). We
describe these data as the following diagram:

Oy O
S o e

~

where = means Keruy = 0. The real moment map cannot be described explicitly by
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using v and 7, but the complex moment map can be described as

B_(B,_+2n at s = —I
pc(B,i, j,u,n) = Qij — 2upnpuy’ + 2upnruy’  at s =0 (4.6)
—By_B_, —2np at s =1.

And the group G acts on {(u,n)} as

(9-190,9+): (ur,ne, ur,nr) = (gourg=",9-nrg=", gourgy', g+MrIY")-
4-2. General properties of elemental bow varieties

In the last subsection, we claimed that elemental bow varieties can be constructed
as finite dimensional hyper-Kéhler quotient. By considering the relation between finite
dimensional hyper-Kéahler quotient and GIT quotient, we prove the following proposition.

PROPOSITION 4.7. The elemental bow variety M¢(n,1) is algebraic.

Proof. We prove the hyper-Kihler quotient iz ' (Cr) N " (¢c)/G is biholomorphic to
the GIT quotient " (Cc) // Gc. By the same argument as [Kr2, Corollary 3.12], it is
enough to consider in the case of (¢ = 0. According to the argument in §1-2-2, first we
consider a prequantisation of pg 1(O).

We take a trivial line bundle L on pg 1(0) and give a hermitian structure by a function
h(zp) = |2|%ef®), where z, = (p,2) € puz'(0) x C = L. Here we give f(B,i,j,u,n) =
filu,m) + fo(B) + f3(i,7), and

e =5 3 [ loals) +ai I + 21 ds

A=L,R
1 2 2
fo(B-, By-) = S (I1B-+II" + [I1B+-[%),
. 1. .
f3(i,5) = Z(HZH2 +11311%),

where (o, 8) satisfies Nahm’s equation and G(«, 5) = (u,n) € T*GL (c.f. §2.4). In fact
this line bundle (L, h) is a prequantisation of ug'(0). It is because we have

@~ Ofi(un) = [ r{(a+a’)(da—da®) + dBp" - 5d5"}ds,
A8 — ) f1(u,n) = /tr{(da +da*) A (da — da*) — dB A dB* — dB A dB*}ds
=— / 2tr{da A do™* + dp A dB* }ds
= f\/jl/tr{dTo A dT) + dTy A dTs}ds,
(0~ 8)f2(B_,B.) = ; {(dB_ B, — B_.dB",) + (dB, Bi_ — B, dB} )},
d(— 8)fo(B_.,Bs_) = f% tr{dB_, AdB*, +dB,_ AdB}_},

d(0 —0)fs(i,j) = f% tr{di A di* +dj A dj*},

and the summation of the fourth, sixth and seventh of right hand sides coincide with

vV 71&]].
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On the other hand, since L is trivial, a linearisation of the G¢-action can be described
as g-(p,2) = (g-p, x(g)~'2), where x is a complexification of a character x®: G — U(1).
Suppose

x(g)™" = (det g—)°~ (det go)* (det g )°*, co €R. (4.8)

By Proposition 1.10, this linearisation determines the moment map g, .
Recall that (u,(B,1,7,u,n),§) is given by S*LgA, where s: M — L is the O-section.

Here the connection form A of L (see (1.8)) is given by

A= 4\% (47 - 47 + AEL:R/ dtr{(an+ o) (daa — do’y) + dBaBY — BadBy}ds

+tr{(dB_4B*, — B_ydB" )+ (dB,_B;_— B, _dB;_)}
+ e {(did” — idi*) + (dj* ~ jdi")}).

We identify exp(§) € G with exp(£(s)) € G/Gooo, where Gogo = {g € G | g(—1) = ¢(0) =
g(l) = id}. Since £* = —¢&, we have

—Lgdz = (c_tré(—=1l) +cotré&(0) + cp tré(l)) =,
—Lgdf = —(c_tré&(—1) + cotr&(0) + ey tré(l))z,

—1zda = [§(s), (s)] — 5%5( s), —rgda” =[a"(s), —¢(s)] + %%5(8),
—1zdB = [€(s), B(s)], —1gdfB” = [B(s), =&(s)];

—1zdB_1 = &(=1)B—y — B_1.£(1), —1zdB = (B2, — B2 .¢(=1),
—1zdi = £(0)i, —tzdj = —j€(0).

Hence we get
(4V/ =Ty, €) = 8c- tr&(—=1) + co tr(0) + e trE(D))
1d . 1d
+ Z / dtr{(aa + aj)([§ oa] — §%§+ [, €] — 5%5)

A=L,R
+ 1€, BalBa + BalBh, €] }ds
+tr{(§(-0)B_s — B_y&()) B*, = B+ (0B, — BZ .£(-D)
+ (€W B+ = By€(-0)Bi_ — By (¢(-DB}_ + BL_&())}
+ tr{£(0)ii" — i(—i"€(0)) + (—3€(0))j" — E(0);7}
= tr{8cy — (ar(l) + ak(D) +2(By_ B} — B*, B_)}E()
+ tr{8co + 4(ar(0) + a}(0)) — 4(a(0) + 7 (0)) + 26" — §75)}E(0)
+tr{8c_ +4(ar (1) + ap (=) +2(B_yB* | — B} _By_)}(-1).

Here we used integration by parts and the assumption that (a, ) is the solution of
Nahm’s equations. This implies

Ur —2c_v/—1id  at s = —I
by (B, i, 5,u,m) = S ug — 2co/—1id  at s =0
Ur —2c4v/—1id  at s=1.
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Instead of (4.8), we define a linearisation by putting

1 tr g
x(g)™" = (det go)2v=T.
Then we apply Lemma 1.11 to this linearisation, we have a biholomorphism

{nc' (00} /Ge = p ' (0) N ug (0)/G = g (Gr) Mg (0)/G = Mc(n, 1)

On the other hand, we can consider the GIT quotient zz " (0) // Gc, because the above
linearisation is trivial. We claim that pg'(0)*** coincides with ug'(0)%. We can make
the similar argument as [Na2, Proposition 3.9., 3.21.] to prove this claim. The difference
is that ||z|| is replaced by f. In [Na2, p.32, 35], he used the properness of x — ||z|| so it is
enough to check the properness of f. For f5 and f3 it is clear, and for f; the compactness
of the subset {(u,n) | fi1(u,n) < C} follows from the argument of Lemma 3.3.

Therefore we have

Mc(n,1) = pg* (Ge) N ug ' (0)/G = pc*(0) //,, Ge,

and the elemental bow variety M. (n,1) is actually an algebraic variety because g ' (0)
// Gc is algebraic. (When (r = 0, pu¢ L0)  Gc is regarded as an affine algebro-
geometric quotient because xy =id.) [

We give another characterisation to the (semi)stability condition of the GIT quotient
(V) /| Gc. Here we recall that (B,i,j,u,n) is called a (x-)semistable point when
Gec - (B,i,j,u,m,2) is closed for z # 0, and (B,i,j,u,n) is called a stable point when
Gc - (B,i,j,u,n) is closed and its stabiliser is finite (see also §1.2).

DEFINITION 4.9. For V = {V(=1),V(0),V(l)}, a set of three subspaces S = {S(-1),
S5(0),S(1)}, (S(s) € V(s)) is called invariant for (B, i, j,u,n) if it satisfies the following
conditions:

B_4(S(1)) € S(=1), ur (S(=1)) = S(0), nL(S(=1)) € S(=D),
B, (S(-1)) € 8(1), ur(S(1)) = 5(0), Ir(S(D) € S().
THEOREM 4.10. Put z = (B,i,4,u,n) € ug(0) and ¢ = 2;1/4% € R.
(i) When ¢ < 0, (x, z) is semistable if and only if there exists no set of proper subspaces
S CV such that S is invariant for x and Imi C S(0).
(ii) When ¢ > 0, (z, z) is semistable if and only if there exists no set of nonzero subspaces
0#£ S CV such that S is invariant for © and S(0) C Ker j.
(i) When ¢ = 0, x is stable if and only if there exists no set of nonzero proper subspaces
0+# S CV such that S is invariant for x and Imi C S(0) C Ker .

Proof. The proofs of three assertions are analogous. First we suppose the orbit G¢ -
(z,z) is closed for z # 0 and there exists an invariant set of subspaces S C V. If
Im3d C S(0), we take

t = (id,t71id) € GL(S(~1)) x GL(S(~1)*) € GL(V(-1)),
(id,t~tid) € GL(S(0)) x GL(S(0)*) c GL(V(0)),

(id,tVid) € GL(S(1)) x GL(S(1)*) € GL(V(1)).

g
96

g
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1 -1

Then we have gfur(¢")"" = ur, gfur(g’) ™' = ugr and

9" B_(95) syt 55—y = tB—+ sy —s(-1)»
94 B (9") s(eir5s@) = tBr—ls(—1)- = 50)»
9 nL(98) st 8- = tLls(—1)t —8(-1),
ginR(gi)71|S(l)L—>S(l) =trlsq)r=sa);
goi =1,  j(96) s row = tilso)yrw,
X(gt)—lz _ t—cdimS(O)J"

)
(tid,id) € GL(S(=1)) x GL(S(=1)*) ¢ GL(V(=1)),
g't = (tid,id) € GL(S(0)) x GL(S(0)") c GL(V(0)),

gL = (tid,id) € GL(S(1)) x GL(S()*) c GL(V (1))

Then we have the same equations for ur,ur, B_+, B4_,nr and ngr as above and

1

t. . e _ . .
Joilwoso) =tilwsso,  Jg0) 7 =5 xlg") e = eSO,

Combined with these things, when ¢ < 0 and Imi c S(0), S(0)* # 0 leads to a contra-
diction and when ¢ > 0 and Ker j D S(0), S(0) # 0 also does.

And when ¢ = 0, Imi C S(0) C Kerj implies there exists z = (B, i,j,u,n) € uz"(0)
which satisfies

B_ils@yrss(-) = B—|s(—nt=s@) = nLls-nt s = Mrls@yrssq =i=7=0,

by taking the limit ¢ — 0. The stabiliser of this element is infinite, so this is a contradic-
tion.

Conversely, we suppose that the (semi)stability condition is satisfied and that the
orbit is not closed for z # 0. Then there exists A = (A_, Ao, Ay ): C* — Gg, such that
lim; 0 A(¢) - (x, 2) exists and this limit is contained in G¢ - (z, 2) \ G¢ - (z, z). Let us take
a weight decomposition of V' with respect to A:

V(=) = ®aV(=l,m_ o), V(0) = @,V (0,m0.0), V(1) = ®aV(I,my o),

where me o are the weights. Then the existence of lim;_,o Ag (t)urp A~*(t) implies Mmoo =
mg, and this also holds for ur, we put my := m_ o = mg,o = My o. We can assume
my > mg > -+ > my,. The existence of lim;_,o A(t) - (z, 2) implies the following:

B_.(V(l,ma)) C P V(-=1,mp), By (V(~l,ma)) € @ VI, mp),
BZa B>a
nL(V(=l,me)) @V —l,mg), nr(V(I,mq)) @V (I,mp),
BZa B>a
Imi C @V(ng), Kerj D @V(O,mg).
B=0 B8>0

Thus @s>aV(mg) = {V (=1, mg),V(0,mg),V(I,mp)} is an invariant set of subspaces.

When ¢ < 0, we have V' = P4, V(mp) by the stability condition. Hence det(A(t)) =
tV for some N > 0. If N = 0, V = V(0) and A\(¢) = 0 is against lim;_,o A(t) - (z,2) ¢
Ge - (2,2). f N >0, x(A\(t)) "1z =t~z is against the existence of im A(¢) - (z, 2).
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When ¢ > 0, we have V = @3, V(mp) by the stability condition. This also leads to
a contradiction by the same argument.

When ¢ = 0, we have V = V(0) by the stability condition. This also leads to a
contradiction. [J

PROPOSITION 4.11. As algebraic varieties, the elemental bow variety is isomorphic to
the quiver variety given by {[B1, B2] +1ij = 0} //x GL.

Proof. We give a map and check the map preserves the complex moment map and the
stability condition. We define a map

(B—+7B+—’UA>77A) = (31,32) = (ULB—+UI_%17URB+—Uzl)'

Then by (4.6), uc = 0 corresponds to [By, Ba] +ij = 0. We have to consider the induced
(semi)stability condition on {[Bi, Bo] +4j = 0} //, GL. By Theorem 4.10, we have the
stability condition for x = (B, Ba):
(i)When ¢ < 0, (z,2) is semistable if and only if there exists no proper subspace
S(0) € V(0) such that S(0) is invariant for 2 and Im¢ C S(0).
(ii))When ¢ > 0, (x,2) is semistable if and only if there exists no nonzero subspace
0 # S(0) C V(0) such that S(0) is invariant for  and S(0) C Ker j.
(iii)When ¢ = 0, = is stable if and only if there exists no nonzero proper subspace
0 # S(0) € V(0) such that S(0) is invariant for z and Im4 C S(0) C Kerj.
This is because uyS(—1) = S(0),urS(l) = S(0). The above condition coincides with the
(semi)stability condition of the quiver variety {[Bi, Ba]+ij = 0} //, GL (c.f. [Na2]). O

COROLLARY 4.12. When ¢ # 0, M¢(n,l) is isomorphic to the Hilbert scheme (c2)l,
and when ¢ = 0, Mo(n,l) is isomorphic to the symmetric product S™(C?) as algebraic
varieties.

Proof. This follows from Proposition 4.11 and [Na2]. O
REMARK 4.13. These isomorphisms do not preserve the metrics.

4-3. Metrics of elemental bow varieties

First we calculate the metric of Mg(1,1). This is also mentioned by Cherkis [C1, §3.2].
In this case we have B_,B,_,i,j € (C,T,f € I'(Z4,v/—1R), and the moment map is
given as follows:

——1(B_.B*, —B*_B._)+TF (- at s = —1
LTy at s € (=1,0),(0,1)
e _\éjl(“* —j*j) = T{(0) + T(0) at s=0
G (By-By_ — B2 B_y) ~ T()) at s =1,
BBy + (T3 +v/-1T5)(=) at s = —{
e — & (T8 + V=113 at s € (=1,0), (0,1)
YoLij — (TF + V=ITE)0) + (TF +V=ITF)(0)  ats=0
*B+_B_+ — (TQR =+ \/TIT:{C)(Z) at s = l

The equation p = 0 means T = T = @(|B_+|2 — |B4_|?), T + V-1TF = TF +
V-ITE =B, B ,,andi=j=0.Put t), = —/—1T% b; = B_; and by = B;_. We
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apply Proposition 3.13 for the interval [—I, 1], then we can conclude
Mo(l,l) = {(bl,bg,to,tk) e CxCx (R/(l_lﬂ')Z) x R3
| [b1]? — |ba|? = 2t1,biby = V/—1t2 — t3} /S,
where S* = R/Z = {¢} acts as
eﬂ\/jl¢s/l : (bl, bg, to, tk) — (6_27”/?1(1)[)1, 627”/?1(1)[)2, [to — l_lﬂ'd)], tk).
The metric of the whole space (R/(I7'7)Z) x R? x C x C is given by
ds® = dbydby + dbodby + 20(dt + dt? + dt3 + dt3).

On the other hand, the Hopf fibration C2 — R x C is given by (21,22) — (|21]* —
|22|2, 221 22). If we put (211,2v 129 — 2w3) = (|21]® — |22]?,22122), then (21,79, 3,0)
becomes a new coordinate of C2, where 6 is the coordinate of the S'-fibre of the fibration.
We have dz1dz; + dzaedzy = 1/|z|d2? + |z|(d0 + w)?, where dw = *dﬁ, * denotes the
Hodge operator for R3. The S-action on {6} is given by 6 — § — 27y/—1¢. By using the
coordinate (x1,xs,x3,0), the above equations are written as ¢, = xj, and the restricted
metric is given by

1

ds? = —da® + |z|(df + w)? + 21(dt3 + dx})

|z
1
= (21 + II) dz® + |z|(df + w)? + 21dt}.
x
And 6 — 21y/—1t is invariant by the S'-action, we put ¢ = § — 21y/—1ty. By using v, we

have

2 L 2 1\ 2
ds :<21+)dx —|—<21+> (dp 4+ w)*.

|| ||

This coincides with Taub-NUT metric grn (4.2), so Mo(1,1) is regarded as Taub-NUT
space. Conversely, we can consider that the hyper-Kéahler structure of Taub-NUT space
is defined by that of My(1,1). In this paper TN denotes Taub-NUT space. This metric
converges to the normal metric of C? as [ — 0, and this corresponds to the behaviour of
the diagram:

150 /Y\
TN & WW _— A A >C2

(4.14)

We note the relation between Taub-NUT space and C? without taking the limit [ — 0.
As §4.1 we apply Kronheimer’s theorem to My(1,1), and by Proposition 3.13 we have
uy, :exp{fl(\/flto 7151)}, nr = (\/71752 7t3)/27
upr = exp{l(v'—1to —11)}, nr = (V—1ts — 13)/2.



Bow varieties and ALF spaces 27
Put u = urup' = exp{—2l(v/—1to—t1)},n :=nr = nr = (V—1t2 —t3)/2. Then we have

TN = {(b1, b2, to, tx) | |b1]* — |b2|* = 2t1,b1by = /1ty — t3}/S* (4.15)
= {(b1,b2,u,n) | [b1]> = |b2|* = 1" Relogu, 2b1 by = n}/S*

And the Kéahler forms of Taub-NUT space are written as

1 B B
wr = g(dbl A dby + dba N\ dbz) + 2l(dt0 Adty + dits A dtg)
. 7 iy, V-l —11
= g(dbl A dby + dba A dbs) + leogu Adlogu + FTdn A dn,

wy 4+ V—1wg = dby Adby + 21(v/—1dty — dt1) A (—v/—1dty + dt3)
= dby A dby + 2dlogu A dn.

Furthermore by Proposition 4.7, we have the following isomorphism as algebraic vari-
eties:

[b1]? = [b2]* = 17! Relogu, >~ .
St }/81 =5 {(br, b2, u,m) | bads = 20} /C.
192 —

®: {(b17b2vu777) ‘
® is given by the inclusion map, and ®~! is given by the action of v € C* such that
(v=tby, vba, vu, n) satisfies ug = 0, i.e. v72|b1]? — v?|be|? = [~ Relog(vu). We define
TNe = {(ba, ba, 0,11) | bubs = 20}/C°.

PROPOSITION 4.16. Taub-NUT space is holomorphic symplectomorphic to C?. And
the morphism is explicitly given by

TN 2 TNe ki C?

w W w
[(blv b27 u, 77)]51 — [(blv b2v u, 77)]@* — (U’bh b2u_1)'

Proof. This is the conclusion of Proposition 4.11 in the case of n = 1. And we have

dzy A dzy = d(uby) A d(bau™")
= db1 A db2 — bldbg A uildu + bgdbl N ud(uil)
= dby A dby + 2u~ du A dn.

O
REMARK 4.17. U~ is given by W=1(z1, 20) = [(21, 22, 1, 2122/2)]c -
Next we consider Mg(n,!) in the case of n > 1.

THEOREM 4.18. (i) As algebraic varieties, Mo(n,1) is isomorphic to S™(C?) and the
holomorphic symplectic form is preserved.

(ii) As hyper-Kdhler manifolds, Mo(n,l) is isomorphic to S™(TN).

Proof. (i) follows from Corollary 4.12 and Proposition 4.16. Let us prove (ii). We check
how (B,i,4,T) € 1~1(0) is described.
Since there exists the isomorphism My(n,l) = S*(C?) given by Proposition 4.11 and
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[Na2], all closed Gc-orbits in pz'(0) contain elements written as
. bt 0 L byt 0
urB_jup =By = JUrBy_u; = By = ,i=73=0.
(4.19)

Furthermore, by using the action of the subgroup {(g-,id,g+)} C Gg¢, we can regard
uy, = ugr = id,, and then we can assume

bl.l 0 bl‘l 0 771.1 0
(B—+7B+—auA7nA): ' ) ° 7idn7 A"- 5
0 b71Ln 0 bg.n 0 ng.n

where 03063 = 2n7 = 2n}, holds (c.f. (4.6)).
IS C*}.

Now we consider the action of the subgroup
P
{(id,( >,id>6G<c
O hn.'ﬂ
Note that this action preserves the description of (4.19). Each [(b%, b3, 1,7®)]c+ determines
a point in TN¢, and each ¥~1([(b3,b3,1,1°)]c+) determines a point in TN. Thus all the
points in pz'(0) N puz'(0)/G are represented as

0 (B 0N [utt 0 [n 0
(B*JraB%**vuvn): T, ) . ) T, ) T, 3

(4.20)

where each (b3, 03, u®,n®) € TN.
Therefore we get an isomorphism My(n,l) = (TN)"/&,,. O

REMARK 4.21. As a GIT quotient, we can take a representative x = (B_1, By _,1, ],
ua,na) of [x]ge. € Mo(n,l) as

1
b1t 0 b3t 0 ukt 0 nkt 0
T = ) ) : a07 i

This is because the closure of G¢ - (B, 1,0,u,n) contains the closed orbit G¢ - (B,0,0,u,n)
(see also [Na2, Proposition 2.8.]). Notice that unlike on the representative (4.20), G¢
acts freely on this representative.

5. Construction of other bow varieties

Let T be a finite subgroup of SU(2), @ be its canonical 2-dimensional representation,
and R be its regular representation. At [Kr2], Kronheimer showed

C*/T = Xo = {(a, 8) € (Q ® End(R))" | u(a, ) = 0}/U(R)",

and X is a quiver variety corresponding to the extended Dynkin diagram of T
In this section, we find out bow varieties which are isomorphic to Taub-NUT/T" as
hyper-Kéhler manifolds.
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5-1. Automorphisms of Taub-NUT space
In this subsection, we first discuss about the automorphisms of Taub-NUT space. Then

we consider divided Taub-NUT space by finite groups.

THEOREM 5.1. As a hyper-Kdhler manifold, the automorphism group preserving the
origin of Taub-NUT space is the semi-direct product Zs x S' generated by

we: [(bh b27 u, 77)]31 = [(Cblv <_1b27 u, 77)]51 5
L: [(b17 b27 U, n)]Sl = [(_bQ’ bla 'U;il, _77)]517
where ¢ € C, || =1 and the origin is [(0,0,1,0)]s1 € TN.

We consider what actions preserve the Kéahler form w; and the holomorphic symplectic
form wjy++/—1lwgk. By Proposition 4.16, Taub-NUT space is holomorphic symplectomor-
phic to C2, and the holomorphic symplectic form is written as dz; Adzs. So all the actions
which preserve the holomorphic symplectic form are described as @ 1o U~ lo foW o ®
by using a biholomorphism f (® and ¥ are given at Proposition 4.16):

[:C = C? fa1,22) = (fi(21, 22), fa(21, 22)).
Take [(b1,b2,u,m)]st € TN and fix the S'-action as u € R i.e. u = exp{l|b1|? — I|b2|?}.
Then the action is written as follows:
f=dloU lofolod,
F(b1,b2,u,biba/2) = (7" fi(ubr, u™"ba), € fa(ubr,u™"ba), €, f1 f2/2),

where r € R satisfies

—4ar s r
e? |fl|2—62 |fz\2 = T (5.2)

Needless to say, r depends on by, b1, u, f1 and fo.
From now, we consider when this action f preserves w;. Here, fixing the S'-action, we
have

—2v/—1wr = dby A dby + dby A dby + 21d(b1b2) A d(bibs).
Put

J1(21, 22) = pro21 + po122 + hi(21, 22),
fa(21,22) = quoz1 + qo122 + ha(21, 22),
where hy, are holomorphic and h(0,0) = 0, %(O, 0) = 0. Since (f1, f2) preserves dz; Adza,
we get
finfee — fiafon =1 (5.3)
Here, for example, f; 2 denotes %'
The exterior derivative of fi,(ub1,u'b;) and r is written as

d(fl(ubl,u_lbg)) = f171(ub1,u_1b2)d(ub1) + f172(ub1, u_lbg)d(u_lbg),
d(fg(ubhu_lbg)) = fg,l(ubl,u_le)d(ubl) + f2’2(ub1, u_lbg)d(u_le),

He 2 (dfvfi + dfif1) — €2 (dfafo+ dfaf2)}
(e[ fi2 + e [fo]?) + 1 '

dr =
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The induced Kéhler form by f is

—2V/=1frwr =d(e " f1) Ad(e " f1) + d(e" f2) Ad(e” fy) + 20d(f1f2) A d(fifz)
= e " dft Ndfy + e dfs Adfs + 2ld(fLf2) Ad(fif2)
+dr AN e (= frdfi + fidf1) + €2 (fodfz — fodf2)}

— 1 —2r £ 2r r
S TIRE I pm F 1 N E AR A

+ 41l f1]? 4+ 1e*" | fo|* + 1)d(f1f2) A d(f1f2)}-

Considering f*w; = wy at the origin, we have ¢1o = —po1, go1 = Pro and |p1o|+|po1|? =
1.

LEMMA 5.4. When f*wj = wy, we have hy = ho = 0.

Proof. From f*w; we pick up 2-forms whose coefficients are holomorphic functions.
Expanding f*w; with respect to by, b1, by and by around the origin, then we collect 2-
forms whose coefficients consist of products of b; and by (i.e. we ignore terms containing
Bl and 62)

First we consider the expansion of u and r. We have

u= €l|b1\271\b2|2

(Uba]? — 1]b2]*)
2

and since r is analytic around the origin, from (5.2), we have

r = (Ip1ol® = lgqro*)|b1]* + (Upor|* — llgor]?)b2]* + O(|b]*)
= (llprol® = Upor I*) (1b1]* — [b2/*) + O(|b]*).
Especially the holomorphic parts of u and r are respectively 1 and 0. Then we find that the
holomorphic parts of f(uby,u=tbe), fi1(uby,u=1bs), f11(uby,u"1bs) and f1 1(uby,u=1bs)
are respectively f1(b1,b2),0, f1,1(b1,b2) and Pio.
Therefore we only consider the term df; A df; + dfs Adfs. And we have 1-forms whose
coefficients are holomorphic:
d(fi(uby,u " b2)) ~ fi,1(b1,b2){(Ib1dby — Ibadbs)by + dbs}
+ f1,2(b1, b2){—(lb1dby — lbadbs)bs + dbs},
d(fg(ubl, u_lbg)) ~ fg’l(bl, bg){(lbldi)l — lbgdgg)bl + dbl}
+ f272(b17 bg){—(lbldl_)l — ledl_)Q)bQ + dbs },
d(f1(uby,u=1b2)) ~> prodby + pordba,
d( f2(uby, u=1b2)) ~ qiodby + Go1dbs.

=1+ (Uba]* = Ub2]*) + +O(Jbl),

Then we get
dfy Adfy ~U(f1,101 — f1,2b2) (Prob2 + Po1b1)dby A dby
+ f1.1P10db1 A dby + f1,1P01dby A dbz + f12P01dba A dbs + f1 2P10db2 A dby,

dfa N dfz ~1(f2,101 — f2,2b2)(Gr0ba + Go1b1)dby A dbs
+ f2,1q10dby A dby + f2.1G01dby A dbs + f2.2Go1dbs A dbz + f22q10dba A dby.
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On the other hand, the holomorphic part of —2v/—1Iw; is dby Adby +dba Adbs. Therefore
when f*w; = wy, we have

fiapo1 + f2,1q01 = 0,
f1,2P10 + f2,2q10 = 0.

Comparing them with (5.3), we have f1 = p1p2z1 + po122 and fo = —Po121 + Proze. [
LEMMA 5.5. In addition to Lemma 5.4, we have p1opo1 = 0.

Proof. Put P = (0,6,6_l6270), (e € R). We calculate how f*w1|p and wy|p vary as €
varies. Especially we pick up the coefficient of db, A db,-term.

Since F(P) = (e "pore!’ e, e"pioe e, €”, porpioe?’ €2/2), we have

_Qﬁw(a%’ 6%)|p =1+ 2l
s Ny e = 2 ol
df2 dﬁ(a% a%np = B |,
A1) MU s e = (al? = oo %€

so if f*wr = wr, we get
{20 |f1* + ¥ | f2?) + 1}(1 + 21€%)

_ e—2re—2162 \p10|2 + 627'6—2[62 |p01|2 + 4l(le_2r|f1|2 + leQr‘f2|2 + 1)(|p10\2 . |p01|2)262.
Now we expand them by € around € = 0. Since we have

u=1-1e+0(e), r=1Ulpo1|* — [p1ol*)e* + O(€?),
A0, = pole +O(). |10 €)| = proe + O(€?),

we get
{2lpo1|*€? + 2l|p1o|*€® + 1}(1 + 21€%) + O(€®)

= (1= 2e*)(1 = 2(|por]* = |prol*)€*)[prol* + (1 = 21€*) (1 + 2U(|por|* — p1o[*)€*) [por|?

+ 41(llpo1 [*€® + lIprol*€® + 1) (Ip1o]® — [por|*)*€* + O(€?),
S 1441+ 0(%) = 1 + 4le? — 241 |propor|* + O(€3).

Therefore we have p1gpgy = 0. O

Proof of Theorem 5.1 By Lemma 5.4 and Lemma 5.5, if f preserves the hyper-Kéhler
structure of Taub-NUT space and the origin, we have

= D)5 ) oo

The former leads to f(bl, b, u,n) = [(pb1, Pb2, u,n)] and the latter leads to f(bl, by, u,m) =
[(=@b2, gbr,w™tm)]. O
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By Theorem 5.1, finite groups acting on Taub-NUT space which preserve the origin
are generated by

W [(blabQ,uvn)]Sl — [(Cmbl,C;le%“»??)]Sla
L: [(b17b27u7n)]51 = [(_bQ’blau_17 _77)]517

where (7 = 1. We define

Ap = (Wny1) (n21),
D,, = (wan-4,t) (n>3).

In fact they correspond to the finite subgroups of SU(2) by ® o ¥: TN — C2.

COROLLARY 5.6. E, C SU(2) does not act on Taub-NUT space in such a way as to
preserve the hyper-Kdhler structure and the origin.

REMARK 5.7. As the subgroups of SU(2), As and D3 are identified because (_01 (1))

and (‘/? 7\951) are conjugate. However as the actions on Taub-NUT space, As and

D3 are different.
Let T be A, or D,,. The I'-action on Taub-NUT space induces it on S™(TN).

PROPOSITION 5.8. Put m = fI. (S™(TN))" and TN/T are isomorphic as hyper-
Kahler manifolds.

Proof. By definition of the symmetric product, I-fixed points in S™(TN) consist of
m-points in Taub-NUT space all of which are in the same I'-orbit. And these I'-orbits
correspond to elements of TN/T. [

5-2. Decomposition of elemental bows

In the last subsection, we constructed TN/I" as I'-fixed points. In this subsection, we
introduce the way to construct TN/T by a hyper-Kéhler quotient. To do this, we first
consider the way to construct TN/I" by an affine algebro-geometric quotient.

First we consider a general case. Let M be an affine variety and G be an algebraic group
acting on M. Put M'¢ = {x € M | gr # x for all g € G\id}. And suppose a finite group
I" acts on M in such a way as to commute with the G-action. Then the I'-action descends
to the affine algebro-geometric quotient M //, G. When we distinguish these two actions,
we describe the G-action as g - x and the I'-action as vy *x x, for z € M,g € G,y € T.

Assume we can take a representative x € M7 for any [z]¢ € (M //, G)''. Then by the

freeness, for any v € I there exists unique p, () € G which satisfies yxx = p,(y) 7! - 2.

LEMMA 5.9. This p, is a homomorphism from T" to G.
Proof. We get pa(7172) " - = (m172) * @ = 1 % (p2(72) 7" - 2) = pae(r2) - (1% 2) =
pz(72) " pu(71) 71 - @ Since € M™°, we have p,(v172) = pa(11)pa(v2). O

LEMMA 5.10. For any x' € M/, if [x']q = [z]q, then py is conjugate with p,.
Proof. There exists g € G such that 2’ = gz. Then we have
por (V)TN =y % (g2) = g(v* 2) = gpa () TN = gpa(v) TN
By the freeness, we have p,s = gpyg~ . O
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For a fixed homomorphism p: I' = G, put (M //, G)}, = {[z]c | ps is conjugate with p}.

On the other hand, we can define a new I'-action on M by x — p(v)yz for a given
homomorphism p: I' — G. Needless to say when z € M is fixed by the (T, p)-action,
satisfies v x x = p(y)~! - 2. We write these fixed points as M. Put G'* := {g € G |

p(7)gp(y)~" =g for all y € T}
PRrROPOSITION 5.11. (M //, G),I: is isomorphic to MT* [/, GTP.

Proof. Since x € M satisfies o = p(y) "'z, we can regard that p is p, and =
represents a point in (M // G)}. Thus we have a map M"™* — (M //, G)L.

First we claim this map is surjective from (M)l to (Mree j/, G)},- Take an element
x € M™° which represents a point in (M G)},- Since p, is conjugate with p, there

exists g € G which satisfies p, = gpg~!. Put 2’ := g~ 'z, we have

1 1./

va' =g e =g pe(y) e = p(y) TTg e = p(y) e

Thus 2 enters in (M)l and it means the surjectivity.
Suppose z, 2’ € (M¢)T-» and there exists g € G such that z = ga’. Then we have

/

z = p(y)yx = p(y)vgz" = p(1)gp(v) " p(v)va’ = p(7)gp(y) "',

so we get ¢ = p(7)gp(y)~! by the freeness. This induces an isomorphism (A7free)l»

o G = (M [ G)y.
For x € M\ M it is enough to consider a sequence {x,} C M such that z,
converges to x as n — oco. Therefore (M /o G)L and M™* j/  G'# are isomorphic. [

From now we apply Proposition 5.11 to (15" (0) //, Ge)'- Take [z]g. € (uc'(0) /o Ge)*
=~ §™(TN)T. By Remark 4.21 and Proposition 5.8, x is represented as

Y1xby 0 Y1 xba 0 1
x:(B,i,j,u,n): 5 5 ,O,
0 Yn*b1 0 Y Kbo 1
Yi*uA 0 Y1*MA 0
T . ) T . P
0 Yrn*uA 0 Yn*NA

where {71, -, } =T and we write v x (b1, b2, u,n) as (Vg * b1, Vi * b2, Vi * u, Yk * 7).
Here the T'-action is defined on such {z}, and in fact we can extend the I'-action on M¢
in the case appearing later.

G acts freely on above {z}, so p(7) = (p—(7)~", po(v) ", p+(7)~") € G is uniquely
determined. In order to know p() explicitly, we have to solve the following equations:

v* By = p-(7) " Byp+(7), ¥ By = pi (1) Biop-(7), (5.12)
vxi=po(y)" 1, Yxj=jpo(7),
yrur = pp () turp-(7), yxur = py(7)  urpo(v),
yxnL =p-(7) nLp-(7), v *nr = po(7) " nrpo(7).

The following subsection we will solve them particularly in the case of A,, and D,,. Note
that there are two reasons why we chose 4 as *(1,---,1). The first is that G¢ acts freely
for such ¢, as we mentioned in Remark 4.21. The second is that the solution p of the
equations (5.12) enters G not only G¢. This is cleared up by the later calculation.
Therefore by Proposition 5.11, we get TN/T' 2 (uz'(0) /o Ge)' =2 (us'(0)' //, GE
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as algebraic varieties. And we consider the way to get a similar isomorphism as hyper-
Kihler manifolds, that is, an isomorphism between (ug ' (0) N ue'(0)/G)F and (ug'(0)N
et (0))F/GY. Furthermore, we consider how to construct (ug'(0) N us'(0))7/GY as a
hyper-Kahler quotient.

First we recall that there exists the biholomorphism (uz'(0) N uz'(0))/G = uz'(0)
/o Gc by Proposition 4.7. By this biholomorphism we can take a representative [x]g €

(g (0) g (0))/G)" as

Y1xb1 0 Y1xb2 0 Y1xu 0 Y1x1m 0
r = ) 7O7Oa ) )
0 Yn*b1 0 Yn*ba 0 Yn*U 0 Yn*k1

where [(b1, b2, u,n)]s1 € TN. Since the above solution p is in G, we can define the same
[-action on Mg as before. It is clear that {x € p=1(0) | v = p(y) 'z} = {x € ML |
wu(x) = 0} holds.

Then we get a map from gz *(0) Nz (0)NME to (ug ' (0)Npue'(0)/G)F like Proposition
5.11. However we cannot make the same argument to show the injiectivity of the map
p=H0)NME/GY — (1 1(0)/G)T as Proposition 5.11 because there is no point in 4 ~1(0)
on which G acts freely. To clear up this problem, it is enough to check Stab(z) N GT acts
trivially on p=1(0) N ML for any o € u=1(0).

Last we check ug ' (0)Nug ' (0)NME /GY is obtained by a hyper-Kéhler quotient of Mk by
G". Let ' be the moment map defined by the G'-action. Since G is a (closed) subgroup
of G, the moment map ' is given by the orthogonal projection of x on (Lie G')*. Then
it is enough to check that the image of the restriction map plfyr is included in (Lie GU)*.

Therefore we can get an isomorphism

TN/T 2 (uz ' (0) N g (0)/G) =

as hyper-Kéhler manifolds, if the following condition hold:

)N uE N (0)/G",

CONDITION 5.13.

(1) If p(y) € G is the solution of (5.12), it is in G.
(2) Stab(x) NGT acts trivially on p=*(0) "ML for any = € u~*(0).

*

(3) The image of the restriction map plyyx is included in (Lie Ghy*.

In the following subsections, we calculate M(E and GT for I' = A,,, D,, cases.

EXAMPLE 5.14. In Kronheimer’s situation [Kr2], one can check that the homomor-
phism p and M{ coincide with the reqular representation of the finite groups of SU(2)
and (Q @ End(R))" respectively.

53. I' = A,, case
By using the results in §5.2, we get TN/A,, as a hyper-Kéhler quotient. Because 4,, =
(Wnt1)(n > 0), so we can take (B,14,j,u,n) as

by O - 0 b O 0 1 ug 0 - 0 na 0 - 0

0 ¢by - 0 0 ¢ty - 0 : 0 ug - O 0 na - O

0 0 - by 6 0 e by : 0 0 - s 0 0 -
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where ( = (,,+1. And by definition of the I'-action on Taub-NUT space, we have

w*(B,Z’j7u’n):
by 0 - 0 ¢y 0 e 0 1 wa 0 - 0 na 0 = 0
0 ¢%by -+ 0 0 ¢ 2y - 0 : 0 uag -+ O 0 na - 0
. ) b ' 707 . . b) . : :
0 0 - b 0 0 o by 1 0 0 - wa 0 0 - ma

This action is extended on Mc as wx (B, 1, j,u,n) = ((B_y,("'By_,i,7,u,n). And the
w-action and the Gc-action commute, so we can apply Proposition5.11. The solution of
(5.12) is given by

+ OC0O
(=]l g
o—=o
—OO

o

[=l=TRE]

0
1

0000
00 --- 0

1
In this case each pe is a homomorphism from A, to U(n + 1). By a change of basis, p
can be described as

p— (w) = po(bd) = p+(w) = dlag(L Ca <2a T ’Cn)

This means that each p, is actually the regular representation of A,,. For this p, we apply
Proposition5.11. A point in ME’” = ML is represented as

0 bor 0 0 - 0 0 0 0 0 bon
0 0 biz 0 - 0 bo 0 0 « 0 0
( 0 0 0 ba 0 0 by O - 0 0
0 0 bss 0 0
o .. ) ;
0 0 0 O bn—1,n Lo . .
bpo 0O 0 0O - 0 0 0 O brn—1 O

(1) uUA,0 0 14,0 0
. |0, ) :
0 0 UA,n 0 NA,n

b k+1bk+1,6 + 210 =0

—1 —1
—2up gLty g + 2URKNRKUR ), = 0

It satisfies puc = 0 if and only if

—2nRk — b k—1bp—1,6 = 0.
And GT C G is given by
F= {(diag(g_p, e 7g—,n)a diag(go,o, e ’go,n)7 dia‘g(g+,07 e ,g+,n)) € G}

These data are described as the following diagram:

1 = 1 bwo 1 &1~ 1 b 1 o~ 1 o 1 1 o~ 1 bow 1 o1 o 1
N N N N N Ny N N
NR,0 nL,1 NR.1 nL.2 NR,2 NR,n nL,o MR.0

Notice that the both ends of the above diagram are connected. And by Kronheimer’s
theorem, each {(u,n)} is regarded as the moduli space of the solutions of 1-dimensional
Nahm’s equation, so we can get a new bow by replacing

° —>o<— [ with o~~~ 0~ 0,

O O
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It is clear that Condition 5.13 holds in this case, so TN/A,, is constructed by a hyper-
Kahler quotient corresponding to the above diagram. In §6, we study such a hyper-Kahler
quotient.

54. I' =D, case
By using the results in §5.2, we get TN/D,, as a hyper-Kéhler quotient. Because D,, =

(W, t) (m = 2n —4, n > 3), and we order them as {1,w,w?, -+ ;W™ 1w, w? -,
w™= 1}, where w denotes w,,. Then we can take (B, i, j,u,n) as
B_; = diag(by,Cbi, -+, ¢ by, —by, —C Mo, o, —C M),
By = diag(bs, ¢ o, -+, ¢ ™ Dby by, Cby, -, ¢ ),
i = diag(1,1, 1,1,1,---,1), 7 =0,
ur, = diag(uL,uL,' UL, UR,UR, " UR),
ug = diag(ug, ur, -+ ,UR, UL, UL, "+ ,UL),
nr = diag(nL, e, -+ ML, =R, —NR: - —NR),
nr = diag(nr, nr, - MR, =ML, =ML, L)

And the I'-action can be extended on M as
W * (Bai7j7u777) = (CB—+3C71‘B+—3iajauLauRanLanR)7
L* (Bai7j7u777) = (B+—7 _B—-‘rviajv UR, UL, —TNR, _nL)'

But the t-action does not commute with the Gc-action. In order to decompose the ele-
mental bow, we modify Proposition5.11. For g = (¢9_, g0, 9+) € Gc, put ¢* := (9+, 9o, g—)-
Then we have

* (g : (Baiajauan)) = gb . (L*(Bﬂ:ajauvn))'
Thus rewriting g by g* if necessary, we have the same result as Proposition5.11.
Hence the solution of (5.12) is given by

pxw*zmwr%w4w*:(%14;)

wwlmwlmmlﬂi %0,

where
0100 - 0
00677 8 0 id
i m
P,=1... | eU(m), Qm=|. m/2) = pz2.
Do iy /2 0
0000 1
1000 - 0

Here po is a homomorphism from D,, to U(2m). Each py is not a homomorphism but

p_(w) O 0 p—(v)
“H( 0 p+<w)>7 LH(ML) 0 )

is a homomorphism from D,, to U(4m). By using this representation, a change of basis
is written as

po(w) = gopo(w)gy (p_éw) pf(w)) = (go‘ ;i) (p‘éw) pf(w)) <g0_ 9(1)71,

-1
— 0 (¢ _ 0 0 (¢ _ 0
po(t) = gopo(t)go 1v (er(L)p 0()) = (go g+> (p+(L)p é)> <go g+) .
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Then p, can be described as

p—(w) = po(w) = p4(w) = diag(ida, ("' ida, Cida, -+, (7™ id, (" idy, —ida)

ids I
0 idsy 0 idy
—ids 0 —idy 0
0 ids 0 ids
ida O ida 0
p—(1) = py(t) = 0 ids , polL) = 0 ids )
—idy 0 —idy 0

cidsg cls

where ¢ = v/—1(resp. 1) when n is odd (resp. even) and I = diag(1, —1). This means
that po is the regular representation of D,,. A point in M is represented as

0 B2 O
0 0 0 Bss O
By 0 0 0 O
0 0 0 0 BsgO
0 Bss 0 0 0 O
0 0 00 t
By = 0 Bgs 0 0 . i=1(1,0,---,0),
0 0Bm—1,m
) 0
0 Bm,m—l 0
0 0 B
—B>; 0 0 0 O
0 0 0 0 Bag
—B4s0 0 0 0 O
0 0 0 0 0Bsg
—Bgs0 0 0 .
By = 0.0 0 0 , J=0,
0 0 0
0 0 cBm—1,m
_CBm,m—l 0 0
U1 Touy
us ug
ug us
us Uy
uy, = Ug R UR = us ,
Um .12“4771,
m —m
3 —n2
2 —"n3
5 1
nL = "4 ) TR = —n5
h —MNm
It satisfies uc = 0 if and only if
—Bi k+1Brt1,k + 2up =0 (k : odd)
-1 -1
—2uimu;  — 2huimui I =0
-1 1 .
—2upmpuy, T — 2up_1mg—1uy, 4 =0 (k : odd)

20k — Br k1 By, =0
Bri1,xBr k11 — 20641 =0

2umnmu;l1 + 2]2umnmu;11[2 =0.
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And GV = {(9_,90,9+)} C G is given by

g- =diag(g-1,9-3,9-2:9-5:9-4, " s9—m),
go = diag(go,1, 90,2, 90,3, 90,4, 90,5, - * » 0,m )
g+ = diag(g+4.1,9+.2,9+,3: 9+.4:9+.5: " »G+.m)>

where geo € U(2) and go1,9go,m satisfy goe = I290,el2. Here for A = (2%), we have

(é ,01) (‘j Z) (é ,01) = (_ac _db), so A+ I, Al, = 0 means diagonal entries are 0 and
A = I,Al, means off diagonal entries are 0. Especially goo = <g”:' 02) € U(l) x

2,
0 gO,-

U(1),(e =1,m). Then we get a new diagram:

1 o 2 Bau 2 o 2o 2 Bis 2 o~ 2 o 2 2 o 2Bam-12 L1

.T,‘< R4 ?'T’{ R4 T).T’. ?L<j,. R4 Tm>.

1 /N B N / \ Bss [/ \ / \ 4 %Bmﬂm/ \ 1
m 72 N3 M4 5 Mm—1 NMm -

Here 8 means that the acting group on it is U(1) x U(1) C U(2) (diagonal subgroup).

In the same way as the previous subsection, we can get a new bow by Kronheimer’s
theorem. And it is also clear that Condition 5.13 holds in this case, so TN/D,, is con-
structed by a hyper-Kahler quotient corresponding to the above diagram. In §7, we study
such a hyper-Kahler quotient.

6. A, -type bow varieties

In this section, we study the properties of A, -type bow varieties (see also [C2, §4.2]).

6-1. A,-type bow

We consider the following diagram:

O~~~ °
Ior Zor
hOl hnO
h10 h(m
?
Tt I”R§
IIR InL §
ha1
hi2
Loy,
e (6.1)
where Z,, = {1y < s, <0} and Z,g = {0 < s, < l,}. For [ = (lo, -+ ,1n), we assume

] =1y > 0. Put Q= {hgt15} and Q = {hgoy1}.
We give rank-1 trivial hermitian vector bundles n,: V, — Z,r UZ,r. We describe
7, (s,) as Vy(so). In the same way as §4.1., let us define complex vector spaces Mé”,



Bow varieties and ALF spaces 39
M%" and M4~ respectively by

M = €D Hom(V (o(h)), V (i(h)) = @D {bs41.c € C},

heQ

= @ Hom(V(o(h)), V(i(h)) = @ {bs.011 € C},
heQ o
MA" (f) = Mén D Mgn ) @HUL ® @HO’R'
o=0 o=0

When [, = 0 for some o, we replace the vector bundle n,: V, — Z,; UZ,g with a
1-dimensional vector space V. and remove H,r ® H,p from MAn (l) This corresponds
to taking the limit [, — 0 as (4.14).

A group Ghn = Ho’ Go = U{ga = (9oL,90R) € L%(IaLa U(1)) x L%(IUP” u@)) |
9o1.(0) = gor(0)} acts on M4~ (1) as §4. We have a hyper-Kihler moment map p and the
explicit form is as follows:

74771(60’0_117;70_1 — by 1 obo-10) +TTH(=ls)  at so = —lo

= A at s, € (—1s,0),(0,1,)
—T7H(0) + T7%(0) at s, =0
- 271 (b0'70'+1bj;',o'+1 - b;+1,gba+1,g) — T{TR(ZU) at s, = o,
bo.o-1bo—1,0 + (T5F + V-1T5")(~l,) at sy = —ly

e = L(TgA +V—1T54) at o € (—ly,0), (0,1,)
—(TgE + /1T (0) + (TgR + V—1Tg%)(0)  at s, =0
~boot1bot1,0 — (T57 + V=1T5F)(l5) at sy = L.

Put Z4» = {¢ = ({,) € (LieU(1)"*)*® ®(R&C)}. Choose an element ¢ = (Cr,(c) € Z4,
and define a hyper-Kihler quotient M% ol [) of M4 (I) by GA» as follows:

ME (D) = {(6.T) € M (1) | w(b,T) = (8, —0} /G-
We call this hyper-Kéahler manifold an A, -type bow variety.

REMARK 6.2. The subgroup {(c,--- ,¢) € G4 | ¢ € U(1)} acts on M4 (1) trivially,
so when Y (s, # 0, M?” is empty. Afterward we only consider the case Y. (, =0

By Proposition 3.13, we can rewrite these data as

MA @{ o,0— 17b0 1 o’7u0'La770'LauaR777<7R) eCxCx C*xCx C* X (C}
An = H{ 97,98,97) € U(1) x U(1) x U(1)}.
When all the [, is equal and { = 0, the A,-type bow variety Maq” (13 coincides with
TN/A,, (c.f. §5.3).

6-2. General properties of A, -type bow varieties

For the A,-type bow variety, we can make the same arguments in §4.2.

PrOPOSITION 6.3. The A, -type bow variety M?” is algebraic.
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Proof. 1t is enough to define

x(g) 7 =[] g§)* T,

instead of (4.8), then actually we have

UR at s, = —l,
px(byu,m) = pr + ¢ at s, =0
LR at s = ..

O

PROPOSITION 6.4. As algebraic varieties, M?" (f) is isomorphic to an A, -type quiver
variety constructed by Kronheimer [Kr2].

COROLLARY 6.5. If ( = ({,) satisfies the following condition, M?"(l_j is smooth.
Moreover the projection M?" — Mg‘” induced by (1.7) is the resolution of singularities.

(%) There does not exist (j,k) which satisfies j < k and Z ¢, =0.
j<o<k
Proof. This follows immediately from Proposition 6.4 and [Kr2]. We write down the
condition in [Kr2, Proposition 2.8.] in the case of A,,, then we have the condition (). [

6-3. Metrics of A,-type bow varieties
In order to study the metric of the A,-type bow variety, we construct M?" explicitly
like §4.3 (see also [CZ2, §4.3]).
First we solve the equations at s, =1, and s,4+1 = —ly41:
_%(‘bo,a+1|2 - ‘bd+1,a|2) - ttljR =0
_b0,0+1b0+1’0 - (V _1th - th) =0,
—5(1bot1,0* = [boor1]?) + 27 =0
bot1.000.001 + (V—1tgTH — gy = 0.

Put (22,1, —vV—1%02 + 253) = (|bo11.0* — [bo.0+1]%: bo.o+1b0+1,0) as §4.3. By using the

new coordinate (2,1, Zs2, X3, 0o ), the above equations are written as th = Top = tZHL,
and the metric is given by
ds? = Z{ lo +logr + " a|)d;v + (lo + log1 + | 10|) dyo + we)?}.
Then the equations at s, = 0 are
~Tok + Tot1k = —Cotlk-
Putz:=xg =21+ =22+ (Gt +C) = =2, + >4, G and (o = 37_, Ck- Then

we can write x, = x — (,. Note that §0 = Z"H O (=0 by Remark 6.2. Hence we have

2|Z|+Z| dx + 2|1|+Z‘ Zd't/)UerU

This metric is a so-called multi- Taub-NUT metric. Summarising this section, we have the
following theorem:
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THEOREM 6.6. When ¢ = 0, we have M‘é"(f) >~ TN/A,, as hyper-Kihler manifolds.
In general, M?"(l) is a multi-Taub-NUT space and an ALF space.

Proof. The metric of MS‘" (f) depends only on |l_i . So it is enough to consider the case

which all the I, is equal, then the first assertion holds. [

7. D,-type bow varieties

In this section we consider the case of D,, in the same way as §6.

7-1. D, -type bow
We consider the following diagram (n > 2):

1 2 har 2 2 2 ha 2 2 2 2hn-1,n-29 1
$§~——~—o L B2 @@ @A~~~ 0 _ e~~~ § (71)
1 Iy hia Zor I2r has Isr In-2,r P21 In—1 1

where Il = {0 < s < ll},In—l = {_ln—l < Sn—1 < 0},IGL = {—lo < So < O} and
Tor ={0<s, <lp}. For = (I1, - ,ln_1), we assume |I] := Iy + 1,1 + S"_22l, > 0.
Put Q = {hot11,} and Q = {hy o411}

We give rank-2 trivial hermitian vector bundles 7,: V, — Z,. In the same way as
84.1., let us define complex vector spaces Mg”, Mg" and MP» respectively by

M3 = @ Hom(V (o(h)), V(i(h)) = @{Bor1.0 € M(2,2;C)},

heQ
M2 := €D Hom(V (o(h)), V(i(h)) = ED{Bo.o11 € M(2,2;C)},
heQ 4
n—1 n—2
MP (1) == M§" & ME" & @ Hor & €D Hor.
o=2 o=1

When [, = 0 for some o, we treat MP» (f) in the same way as the case of the A,-type,
that is, we take the limit [, — 0.
A group GP» = G x Gp_1 X Hg;ﬂ n_1 Yo acts on MP» | where

Gi1 ={g € L3(71,U(2)) | 91(0) € U(1) x U(1) C U(2) (diagonal)},
Gno1=4{gn-1 € L3(Tn_1,U(2)) | gn_1(0) € U(1) x U(1) C U(2) (diagonal)},
G, = {go = (gaL;goR) € L%(IUL7 U(Q)) X L%(IUL7 U(Q)) | goL(O) = gaR(O)}'

We have a hyper-Kéahler moment map p and the explicit form is as follows:

- 2_1 (Bcf,dle:—,o—l - B;—l,o—Bofl,o) + T10L<_l0)
at s, = —l,
ATPA + [TgA, TP 4] + [T 4, T 4] at so € (—15,0),(0,15)
KR = - 2_1 (BU,U+1B;,U+1 - B;+1,0B0+1,0) - T{TR(IU)
at s = I,
—T7L(0) + T7F(0) at s, =0, foro#1,n—1
inA(O)l,l’ inA(O)Z,Z at s, =0, for (so, A, %) = (s1, R, +), (8n_1, L, —),
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Boo-1Bo—1,6 + (TS5 + V/=1T55) (1) at s, = —l,
(T4 + VATEH) + [Tg A + V=117 A, T9 A + /—1T5 7]
at s, € (=1,,0),(0,1,)

pc = —Bo.ot1Bot1,0 — (T5 +V/—1T5)(1,) at 55 = Iy
—(TgF +/=1Tg")(0) + (T9 " + V-1T5)(0)  at s, =0, for o #1,n—1
T4+ VITEH(0)M, H(TF4 + V=1T74)(0)>2

at s, =0, for (s,,A,+) = (s1,R,+), ($p—1, L, —).

Put ZP» = {¢ = (¢) € (LieU(2)")* @ (R& C) | Ad}(¢) = ¢ for all g € GP»}. Choose
an element ¢ = ((g,(c) € ZP», and define a hyper-Kihler quotient M?” of MP» by
GPr as follows:

M ([} == {(B.T) € M | u(B,T) = (3, ~0}/G""
We call this hyper-Kahler manifold a D,,-type bow variety.

REMARK 7.2. (i) In the case of [ = (0,1,0,---,0), the hyper-Kdhler manifold coin-
cides with what Dancer constructed in [Da].

(i) Put Guo = {g € L3(Z,U(2)) | g(I) = 0,¢9(0) € U(1) x U(1) C U(2)(diagonal)}.
A hyper-Kdhler quotient of H by Gy is holomorphic symplectomorphic to the cotangent
bundle of GL(n,C)/C* xC*. This follows from [DS] and is considered as a generalisation
of Kronheimer’s theorem.

(iii) About the ends of the above diagram, one may think that (as appearing in [C2])
it is more natural to replace

. ) , {0<s<l’}%

| PO N N O USRI with @

1{0<s <N} {0<s”<l”}//4

But in fact the former diagram contains the latter dmgmm.
First we consider the hyper-Kdihler quotient u=*(¢)/GP" of the latter diagram. Then
we have

T(0) = Cg (T3 +V—1T3)(0) =

TE(0) = G (T3 + V—1T3)(0) =

4Tl =0 4T} +V=1T}) =0

ATE =0 LT3+ V-1T3)=0
==1(Bo2Bgy — By Bao) — TH(I') = 0 —Boa B — (T4 +V—-1T34)(I') = 0
—=1(B12B, — B§y Ba) — T2(I") = 0, —B12By — (T5 + V—-1T3) (") = 0,

for T, T? € L3(Z,v/—1R). And we get

{ _F(BO2B€;2 — B3Bao) = (g {—302320 =¢¢
_\F(BHBTQ — B3, Ba1) = (3, —Bi12By = (B

These equations also appear in the case of [y = 0 at the former diagram. In other words,




Bow varieties and ALF spaces 43

even if we take I',1" # 0 at the latter diagram, the hyper-Kdihler quotient u=*(¢)/GP»
does not depend on I’ and l”.

On the other hand, from the former diagram we get the hyper-Kdhler quotient depend-
ing on ly (see also Theorem 7.6).

7-2. General properties of D, -type bow varieties

We can make the same arguments as the case of §4.2 and §6.2.

ProrosITION 7.3. The D, -type bow variety M?” s algebraic.

PROPOSITION 7.4. As algebraic varieties, M?" is isomorphic to a D, -type quiver
variety constructed by Kronheimer [Kr2] for n > 3.

It is well-known that C2?/D,, is isomorphic to an affine variety {(z,y,2) € C3 |
22 — zy? = 2" 1} for n > 3. Combining this fact with Proposition 7.4, we have the
isomorphism M 2 {(z,y,2) € C3 | 22 — 2y? = 2"~} for n > 3. In fact for n = 2, this
is true [Dal].

PROPOSITION 7.5. M{? is isomorphic to {(x,y,2) € C? | 2? — 2y% = 2}.

— o9 —
— e —

Do-type bow.

Proof. We sketch the proof by Dancer. We consider M g) 2 as an affine algebro-geometric
quotient.

It is clear that the quotient of GL(2) x gl(2) by (U(1) xU(1)) x (U(1) x U(1)) coincides
with the quotient of SL(2) x sl(2) by C* x C*. Here C* x C* 3 (a, b) acts as

a -1 a a -1
a, \u,n) = obt u 0a ! s\ gt n 0a ! , U » N .
(@,0) - (w,m) == (5,20 ) u (g, 2) (5. 2)n(5 %) € SL(2),7n € sl(2)
Then the moment map is given by
nhl — 22
pe = Z1y1,1 1)2,2
(unu~1)1 = (unu~1)22,

Therefore we consider pz'(0)/C* x C*. Put u = (2%),n = (9¢). Since u € SL(2), we
have zw — yz = 1. And by pc = 0, we get tyw — sxz = 0. On the other hand C* x C*-
invariant polynomials are generated by {st, szz, tyw, zw,yz}. Put X = sxz,/—1Y =
20w — 1,7 = f%. By using the above equations, we have
X? = stxyzw
= A4Zzw(zw —1) = —Z(=Y? - 1).

Thus MJ? = {(X,Y,Z) € C* | X2 — ZY? = Z} holds. [
7-3. Metrics of D, -type bow varieties
Let us consider the metric of ./\/l(l)j”.

THEOREM 7.6. Forn > 3, the D, -type bow variety ./\/léj" (l_j is isomorphic to TN/D,,
as hyper-Kdahler manifolds.
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Proof. As we proved in §5, the D,-type bow variety ./\/l(? ™ is isomorphic to TN/D,,
when [y = Iy = l,—9 = [,—1 and the morphism is given by the G-action. TN/D,, is
described by the explicit coordinate, and the coordinate does not depend on the length
l, so for any ly,---,l,—1 we can take the same coordinate. Thus all the D,,-type bow
varieties with ¢ = 0 are biholomorphic to each other and their metric depend only on |i].
So, taking I := ﬁﬂl we have

MG (1o, Lo, bn1) 2 M (Lo, Do, -+ 4o, lo) =2 TN(lp) /Dy,
as hyper-Kéhler manifolds. []

COROLLARY 7.7. Forn > 3, the hyper-Kdihler 4-manifold constructed by Dancer [Dal]
is ALF when ¢ = 0.

By Remark 5.7, we have the following proposition.

PROPOSITION 7.8. /\/l(?"‘ and MY?* are isomorphic as algebraic varieties, but are not
as hyper-Kdhler manifolds.

REMARK 7.9. It is well-known that a D,,-type ALF space is obtained by dividing (2n—
3)-centred multi-Taub-NUT space by 1. By using our notation, this is written as follows.

Take f: (ll, ce 7ln,1) and C = (Cla s ,Cnfl) € ZD" as Cl = C1 id2,4n71 = Cp—1 ld2
Since for o # 1,n — 1 we also have {, = ¢, ida, we get ZZ;% ¢e = 0. This implies M?"
has an Ai-type singular point.

On the other hand, we construct an As,_s3-type bow variety with

l_(; = (11,123 v 7ln72>ln71aln72,' v al2)7

Co = (2¢1,¢2, - ,Cn—2,2Cn—1,Cp—2," - ,C2).

—

And for M?2"‘3(l), we define the t-action as follows:

(U€777§7U§»77§) = (U’(I):iﬂ —ﬂ(?auoLa —775)7

(bn,rr—i-ly b17+1,(7) — (*bzn,—2—0,2n—3—o, b2n—3—z7,2n—2—0)a

(ugv 7]57 u§> ﬁf) = (ué%nf4fm _77;;17470’ uénfzxfa’ _772Ln74fo)7
(Uﬁ—wanL—zvuﬁ—%anE—Q) = (uﬁ—w *771]3—2,“5—27 *777LL—2)~

—

Then for these I, ¢ and v, we have M?”(f) e Mg""’?’(lo)/u

All D,,-type bow varieties which we discussed in this subsection are ALF spaces and
have singular points. According to these examples, we can conjecture that smooth D,,-
type bow varieties are also ALF spaces and their metric depend not on each [, but on
the sum |l_i . But the author could not know how to prove these conjectures.
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